
HAL Id: hal-00129025
https://hal.science/hal-00129025

Preprint submitted on 5 Feb 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reasoning about Dynamic Networks of Infinite-State
Processes with Global Synchronization

Ahmed Bouajjani, Yan Jurski, Mihaela Sighireanu

To cite this version:
Ahmed Bouajjani, Yan Jurski, Mihaela Sighireanu. Reasoning about Dynamic Networks of Infinite-
State Processes with Global Synchronization. 2006. �hal-00129025�

https://hal.science/hal-00129025
https://hal.archives-ouvertes.fr

Reasoning about Dynamic Networks of Infinite-State
Processes with Global Synchronization

Ahmed Bouajjani, Yan Jurski, and Mihaela Sighireanu

LIAFA, University of Paris 7, Case 7014, 2 place Jussieu, 75251 Paris 05, France.
{abou,jurski,sighirea}@liafa.jussieu.fr

Abstract. We propose a generic framework for reasoning about dynamic net-
works of infinite state processes such as counter processes,timed processes,
or pushdown processes, with complex synchronization mechanisms, including
global synchronization (i.e., broadcast communication).We define models for
such networks, called CTN, based on Petri nets with transferoperations. To-
kens (representing occurrences of processes) have attached colors over infinite
domains (representing data values, clocks, stacks, etc.).We also define a (second-
order) logic called CTSL allowing to express constraints onlocations of tokens in
the nets and on their colors. We prove that the∃∗∀∗ fragment of CTSL is decid-
able whenever the underlying logic for expressing constraints on colors is decid-
able. Moreover, we show that the same fragment is closed under postandpre im-
age computations. These results can be used in verification such as in invariance
checking. We show that our framework can be applied for reasoning about mul-
tithreaded programs with procedure calls and dynamic creation of process with
global synchronization, and on dynamic programs with real-time constraints.

1 Introduction

Automated verification of modern software systems require reasoning about several
complex features such as dynamic creation of concurrent threads, data manipulation,
procedure calls, timing constraints, etc. For that infinite-state models must be consid-
ered allowing to capture these features, and algorithmic techniques must be designed
allowing to cope with these multiple sources of infinity in the state space.

In this paper, we address the problem of defining a generic framework for automated
reasoning about dynamic/parametrized networks of variousclasses of infinite-state pro-
cesses (e.g., timed processes, processes with infinite datadomains, processes with re-
cursive procedure calls, etc). In particular, we are interested in developing a framework
which can be used for the verification of multithreaded programs (written in languages
such as (real-time) Java, C, etc).

In the last decade, a lot of work has been done concerning the algorithmic veri-
fication of dynamic/parametrized networks of finite-state processes (see, e.g., [20, 19,
13, 17, 3, 10]), and the verification of infinite-state modelswith various kinds of vari-
ables and data structures such as counters, clocks, stacks,queues, etc. (see, e.g., [1,
9, 26, 8, 6, 22, 21]). However, fewer work has been done concerning the verification of
unbounded networks of infinite-state processes [4, 18, 14, 2, 7] (see related work). In a
previous work [11], we have introduced a framework for reasoning about such systems

based on constrained Petri nets (CPN). Tokens in these models represent occurrences
of processes (which can be dynamically created and deleted)and colors are associated
with each token representing its local state (e.g., data values, age, etc). Then, to express
constraints on the location of tokens and on their colors, weintroduced a first-order
logic over tokens and colors, called CML, which is parametrized by a logic on the color
domain (e.g., Presbuger arithmetics, logic over reals, etc). We have shown in [11] that
the∃∗∀∗ fragment of CML is decidable whenever the underlying color logic is, and we
have also shown that this fragment is closed under computation of post and pre im-
ages. These results can be used, e.g., in Hoare-style pre-post condition reasoning, for
bounded model-checking, and for checking inductive invariance of given assertions.
We have shown that this framework allows indeed to handle nontrivial examples of
parametrized/dynamic systems (such as a parametrized Reader-Writer lock protocol).

However, CPN models do not allow to consider global synchronization (broadcast
communication) between processes. For instance, synchronization mechanisms in pro-
gramming languages include broadcast primitive (such as notifyAll in Java). Also, in
networks of timed systems, time progress can be seen as global synchronization since
all clocks must be increased with the same amount of time. Therefore, we investigate
in this paper the extension of our framework of [11] in order to take into account global
synchronization. This extension is not straightforward. We extend CPN models by al-
lowing, in parallel with usual transitions, transfer operations moving simultaneously
all tokens from a place to another one (may be under some constraint on their colors,
and by applying a uniform transformation to the color of eachof them). The new class
of models is called Constrained Transfer Nets (CTN). However, the main problem for
extending the previous framework is that the logic CML cannot express the effect of a
transfer operation (which means that it is not closed under post and pre computations
for CTN models). Actually, to express the effect of transferoperations, the (first-order)
CML logic must be extended to a second-order logic where it ispossible to refer to sets
of tokens, and also to coloring mappings between tokens and colors. The new logic is
called CTSL (for Colored Token Sets Logic). Then, we show that analogous decidabil-
ity and closure properties of CML holds also for CTSL. We prove that the satisfiability
problem of this new logic is decidable for the fragment∃∗∀∗ (where quantifications are
this time about individuals as well as on sets) whenever the used color logic is decid-
able. Also, the same fragment is shown to be closed under computation of post and
pre images. As previously, these results allow to automatize the reasoning about CTN
models (in particular, for checking inductive invariance properties).

Then, to demonstrate the genericity and the applicability of our framework, we show
that two important classes of dynamic systems can be handledas instance of this frame-
work. First, we consider boolean Java programs with dynamiccreation of concurrent
threads and procedure calls, where threads are synchronized on their access to shared
objects. Reasoning about such programs and their properties is quite complex [25]. We
provide a modeling of this class of programs using CTN. Basically, these programs can
be seen as networks of synchronizing pushdown systems. Therefore, in this case col-
ors attached to tokens in CTN models are words representing the stack contents of the
corresponding process. For that, we define an appropriate color logic, called SRC, for
expressing constraints on vectors of stack contents and we prove that it is decidable (by

showing that each formula can be translated into a finite transducer). Then, we show that
important properties relevant for these programs can be expressed and checked in our
framework (such as deadlock freeness when threads share multiple resources, mutual
exclusion, etc). Interestingly, both modeling of the considered systems and the expres-
sion of their properties involve constraints on stack contents which cannot be expressed
using a finite amount of information. This is due to the fact that unbounded nesting of
procedure calls makes necessary to handle the whole contentof the stack. For instance,
nesting of procedure calls may generate unbounded nesting of acquire-release blocks.
Therefore, to release a lock needs checking the content of the stack. Notice that the
ability of expressing constraints on stack contents is alsouseful for other applications
such as in access control issues (e.g, to model stack inspection mechanisms).

Furthermore, we consider the case of real-time Java multithreaded programs which
can be modeled as dynamic networks of timed automata (with control state invariants
and urgent transitions). We show a CTN modeling of these systems using transfer oper-
ation to encode time elapsing transitions. Urgency can be handled in our framework due
to the fact that the allowed logical language for expressingtransition guards is closed
under negation. As an illustrating example, we have carriedout a parametrized proof of
the Fisher mutual exclusion protocol where parameters are (1) the number of processes,
and (2) the delays spent at each control location. We prove that the protocol is correct
under a condition between these delays, for any number of processes. Previous works
on the parametric verification of this protocol either consider fixed delays [4] or a fixed
number of processes [6].

For lack of space, proofs and presentation of examples are given in [12].

Related work: The use of unbounded Petri nets as models for parametrized networks
of processes has been proposed in many existing works such as[23, 20, 19]. However,
these works consider networks offinite-stateprocesses and do not address the issue of
manipulating infinite data domains. The extension of this idea to networks of infinite-
state processes has been addressed in few works [4, 18, 14, 2]. In [4], Abdulla and Jons-
son consider the case of networks of 1-clock timed systems and show, using the theory
of well-structured systems and well quasi orderings [1, 22], that the verification prob-
lem for a class of safety properties is decidable. Their approach has been extended in
[18, 14] to a particular class of multiset rewrite systems with constraints (see also [2]
for recent developments of this approach). Our modeling framework is inspired by these
works. However, while they address the issue of deciding theverification problem of
safety properties (by reduction to the coverability problem) for specific classes of sys-
tems, we consider in our work a general framework, allowing to deal in a generic way
with various classes of systems, where the user can express assertions about the config-
urations of the system, and check automatically that they hold (using post-pre reasoning
and inductive invariant checking) or that they do not hold (using bounded reachability
analysis). Our framework allows to reason automatically about systems which are be-
yond the scope of the techniques proposed in [4, 18, 14, 2].

In a series of papers, Pnueli et al. developed an approach forthe verification of
parameterized systems combining abstraction and proof techniques (see, e.g., [7]). We
propose here a different framework for reasoning about these systems. In [7], the au-
thors consider a logic on (parametric-bound)arrays of integers, and they identify a

fragment of this logic for which the satisfiability problem is decidable. In this fragment,
they restrict the shape of the formula (quantification over indices) to formulas in the
fragment∃∗∀∗ similarly to what we do, and also the class of used arithmetical con-
straints on indices and on the associated values. In a recentwork by Bradley and al.
[15], the satisfiability problem of the logic of unbounded arrays with integers is investi-
gated and the authors provide a new decidable fragment, which is incomparable to the
one defined in [7], but again which imposes similar restrictions on the quantification
alternation in the formulas, and on the kind of constraints that can be used. In contrast
with these works, we consider a logic onmultisetsof elements withanykind of asso-
ciated data values, provided that the used theory on the datadomain is decidable. For
instance, we can use in our logic general Presburger constraints whereas [7] and [15]
allow limited classes of constraints. On the other hand, we cannot specify faithfully un-
bounded arrays in our decidable fragment because formulas of the form∀∃ are needed
to express that every non extremal element has a successor/predecessor. Nevertheless,
for the verification of safety properties and invariant checking, expressing this fact is not
necessary, and therefore, it is possible to handle in our framework all usual examples
of parametrized systems (such as mutual exclusion protocols) considered in the works
mentioned above.

