
HAL Id: hal-00129062
https://hal.science/hal-00129062

Submitted on 6 Feb 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Epitope prediction improved by multitask support
vector machines

Laurent Jacob, Jean-Philippe Vert

To cite this version:
Laurent Jacob, Jean-Philippe Vert. Epitope prediction improved by multitask support vector ma-
chines. 2007. �hal-00129062�

https://hal.science/hal-00129062
https://hal.archives-ouvertes.fr


ha
l-

00
12

90
62

, v
er

si
on

 1
 -

 6
 F

eb
 2

00
7

Epitope prediction improved by multitask support

vector machines

Laurent Jacob
Centre for Computational Biology

Ecole des Mines de Paris

35, rue Saint-Honoré
77300 Fontainebleau, France

laurent.jacob@ensmp.fr

Jean-Philippe Vert
Centre for Computational Biology

Ecole des Mines de Paris
35, rue Saint-Honoré

77300 Fontainebleau, France
jean-philippe.vert@ensmp.fr

February 6, 2007

Abstract

In silico methods for the prediction of antigenic peptides binding to MHC

class I molecules play an increasingly important role in the identification of T-

cell epitopes. Statistical and machine learning methods, in particular, are widely

used to score candidate epitopes based on their similarity with known epitopes

and non epitopes. The genes coding for the MHC molecules, however, are highly

polymorphic, and statistical methods have difficulties to build models for alleles

with few known epitopes. In this case, recent works have demonstrated the

utility of leveraging information across alleles to improve the performance of the

prediction.

We design a support vector machine algorithm that is able to learn epitope

models for all alleles simultaneously, by sharing information across similar alleles.

The sharing of information across alleles is controlled by a user-defined measure

of similarity between alleles. We show that this similarity can be defined in

terms of supertypes, or more directly by comparing key residues known to play

a role in the peptide-MHC binding. We illustrate the potential of this approach

on various benchmark experiments where it outperforms other state-of-the-art

methods.

1



1 Introduction

A key step in the immune response to pathogen invasion is the activation of cytotoxic
T-cells, which is triggered by the recognition of a short peptide, called epitope, bound
to Major Histocompatibility Complex (MHC) class I molecules and presented to the
T-cells. This recognition is supposed to trigger cloning and activation of cytotoxic
lymphocytes able to identify and destroy the pathogen or infected cells. MHC class
I epitopes are therefore potential tools for the development of peptide vaccines, in
particular for AIDS vaccines (McMichael and Hanke, 2002). They are also potential
tools for diagnosis and treatment of cancer (Wang, 1999; Sette et al., 2001).

Identifying MHC class I epitope in a pathogen genome is therefore crucial for vac-
cine design. However, not all peptides of a pathogen can bind to the MHC molecule
to be presented to T-cells: it is estimated that only 1 in 100 or 200 peptides actually
binds to a particular MHC (Yewdell and Bennink, 1999). In order to alleviate the cost
and time required to identify epitopes experimentally, in silico computational methods
for epitope prediction are therefore increasingly used. Structural approaches, on the
one hand, try to evaluate how well a candidate epitope fit in the binding groove of
a MHC molecule, by various threading or docking approaches (Rosenfeld et al., 1995;
Schueler-Furman et al., 2000; Tong et al., 2006; Bui et al., 2006). Sequence-based
approaches, on the other hand, estimate predictive models for epitopes by analyzing
and learning from sets of known epitopes and non-epitopes. Models can be based on
motifs (Rötzschke et al., 1992; Rammensee et al., 1995), profiles (Parker et al., 1994;
Rammensee et al., 1999; Reche et al., 2002), or machine learning methods like artificial
neural networks (Honeyman et al., 1998; Milik et al., 1998; Brusic et al., 2002; Buus
et al., 2003; Nielsen et al., 2003; Zhang et al., 2005), hidden Markov models (Mamit-
suka, 1998), support vector machines (SVM) (Dönnes and Elofsson, 2002; Zhao et al.,
2003; Bhasin and Raghava, 2004; Salomon and Flower, 2006), boosted metric learn-
ing (Hertz and Yanover, 2006) or logistic regression (Heckerman et al., 2006). Finally,
some authors have recently proposed to combine structural and sequence-based ap-
proaches (Antes et al., 2006; Jojic et al., 2006). Although comparison is difficult,
sequence-based approaches that learn a model from the analysis of known epitopes
benefit from the accumulation of experimentally validated epitopes and will certainly
continue to improve as more data become available.

The binding affinity of a peptide depends on the MHC molecule’s 3D structure and
physicochemical properties, which in turns vary between MHC alleles. This compels
any prediction method to be allele-specific: indeed, the fact that a peptide can bind
to an allele is neither sufficient nor necessary for it to bind to another allele. Since
MHC genes are highly polymorphic, little training data if any is available for some
alleles. Thus, though achieving good precisions in general, classical statistical and
machine learning-based MHC-peptide binding prediction methods fail to efficiently
predict bindings for these alleles.

Some alleles, however, can share binding properties. In particular, experimental
work (Sidney et al., 1995, 1996; Sette and Sidney, 1998, 1999) shows that different

2



alleles have overlapping peptide repertoires. This fact, together with the posterior ob-
servation of structural similarities among the alleles sharing their repertoires allowed
the definition of HLA allele supertypes, which are families of alleles exhibiting the
same behavior in terms of peptide binding. This suggests that sharing information
about known epitopes across different but similar alleles has the potential to improve
predictive models by increasing the quantity of data used to establish the model. For
example, Zhu et al. (2006) show that simply pooling together known epitopes for dif-
ferent alleles of a given supertype to train a model can improve the accuracy of the
model. Hertz and Yanover (2006) pool together epitope data for all alleles simultane-
ously to learn a metric between peptides, which is then used to build predictive models
for each allele. Finally, Heckerman et al. (2006) show that leveraging the information
across MHC alleles and supertypes considerably improves individual allele prediction
accuracy.

