N
N

N

HAL

open science

Reasoning about Dynamic Networks of Infinite-State
Processes with Global Synchronization

Ahmed Bouajjani, Yan Jurski, Mihaela Sighireanu

» To cite this version:

Ahmed Bouajjani, Yan Jurski, Mihaela Sighireanu. Reasoning about Dynamic Networks of Infinite-
State Processes with Global Synchronization. 2006. hal-00129025

HAL Id: hal-00129025
https://hal.science/hal-00129025

Preprint submitted on 5 Feb 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00129025
https://hal.archives-ouvertes.fr

1

Reasoning about Dynamic Networks of Infinite-State

Processes with Global Synchronization

Ahmed Bouajjani, Yan Jurski, and Mihaela Sighireanu

LIAFA, University of Paris 7, Case 7014, 2 place Jussieu515R2aris 05, France.
{abou, j urski,sighirea}@iafa.jussieu.fr

Abstract. We propose a generic framework for reasoning about dynamic n
works of infinite state processes such as counter processex] processes,
or pushdown processes, with complex synchronization meshes, including
global synchronization (i.e., broadcast communicatiéi@ define models for
such networks, called CTN, based on Petri nets with trangferations. To-
kens (representing occurrences of processes) have attaol@s over infinite
domains (representing data values, clocks, stacks, ¥te.also define a (second-
order) logic called CTSL allowing to express constraintdamations of tokens in
the nets and on their colors. We prove that #ig* fragment of CTSL is decid-
able whenever the underlying logic for expressing constsadn colors is decid-
able. Moreover, we show that the same fragment is closed ipaftandpreim-
age computations. These results can be used in verificatmnas in invariance
checking. We show that our framework can be applied for neiagpabout mul-
tithreaded programs with procedure calls and dynamic icneatf process with
global synchronization, and on dynamic programs with temé constraints.

Introduction

Automated verification of modern software systems requii@soning about several
complex features such as dynamic creation of concurreptitty, data manipulation,

procedure calls, timing constraints, etc. For that infisitate models must be consid-

ered allowing to capture these features, and algorithnaertejues must be designed

allowing to cope with these multiple sources of infinity iretbtate space.

In this paper, we address the problem of defining a generiedveork for automated
reasoning about dynamic/parametrized networks of vaitasses of infinite-state pro-
cesses (e.g., timed processes, processes with infiniteldatains, processes with re-
cursive procedure calls, etc). In particular, we are irgtre in developing a framework
which can be used for the verification of multithreaded paogs (written in languages

such as (real-time) Java, C, etc).

In the last decade, a lot of work has been done concerninglgfegitamic veri-
fication of dynamic/parametrized networks of finite-stategesses (see, e.g., [20, 19
13,17, 3,10]), and the verification of infinite-state modelth various kinds of vari-

ables and data structures such as counters, clocks, stagkses, etc. (see, e.g., [1,

9,26, 8,6,22,21]). However, fewer work has been done caoimgithe verification of
unbounded networks of infinite-state processes [4, 18, 174,(8ee related work). In a
previous work [11], we have introduced a framework for reasg about such systems

based on constrained Petri nets (CPN). Tokens in these mogf@esent occurrences
of processes (which can be dynamically created and delatetiyolors are associated
with each token representing its local state (e.g., dat@egalage, etc). Then, to express
constraints on the location of tokens and on their colorsimmduced a first-order
logic over tokens and colors, called CML, which is paranzetiby a logic on the color
domain (e.g., Presbuger arithmetics, logic over realy, ¥te have shown in [11] that
the3*v* fragment of CML is decidable whenever the underlying cotwit is, and we
have also shown that this fragment is closed under compatati post and pre im-
ages. These results can be used, e.g., in Hoare-style ptesquadition reasoning, for
bounded model-checking, and for checking inductive irarace of given assertions.
We have shown that this framework allows indeed to handletrivial examples of
parametrized/dynamic systems (such as a parametrizeceR@&iter lock protocol).