2 Colored Token Sets Logic

2.1 Preliminaries

Consider an enumerable set oftokensand let us identify this set with the set of natural
numbersN. Intuitively, tokens represent occurrences of (parallel)threads. We assume
that tokens may have colors corresponding for instance to data values attached to the
corresponding threads. LetC be a (potentially infinite)token color domain. Examples
of color domains are the set of natural numbersN and the set of real numbersR.

To express constraints on token colors, we use first-order logics over the consid-
ered color domains. In the sequel we refer to such logics ascolor logics. Presburger
arithmeticsPA = (N,{0,1,+},{≤}) is an example of such a logic. It is well known
that the satisfiability problem of Presburger arithmetics is decidable. First-order theory
of realsFOR = (R,{0,1,+,×},{≤}) is also a decidable logic which can be used as a
color logic. We introduce in section 4 another example of color logic allowing to reason
about vectors of stacks (which is useful in modeling programs with procedure calls).

2.2 Syntax and semantics ofCTSL

We define hereafter the syntax of theColored Token Sets Logic, CTSL(L), which is
parametrized with a color logicL. Then, letL = (C,Ω,Ξ) be the first-order logic over
the color domainC, the set of functionsΩ, and the set of relationsΞ. In the sequel, we
omit the parameter ofCTSL when its specification is not necessary.

Let T be the set oftoken variablesand letC be the set ofcolor variables. Colors are
associated with tokens throughcoloring functions, i.e., mappings from tokens to colors.
Let Γ be a set oftoken coloring variables. We assume thatT, C, andΓ are disjoint.

Then, the set ofCTSL terms (calledtoken color terms) is given by the grammar:

t ::= z | γ(x) | ω(t1, . . . ,tn)

wherez∈C, γ ∈ Γ, x∈ T, andω ∈Ω.
We consider a set of second order variablesX , calledtoken set variables, represent-

ing sets of tokens. Then, the set ofCTSL formulas is given by:

ϕ ::= x = y | X(x) | ξ(t1, . . . ,tm) | ¬ϕ | ϕ∨ϕ | ∃z. ϕ | ∃x. ϕ | ∃X. ϕ | ∃γ. ϕ

wherex,y∈ T, z∈C, ξ ∈ Ξ, X ∈ X , γ ∈ Γ, andt1, . . . ,tm are token color terms. Boolean
connectives such as conjunction (∧), implication (⇒), and universal quantification(∀)
can be defined in terms of¬, ∨, and∃. We also use∃x∈ X. ϕ (resp.∀x∈ X. ϕ) as an
abbreviation of the formula∃x. X(x)∧ϕ (resp.∀x. X(x)⇒ ϕ). Notice that the set of
terms (resp. formulas) ofL is included in the set of terms (resp. formulas) ofCTSL(L).

The notions of free/bound occurrences of variables in formulas and the notions of
closed/open formulas are defined as usual in second-order logics. In the sequel, we
assume w.l.o.g. that in every formula, each variable is quantified at most once.

A valuation of token (resp. color , token coloring) variables is a mapping in[T→N]
(resp.[C→ C], [Γ→ (N→ C)]). A valuation of token set variables is a mapping in
[X → 2N]. Then, we define atoken sets coloringto be a pair〈ν,µ〉 whereν (resp.µ) is
valuation of the token set variables (resp. token coloring variables).

We define a satisfaction relation between set colorings andCTSL formulas. For that,
we need first to define the semantics ofCTSL terms. Given valuationsθ ∈ [T → N],
δ ∈ [C→ C], andµ∈ [Γ→ (N→ C)], we define a mapping〈〈·〉〉θ,δ,µ which associates
with each color term a value inC:

〈〈z〉〉θ,δ,µ = δ(z)

〈〈γ(x)〉〉θ,δ,µ = µ(γ)(θ(x))

〈〈ω(t1, . . . ,tn)〉〉θ,δ,µ = ω(〈〈t1〉〉θ,δ,µ, . . . ,〈〈tn〉〉θ,δ,µ)

We define inductively the satisfaction relation|=θ,δ between token sets coloring
〈ν,µ〉 andCTSL formulas as follows:

〈ν,µ〉 |=θ,δ ξ(t1, . . . ,tm) iff ξ(〈〈t1〉〉θ,δ,µ, . . . ,〈〈tm〉〉θ,δ,µ)

〈ν,µ〉 |=θ,δ X(x) iff θ(x) ∈ ν(X)

〈ν,µ〉 |=θ,δ x = y iff θ(x) = θ(y)

〈ν,µ〉 |=θ,δ ¬ϕ iff 〈ν,µ〉 6|=θ,δ ϕ
〈ν,µ〉 |=θ,δ ϕ1∨ϕ2 iff 〈ν,µ〉 |=θ,δ ϕ1 or 〈ν,µ〉 |=θ,δ ϕ2

〈ν,µ〉 |=θ,δ ∃x. ϕ iff ∃t ∈ N. 〈ν,µ〉 |=θ[x←t],δ ϕ
〈ν,µ〉 |=θ,δ ∃z. ϕ iff ∃c∈C. 〈ν,µ〉 |=θ,δ[z←c] ϕ
〈ν,µ〉 |=θ,δ ∃X. ϕ iff ∃N⊂ N. 〈ν[X→N],µ〉 |=θ,δ ϕ
〈ν,µ〉 |=θ,δ ∃γ. ϕ iff ∃ f ∈ [N→C]. 〈ν,µ[γ← f]〉 |=θ,δ ϕ

For every formulaϕ, we define[[ϕ]]θ,δ to be the set of sets coloring〈ν,µ〉 such that
〈ν,µ〉 |=θ,δ ϕ. A formulaϕ is satisfiableiff there exist valuationsθ andδ s.t.[[ϕ]]θ,δ 6= /0.
If ϕ is satisfiable for a subsetN of N, i.e., when the valuationsν, µ, andθ are restricted
to N, we use the notation〈ν,µ〉 |=N

θ,δ ϕ.

2.3 Syntactical forms and fragments

Prenex normal form: A formula is inprenex normal form(PNF) if it is of the form

Q1y1Q2y2 . . .Qmym. ϕ

where (1)Q1, . . . ,Qm are (existential or universal) quantifiers, (2)y1, . . . ,ym are vari-
ables inT∪C∪X ∪Γ, andϕ is a quantifier-free formula. For every formulaϕ in CTSL,
there exists an equivalent formulaϕ′ in prenex normal form.

Quantifier alternation hierarchy: We consider two families{Σn}n≥0 and{Πn}n≥0 of
fragments ofCTSL defined according to the alternation depth of existential and universal
quantifiers in their PNF:

– Σ0 = Π0 be the set of formulas in PNF where all quantified variables are inC,
– For n≥ 0, letΣn+1 (resp.Πn+1) be the set of formulasQy1 . . .ym. ϕ in PNF where

y1, . . . ,ym ∈ T ∪C∪X ∪Γ, Q is the existential (resp. universal) quantifier∃ (resp.
∀), andϕ is a formula inΠn (resp.Σn).

It is easy to see that, for everyn≥ 0, Σn andΠn are closed under conjunction and dis-
junction, and that the negation of aΣn formula is aΠn formula and vice versa. For every
n≥ 0, let B(Σn) denote the set of all boolean combinations ofΣn formulas. Clearly,
B(Σn) subsumes bothΣn andΠn, and is included in bothΣn+1 andΠn+1.

2.4 Satisfiability Problem

We investigate the decidability of the satisfiability problem of the logicCTSL(L), as-
suming that the underlying color logicL has a decidable satisfiability problem.

Theorem 1. If the satisfiability problem of L is decidable, then the fragmentΣ2 of
CTSL(L) is decidable.

Theorem 1 cannot be extended beyond theΣ2 fragment, even for simple color logics.

Theorem 2. ([11]) The satisfiability problem is undecidable for the first-orderΠ2 frag-
ment ofCTSL(OL) where OL= (N,0,≤).

3 Colored Transfer Nets

We present hereafter our program models which are based on Petri nets with transfer
arcs. We need first to introduce some definitions and notations. LetP be a finite subset
of X . Elements ofP are calledplacesand denoted byp,q, r,s,⊥ is a special elements
of P callednowhere place. LetP ′ ⊂ X be a set disjoint fromP such that|P |= |P ′|; its
elements are denoted byp′,q′, r ′,s′, LetG be a finite subset ofC, which elements are
calledglobal variablesand are denoted byg, l , LetG ′ ⊂C be a set of color variables
disjoint fromG such that|G | = |G ′|; its elements are denoted byg′, l ′, Let L be a
finite subset ofΓ, which elements are calledlocal variables. LetL ′ ⊂Γ a set of coloring
symbols disjoint fromL and with the same size. Primed (resp. unprimed) variables are
used to refer to values after (resp. before) the execution oftransitions.