In this paper we show how this strategy of leveraging information across different
alleles when learning allele-specific epitope prediction models can be naturally per-
formed in the context of SVM, a state-of-the-art machine learning algorithm. This
new formulation is based on the notion of multitask kernels (Evgeniou et al., 2005),
a general framework for solving several related machine learning problems simultane-
ously. Known epitopes for a given allele contribute to the model estimation for all other
alleles, with a weight that depends on the similarity between alleles. Here the notion
of similarity between alleles can be very general; we can for example follow Heckerman
et al. (2006) and define two alleles to be similar if they belong to the same supertype,
but the flexibility of our mathematical formulation also allows for more subtle notions
of similarity, based for example of sequence similarity between alleles. On a bench-
mark experiment we demonstrate the relevance of the multitask SVM approach which
outperforms state-of-the-art prediction methods.

2 Methods

In this section, we explain how information can be shared between alleles when SVM
models are trained on different alleles. For the sake of clarity we first explain the
approach in the case of linear classifiers, and then generalize it to more general models.

2.1 Sharing information with linear classifiers

Let us first assume that epitopes are represented by d-dimensional vectors x, and that
for each allele a we want to learn a linear function fa(x) = w⊤x to discriminate between
epitopes and non-epitopes, where w ∈ R

d. A natural way to share information between
different alleles is to assume that each vector w is the sum of a common vector wc which
is common to all alleles, and of an allele-specific vector wa, resulting in a classifier:

fa(x) = (wc + wa)
⊤x . (1)

3



In this equation the first term wc accounts for general characteristics of epitopes valid
for all alleles, while the second term wa accounts for allele-specific properties of epitopes.
In order to estimate such a model from data it is convenient to rewrite it as a simple
linear model in a larger space as follows. Assuming that there are p alleles {a1, . . . , ap}
we can indeed rewrite (1) as:

fa(x) = W⊤Φ(a, x) , (2)

where W is the d× (p+1)-dimensional vector W =
(

w⊤
c , w⊤

a1
, . . . , w⊤

ap

)⊤

and Φ(a, x) =

(x⊤, 0⊤, . . . , 0⊤, x⊤, 0⊤, . . . , 0⊤)⊤ ∈ R
d×(p+1) is the vector obtained by concatenating

the vector x with p blocks of zeros, except for the a-th block which is a copy of x.
Indeed it is then easy to check that W⊤Φ(a, x) = (wc + wa)

⊤x, hence that (1) and (2)
are equivalent. Each (peptide,allele) pair is therefore mapped to a large vector Φ(x, a)
with only two non-zero parts, one common to all alleles and one at an allele-specific
position.

The parameters of this model, namely the weights wc and wa for all alleles a,
can then be learned simultaneously by any linear model, such as logistic regression or
SVM, that estimates a vector W in (2) from a training set ((x1, a1, y1), . . . , (xn, an, yn))
of (peptide,allele) pairs labeled as yi = +1 if peptide xi is an epitope of allele ai,
yi = −1 otherwise. This approach was followed by Heckerman et al. (2006) who
included another level of granularity to describe how information is shared across alleles,
by considering allele-specific, supertype-specific and common weight vectors.

In summary, it is possible to embed the allele information in the description of
the data point to estimate linear models in the new peptide × allele space to share
information across alleles. It is furthermore possible to adjust how information is
shared by choosing adequate functions Φ(x, a) to represent (peptide,allele) pairs. In
other words, it is possible to consider the problem of leveraging across the alleles as a
simple choice of representation, or feature design for the (peptide,allele) pairs that are
to be used to learn the classifier. This approach, however, is limited by at least two
constraints:

• It can be uneasy to figure out how to represent the allele information in the
mapping Φ(x, a). In Heckerman et al., 2006, this is done via Boolean conjunc-
tions and leads to a convenient form for the prediction functions, like (1) with
a third term accounting for the supertype. Including more prior knowledge re-
garding when two alleles should share more information, e.g., based on structural
similarity between alleles, is however not an easy task.

• Practically, injecting new features in the vector Φ(x, a) increases the dimension of
the space, making statistical estimation, storage, manipulation and optimization
tasks much harder.

In the next subsection we show how both limitations can be overcome by reformulating
this approach in the framework of kernel methods.

4



2.2 The kernel point of view

SVM, and more generally kernel methods, only access data through the computation
of inner products between pairs of data points, called a kernel function (Vapnik, 1998;
Schölkopf and Smola, 2002; Schölkopf et al., 2004). As a result, estimating the weights
W in (2) with a SVM does not require to explicitly compute or store the vectors Φ(x, a)
for training and test pairs of alleles and peptides. Instead, it only requires to be able
to compute the kernel between any two pairs (x, a) and (x′, a′) given, in our linear
example, by:

K ((x, a), (x′, a′)) =Φ(x, a)⊤Φ(x′, a′)

=

{

2xT x′ if a = a′ ,

xT x′ if a 6= a′ .

Let us now introduce the following two kernels, respectively between peptides only and
between alleles only:

Kpep(x, x′)
∆
= x⊤x′

Kall(a, a′)
∆
=

{

2 if a = a′ ,

1 if a 6= a′ .