However, CPN models do not allow to consider global syncization (broadcast
communication) between processes. For instance, synight@n mechanisms in pro-
gramming languages include broadcast primitive (such &fyAdl in Java). Also, in
networks of timed systems, time progress can be seen asl giglzhronization since
all clocks must be increased with the same amount of timerefbee, we investigate
in this paper the extension of our framework of [11] in ordetdke into account global
synchronization. This extension is not straightforware: ¥tend CPN models by al-
lowing, in parallel with usual transitions, transfer opggas moving simultaneously
all tokens from a place to another one (may be under someraamtsbn their colors,
and by applying a uniform transformation to the color of eatthem). The new class
of models is called Constrained Transfer Nets (CTN). Howebe main problem for
extending the previous framework is that the logic CML carexress the effect of a
transfer operation (which means that it is not closed undst pnd pre computations
for CTN models). Actually, to express the effect of transfperations, the (first-order)
CML logic must be extended to a second-order logic wheregbissible to refer to sets
of tokens, and also to coloring mappings between tokens alodsc The new logic is
called CTSL (for Colored Token Sets Logic). Then, we show #malogous decidabil-
ity and closure properties of CML holds also for CTSL. We grdivat the satisfiability
problem of this new logic is decidable for the fragméiit* (where quantifications are
this time about individuals as well as on sets) whenever gl wolor logic is decid-
able. Also, the same fragment is shown to be closed under atatipn of postand
preimages. As previously, these results allow to automatizedlasoning about CTN
models (in particular, for checking inductive invarianceperties).

Then, to demonstrate the genericity and the applicabifiouo framework, we show
that two important classes of dynamic systems can be haadlggtance of this frame-
work. First, we consider boolean Java programs with dynameation of concurrent
threads and procedure calls, where threads are synchdboizéheir access to shared
objects. Reasoning about such programs and their propéstipiite complex [25]. We
provide a modeling of this class of programs using CTN. Balkicthese programs can
be seen as networks of synchronizing pushdown systemsefoiner in this case col-
ors attached to tokens in CTN models are words represertsgtack contents of the
corresponding process. For that, we define an appropridbe logic, called SRC, for
expressing constraints on vectors of stack contents andave fthat it is decidable (by

showing that each formula can be translated into a finitesttacer). Then, we show that
important properties relevant for these programs can beesspd and checked in our
framework (such as deadlock freeness when threads shatpl@uésources, mutual
exclusion, etc). Interestingly, both modeling of the cdeséd systems and the expres-
sion of their properties involve constraints on stack cotgevhich cannot be expressed
using a finite amount of information. This is due to the faettthnbounded nesting of
procedure calls makes necessary to handle the whole caftidr stack. For instance,
nesting of procedure calls may generate unbounded nedtimcpaoire-release blocks.
Therefore, to release a lock needs checking the contenteo$tdick. Notice that the
ability of expressing constraints on stack contents is atsful for other applications
such as in access control issues (e.g, to model stack inspacechanisms).

Furthermore, we consider the case of real-time Java midttted programs which
can be modeled as dynamic networks of timed automata (witkr@lostate invariants
and urgent transitions). We show a CTN modeling of these=gysusing transfer oper-
ation to encode time elapsing transitions. Urgency can hdled in our framework due
to the fact that the allowed logical language for expressiagsition guards is closed
under negation. As an illustrating example, we have caoigd parametrized proof of
the Fisher mutual exclusion protocol where parametersighé number of processes,
and (2) the delays spent at each control location. We praatetiie protocol is correct
under a condition between these delays, for any number aiegees. Previous works
on the parametric verification of this protocol either calesifixed delays [4] or a fixed
number of processes [6].

For lack of space, proofs and presentation of examples aeagn [12].

Related work: The use of unbounded Petri nets as models for parametrizea ries
of processes has been proposed in many existing works syeB &, 19]. However,
these works consider networks firfiite-stateprocesses and do not address the issue of
manipulating infinite data domains. The extension of theaitb networks of infinite-
state processes has been addressed in few works [4, 18, Ii[4]] Abdulla and Jons-
son consider the case of networks of 1-clock timed systerdshow, using the theory
of well-structured systems and well quasi orderings [1, #23t the verification prob-
lem for a class of safety properties is decidable. Their appi has been extended in
[18, 14] to a particular class of multiset rewrite systemghvgonstraints (see also [2]
for recent developments of this approach). Our modelingéaork is inspired by these
works. However, while they address the issue of decidingvéhédication problem of
safety properties (by reduction to the coverability prob)dor specific classes of sys-
tems, we consider in our work a general framework, allowimgeal in a generic way
with various classes of systems, where the user can exmssgians about the config-
urations of the system, and check automatically that thé&y (using post-pre reasoning
and inductive invariant checking) or that they do not holslifig bounded reachability
analysis). Our framework allows to reason automaticallyutsystems which are be-
yond the scope of the techniques proposed in [4, 18, 14, 2].