A Colored Transfer Net(CTN) is a tupleS= (P ,G ,L,L,∆) whereL = (C,Ω,Ξ) is
a color logic and∆ is a finite set ofconstrained transitionsof the form:

−→x . (−→p →֒ −→q : ϕ) | −→y . (−→r 7→ −→s : ψ) (1)

where−→x ,−→y ∈T,−→p ,−→q ,−→s ,−→r ∈P ,⊥ 6∈−→r , |−→x |= |−→p |= |−→q |= n, |−→y |= |−→r |= |−→s |=
m,−→p ∩−→r = /0,−→p ∩−→s = /0,−→q ∩−→r = /0, and all places in−→r are disjoint.ϕ is a formula
in CTSL(L) whose free variables are−→x , global variables inG ∪G ′, local variables inL,
and symbol colors ofL ′ if they are applied to variables in−→x . ψ is a formula inCTSL(L)
whose free variables are−→y , global variables inG ∪G ′, local variables inL, and symbol
colors ofL ′ if they are applied to variables in−→y .

A CTN transition has two parts separated by|. The left-hand-side, called theexis-
tential part, corresponds to Petri nets arcs with bounded cardinality: avariablexi of −→x
is bound to a selected token in the corresponding placepi of −→p , the token selected is
deleted frompi and put in the corresponding placeqi of −→q . Formulaϕ gives the selec-
tion criterion for tokens in−→p and how the colors of these tokens are changed (using
variables inL ′ applied to−→x). Also,ϕ describe changes on global variables by defining
the value ofG ′. The right-hand-side of a rule, called theuniversal part, corresponds to
Petri nets arcs with unbounded cardinality (transferarcs):all tokens of each place in−→r
satisfying the selection criterion given byψ are transfered to the corresponding place
in −→s and theirs colors are changed according toψ. (Formulaψ uses variables in−→y to
refer to each transfered token.)

3.1 Transitions as formulas

We associate with each transitionτ of the form (1) aCTSL(L) formula:

reachτ(P ,P ′,G ,G ′,L,L ′) = ∃x1, ...,xn. ∃Y1, ...,Ym.

(∧n
i=1pi(xi)∧ (∀t. (∧m

j=1¬Yj(t))⇒∧n
i=1(q

′
i(t)⇔ (qi(t)∨ t = xi)))) ∧ ϕ

∧ (∀t. ((∧m
j=1¬Yj(t))∧ (∧n

i=1t 6= xi))⇒ (∧a∈La′(t) = a(t)∧∧p∈P p(t)⇔ p′(t)))
∧ ∧m

j=1 (∀y. (r ′j (y)⇒ r j(y))∧ (Yj(y)⇒ r j(y))∧
(r j (y)⇒ ((r ′j (y)∧¬Yj(y))∨ (¬r ′j(y)∧Yj(y)))))

∧ (∀y. ∧m
j=1 (s′j(y)⇔ (s(y)∨Yj(y))))

∧ (∀y1, ...,ym. (∧m
j=1Yj(y j))⇔ ψ)

Token variablesx1, ...,xn represent moved token by the existential part of the rule, and
the token sets variablesY1, ...,Ym are used to describe the transfered tokens by the uni-
versal part. The first line of the formula models the moving oftokens by the existential
part of the transition, and imposes the constraintsϕ on the moved tokens. The second
line says that the tokens which are not involved in the transition keep the same places
and local colors. The third and fourth line says thatr j is partitioned between setsYj and
r ′j . The fifth line says that the set of tokensYj is added to the corresponding target place
s′j after the transfer. The last line constrains the setsYj and their color change byψ.

Given a fragmentΘ of CTSL, we denote byCTN[Θ] the class ofCTNwhere each tran-
sition corresponds to a formula in the fragmentΘ. Due to the (un)decidability results of
section 2.4, we focus in the sequel on the classesCTN[Σ2] andCTN[Σ1].

3.2 Semantics

Configurations ofCTNs, calledcolored markings, are triples〈M,µ,δ〉 where (1)M ∈
[N→ P] is an application, calledmarking, which associates to each token a place, (2)
µ ∈ [L → (N→ C)] is a valuation of local variabes inL, and (3)δ ∈ [G → C] is a
valuation of global variables inG .

For a markingM, let νM be a mapping in[P → 2N] such that for allp∈ P νM(p) =

{t ∈ N | M(t) = p}. For a mappingνM (resp.µ, δ), we denote bŷνM (resp.µ̂, δ̂) the
mapping obtained by replacing each variable inP (resp.L, G) by its corresponding
element inP ′ (resp.L ′, G ′). The union of mappings defined on disjoint domains is
denoted by the⊕ operator.

Constrained transitions ofCTN define a transition relation→S betweenCTN config-
urations as follows: For every two configurations〈M1,µ1,δ1〉 and〈M2,µ2,δ2〉, we have
〈M1,µ1,δ1〉 →S 〈M2,µ2,δ2〉 iff there exists a constrained transitionτ ∈ ∆ such that:

〈νM1⊕ ν̂M2,µ1⊕ µ̂2〉 |= /0,δ1⊕δ̂2
reachτ(P ,P ′,G ,G ′,L,L ′)

GivenM = 〈M,µ,δ〉, let postS(M) = {M ′ : M →SM
′} be the set of its imme-

diate successors, and letpreS(M) = {M ′ : M ′ →SM } be the set of its immediate
predecessors. These definitions can be generalized to sets of configurations.

3.3 Computingpost and pre images

We show hereafter the following closure property ofCTSL fragments under the compu-
tation of immediate successors and predecessors forCTNs.

Theorem 3. Let S= (P ,G ,L,L,∆) be aCTN[Σn], for n∈ {1,2}. Then, for every for-
mulaψ in the fragmentΣn of the logicCTSL(L) with free variables inP ∪G ∪L, it is
possible to construct two formulasψpost and ψpre in the same fragmentΣn such that
[[ψpost]] = postS([[ψ]]) and[[ψpre]] = preS([[ψ]]).

Proof. Let ψ(P ,G ,L) be a formula ofCTSL(L), and letτ be a transition in∆. We define
hereafter the formulasψpost andψpre for this single transition. The generalization to the
set of all transitions is straightforward. The construction of the formulasψpost andψpre

is trivial due to the fact that our logic allows to use quantification over places and color-
ing symbols (representing with local variables). In the following, we use the notation∃P
for ∃p1, ..., pn with P = {p1, ..., pn}. Also, φ[P ′← P] meansφ[p′1← p1, ..., p′n← pm].
Similar notations are used for setsG andL. Thenψpost andψpre are defined by:

ψpost = (∃P ∃G ∃L. ψ∧ reachτ)[P
′← P][G ′← G][L ′← L]

ψpre = (∃P ′ ∃G ′ ∃L ′. ψ[P ← P ′][G ← G ′][L← L ′]∧ reachτ)

It is easy to see that ifψ andreachτ are in a fragmentΣn, for anyn≥ 1, then both of the
formulasψpost andψpre are also in the same fragmentΣn.

See in [12] an example ofpost-image computation.

3.4 Invariance checking

The results above allow to perform various kinds of analysisfor CTN, e.g., Hoare-style
post-pre condition reasoning, bounded reachability analysis, or invariance checking
problem. We detail here the case ofinductive invariance checking problem. An instance
of such a problem is given by a triple(Init , Inv,Aux) of sets of configurations, where
Init is a set of initial configurations,Inv is the invariant to be proved, andAuxis an aux-
illiary invariant. It consists in deciding whether (1)Init ⊆ Aux, (2) Aux⊆ Inv, and (3)
Aux is an inductive invariant, i.e., thatpost(Aux) ⊆ Aux. The following result follows
from Theorem 3, Theorem 1, and the previous theorem.

Theorem 4. Let S be aCTN[Σ2]. The inductive invariance checking problem is decid-
able for every instance([[ψInit]], [[ψ]], [[ψ′]]) whereψInit ∈ Σ2, andψ,ψ′ ∈ B(Σ1).

In the full version [12], we give an example illustrating theuse of this theorem.

4 Boolean Multithread Programs with Infinite Control

We consider here boolean Java programs with dynamic creation of threads, recursive
methods, and threads synchronized on a set of shared objects. We show how to verify
the absence/presence of deadlock in such programs by modeling and reasoning about
the stack of each thread.

Let us first recall briefly the semantics of synchronization between threads in Java.
Threads synchronize their access to global shared objects using alockmechanism: each
object has a lock that may be owned by at most one thread. A thread owns the lock of
an objecto while executing blocks of code labeled bysynchronized(o) or methods
of the objecto declared assynchronized. A synchronized method or block of code
can contain calls to other synchronized methods of the same or of a different object.
To avoid starvation or deadlocks, threads can suspend theirexecution and free the lock
of the object it owns by calling thewait method. While owning a lock on objecto,
a thread can awake one or all threads suspended ono using methodsnotify resp.
notifyAll. The latter method is a mean of global synchronization of threads in Java.
The call of these methods is not blocking and the caller continues to own the lock
of o. The awakened threads are now competing for the owning of thelock on o with
other threads wanting to locko. An awakened thread continues its executon with the
statement after thewait call.

To obtain the model of a Java program of this class, we start with theInterprocedural
Control Flow Graph(ICFG) of the program. The ICFG arcs are labeled by actions
like: call of an user-defined method on an object, call of a pre-defined method (wait,
notify, notifyAll) on a shared object, and return from a method. Wlog, we consider
thatsynchronized code is present only in user-defined methods, and this information
is available in the ICFG. We show in this section how to translate the ICFG into aCTN.
The color logic used is theSRC logic presented below, which allows to model and
reason about the stacks of threads. (See example in [12].)