It is easy to see that both kernels are valid positive definite kernels for peptides and
alleles, respectively. With these notations we see that the kernel for pairs (x, a) can be
expressed as the product of the kernel for alleles and the kernel for peptides:

K ((x, a), (x′, a′)) = Kall(a, a′)Kpep(x, x′) , (3)

which is also the kernel associated to the tensor product space of the Hilbert spaces
associated to Kpep and Kall (Aronszajn, 1950). Such kernels are used in particular in the
field of multitask learning Evgeniou et al. (2005), where several related machine learning
tasks must be solved simultaneously. The allele kernel Kall quantifies how information
is shared between alleles. For example, in the simple model (1) the kernel is simply
equal to 2 if an allele is compared to itself, 1 otherwise, meaning that information
is uniformly shared across different alleles. Alternatively, adding supertype-specific
features like Heckerman et al. (2006) would result in a kernel equal to 3 between an
allele and itself, 2 between two different alleles that belong to a common supertype,
and 1 otherwise, resulting in increased sharing of information within supertypes.

Interestingly this formulation lends itself particularly well to further generalization.
Indeed, for any positive definite kernels Kall and Kpep for alleles and peptides, respec-
tively, their product (3) is a valid positive definite kernel over the product space of
pairs (peptide,allele) (Aronszajn, 1950). This suggests a new strategy to design pre-
dictive models for epitopes across alleles, by designing specific kernels for alleles and
peptides, respectively, and combining them to learn all allele-specific models simulta-
neously with the tensor product kernel (3). Benefits of this strategy over the explicit

5



design and computation of feature vectors Φ(x, a) are two-folds. First, it splits the
problem of feature vector design into two subproblems (designing two kernels), each of
which can benefit from previous work on kernel design (e.g., Schölkopf et al., 2004).
For example, the fact that nonlinear kernels such as Gaussian or polynomial kernels for
peptides give good results for SVM trained on individual alleles suggest that they are
natural candidates for the peptide part of the product kernel. Second, working with
kernels alleviates the practical issues due to the potentially large size of the feature
vector representation Φ(x, a) in terms of memory for storage or speed of convergence
of algorithms. We now describe in more details the kernels Kpep and Kall that can
be used for peptides and alleles, respectively, to create the product kernel used in the
application.

2.3 Peptide kernels

We consider in this paper mainly peptides made of 9 amino acids, although extensions
to variable-length peptides poses no difficulty in principle (Salomon and Flower, 2006).
The classical way to represent these 9-mers as fixed length vectors is to encode the
letter at each position by a 20-dimensional binary vector indicating which amino acid
is present, resulting in a 180-dimensional vector representations. In terms of kernel,
the inner product between two peptides in this representation is simply the number
of letters they have in common at the same positions, which we take as our baseline
kernel:

Klinseq(x, x′) =

l
∑

i=1

δ(x[i]x′[i]),

where l is the length of the peptides (9 in our case), x[i] is the i-th residue in x and
δ(x[i]x′[i]) is 1 if x[i] = x′[i], 0 otherwise.

Alternatively, several authors have noted that nonlinear variants of the linear kernel
can improve the performance of SVM for epitope prediction (Dönnes and Elofsson,
2002; Zhao et al., 2003; Bhasin and Raghava, 2004). In particular, using a polynomial
kernel of degree p over the baseline kernel is equivalent, in terms of feature space,
to encoding p-order interactions between amino acids at different positions. In order
to assess the relevance of such non-linear extensions we tested a polynomial kernel of
degree 5, i.e.,

Kseq5(x, x′) = (Klinseq(x, x′) + 1)5.

In order to limit the risk of overfitting to the benchmark data we restrict ourselves
to the evaluation of the baseline linear kernel and its nonlinear polynomial extension.
Designing a specific peptide kernel for epitope prediction, e.g., by weighting differ-
ently the positions known to be critical in the MHC-peptide complex, is however an
interesting research topic that could bring further improvements in the future.

6



2.4 Allele kernels

Although the question of kernel design for peptides has been raised in previous studies
involving SVM for epitope prediction (Dönnes and Elofsson, 2002; Zhao et al., 2003;
Bhasin and Raghava, 2004; Salomon and Flower, 2006), the question of kernel design
for alleles is new to our knowledge. We tested several choices that correspond to
previously published approaches:

• The Dirac kernel is:

KDirac(a, a′) =

{

1 if a = a′ ,

0 otherwise.

With the Dirac kernel, no information is shared across alleles and the SVM
learns one model for each allele independently from the others. Therefore this
corresponds to the classical setting of learning epitope prediction models per
allele with SVM.

• The uniform kernel is:

Kuniform(a, a′) = 1 for all a, a′ .

With this kernel all alleles are considered the same, and a unique model is created
by pooling together the data available for all alleles.

• The multitask kernel is:

Kmultitask(a, a′) = Kdirac(a, a′) + Kuniform(a, a′) .

As explained in the previous section and in Evgeniou et al. (2005) this is the
simplest way to train different but related models. The SVM learns one model
for each allele, using known epitopes and non-epitopes for the allele, but using also
known epitopes and non-epitope for all other alleles with a smaller contribution.
The training peptides are shared uniformly across different alleles.

• The supertype kernel is

Ksupertype(a, a′) = Kmultitask + δs(a, a′) ,

where δs(a, a′) is 1 if a and a′ are in the same supertype, 0 otherwise. As explained
in the previous section this scheme trains a specific models for each allele using
training peptides from different alleles, but here the training peptides are more
shared across alleles withing a supertype than across alleles in different super-
types. This is used by Heckerman et al. (2006), without the kernel formulation,
to train a logistic regression model.