In a series of papers, Pnueli et al. developed an approacthdoverification of
parameterized systems combining abstraction and probhigues (see, e.g., [7]). We
propose here a different framework for reasoning aboutetlsgstems. In [7], the au-
thors consider a logic on (parametric-bouratyays of integers, and they identify a

fragment of this logic for which the satisfiability problesidecidable. In this fragment,
they restrict the shape of the formula (quantification oweliges) to formulas in the
fragment3*v* similarly to what we do, and also the class of used arithraétion-
straints on indices and on the associated values. In a reagktby Bradley and al.
[15], the satisfiability problem of the logic of unboundedsass with integers is investi-
gated and the authors provide a new decidable fragmenthvidiacomparable to the
one defined in [7], but again which imposes similar reswitsi on the quantification
alternation in the formulas, and on the kind of constraih& tan be used. In contrast
with these works, we consider a logic amnultisetsof elements withanykind of asso-
ciated data values, provided that the used theory on thedtetein is decidable. For
instance, we can use in our logic general Presburger camstrahereas [7] and [15]
allow limited classes of constraints. On the other hand, aveot specify faithfully un-
bounded arrays in our decidable fragment because formiithe dormv3 are needed
to express that every non extremal element has a successtadessor. Nevertheless,
for the verification of safety properties and invariant dtieg, expressing this fact is not
necessary, and therefore, it is possible to handle in oandreork all usual examples
of parametrized systems (such as mutual exclusion prapcohsidered in the works
mentioned above.

2 Colored Token Sets Logic

2.1 Preliminaries

Consider an enumerable settokensand let us identify this set with the set of natural
numbersN. Intuitively, tokens represent occurrences of (paratietgads. We assume
that tokens may have colors corresponding for instance ta viues attached to the
corresponding threads. L&t be a (potentially infinitejoken color domainExamples
of color domains are the set of natural numh#rand the set of real numbeks

To express constraints on token colors, we use first-ordgcdoover the consid-
ered color domains. In the sequel we refer to such logicsoés logics Presburger
arithmeticsPA = (N, {0,1,+},{<}) is an example of such a logic. It is well known
that the satisfiability problem of Presburger arithmeticdeécidable. First-order theory
of realsFOr = (R, {0,1,+, x },{<}) is also a decidable logic which can be used as a
color logic. We introduce in section 4 another example obctdgic allowing to reason
about vectors of stacks (which is useful in modeling progravith procedure calls).

2.2 Syntax and semantics of TSL

We define hereafter the syntax of tlmlored Token Sets Logi€TSL(L), which is
parametrized with a color logic. Then, letL = (C,Q, =) be the first-order logic over
the color domairC, the set of function®, and the set of relatioris. In the sequel, we
omit the parameter dfTSL when its specification is not necessary.

LetT be the set ofoken variablesind letC be the set ofolor variables Colors are
associated with tokens througbloring functionsi.e., mappings from tokens to colors.
Let ' be a set otoken coloring variablesWe assume thal, C, andl" are disjoint.

Then, the set of TSL terms (calledoken color termgis given by the grammar:
ti= Z| V(X) | (D(tl,. . atn)

whereze C,yel,xeT,andwe Q.
We consider a set of second order variabfe€alledtoken set variablesepresent-
ing sets of tokens. Then, the setdIfSL formulas is given by:

O i=x=y|X() | &t otm) | 0[OV |32 ¢ Ix 0] 3X. 0 | 3. ¢

wherex,yeT,zeC,E e =, X € X,ye T, andty,...,t, are token color terms. Boolean
connectives such as conjunction)(implication &), and universal quantificatiofv)
can be defined in terms of, v, and3. We also uséix € X. ¢ (resp.Vx € X.) as an
abbreviation of the formulax. X(x) A ¢ (resp.¥x. X(x) = ¢). Notice that the set of
terms (resp. formulas) df is included in the set of terms (resp. formulast@BL(L).

The notions of free/bound occurrences of variables in fdaswiand the notions of
closed/open formulas are defined as usual in second-ordmslan the sequel, we
assume w.l.o.g. that in every formula, each variable is tifiechat most once.

A valuation of token (resp. color, token coloring) variabie a mapping ifiT — N]
(resp.[C — C], [T — (N — C)]). A valuation of token set variables is a mapping in
[X — 2N]. Then, we define token sets coloringp be a pairv, W) wherev (resp.j) is
valuation of the token set variables (resp. token coloriagables).