Synchronous Rational Constraints Logic: Let Σ be a finite alphabet, andReg(Σ) be
the class of regular languages overΣ. Then,SRC = (Σ∗,{λu. u ·a : a∈ Σ},{≤pref ,=ℓ

}∪{R(·) : R∈ Reg(Σ)}) where:

– ≤pref is the prefix ordering, i.e., for everyu,v∈ Σ∗. u≤pref v iff ∃w. v = uw,
– =ℓ is the length equality predicate i.e., for everyu,v∈ Σ∗, u =ℓ v iff |u|= |v|, and
– for everyR∈ Reg(Σ), R(·) is the unary predicate s.t.∀u∈ Σ∗, R(u) iff u∈ R.

Notice that the equality predicate can be defined using the relations≤pref and=ℓ: u= v
is equivalent tou≤pref v∧u =ℓ v.

Theorem 5. The satisfiability problem ofSRC is decidable.

Modeling method calls: Places are associated with nodes (control points) of the
ICFG; a token in a place represents a thread ready to execute the statements on the
outgoing edges. The coloring symbolα attached to tokens represents the stack of the
thread. Stack values are works ont the alphabetΣ which contains the set of all con-
trol points in the ICFG. Constrained transitions ofCTN are obtained from edges of the

ICFG as follows. An edgep
callP()
−−−−→q whereP is a user-defined method with start-

ing nodestartP is modeled by the transitionx. p →֒ startP : α′(x) = α(x).q. An
edgeexitP

return
−−−−→q representing the return from methodP is modeled by the transition

x. exitP →֒ p : α′(x).p = α(x). Finally, an edgep−→q representing change of control
point p to q inside a method is represented by the transitionx. p →֒ q : α′(x) = α(x).
The basic model above may be adapted to store in the stack additional information
about the methods called and not exited by the thread, as we doin the following.

Modeling synchronization: To model ICFG edges including call to synchronization
methods, we first create for each objecto used as a lock (i.e., for which there exists a
statement “o.m()” wherem is a synchronized method) three places: (1)locko models
the lock of the object: at most one token is present; (2)waito stores tokens representing
threads competing to obtain the lock ofo; (3) suspo stores tokens representing threads
which are self-suspended by the execution of an “wait()” statement while owning the
lock of o. To the stack alphabetΣ is added the set of objects used as locks.

An ICFG edgep
call o.m()
−−−−−−→q with m being a synchronized method is modeled by

the following four transitions:

m1
o : (x,y). (p, locko) →֒ (startm,⊥) : α′(x) = α(x).q.o)

m2
o : x. p →֒ startm : α(x) ∈ (Σ∗.o.Σ∗)∧α′(x) = α(x).q.o

m3
o : x. p →֒ waito

: ¬(∃y. locko(y))∧¬(α(x) ∈ (Σ∗.o.Σ∗))∧α′(x) = α(x).q.startm
m4

o : (x,y). (waito, locko) →֒ (q,⊥) : ∃w. α(x) = w.q∧α′(x) = w.o

The first transition is the case of an available lock. Then, the lock is taken and the
thread starts procedurem and puts in its stack the information about having the lock of
objecto. The second transition is the case where the thread is already owning the lock
of o, so it starts immediately the execution of methodm (objecto is added on stack for
uniformity). The third transition shows the case where the lock is not available and it is
not owned by the thread. The thread is sent into thewaito place and the stack stores the
return address and the start address of the called method. The fourth transition shows
that a lock may be taken by a thread in the waiting state when itis available. Like for
the first transition, the information about owning lock ofo is put on the stack.

The transitions below show respectively the modeling of thecall of methodswait,
notify, andnotifyAll in a synchronized method of objecto:

waito : (x,y). (p,⊥) →֒ (suspo, locko) : ∃w. α(x) = w.o∧α′(x) = w.q
noti f yo : (x,y). (p,suspo) →֒ (q,waito) : α(x) = α′(x)∧α(y) = α′(y)
noti f yAllo : x. p →֒ q : α(x) = α′(x)

| y. suspo 7→ waito : α(y) = α′(y)

Finally, the return from a synchronized method is modeled bythe following transition:

sret1 : (x,y). (exitm,⊥) →֒ (q, locko) : ∃w. α(x) = w.o∧w = α′(x).q∧¬(w∈ (Σ∗.o.Σ∗))
sret2 : x. exitm →֒ q : ∃w. α(x) = w.o∧w = α′(x).q∧ (w∈ (Σ∗.o.Σ∗))

where the lock of the object is freed only if the thread has notcalled the method from
another synchronized method of the object.

The property of deadlock freedom can be expressed as a property of the stack as-
sociated with each thread. For example, the deadlock is avoided if a thread trying to
acquire the lock of an objecto by calling a synchronized method of this object at con-
trol point l cannot be delayed by another thread owning the lock of this object:

∀t,u. l(t) =⇒ ¬(α(u) ∈ Σ∗.o.Σ∗)

CTSL(SRC) allows also to express properties about the order in which the objects are
locked (or methods are called) by the thread. For example, the property saying that all
threads at locationℓ have first acquiredo1 and theno2 can be express as follows:

∀t. l(t) =⇒ α(u) ∈ (Σ−{o1,o2})
∗.o1.(Σ−{o2})

∗.o2.(Σ−{o1})
∗

5 Multithreaded Programs with Timed Constraints

We consider here real-time Java programs with dynamic creation of threads (without
procedure calls). Such programs can be modeled as dynamic networks of timed au-
tomata [5]. We show how to define such networks in our framework. We consider that
clocks variables range over the domain of reals. Then, the color logic L can be the
first-order theory of realsFOR = (R,{0,1,+,×},{≤}) or its subfragments (e.g., linear
first-order theory).

Theglobal and local clocksused in the network aretranslated into variables inG
resp.L. We suppose thatG contains a variablet measuring the global time. The trans-
lation of automata locations is immediate into places.

Then, we model adiscrete transitionfrom locationℓ1 to locationℓ2 whose guard is
φ and whichresetslocal clockc by the transition:

x. ℓ1 →֒ ℓ2 : φ∧c′(x) = 0

In timed automata,time elapsingincreases all clocks by the same amount of time.
We model such it by a unique constrained transition changinguniformly the global and
local colors of threads in places−→p where the time can elapse:

→֒: ∃z. 0 < z∧ t ′ = t +z | −→y .−→p 7→ −→p :
^

γ∈L
γ′(−→y) = γ(−→y)+ t ′− t ∧

^

c∈G

c′ = c+ t ′− t

Time invariants are associated with locations and represent constraints which must
be satisfied while time elapses at these locations. Invariants used in timed automata
can be expressed are formulas in theΣ0 fragment ofCTSL. Let denote byInv(p) the
invariant formula obtained for the location represented byp. Then, we modify the time
elapsing transition to take into account invariants:

→֒ : ∃z. 0 < z∧ t ′ = t +z

| −→y .−→p 7→ −→p :
V

γ∈L γ′(−→y) = γ(−→y)+ t ′− t ∧
V

c∈G c′ = c+ t ′− t
(∀z′. 0≤ z′ ≤ t ′− t =⇒ (

V

pi∈
−→p Inv(pi)[L(yi)← L(yi)+z′]))

From the decidability results given by Theorem 3, it resultsthat tractable modelsCTN
are obtained if time invariants are at most formulas inΠ1 fragment.

Urgent transitionsare discrete transitions which have more priority that timepass-
ing, i.e., they must be executed immediatly. Let−→x . (−→p →֒ −→q : φ) be a discrete
urgent transition. Then, to express its urgency, we must modify time elapsing transition
by imposing¬φ in the guard, i.e., time can progress only if the urgent transition is not
enabled:

→֒ : ∃z. 0 < z∧ t ′ = t +z

| −→y .−→p 7→ −→p :
V

γ∈L0
γ′(−→y) = γ(−→y)+ t ′− t ∧

V

c∈G c′ = c+ t ′− t
∧ (∀z′. 0≤ z′ ≤ t ′− t =⇒ (

V

pi∈
−→p Inv(pi)[L(yi)← L(yi)+z′])

∧¬(∃−→x .−→p (−→x)∧φ[L(−→x)← L(−→x)+z′]))

From Theorem 3, it follows that tractableCTN models are obtained if guards of urgent
transitions are inΣ1 fragment ofCTSL.

6 Conclusion

We have defined a generic framework for reasoning about unbounded networks of
infinite-state processes. Various instances of this framework allow to deal in a uniform
way with important classes of system models such as dynamic networks of counter pro-
cesses, timed processes, or pushdown processes, with complex synchronization mech-
anisms. This is based on generic decidability and closure results for a (useful fragment
of a) logic for specifying configurations of such networks which allow to reason both
on the control locations of the processes and on their data. The expressiveness of our
framework has been demonstrated by showing its applicationto reasoning about multi-
threaded Java programs with global synchronization, and about multithreaded programs
with timing constraints.

The complexity of the decision procedures is doubly exponential in the size of for-
mulas (more precisely, in the number of quantified variables). However, formulas we
need to consider when reasoning about CTN models (assertions expressing invariants
and transition guards) are of a special form. Indeed, they are usually first-order formu-
las which implies thatpost/pre computations do not generate formulas with universal
second order quantification. Moreover, token variables in transition formulas are de-
terministically associated with places. These facts allowto reduce the complexity by
an exponential factor. Furthermore, transition formulas usually introduce a small num-
ber (2 or 3) of new token variables (the number of synchronized processes). This fact
reduces significantly the complexity in practice.