7



Heckerman et al. (2006) show that the supertype kernel generally improves the perfor-
mance of logistic regression models compared to the uniform or Dirac kernel. Intuitively
it seems to be an interesting way to include prior knowledge about alleles. However,
one should be careful since the definition of supertypes is based on the comparison
of epitopes of different alleles, which suggests that the supertype information might
be based on some information used to assess the performance of the method in the
benchmark experiment. In order to overcome this issue, and illustrate the possibilities
offered by our formulation, we also tested a kernel between alleles which tries to quan-
tify the similarity of alleles without using known epitope information. For that purpose
we reasoned that alleles with similar residues at the positions involved in the peptide
binding were more likely to have similar epitopes, and decided to make a kernel be-
tween alleles based on this information. For each locus we gathered from Doytchinova
et al. (2004) the list of positions involved in the binding site of the peptide (Table 1).
Taking the union of these sets of positions we then represented each allele by the list
of residues at these positions, and used a polynomial kernel of degree 7 to compare two
lists of residues associated to two alleles, i.e,

Kbsite7(a, a′) =

(

∑

i∈bsite

δ(a[i]a′[i]) + 1

)7

,

where bsite is the set of residues implied in the binding site for one of the three allele
groups HLA-A, B, C, a[i] is the i-th residue in a and δ(a[i]a′[i]) is 1 if a[i] = a′[i], 0
otherwise.

2.5 SVM

We learn epitope models with SVM, a state-of-the-art algorithm for pattern recogni-
tion (Vapnik, 1998; Schölkopf and Smola, 2002; Schölkopf et al., 2004). We used the
libsvm SVM implementation, with a custom kernel to account for the various kernels
we tested, in the PyML environment (http://pyml.sourceforge.org). Besides the
kernel, SVM depends on one parameter usually called C. For each experiment, we se-
lected the best C among the values 2i, i ∈ {−15,−14, . . . , 9, 10} by selecting the value
leading to the largest area under the ROC curve estimated by cross-validation on the
training set only. The performance of each method was then tested on each experiment
by evaluating the AUC over the test data.

3 Data

In order to evaluate both the performance of our method and the impact of using
various kernels for the peptides or the alleles, we test our method on three different
benchmark datasets that have been compiled recently to compare the performance of
epitope prediction algorithms.

8

http://pyml.sourceforge.org


We first use two datasets compiled by Heckerman et al. (2006), where it is already
shown that leveraging improves prediction accuracy with respect to the best published
results.The first dataset, called syfpeithy+lanl, combines experimentally confirmed
positive epitopes from the syfpeithy database (see Rammensee et al., 1999, available
at http://www.syfpeithy.de) and from the Los Alamos HIV database (http://www.
hiv.lanl.gov) and negative example randomly drawn from the HLA and amino acid
distribution in the positive examples, for a total of 3152 data points. For more details,
see Heckerman et al. (2006) where this dataset is used to compare the leveraged logistic
regression with DistBoost. Since this dataset is quite small and was already used as a
benchmark, we use it as a first performance evaluation, and to compare our kernels.

The second dataset of Heckerman et al. (2006) contains 160, 085 peptides including
those from sysfpeithy+lanl and others from the MHCBN data repository (see
Bhasin et al., 2003, available at http://www.imtech.res.in/raghava/mhcbn/index.
html). This corresponds to 1, 585 experimentally validated epitopes, and 158, 500
randomly generated non-binders (100 for each positive). We only kept 50 negative for
each positive in the interest of time and assuming this would not deteriorate too much
the performance of our algorithm. In the worst case, it is only a handicap for our
methods.

Finally, we assess the performance of our method on the MHC-peptide binding
benchmark recently proposed by Peters et al. (2006) who gathered quantitative peptide-
binding affinity measurements for various species, MHC class I alleles and peptide
lengths, which makes it an excellent tool to compare MHC-peptide binding learning
methods. Since our method was first designed for binary classification of HLA epitopes,
we focused on the 9-mer peptides for the 35 human alleles and thresholded at IC50 =
500. Nevertheless, the application of our method to other species or peptide lengths
would be straightforward, and generalization to quantitative prediction should not be
too problematic either. The benchmark contained 29336 9-mer.

The first dataset is 5-folded, the second 10-folded, so that the test be only per-
formed on HIV (LANL) data. The third dataset is 5-folded. We used the same folds
as Heckerman et al. (2006), available at ftp://ftp.research.microsoft.com/users/
heckerma/recomb06 for the first two datasets and the same folds as Peters et al. (2006)
available at http://mhcbindingpredictions.immuneepitope.org/ for the third one.

Molecule-based allele kernels require the amino-acid sequences corresponding to
each allele. These sequences are available in various databases, includinghttp://www.
anthonynolan.org.uk/ and Robinson et al. (2000). We used the peptide-sequence
alignment for HLA-A, HLA-B and HLA-C loci. Each sequence was restricted to
residues at positions involved in the binding site of one of the three loci, see table 1.
Preliminary experiments showed that using this restriction instead of the whole se-
quences didn’t change the performance significantly, but it speeds up the calculation
of the kernel. We were not able to find the sequence of a few molecules of the two
datasets of Heckerman et al. (2006), so in the experiments implying these datasets and
a molecule-based allele kernel, we used Kbsite7(a, a′)+Kmultitask(a, a′) instead of simply
using Kbsite7(a, a′) , with a sentinel value of Kbsite7(a, a′) = 0 in these cases. This is

9

http://www.syfpeithy.de
http://www.hiv.lanl.gov
http://www.hiv.lanl.gov
http://www.imtech.res.in/raghava/mhcbn/index.html
http://www.imtech.res.in/raghava/mhcbn/index.html
ftp://ftp.research.microsoft.com/users/heckerma/recomb06
ftp://ftp.research.microsoft.com/users/heckerma/recomb06
http://mhcbindingpredictions.immuneepitope.org/
http://www.anthonynolan.org.uk/
http://www.anthonynolan.org.uk/


Locus Positions
HLA-A 5, 7, 9, 24, 25, 34, 45, 59, 63, 66, 67, 70, 74, 77, 80, 81, 84, 97, 99,