We define a satisfaction relation between set coloringasd formulas. For that,
we need first to define the semanticsaafSL terms. Given valuation8 € [T — N],
de[C—CJ,andue [N — (N — C)], we define a mapping-))g 5,, Which associates
with each color term a value i6:

(2)o.50 = 3(2)
(YO N5 = H(Y)(B(x))
(o(ts, -, tn)Nesp = W(({t) e sy - - (tn))e.sp)
We define inductively the satisfaction relatiésg 5 between token sets coloring
(v, W) andcCTSL formulas as follows:
(Vo1 Fos &ty tm) iff E(((t)asp- - (tm)osy)
(V1) o5 X(x) iff 8(x) € V(X)
(VW) Fosx=y iff B(x) =8(y)
(V,W) o5 —¢ iff (V1) o559
(V.1 Fos 1V o2 iff (v,10) Fesd1or(v,1) Fosd2
(V,l) Fos X ¢ iff 3t e N (v,1) Fox—1,5 9
(VW) Feos 3z ¢ iff dce C. (VW) Fogz—q ¢
(V,H) FFos3X. ¢ iff INCN. (v[X — N[1) [Fo5¢
(V,W) o5 3v. ¢ iff 3f € [N— CJ. (v,uly— f]) o5 ®

For every formulap, we defing]¢]lg 5 to be the set of sets coloring, 1) such that
(v, 1) Fo.5 0. A formulag is satisfiableff there exist valuation® andd s.t.[[¢]l 5 # 0.
If ¢ is satisfiable for a subsétof N, i.e., when the valuations 1, and® are restricted
to N, we use the notatiov, 1) =g 5 ¢

2.3 Syntactical forms and fragments
Prenex normal form: A formula is inprenex normal fornfPNF) if it is of the form

Q1y1Q2Y2. .. Qmym- ¢

where (1)Qq,...,Qm are (existential or universal) quantifiers, (&) ...,yn are vari-
ablesinTUCUX UT, and¢ is a quantifier-free formula. For every formupan CTSL,
there exists an equivalent formupain prenex normal form.

Quantifier alternation hierarchy: We consider two familie$Z}n>0 and{Mn}n>o of
fragments o€ TSL defined according to the alternation depth of existentidlamversal
quantifiers in their PNF:

— 2o =g be the set of formulas in PNF where all quantified variables@a€,

— Forn> 0, letZy 1 (resp.Mp;1) be the set of formula®y; . .. ym. ¢ in PNF where
y1,...,Ym € TUCUXUT, Qs the existential (resp. universal) quantifie(resp.
V), and¢ is a formula inly (resp.Xy).

It is easy to see that, for eveny> 0, Z,, and[T1, are closed under conjunction and dis-
junction, and that the negation okga formula is al'l,, formula and vice versa. For every
n > 0, letB(Z,) denote the set of all boolean combinationsSgfformulas. Clearly,
B(Zn) subsumes both, andl,, and is included in botB;1 andMy 1.

2.4 Satisfiability Problem

We investigate the decidability of the satisfiability pretvl of the logicCTSL(L), as-
suming that the underlying color logichas a decidable satisfiability problem.

Theorem 1. If the satisfiability problem of L is decidable, then the imegntZ, of
CTSL(L) is decidable.

Theorem 1 cannot be extended beyondihragment, even for simple color logics.

Theorem 2. ([11]) The satisfiability problem is undecidable for the ticgderll, frag-
ment ofCTSL(OL) where OL= (N, 0, <).

3 Colored Transfer Nets

We present hereafter our program models which are based tomBts with transfer
arcs. We need first to introduce some definitions and notsitiogt P be a finite subset

of X. Elements of? are callecdblacesand denoted bp, q,r,s, L is a special elements
of P callednowhere placeLet P’ C X be a set disjoint fron®? such that?| = |?'|; its
elements are denoted Ipj, ¢, 1’, s, Let G be a finite subset &, which elements are
calledglobal variablesand are denoted by, ... Let G’ C C be a set of color variables
disjoint from G such that G| = |G’|; its elements are denoted gy !’,.... Let £ be a
finite subset of , which elements are callédcal variablesLet £’ C I' a set of coloring
symbols disjoint fromZ and with the same size. Primed (resp. unprimed) variabkes ar
used to refer to values after (resp. before) the executidraositions.