References

1. P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theorems for
infinite-state systems. InProc. of LICS’96, pages 313–321, 1996.

2. P. A. Abdulla and G. Delzanno. On the Coverability Problemfor Constrained Multiset
Rewriting. InProc. of AVIS’06, Satellite workshop of ETAPS’06, Vienna, Austria, 2006.

3. P. A. Abdulla, B. Jonsson, M. Nilsson, and M. Saksena. A Survey of Regular Model Check-
ing. In Proc. of CONCUR’04, volume 3170 ofLNCS. Springer, 2004.

4. P.A. Abdulla and B. Jonsson. Verifying networks of timed processes (extended abstract).
In Bernhard Steffen, editor,Proc. of TACAS’98, volume 1384 ofLNCS, pages 298–312.
LNCS 1384, 1998.

5. R. Alur and D.L. Dill. A theory of timed automata.TCS, 126:183–235, 1994.
6. A. Annichini, E. Asarin, and A. Bouajjani. Symbolic techniques for parametric reasoning

about counter and clock systems. InProc. of CAV’00. LNCS 1855, 2000.
7. T. Arons, A. Pnueli, S. Ruah, J. Xu, and L.D. Zuck. Parameterized Verification with Auto-

matically Computed Inductive Assertions. InProc. of CAV’01. LNCS 2102, 2001.
8. B. Boigelot. Symbolic Methods for Exploring Infinite State Space. PhD thesis, Faculté des

Sciences, Université de Liège, volume 189, 1999.
9. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Appli-

cation to model-checking. InProc. of CONCUR’97, volume 1243 ofLNCS, pages 135–150.
LNCS 1243, 1997.

10. A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract Regular Model Checking. InProc. of
CAV’04, volume 3114 ofLNCS. Springer, 2004.

11. A. Bouajjani, Y. Jurski, and M. Sighireanu. A generic framework for reasoning about dy-
namic networks of infinite-state processes. InTACAS’07. LNCS, 2007.

12. A. Bouajjani, Y. Jurski, and M. Sighireanu. Reasoning about dynamic networks of infinite-
state processes with global synchronization. Technical Report 2007-03, LIAFA lab, January
2007. Available athttp://www.liafa.jussieu.fr/∼abou/publis.html.

13. A. Bouajjani, M. Müller-Olm, and T. Touili. Regular symbolic analysis of dynamic networks
of pushdown systems. InProc. of CONCUR’05, volume 3653 ofLNCS. Springer, 2005.

14. M. Bozzano and G. Delzanno. Beyond Parameterized Verification. InProc. of TACAS’02,
volume 2280 ofLNCS, Grenoble, France, 2002. Springer Pub.

15. A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidableabout arrays? InProc. of
VMCAI’06, volume 3855 ofLNCS. Springer, 2006.

16. Christian Choffrut. The Reachability Problem RequiresExponential Space. Technical Re-
port 62, Yale University, 1976.

17. E. M. Clarke, O. Grumberg, and S. Jha. Verifying parameterized networks.TOPLAS, 19(5),
1997.

18. G. Delzanno. An assertional language for the verification of systems parametric in several
dimensions.Electr. Notes Theor. Comput. Sci., 50(4), 2001.

19. G. Delzanno, J.-F. Raskin, and L. Van Begin. Towards the automated verification of multi-
threaded java programs. InTACAS, volume 2280 ofLNCS, pages 173–187. Springer, 2002.

20. E. A. Emerson and K. S. Namjoshi. On model checking for non-deterministic infinite-state
systems. InLICS’98. IEEE, 1998.

21. A. Finkel and J. Leroux. How to compose presburger-accelerations: Applications to broad-
cast protocols. InProc. of FST&TCS’02, volume 2556 ofLNCS. Springer, 2002.

22. A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere!Theor. Com-
put. Sci., 256(1-2):63–92, 2001.

23. S. M. German and P. A. Sistla. Reasoning about systems with many processes.JACM, 39(3),
1992.

24. Leslie Lamport. A fast mutual exclusion algorithm.ACM Transactions on Computer Sys-
tems, 5(1):1–11, 1987.

25. Edward A. Lee. The problem with threads. Technical Report UCB/EECS-2006-1, Electrical
Engineering and Computer Science University of Californiaat Berkeley, January 2006.

26. P. Wolper and B. Boigelot. Verifying systems with infinite but regular state spaces. InProc.
of CAV’98, volume 1427 ofLNCS. Springer, 1998.

A Proof of Theorem 1

We reduce the satisfiability problem ofΣ2 formulas inCTSL(L) to the satisfiability
problem ofΣ0 formulas which correspond to formulas in the token color logic L which
is supposed to has a decidable satisfiability problem. The proof is constructive: we build
from a formula inΣ2 a formula inL which has an equivalent satisfaction problem. The
complexity of this construction is given at the end of the section.

In the remaining of the section, we denote byψ a closed formula inΣ2 in prenex
form ∃−→x ∃

−→
X ∃−→m∃−→γ . ϕ, whereϕ is a formula inΠ1 in prenex form∀−→y ∀

−→
Y ∀−→n ∀−→α . φ,

with −→x ,−→y ∈ T,
−→
X ,
−→
Y ∈ X , −→m,−→n ∈ C, −→γ ,

−→α ∈ Γ, andφ ∈ Σ0. We assume that all
quantified variables are different.

We prove first that the fragmentΣ2 has the small model property, i.e., every satis-
fiable formulaψ in Σ2 has a model of a bounded size (where the size is the number of
tokens in each place).

Lemma 1. TheΣ2 fragment ofCTSL(L) has a small model property.

Proof. Suppose that there is a set coloring〈ν,µ〉 which satisfies theΣ2 formulaψ. This
means that there is a set of tokensN⊆N (resp. of colors−→c) and a mappingθ∈ [−→x →N]
(resp.δ ∈ [−→m→−→c) such that〈ν,µ〉 |=θ,δ ϕ.

Let N1 be the finite subset ofN corresponding to the image of the (finite set of)
existential quantified token variables−→x throughθ, i.e., N1 = ∪x∈−→x θ(x). Let A be a
fresh symbol inX . Without changing the satisfiability ofψ, we strengthen it by stating
that A captures exactlyN1. Indeed,〈ν,µ〉 |=θ,δ ϕ is equivalent to〈ν[A← N1],µ〉 |=θ,δ
All(−→x ,A)∧ϕ where:

All(−→x ,A) ≡ A(−→x)∧ (∀y. (∧xi∈
−→x y 6= xi) =⇒ ¬A(y))

Fromϕ, we obtain a weaker formulaϕA (i.e., ϕA⇒ ϕ) by restricting the universal
quantified variables−→y and

−→
Y to the set of tokensN1 represented byA:

ϕA ≡ ∀
−→y ∀
−→
Y . (

^

yi∈
−→y

A(yi)∧
^

Yi∈
−→
Y

Subset(Yi,A))⇒∀−→n ∀−→α . φ

where Subset(Y,A)≡ ∀z. Y(z)⇒ A(z)

Then,〈ν[A← N1],µ〉 |=θ,δ All(−→x ,A)∧ϕA. In ϕA andAll(−→x ,A), all universally quanti-
fied token variables are tested to belong to the finite setA, which means that only tokens
in N1 are relevant. If〈ν1,µ1〉 is the restrictions ofν andµ overN1, then〈ν1[A←N1],µ1〉
is a model forϕA ∧ All(−→x ,A) which is finite. ButϕA ∧All(−→x ,A) ⇒ ϕ over N1 so
〈ν1[A←N1],µ1〉 is also a model ofψ.

So, we have shown that if aΣ2 formula ψ has a model, thenψ has also a model
over a finite domain of tokens which size is bounded by the number of the existential
quantified token variables inψ (denoted here by−→x).

Based on the above result, we are able to get rid of the universal quantifications over
token and sets of token variables inΣ2 formula by replacing them by finite conjunctions.

Lemma 2. The satisfiability problem for theΣ2 fragment ofCTSL reduces to the satis-
fiability problem for theΣ1 fragment.

Proof. Let N be the finite set of tokens on which is built the finite model of theψ for-
mula inΣ2, and let〈ν,µ〉, θ, andδ be this finite model, i.e.,〈ν,µ〉 |=θ,δ ∀

−→y ∀
−→
Y ∀−→n ∀−→α . φ

with ν, µ, andθ restricted toN. Recall thatN is the image of variables in−→x by θ. This
means that, from a syntactic point of view, the universe of variables in−→y and

−→
Y is fully

described by variables in−→x . Then, we can replace any universal quantification over to-
kens by a finite conjunction where each conjunct is obtained from ϕ by a substitution
of variables in−→y with variables in−→x :

〈ν,µ〉 |=θ,δ
^

σ∈[−→y→−→x]

∀
−→
Y ∀−→n ∀−→α . φ[σ]

Elimination of universally quantified variables in
−→
Y is done by a slight general-

ization of the above construct: we guess all the possible valuations for variables in
−→
Y

in terms of sets of variables in−→x . A such valuationξ is a mapping in[
−→
Y → (−→x →

{true, false})]. The effect of applyingξ to a formula inCTSL is to replace all subfor-
mulaY(x) by ξ(Y)(x) ∈ {true, false}. However, valuationsξ shall satisfy the following
consistency property wrt valuation of token variables given by the mappingθ: if vari-
ablesxi andx j in −→x are mapped to the same token byθ, then they have to belong to the

same set in
−→
Y . This consistency property is given by the following formula:

Consist(
−→
Y ,−→x) ≡

^

xi ,xj∈
−→x

(xi = x j)⇒
^

Y∈
−→
Y

(Y(xi)⇔Y(x j))

We use it as premise in each conjunct corresponding to a valuations for universally
quantified variables in

−→
Y :

〈ν,µ〉 |=θ,δ
^

σ∈[−→y→−→x]

^

ξ∈[
−→
Y→(−→x→{true,false})]

(Consist(
−→
Y ,−→x)⇒∀−→n ∀−→α . φ[σ])[ξ]

The formula above has no more universal quantification over token or sets of tokens.
To eliminate the universal quantification over coloring symbols in−→α , we note that

mappings in−→α are only applied now to variables in−→x . We define a substitutionη
which maps each occurrence of a termα(x) with α ∈ −→α andx ∈ −→x to a new color
variable inC, given byη(α)(x). A similar consistency property as the one used for the
elimination second order of variables in

−→
Y has to be satisfied by the substitutionη: if

two variablesxi andx j are mapped to the same token, then the substitutionη shall map
them to the same color for any coloring symbol in−→α . We can combine these properties
and obtain the formula:

Consist′(
−→
Y ,
−→α ,−→x) ≡

^

xi ,xj∈
−→x

(xi = x j)⇒
^

Y∈
−→
Y

(Y(xi)⇔Y(x j))∧
^

α∈−→α

(α(xi) = α(x j))

Then, if−→a ⊂C is the image ofη, the satisfaction ofψ is equivalent to the following
satisfaction problem:

〈ν,µ〉 |=θ,δ
^

σ∈[−→y→−→x]

^

ξ∈[
−→
Y→(−→x→{true,false})]

∀−→n ,−→a . (Consist′(
−→
Y ,
−→α ,−→x)⇒ φ[σ])[ξ][η]

which concerns aΣ1 formula.

Finally, we eliminate the existential quantifiers over tokens, sets of tokens, and col-
oring symbols variables by introducing new existential quantifiers on color variables.

Lemma 3. The satisfiability problem for theΣ1 fragment ofCTSL(L) reduces to the
satisfiability problem for L.

Proof. Let ψ be aΣ1 formula inCTSL(L) of the prenex form∃−→x ∃
−→
X ∃−→γ . ϕ with ϕ ∈ L.

From Lemma 1 we know thatψ is satisfiable iff it exists a model〈ν,µ〉 and mappingsθ
andδ defined on a set of tokensN which size is at mostn = |−→x |.

We build fromψ a formula inL which has an equivalent satisfiability problem. First,
we transformψ in order to eliminate atomic subformulas corresponding to equality of
token variables, and so to obtain aΣ1 formula where all quantified token variables
are distinct. For this, letB(−→x) be the set of mappingsb ∈ [−→x →−→x] representing an
equivalence relation between variables in−→x . (The size ofB(−→x) is less thannn but
has no simple formulation.) For anyb∈ B(−→x), b(xi) = x j if x j uniquely represents the
equivalence class ofxi . We denote by−→x b = Img(b) the set of variables representing
equivalence classes inb. A mappingb applied to a formulaϕ(−→x), denoted byϕ[b],
substitutes each occurence of a variablex∈−→x by b(x) and replaces all atomic formulas
xi = x j by true if b(xi) = b(x j) and by false otherwise. Then,ψ is satisfiable iff the
following formula is satisfiable:

_

b∈B(−→x)

∃−→x b∃
−→
X ∃−→γ . ϕ[b]

The problem is now to reduce the satisfiability of aΣ1 formula where all quantified
token variables range over distinct tokens to the satisfiability of an L formula.

To eliminate existential quantifiers over sets of tokens
−→
X , we use the finite model

property in a similar way than in Lemma 2: we consider all valuations of variables in
−→
X

in terms of sets of variables in−→x b. Since all variables in−→x b are distinct, we don’t need
the consistency property. Then,ψ is satisfiable iff the following formula is satisfiable:

_

b∈B(−→x)

_

ξ∈[
−→
X→(−→x b→{true,false})]

∃−→x b∃
−→γ . (ϕ[b])[ξ]

The second order quantifiers on color symbols−→γ are eliminating like in the proof
of Lemma 2. We define a substitutionη which maps each occurrence of a termγ(x)
with γ ∈ −→γ andx∈ −→x b to a new color variable inC, given byη(γ)(x). If −→a ⊂C is the
image ofη, thenψ is satisfiable iff the following formula is satisfiable:

_

b∈B(−→x)

_

ξ∈[
−→
X→(−→x b→{true,false})]

∃−→x b∃
−→a . (ϕ[b])[ξ][η]

Note that mappingsb, ξ, andη replace all occurences of token variables in−→x b by
constant formula (true, false) or color variables. Thenϕ[b][ξ][η] does not contain any
occurence of variables in−→x b, so the∃−→x b can be eliminated, QED.

Complexity of satisfiability checking: The proof above builds from a formulaψ in Σ2

an equivalent formulaψ0 in Σ0. Let ψ be the prenex form formula∃−→x ∃
−→
X ∃−→m∃−→γ . ϕ,

whereϕ is a formula inΠ1 in prenex form∀−→y ∀
−→
Y ∀−→n ∀−→α . φ. The size of the formula

ψ0 depends on the size ofψ as follows:
The reduction proposed in the proof of Lemma 2 eliminates∀−→y (resp.∀

−→
Y) quanti-

fiers by introducing|−→x ||
−→y | (resp.|

−→
Y |2

|−→x |) conjuncts. Each conjunct contains formulaφ
and a formulaConsist′ which contains|−→x |2.(|

−→
Y |+ |−→α |) atomic formula. The number

of quantified color variables added byη is equal to is equal to|−→α |.|−→x |. We obtain from
ϕ aΣ0 formulaϕ0 which is prefixed by at least|−→α |.|−→x |+ |−→n | universal quantifiers over

color variables and which size is|−→x ||
−→y |.|
−→
Y |2

|−→x |.(|φ|+ |−→x |2.(|−→Y |+ |−→α |)). Let callψ1

the formula∃−→x ∃
−→
X ∃−→m∃−→γ . ϕ0.

ψ1 is further reduced by the proof of Lemma 3 into aΣ0 formula by eliminating

∃−→x and∃
−→
X quantifiers. The reduction adds at most|−→x ||

−→x |.|
−→
X |2

|−→x |
disjuncts (the first

term is an over approximation of the size ofB(
−→
X)). Each disjunct is built fromψ1

prefixed by at most|−→m|.|−→γ |.|−→x | existential quantifiers. We obtain aΣ0 formula ψ0

which number of atomic subformulaisO(|−→x ||
−→x |+|−→y |.|

−→
Y |2

|−→x |
.|
−→
X |2

|−→x |
),greater than the

one ofψ and which is prefixed by at most|−→x |.(|−→α |+ |−→γ |) new quantifiers.
Note that each reduction step has been considered above in its worst combinatorial

case assumptions. However, the initial formula comes usually with syntactic properties
that reduce this high complexity.

For example, constraints in program models and invariant properties are usually
first-order formulas (see examples in the appendix). Then,post-images do not involve
second order universal quantification and the decision procedure is applied in this case
to formulas of the form∃−→x ∃

−→
X ∃−→m∃−→γ . ∀−→y ∀−→n . ϕ. Moreover, the existentially quan-

tified second order variables appearing in thepost-images are all disjoint because they
are included in disjoint places ofP . This implies a one-to-one mapping between vari-
ables in−→x and those in

−→
X . This mapping is further improved if variables in−→x have

explicitely specified places (which is true if they correspond to variables of the existen-
tial part of a transition), which reduces the combinatoric explosion due to case splitting
according to all possible locations of tokens in places. Then, the decision procedure of
the color logic is invoked on a formula which is prefixed by|−→γ |.|−→x | new existential
quantification and isO(|−→x ||

−→x |+|−→y |) times greater in size thanϕ. Finally, transitions
of CTN have only few (2 or 3) variables in the set−→x (see examples) since local syn-
chronization involve in general two processes. Hence, the growing factor|−→x ||

−→x |+|−→y | is
small in practice.

B A logic for reasoning about stacks

Processes with procedure calls can be modeled using pushdown systems. Therefore,
tokens representing occurrences of such processes must be colored by the contents of
their stacks. Let us consider the case where the alphabet of these stack is finite. Then,
stacks can be represented as finite words over this alphabet,and constraints over stack
contents can be defined using logics over finite words. We introduce hereafter such a
logic calledSRC (for Synchronous Rational Constraints).

Let Σ be a finite alphabet, and letReg(Σ) be the class of regular languages overΣ.
Then, we consider the following relations:

– let≤pref be the prefix ordering between words, i.e., for everyu,v∈ Σ∗. u≤pref v iff
∃w. v = uw,

– let =ℓ be the length equality predicate i.e., for everyu,v∈ Σ∗, u =ℓ v iff |u| = |v|,
and

– for everyR∈ Reg(Σ), let R(·) be the unary predicate such that for everyu ∈ Σ∗,
R(u) iff u∈R.

Notice that the equality predicate can be defined using the relations≤pref and=ℓ: u= v
is equivalent tou≤pref v∧u =ℓ v.

Then, letSRC = (Σ∗,{λu. u ·a : a∈ Σ},{≤pref ,=ℓ}∪{R(·) : R∈ Reg(Σ)}).

Theorem 6. The satisfiability problem ofSRC is decidable.