113, 114, 116, 123, 133, 143, 146, 147, 152, 155, 156, 159, 160, 163,
167, 171

HLA-B 5, 7, 8, 9, 24, 45, 59, 62, 63, 65, 66, 67, 70, 73, 74, 76, 77, 80, 81, 84,
95, 97, 99, 114, 116, 123, 143, 146, 147, 152, 155, 156, 159, 160, 163,
167, 171

HLA-C 5, 7, 9, 22, 59, 62, 64, 66, 67, 69, 70, 73, 74, 77, 80, 81, 84, 95, 97, 99,
116, 123, 124, 143, 146, 147, 156, 159, 163, 164, 167, 171

Table 1: Residue positions involved in the binding site for the three loci, according
to Doytchinova et al. (2004)

the sum of two kernels, so still a positive definite kernel and actually exactly the same
thing as Ksupertype with Kbsite7 instead of δs.

4 Results

We first use Klinseq and Kseq5 for the peptides and Kuniform (one SVM for all the
alleles), KDirac (one SVM for each allele), Kmultitask, Ksupertype and Kbsite7 for the
alleles on the small syfpeithi+lanl dataset. Using combinations of molecule-based
and non-molecule-based kernels for Kall didn’t improve the prediction, generally the
result was as good as or slightly worse than the result obtained with the best of the
two combined kernels. Results are displayed on Table 2, and ROC curves for Klinseq ×
KDirac, Klinseq × Ksupertype, Kseq5 × Ksupertype and Kseq5 × Kbsite7 on figure 1.

Table 2 demonstrates the benefits of carefully sharing information across alleles.
The Dirac allele kernel being the baseline kernel corresponding to independent train-
ing of SVM on different alleles, we observe an improvement of at least 2% when infor-
mation is shared across alleles during training (with the multitask,supertype or bsite7
strategies). It should be noted, however, that the uniform strategies which amount
to training a single model for all alleles perform considerably worse than the Dirac
strategies, justifying the fact that it is still better to build individual models than a
single model for all alleles. Among the strategies to share information across alleles,
the supertype allele kernel seems to work slightly better than the two other ones. How-
ever, one should keep in mind that there is a possible bias in the performance of the
supertype kernel, because some peptides in the test sets might have contributed to the
definition of the allele supertypes. Among the multitask kernel, which considers all dif-
ferent alleles as equally similar, and the bsite7 kernel, which shares more information
between alleles that have similar residues at key positions, we observe a slight benefit
for the bsite7 kernel, which justifies the idea that including biological knowledge in our
framework is simple and powerful. Finally, we observe that for all allele kernels, the

10



Kall\Kpep linseq seq5
uniform 0.826 ± 0.010 0.883 ± 0.011
Dirac 0.891 ± 0.014 0.893 ± 0.024

multitask 0.910 ± 0.008 0.936 ± 0.008
supertype 0.923 ± 0.011 0.943 ± 0.015

bsite7 0.919 ± 0.011 0.943 ± 0.009

Table 2: AUC results for an SVM trained on the syfpeithi+lanl with various kernel
and estimated error on the 5 folds.

nonlinear seq5 peptide kernel outperforms the baseline linseq kernel, confirming that
linear models based on position-specific score matrices might be a too restrictive set of
models to predict accurately epitopes.

In terms of absolute value, all three allele kernels that share information across al-
leles combined with the nonlinear seq5 peptide kernel (AUC = 0.943± 0.015) strongly
outperform the leveraged logistic regression of Heckerman et al. (2006) (AUC = 0.906±
0.016) and the boosted distance metric learning algorithm of Hertz and Yanover (2006)
(AUC = 0.819 ± 0.055). This corresponds to a decrease of roughly 40% of the area
above the ROC curve compared to the best method. As the boosted distance metric
learning approach was shown to be superior to a variety of state-of-the-art other meth-
ods by Hertz and Yanover (2006), this suggest that our approach can compete if not
overcome the best methods in terms of accuracy.

As we can clearly see in Table 2, two factors are involved in the improvement over
the leveraged logistic regression of Heckerman et al. (2006):

• The use of an SVM instead of a logistic regression, since this is the only difference
between the leveraged logistic regression and our SVM with a Klinseq ×Ksupertype

kernel. This, however, may not be intrinsic to the algorithms, but caused by
optimization issues for the logistic regression in high dimension.

• The use of a non-linear kernel for the peptide, as we observe a clear improvement
in the case of SVM (this improvement might therefore also appear if the logistic
regression was replaced by a kernel logistic regression model with the adequate
kernel).

Figure 1 illustrates the various improvement underlined by this experiment: first
from the individual SVM (Klinseq×KDirac), to the Klinseq×Ksupertype SVM which is the
SVM equivalent of leveraged logistic regression, and finally to Kseq5 × Ksupertype and
Kseq5 ×Kbsite7 SVM that both give better performances than Klinseq ×Ksupertype SVM
because they use a nonlinear kernel to compare the peptides. It is also worth noting
that the supertype and the bsite7 strategies give very similar results, which makes them
two good strategies to leverage efficiently across the alleles with different information.