Proof. (Sketch) Given a formulaφ(z1, . . . ,zn), let [[φ]] be the set of vectors of words
w∈ (Σ∗)n such thatδ |=SRC φ whereδ is the valuation such that, for everyi ∈ {1, . . . ,n},
δ(zi) = wi . We prove that for every formulaφ with n free variables, the set[[φ]] is an-
dim rational set, i.e., definable by an-tape finite-state automaton (transducer), for which
the emptyness problem is of course decidable. For that, we show that all atomic formu-
las definesynchronousrational sets, and we use the fact that the class of synchronous
rational sets is closed under boolean operations and projection (see [16]).

C Example: Accessing Multiple Shared Resources

Let us consider a concurrent Java application where an infinite set of threads are sharing
the objects in the setO = {o,o1,o2,o3,o4}. Suppose that threads are executing non-
deterministically two tasks, each task acquiring a subset of the shared objects by calling
synchronized methods of these objects.

For example, consider the ICFG given in the listing L below:

t a s k 1 () {
1 : o1 . m1 () ;
2 : }

t a s k 2 () {
3 : o2 . m1 () ;
4 : }

synchron ized m1 () {
5 : o .m() ;
6 : }

synchron ized m2 () {
7 : o . n () ;
8 : }

synchron ized m() {
9 : o3 . m3 () ;
10 :}

synchron ized n () {
11 : o4 . m4 () ;
12 :}

synchron ized m3 () {
13 : o4 . n4 () ;
14 :}

synchron ized n3 () {
15 : /∗ some a c t i o n on o2 , o , o3 , o4∗ /

/∗ bu t no t wa i t or n o t i f y ∗ /
}

synchron ized m4 () {
16 : o3 . n3 () ;
17 :}

synchron ized n4 () {
18 : /∗ some a c t i o n on o1 , o , o3 , o4∗ /

/∗ bu t no t wa i t or n o t i f y ∗ /
}

This example does not respect the simple rule of acquiring shared objects (here
{o,o3,o3}) in the same order. So it is potentially generator of deadlocks. We will show
in the following that our methodology is able to prove absence of deadlocks for this
example.

Since this ICFG does not call any ofwait, notify, or notifyAll methods, places
suspi (with i ∈ O) are not connected in the corresponding model. So, we do not add
these places in our model, nor consider the rules corresponding to the translation of the
call of these methods.

TheCTN[SRC] obtained is given in Table 1.
To this model, we have to add the following assertions sayingthat places corre-

sponding to locks have at most one token:

Lock≡ ∧p∈{locko1 ,...,locko4
∀t,t ′. p(t)∧ p(t ′) =⇒ t = t ′

On this model, we want to verify the following properties:

– If it exists a thread at control pointl9, there is no thread having the lock on object
o3:

φ(l9,o3)≡ ∀t,t
′. l9(t) =⇒ ¬(α(t ′) ∈ Σ∗.o3.Σ∗)

This property ensures that when a thread tries to acquireo3, it will acquire it imme-
diately and cannot be delayed by a thread owning the lock of this object.
The same property is true for pairs(l11,o4),(l13,o4),(l15,o3). Then, the conjuction
of these properties says that it is not possible to have deadlock when acquiring
objecto3 ando4, though they are not acquired in the same order by all tasks.

– There is at most one thread waiting to obtain the lock on object o:

∀t,t ′. waito(t)∧waito(t
′) =⇒ t = t ′

This property ensures that a single thread executingtaski (i = 1..2) wis trying to
lock objecto.

m11
o1

: (x,y). (l1, locko1) →֒ (l5,⊥) : α′(x) = α(x).l2.o1
m12

o1
: x. l1 →֒ l5 : α(x) ∈ (Σ∗.o1.Σ∗)∧α′(x) = α(x).l2.o1

m13
o1

: x. l1 →֒ waito1

: ¬(∃y. locko1(y))∧¬(α(x) ∈ (Σ∗.o1.Σ∗))∧α′(x) = α(x).l2.l5
m14

o1
: (x,y). (waito1, locko1) →֒ (l5,⊥) : ∃w. α(x) = w.l5∧α′(x) = w.o1

m21
o2

: (x,y). (l3, locko2) →֒ (l7,⊥) : α′(x) = α(x).l4.o2
m22

o2
: x. l3 →֒ l7 : α(x) ∈ (Σ∗.o2.Σ∗)∧α′(x) = α(x).l4.o2

m23
o2

: x. l3 →֒ waito2

: ¬(∃y. locko2(y))∧¬(α(x) ∈ (Σ∗.o2.Σ∗))∧α′(x) = α(x).l4.l7
m24

o2
: (x,y). (waito2, locko2) →֒ (l7,⊥) : ∃w. α(x) = w.l7∧α′(x) = w.o2

m1
o : (x,y). (l5, locko) →֒ (l9,⊥) : α′(x) = α(x).l6.o

m2
o : x. l5 →֒ l9 : α(x) ∈ (Σ∗.o.Σ∗)∧α′(x) = α(x).l6.o

m3
o : x. l5 →֒ waito

: ¬(∃y. locko(y))∧¬(α(x) ∈ (Σ∗.o.Σ∗))∧α′(x) = α(x).l6.l9
m4

o : (x,y). (waito, locko) →֒ (l9,⊥) : ∃w. α(x) = w.l9∧α′(x) = w.o

n1
o : (x,y). (l7, locko) →֒ (l11,⊥) : α′(x) = α(x).l8.o

n2
o : x. l7 →֒ l11 : α(x) ∈ (Σ∗.o.Σ∗)∧α′(x) = α(x).l8.o

n3
o : x. l7 →֒ waito

: ¬(∃y. locko(y))∧¬(α(x) ∈ (Σ∗.o.Σ∗))∧α′(x) = α(x).l8.l11
n4

o : (x,y). (waito, locko) →֒ (l11,⊥) : ∃w. α(x) = w.l11∧α′(x) = w.o

m31
o3

: (x,y). (l9, locko3) →֒ (l13,⊥) : α′(x) = α(x).l10.o3
m32

o3
: x. l9 →֒ l13 : α(x) ∈ (Σ∗.o3.Σ∗)∧α′(x) = α(x).l10.o3

m33
o3

: x. l9 →֒ waito3

: ¬(∃y. locko3(y))∧¬(α(x) ∈ (Σ∗.o3.Σ∗))∧α′(x) = α(x).l10.l13
m34

o3
: (x,y). (waito3, locko3) →֒ (l13,⊥) : ∃w. α(x) = w.l13∧α′(x) = w.o3

m41
o4

: (x,y). (l11, locko4) →֒ (l16,⊥) : α′(x) = α(x).l12.o4
m42

o4
: x. l11 →֒ l16 : α(x) ∈ (Σ∗.o4.Σ∗)∧α′(x) = α(x).l12.o4

m43
o4

: x. l11 →֒ waito4

: ¬(∃y. locko4(y))∧¬(α(x) ∈ (Σ∗.o4.Σ∗))∧α′(x) = α(x).l12.l16
m44

o4
: (x,y). (waito4, locko4) →֒ (l16,⊥) : ∃w. α(x) = w.l16∧α′(x) = w.o4

n41
o4

: (x,y). (l13, locko4) →֒ (l18,⊥) : α′(x) = α(x).l14.o4
n42

o4
: x. l13 →֒ l18 : α(x) ∈ (Σ∗.o4.Σ∗)∧α′(x) = α(x).l14.o4

n43
o4

: x. l13 →֒ waito4

: ¬(∃y. locko4(y))∧¬(α(x) ∈ (Σ∗.o4.Σ∗))∧α′(x) = α(x).l14.l18
n44

o4
: (x,y). (waito4, locko4) →֒ (l18,⊥) : ∃w. α(x) = w.l18∧α′(x) = w.o4

n31
o3

: (x,y). (l16, locko3) →֒ (l15,⊥) : α′(x) = α(x).l17.o3
n32

o3
: x. l16 →֒ l15 : α(x) ∈ (Σ∗.o3.Σ∗)∧α′(x) = α(x).l17.o3

n33
o3

: x. l16 →֒ waito3

: ¬(∃y. locko3(y))∧¬(α(x) ∈ (Σ∗.o3.Σ∗))∧α′(x) = α(x).l17.l15
n34

o3
: (x,y). (waito3, locko3) →֒ (l15,⊥) : ∃w. α(x) = w.l15∧α′(x) = w.o3

Table 1.Model of the ICFG of listing L.

D Example: Fischer’s Protocol

The protocol [24] is to guarantee mutual exclusion in a concurrent system consisting
of any number of processes. It assumes only atomic reads and writes and the mutual
exclusion relies heavily on timing constraints associatedwith the execution of instruc-
tions.

D.1 Protocol program

Informally, the protocol proceeds as follows. A global variableg is used to store identi-
ties of process or 0. Its value is initialy 0. When a processi wants to access to the critical
section, it waits to seeg at 0. Then, it assignsg to its identity. After that, it waits for
some time (greater than the time taken by assignment instructions), and ifg has a value
equal to its identity after this time, it is safe to enter the critical section. The pseudo-C
code executed by each process is the following:

do {
do {

a w a i t (x ==0) ;
x = 1 ; / / t a k e s t ime i n [A , A ’]
d e l a y ; / / t a k e s t ime i n [D,D ’]

} whi le (x != i d) ; / / a tomic t e s t
c r i t i c a l s e c t i o n ;
x = 0 ; / / t a k e s t ime i n [A , A ’]

} whi le (1) ;

D.2 CTN model

The model of this protocol usingCTN[FOR] is given in Table 2. We model each process
by a token. Each token is assumed to have two local clocks (a andd) measuring the
time taken by assignment resp. delay instructions, and an identity (id). Our model is
parameterized in two dimensions. First, the number of processes is not fixed. Second,
we suppose that an assignment takes between[A,A′] time units and the delay instruction
between[D,D′] time units. Test instructions take no time.