These results are confirmed by the mhcbn+syfpeithi+lanl benchmark, for which
the results are displayed in Table 3. Again, the use of SVM with our product kernels

11



Figure 1: ROC curves on the pooled five folds of the syfpeithi+lanl benchmark.

clearly improves the performance with respect to Heckerman et al. (2006) (from 0.906
to 0.938). Moreover, we again observe that learning a leveraged predictor using the
data from all the alleles improves the global performance very strongly, hence the im-
portant step between Dirac (0.867) and all the multitask-based methods, including
the simplest multitask kernel (0.934). It is worth reminding here that the multitask
kernel is nothing but the sum of the Dirac and uniform kernels, i.e., that it contains no
additional biological information: the improvement is caused by the mere fact of using
roughly (with a pondering of 0.5) the points of other alleles to learn the predictor of one
allele. Figure 2 show the ROC curves for SVM with Kseq5 × KDirac, Kseq5 × Ksupertype

and Kseq5 × Kbsite7 kernels on this benchmark. Again, we clearly see the strong im-
provement between leveraged and non-leveraged strategies. The difference between
the Kseq5 × KDirac and the two others is only caused by leveraging, since in the three
case the same nonlinear strategy was used for the peptide part. On the other hand,
the figure illustrates once again that our two high-level (i.e., more sophisticated than
multitask) strategies for leveraging across alleles give almost the same result.

Finally, Table 4 presents the performance on the iedb benchmark proposed in Peters
et al. (2006). The indicated performance corresponds, for each method, to the average
on the AUC for each of the 35 alleles. This gives an indication of the global perfor-
mances of each methods. The ANN field is the tool proposed in Peters et al. (2006)
giving the best results on the 9-mer dataset, an artificial neural network proposed
in Nielsen et al. (2003), while the ADT field refers to the adaptive double threading
approach recently proposed in Jojic et al. (2006) and tested on the same benchmark.
These tools were compared to and significantly outperformed other tools in the com-
prehensive study of Peters et al. (2006), specifically Peters and Sette (2005) and Bui
et al. (2005), that are both scoring-matrix-based. Our approach gives equivalent results

12



Method AUC
Leveraged LR 0.906
Klinseq × Kstype 0.916 ± 0.008
Kseq5 × Kdirac 0.867 ± 0.010
Kseq5 × Kmultitask 0.934 ± 0.006
Kseq5 × Kstype 0.939 ± 0.006
Kseq5 × Kbsite7 0.938 ± 0.006

Table 3: AUC results for an SVM trained on the mhcbn+syfpeithi+lanl bench-
mark with various kernel and estimated error on the 10 folds.

Figure 2: ROC curves on the pooled ten folds of the mhcbn+syfpeithi+lanl bench-
mark.

in terms of global performances as Nielsen et al. (2003), and therefore outperforms the
other internal methods.

Table 5 presents the performances on the 10 alleles with less than 200 training
points, together with the performances of the best internal tool, Nielsen et al. (2003)
ANN, and the adaptive double threading model that gave good prediction performances
on the alleles with few training data. Except for one case, our SVM outperforms both
models. This means of course that our approach does not perform as well as Nielsen
et al. (2003) on the alleles with a large training set, but nothing prevents an immunol-
ogist from using one tool for some alleles and another tool for other alleles. As we said
in introduction, our original concern was to improve binding prediction for alleles with
few training points, and for which it is hard to generalize. This was the main point
of using a multitask learning approach. The results on this last benchmark suggest
that the leveraging approaches succeed in improving prediction performances when few

13



Method AUC
SVM with Kseq5 × KDirac 0.804
SVM with Kseq5 × Ksupertype 0.877
SVM with Kseq5 × Kbsite7 0.892
ADT 0.874
ANN 0.897

Table 4: AUC results for an SVM trained on the iedb benchmark with various methods.

Allele Peptide number Kseq5 × Kbsite7 ADT ANN
A 2301 104 0.887 ± 0.021 0.804 0.852
A 2402 197 0.826 ± 0.025 0.785 0.825
A 2902 160 0.948 ± 0.015 0.887 0.935
A 3002 92 0.826 ± 0.048 0.763 0.744
B 1801 118 0.866 ± 0.020 0.869 0.838
B 4002 118 0.796 ± 0.025 0.819 0.754
B 4402 119 0.782 ± 0.084 0.678 0.778
B 4403 119 0.796 ± 0.042 0.624 0.763
B 4501 114 0.889 ± 0.029 0.801 0.862
B 5701 59 0.938 ± 0.046 0.832 0.926

Table 5: Detail of the iedb benchmark for the 10 alleles with less than 200 training
points (9-mer data).

training points are available.

5 Discussion and concluding remarks

In this paper, we introduced a general framework to share efficiently the binding in-
formation available for various alleles by simply defining a kernel for the peptides, and
another one for the alleles. The result is a simple model for MHC-peptide binding
prediction that uses information from the whole dataset to make specific prediction
for any of the alleles. Our approach is simple, general and both easy to adapt to a
specific problem by using more adequate kernels, and to implement, by running any
SVM implementation with these kernels. Everything is performed in low dimension
and with no need for feature selection.

We presented performances on three benchmarks. On the first two benchmark,
our approach performed considerably better than the state-of-the-art, which illustrates
the good general behavior in terms of prediction accuracy. Besides, these experiments
clearly confirmed the interest of leveraging the information across the alleles. On the
last benchmark, the results were globally comparable to the best state-of-the-art tested

14



in Peters et al. (2006), with a strong improvement on the alleles for which few training
points were available, probably, as it was already observed, because of the fact that
our model uses all the points from all the alleles for each allele-specific prediction.

Another contribution is the use of allele sequences, which allows us to improve the
prediction accuracy and to do as well as what was done with the supertype information.
Supertype is a crucial information and a key concept in the development of epitope-
based vaccines, for example to find epitopes that bind several alleles instead of just one.
However, one should be careful when using it to learn an automatic epitope predictor
because even if the idea behind a supertype definition is to represent a general ligand
trend, the intuition is always guided by the fact that some alleles have overlapping
repertoires of known binders, and it is not easy to figure out to which extent the
known epitopes used to assess the predictor performances were used to design the
supertypes.