D.3 Mutual exclusion property and its proof

It has been proven that for a finite number of processes, Fischer’s protocol ensures the
mutual exclusion property if 0≤ A≤ A′ < D ≤ D′. The mutual exclusion property is
expressed by the followingΠ1 formula:

CS≡ ∀x,x′. cs(x)∧cs(x′) =⇒ x = x′

which, due to the unicity of identities, it is a consequence of the following simpler
formula:

CS′ ≡ ∀t. cs(t) =⇒ g = id(t)

try : x. idle →֒ try
: g = 0∧a′(x) = 0∧ id(x) = id′(x)∧g′ = g∧d(x) = d′(x)

set: x. try →֒ wait
: a(x)≥ A∧g′ = id(x)∧d′(x) = 0∧ id(x) = id′(x)∧a(x) = a′(x)

enter: x. wait →֒ cs
: d(x)≥ D∧g = id(x)∧ id(x) = id′(x)∧g′ = g∧d(x) = d′(x)∧a(x) = a′(x)

retry : x. wait →֒ idle
: d(x)≥ D∧g 6= id(x)∧ id(x) = id′(x)∧g′ = g∧d(x) = d′(x)∧a(x) = a′(x)

exit : x. cs →֒ idle
: g′ = 0∧ id(x) = id′(x)∧d(x) = d′(x)∧a(x) = a′(x)

time: →֒: ∃z. 0 < z∧ t ′ = t +z∧g′ = g
| (i, r,w,c). (idle,try,wait,cs) 7→ (idle,try,wait,cs)

: a′(i) = a(i)+(t ′− t)∧d′(i) = d(i)+(t ′− t)∧ id′(i) = id(i)
∧a′(r) = a(r)+(t ′− t)∧d′(r) = d(r)+(t ′− t)∧ id′(r) = id(r)
∧a′(w) = a(w)+(t ′− t)∧d′(w) = d(w)+(t ′− t)∧ id′(w) = id(w)
∧a′(c) = a(c)+(t ′− t)∧d′(c) = d(c)+(t ′− t)∧ id′(c) = id(c)
∧(∀z′. 0≤ z′ ≤ (t ′− t) =⇒ a(r)+z′ ≤ A′ ∧d(w)+z′ ≤ D′)

Table 2.CTN model for the Fischer’s protocol.

To prove invariance ofCS′ for our model, we use our verification methodology to
show that the following formulaI (in fragmentΠ1) is an inductive invariant:

I ≡ CS′∧ Ip∧ Inv(try)∧ Inv(wait)∧ Itry∧ Iwait∧ Ics

where

Ip ≡ 0≤ A≤ A′ < D≤ D′

Inv(try) ≡ ∀t. try(t) =⇒ a(t)≤ A′

Inv(wait) ≡ ∀t. wait(t) =⇒ d(t)≤ D′

Itry ≡ (∀t,t ′. try(t)∧ try(t ′) =⇒ |a(t)−a(t ′)| ≤ A′)

∧ (∀t,t ′. try(t)∧wait(t ′) =⇒ |a(t)−a(t ′)| ≤ A′)

Iwait ≡ (∀t,t ′. wait(t)∧wait(t ′) =⇒ (|a(t)−a(t ′)| ≤ A′∧|d(t)−d(t ′)| ≤ A′))

∧ (∀t. wait(t) =⇒ A≤ a(t)−d(t)≤ A′)

∧ (∀t,t ′. wait(t)∧d(t)≥ D =⇒ ¬try(t))

Ics≡ (∀t,t ′. cs(t)⇔¬try(t ′))

∧ (∀t. g = 0 =⇒ ¬(cs(t)∨wait(t)))

Intuitively, invariantItry expresses the property that the time between the arrival of
two processes intry state may not be greater thanA′. This property is also true for any
pair of processes, one in thetry state and the other in thewait state. In the proof,Itry
is useful to establishIwait which says that the difference between the arrival times of
processes in thewait state is also bounded byA′. This implies that (see last conjunct of
Iwait), when processes stay more thanD > A′ in statewait, there is no more process in
statetry. Then, when a process enters in statecs, no process are intry state to change

global variableg and so to allow another process inwait state to enter incs. This last
property is expressed by invariantIcs.

For all discrete transitions (i.e., with an empty universalpart), we can compute the
post image of the transition on our invariant using the simplifiedcomputation defined
in [11] based on the the first order version ofCML.

Transition try: Thepost-image ofI by transitiontry is given by:

posttry(I) ≡ ∃y. ∃idx,dxax. ∃g
−. (I [g← g−]⊖ (x 7→ idle)⊕ (y 7→ try))∧

g− = 0∧a(y) = 0∧ idx = id(y)∧g = g−∧dx = d(y)

The parts ofI changed bypost are Inv(try) and Itry. Inv(try) is true for y because
a(y) = 0. ForItry, the proof uses first the fact thatg= 0 to obtain that∀t. ¬wait(t) from
Ics. So, the second conjuct ofItry is trivial for y. The first conjuct is a consequence of
the invariantItry and ofa(y) = 0.

Transition set:Thepost-image ofI by transitionset is given by:

postset(I) ≡ ∃y. ∃idx,dxax. ∃g
−. (I [g← g−]⊖ (x 7→ try)⊕ (y 7→ wait))∧

ax≥ A∧g = idx∧d(y) = 0∧ idx = id(y)∧ax = a(y)

Invariants changed by thepost image above are:Inv(try), Inv(wait), Itry, and Iwait.
Inv(try) andInv(wait) are trivially conserved by this transition sinced(y) = 0.

Itry is kept true becauseax = a(y) and (from first conjunct ofItry instantiated fors)
∀t ′. |ax−a(t ′)| ≤ A′. So the second conjuct ofItry is also satisfied fory.

The second conjunct ofIwait is satisfied due to the fact thatA′ ≥ ax = a(y) ≥ A
andd(y) = 0. The third conjunct is trivially true fory (the premise is false). The first
conjunct is conserved fory because:

1. By Itry for x says that∀t ′. wait(t ′) =⇒ |ax−a(t ′)| ≤ A′

2. Byax = a(y), it results that∀t ′. wait(t ′) =⇒ |a(y)−a(t ′)| ≤A′, so∀t ′. wait(t ′) =⇒
a(t ′)≤ a(y)+A′,

3. By Iwait, we have that∀t ′. wait(t ′) =⇒ A≤ a(t ′)−d(t ′)≤ A′ so∀t ′. wait(t ′) =⇒
a(t ′)−A′ ≤ d(t ′)≤ a(t ′)−A

4. Combining the last two results, we have that∀t ′. wait(t ′) =⇒ d(t ′) ≤ a(y)−A+
A′ ≤ A′ which is the first conjunct ofIwait for t = y.

Transition retry: Thepost-image ofI by transitionretry is given by:

postretry(I) ≡ ∃y. ∃idx,dxax. ∃g
−. (I [g← g−]⊖ (x 7→ wait)⊕ (y 7→ idle))∧

dx≥ D∧g− 6= idx∧ idx = id(y)∧g+ = g−∧dx = d(y)∧ax = a(y)

Since none of the part ofI concern theidle place where the token is added, all invariants
are conserved trivially by this transition.

Transition enter:Thepost-image ofI by transitionenteris given by:

postenter(I) ≡ ∃y. ∃idx,dxax. ∃g
−. (I [g← g−]⊖ (x 7→ wait)⊕ (y 7→ cs))∧

dx≥ D∧g− = idx∧ idx = id(y)∧g+ = g−∧dx = d(y)∧ax = a(y)

The only affected part ofI are Ics andCS′ for which we should show that it is
satisfied byy.

CS′ is true by the guard of the transitiong− = idx = id(y) = g+ = g.
Ics is true due to the third conjunct ofIwait applied tox which gives∀t ′. ¬try(t ′).

The second conjunct is trivially true becauseg = id(y) 6= 0.

Transition time: The post-image ofI by transitiontime can be computed using the
reachtau formula given in section 3. However, the folowing property allows us to sim-
plify this formula due to the fact that thetime transition satisfies the conditions of the
property.

Property 1. Let τ be aCTN transition satisfying the following properties:

– the existential part does not move tokens, i.e.,n= |−→x |= 0, butϕ may be not empty,
– the universal part transfers all the tokens of all places inP to the same places, i.e.,
−→r =−→s = P −{⊥} andψ does not select tokens in−→r , and

– the color of all tokens transferred is changed independently of the token place.

Then, thereachτ formula simplifies to:

reachτ(P ,P ′,G ,G ′,L,L ′) = ϕ∧ (∀u. ψ)

Then, thepost-image of the invariant becomes:

posttime(I) ≡ (∃g∃t∃a,d, id∃z∀u.

I ∧0 < z∧ t ′ = t +z∧g′ = g
∧a′(u) = a(u)+ (t ′− t)∧d′(u) = d(u)+ (t ′− t)∧ id′(u) = id(u)
∧(∀z′. 0≤ z′ ≤ (t ′− t) =⇒ (try(u) =⇒ a(u)+z′ ≤ A′))∧

(wait(u) =⇒ d(u)+z′ ≤ D′)
)[g′← g,t ′← t,a′← a,d′← d, id′← id]

Due to the fact that coloring symbols corresponding to clocks are evolving with the
same quantity, the invariantI also is conserved by transitiontime.