Because of these overfitting issues and the fact that supertypes are difficult to define,
the good performances of molecule-based allele kernel with respect to the supertype-
based allele kernels are good news. This potentially allows us to leverage efficiently
across alleles even when the supertype is unknown, which is often the case, and we don’t
take the risk to use overfitted information when learning on large epitope databases.

Although the kernels we used already gave good performances, there is still room
for improvement. A first way to improve the performances would be to use more ade-
quate kernels to compare the peptides and, probably more important, to compare the
alleles. In other words answering the question, what does it mean in the context of
MHC-peptide binding prediction for two alleles to be similar? Possible answers should
probably involve better kernels for the allele sequences, and structural information
which could be crucial to predict binding and, as we said in introduction, is already
used in some models. Another interesting possibility is, as it was suggested in Hertz
and Yanover (2007), the use of true non-binders, that could make the predictor more
accurate than randomly generated peptides since these experimentally assessed pep-
tides are in general close to the known binders. Finally, it could be useful to incorporate
the quantitative IC50 information when available, instead of simply thresholding as we
did for the last benchmark.

This leads us to the possible generalizations we hope to work on, besides these
improvements. Using the binding affinity information, it is obviously possible to apply
our general framework to predict quantitative values, using regression models with
the same type of kernels. This framework could also be used for a lot of similar
problems involving binding, like MHC-type-II-peptide binding where sequences can
have variable length and the alignment of epitopes usually performed as pre-processing
can be ambiguous. Salomon and Flower (2006) already proposed a kernel for this
case. Another interesting application would be drug design, for example protein-kinase-
inhibitor binding prediction, or prediction of a virus susceptibility to a panel of drugs
for various mutations of the virus.

15



References

Antes, I., Siu, S. W. I., and Lengauer, T. (2006). DynaPred: a structure and sequence
based method for the prediction of MHC class I binding peptide sequences and
conformations. Bioinformatics , 22(14), e16–e24.

Aronszajn, N. (1950). Theory of reproducing kernels. Trans. Am. Math. Soc., 68,
337 – 404.

Bhasin, M. and Raghava, G. P. S. (2004). Prediction of CTL epitopes using QM, SVM
and ANN techniques. Vaccine, 22(23-24), 3195–3204.

Bhasin, M., Singh, H., and Raghava, G. P. S. (2003). MHCBN: a comprehensive
database of MHC binding and non-binding peptides. Bioinformatics , 19(5), 665–
666.

Brusic, V., Petrovsky, N., Zhang, G., and Bajic, V. B. (2002). Prediction of promiscu-
ous peptides that bind HLA class I molecules. Immunol. Cell Biol., 80(3), 280–285.

Bui, H.-H., Sidney, J., Peters, B., Sathiamurthy, M., Sinichi, A., Purton, K.-A., Mothé,
B. R., Chisari, F. V., Watkins, D. I., and Sette, A. (2005). Automated generation
and evaluation of specific mhc binding predictive tools: Arb matrix applications.
Immunogenetics , 57(5), 304–314.

Bui, H.-H., Schiewe, A. J., von Grafenstein, H., and Haworth, I. S. (2006). Structural
prediction of peptides binding to MHC class I molecules. Proteins , 63(1), 43–52.

Buus, S., ller, S. L. L., Worning, P., Kesmir, C., Frimurer, T., Corbet, S., Fomsgaard,
A., Hilden, J., Holm, A., and Brunak, S. (2003). Sensitive quantitative predictions of
peptide-MHC binding by a ’query by committee’ artificial neural network approach.
Tissue Antigens , 62(5), 378–384.

Dönnes, P. and Elofsson, A. (2002). Prediction of MHC class I binding peptides, using
SVMHC. BMC Bioinformatics , 3(1), 25.

Doytchinova, I. A., Guan, P., and Flower, D. R. (2004). Identifying human MHC
supertypes using bioinformatic methods. J Immunol , 172(7), 4314–4323.

Evgeniou, T., Micchelli, C., and Pontil, M. (2005). Learning multiple tasks with kernel
methods. J. Mach. Learn. Res., 6, 615–637.

Heckerman, D., Kadie, C., and Listgarten, J. (2006). Leveraging information across
HLA alleles/supertypes improves HLA-specific epitope prediction.

Hertz, T. and Yanover, C. (2006). PepDist: a new framework for protein-peptide bind-
ing prediction based on learning peptide distance functions. BMC Bioinformatics ,
7 Suppl 1, S3.

16



Hertz, T. and Yanover, C. (2007). Identifying hla supertypes by learning distance
functions. Bioinformatics , 23(2), e148–e155.

Honeyman, M. C., Brusic, V., Stone, N. L., and Harrison, L. C. (1998). Neural network-
based prediction of candidate T-cell epitopes. Nat. Biotechnol., 16(10), 966–969.

Jojic, N., Reyes-Gomez, M., Heckerman, D., Kadie, C., and Schueler-Furman, O.
(2006). Learning MHC I–peptide binding. Bioinformatics , 22(14), e227–e235.

Mamitsuka, H. (1998). Predicting peptides that bind to MHC molecules using super-
vised learning of hidden Markov models. Proteins , 33(4), 460–474.

McMichael, A. and Hanke, T. (2002). The quest for an AIDS vaccine: is the CD8+
T-cell approach feasible? Nat. Rev. Immunol., 2(4), 283–291.

Milik, M., Sauer, D., Brunmark, A. P., Yuan, L., Vitiello, A., Jackson, M. R., Peterson,
P. A., Skolnick, J., and Glass, C. A. (1998). Application of an artificial neural network
to predict specific class I MHC binding peptide sequences. Nat. Biotechnol., 16(8),
753–756.

Nielsen, M., Lundegaard, C., Worning, P., Lauemøller, S. L., Lamberth, K., Buus, S.,
Brunak, S., and Lund, O. (2003). Reliable prediction of T-cell epitopes using neural
networks with novel sequence representations. Protein Sci., 12(5), 1007–1017.

Parker, K. C., Bednarek, M. A., and Coligan, J. E. (1994). Scheme for ranking potential
HLA-A2 binding peptides based on independent binding of individual peptide side-
chains. J. Immunol., 152(1), 163–175.

Peters, B. and Sette, A. (2005). Generating quantitative models describing the se-
quence specificity of biological processes with the stabilized matrix method. BMC
Bioinformatics , 6, 132.

Peters, B., Bui, H.-H., Frankild, S., Nielson, M., Lundegaard, C., Kostem, E., Basch,
D., Lamberth, K., Harndahl, M., Fleri, W., Wilson, S. S., Sidney, J., Lund, O.,
Buus, S., and Sette, A. (2006). A community resource benchmarking predictions of
peptide binding to MHC-I molecules. PLoS Comput Biol , 2(6), e65.

Rammensee, H., Bachmann, J., Emmerich, N. P., Bachor, O. A., and Stevanović, S.
(1999). Syfpeithi: database for MHC ligands and peptide motifs. Immunogenetics ,
50(3-4), 213–219.

Rammensee, H. G., Friede, T., and Stevanovíic, S. (1995). MHC ligands and peptide
motifs: first listing. Immunogenetics , 41(4), 178–228.

Reche, P. A., Glutting, J.-P., and Reinherz, E. L. (2002). Prediction of MHC class I
binding peptides using profile motifs. Hum. Immunol., 63(9), 701–709.

17



Robinson, J., Malik, A., Parham, P., Bodmer, J. G., and Marsh, S. G. (2000).
IMGT/HLA database–a sequence database for the human major histocompatibil-
ity complex. Tissue Antigens , 55(3), 280–287.

Rosenfeld, R., Zheng, Q., Vajda, S., and DeLisi, C. (1995). Flexible docking of peptides
to class I major-histocompatibility-complex receptors. Genet. Anal., 12(1), 1–21.

Rötzschke, O., Falk, K., Stevanović, S., Jung, G., and Rammensee, H. C. (1992). Pep-
tide motifs of closely related HLA class I molecules encompass substantial differences.
Eur. J. Immunol., 22(9), 2453–2456.

Salomon, J. and Flower, D. R. (2006). Predicting Class II MHC-Peptide binding: a
kernel based approach using similarity scores. BMC Bioinformatics , 7, 501.

Schölkopf, B. and Smola, A. J. (2002). Learning with Kernels: Support Vector Ma-
chines, Regularization, Optimization, and Beyond . MIT Press, Cambridge, MA.

Schölkopf, B., Tsuda, K., and Vert, J.-P. (2004). Kernel Methods in Computational
Biology . MIT Press.

Schueler-Furman, O., Altuvia, Y., Sette, A., and Margalit, H. (2000). Structure-based
prediction of binding peptides to MHC class I molecules: application to a broad
range of MHC alleles. Protein Sci., 9(9), 1838–1846.

Sette, A. and Sidney, J. (1998). HLA supertypes and supermotifs: a functional per-
spective on HLA polymorphism. Curr Opin Immunol , 10(4), 478–482.

Sette, A. and Sidney, J. (1999). Nine major HLA class I supertypes account for the vast
preponderance of HLA-A and -B polymorphism. Immunogenetics , 50(3-4), 201–212.

Sette, A., Chesnut, R., and Fikes, J. (2001). HLA expression in cancer: implications
for T cell-based immunotherapy. Immunogenetics , 53(4), 255–263.

Sidney, J., del Guercio, M. F., Southwood, S., Engelhard, V. H., Appella, E., Ram-
mensee, H. G., Falk, K., Rötzschke, O., Takiguchi, M., and Kubo, R. T. (1995).
Several HLA alleles share overlapping peptide specificities. J Immunol , 154(1),
247–259.

Sidney, J., Grey, H. M., Southwood, S., Celis, E., Wentworth, P. A., del Guercio,
M. F., Kubo, R. T., Chesnut, R. W., and Sette, A. (1996). Definition of an HLA-A3-
like supermotif demonstrates the overlapping peptide-binding repertoires of common
HLA molecules. Hum Immunol , 45(2), 79–93.

Tong, J. C., Zhang, G. L., Tan, T. W., August, J. T., Brusic, V., and Ranganathan,
S. (2006). Prediction of HLA-DQ3.2beta ligands: evidence of multiple registers in
class II binding peptides. Bioinformatics , 22(10), 1232–1238.

18



Vapnik, V. N. (1998). Statistical Learning Theory . Wiley, New-York.

Wang, R. F. (1999). Human tumor antigens: implications for cancer vaccine develop-
ment. J. Mol. Med., 77(9), 640–655.

Yewdell, J. W. and Bennink, J. R. (1999). Immunodominance in major histocompati-
bility complex class I-restricted T lymphocyte responses. Annu. Rev. Immunol., 17,
51–88.

Zhang, G. L., Khan, A. M., Srinivasan, K. N., August, J. T., and Brusic, V. (2005).
MULTIPRED: a computational system for prediction of promiscuous HLA binding
peptides. Nucleic Acids Res/ , 33(Web Server issue), W172–W179.

Zhao, Y., Pinilla, C., Valmori, D., Martin, R., and Simon, R. (2003). Application
of support vector machines for T-cell epitopes prediction. Bioinformatics , 19(15),
1978–1984.

Zhu, S., Udaka, K., Sidney, J., Sette, A., Aoki-Kinoshita, K. F., and Mamitsuka, H.
(2006). Improving MHC binding peptide prediction by incorporating binding data
of auxiliary MHC molecules. Bioinformatics , 22(13), 1648–1655.

19