A Colored Transfer NefCTN) is a tupleS= (?, G, L,L,A) whereL = (C,Q,Z) is
a color logic and\ is a finite set otonstrained transitionsf the form:

P=T:0)|V.(T—75:y) €y
whereX, Y €T, P, G, 5, T €, L¢T,|X|=|P|=/q|=nY|=|T|=|5]=

mpPpNT=0pPNS=04gNT =0,andall places inr” are disjoint¢ is a formula
in CTSL(L) whose free variables arg, global variables inG U G’, local variables inz,
and symbol colors of/ if they are applied to variables iX . § is a formula inCTSL(L)
whose free variables afg, global variables inG U G/, local variables irz, and symbol
colors of L' if they are applied to variables iy .
A CTN transition has two parts separated |byrhe left-hand-side, called thexis-

tential part corresponds to Petri nets arcs with bounded cardinaligariblex; of X
is bound to a selected token in the corresponding ppaa# P, the token selected is
deleted fromp; and put in the corresponding plageof G. Formulad gives the selec-
tion criterion for tokens inp and how the colors of these tokens are changed (using
variables inZ’ applied toX). Also, ¢ describe changes on global variables by defining
the value ofG’. The right-hand-side of a rule, called theiversal part corresponds to
Petri nets arcs with unbounded cardinalitatisferarcs):all tokens of each place i’
satisfying the selection criterion given lgy are transfered to the corresponding place

S and theirs colors are changed accordingitdFormulay uses variables ify to
refer to each transfered token.)

3.1 Transitions as formulas

We associate with each transitiof the form (1) aCTSL(L) formula:

reach(?,?,G,G', L,L') = I, ..., %n. IV1,....Ym
(AR 1p|(x|) (vt (AT ﬁYJ()):Ale(Q{(t)@(qi()\/t— i) Ao

(Vt (AT ﬂYj(t) A ALyt # %)) = (Racca (t) = a(t) A Aperp(t) < /(1))
A ALy (Y. (1 (y)=>f1()) (¥iy) = 1 (y)A
(rj i) = (" ()AﬁYJ(y)) (=ri) AYi(Y))))
A (VY. ALy (S’ (¥) & (sly)\/YJ(¥))))

A (WL---,Ym-(L1Yi(y)) < W)

Token variablexq, ..., X, represent moved token by the existential part of the ruld, an
the token sets variablés, ..., Y, are used to describe the transfered tokens by the uni-
versal part. The first line of the formula models the movingakens by the existential
part of the transition, and imposes the constragnts the moved tokens. The second
line says that the tokens which are not involved in the ttiorskeep the same places
and local colors. The third and fourth line says that partitioned between se¥s and
r‘. The fifth line says that the set of tokevjsis added to the corresponding target place
s}j after the transfer. The last line constrains the ¥gtnd their color change ly.

Given a fragmen® of CTSL, we denote b TN[O] the class of TN where each tran-
sition corresponds to a formula in the fragméntDue to the (un)decidability results of
section 2.4, we focus in the sequel on the class®$>,] andCTN[Z4].

3.2 Semantics

Configurations ofCTNs, calledcolored markingsare triples(M, ,) where (1)M €
[N —] is an application, callecharking which associates to each token a place, (2)
pe L — (N— C)] is a valuation of local variabes in, and (3)0 € [G — C] is a
valuation of global variables ig.

For a markingM, letvy be a mapping ifi? — 28] such that for alp € P vy (p) =

{t e N | M(t) = p}. For a mapping/u (resp.y, 8), we denote byy (resp.f, 8) the
mapping obtained by replacing each variableAir{resp. L, G) by its corresponding
element in?’ (resp.L’, G’). The union of mappings defined on disjoint domains is
denoted by theb operator.

Constrained transitions @ffN define a transition relatior-s betweerCcTN config-
urations as follows: For every two configuratiofM, py,d1) and(Mz, 2, 82), we have
(M1, 1,01) —s (M2, 2, &) iff there exists a constrained transitiore A such that:

<VM1 EBV/M\zy M1 D LT2> ’:0’51®35A2 reach(?, EP/’ g’ g/’ L, L/)

Given M = (M, 1, d), let postg(M) = {M' : M —s M'} be the set of its imme-
diate successors, and leteg(M) = {M' : M’ —s M} be the set of its immediate
predecessors. These definitions can be generalized tofsstsfigurations.

3.3 Computingpost and pre images

We show hereafter the following closure propertyc@EL fragments under the compu-
tation of immediate successors and predecessocTits.

Theorem 3. Let S= (P, G, L,L,A) be aCTN[Z,], for n € {1,2}. Then, for every for-
mulay in the fragmeng, of the logicCTSL(L) with free variables inPU GU L, it is
possible to construct two formulals,.s: and Yy in the same fragmerH, such that

[Wpost]] = posts([W])) and [Wpre]l = pres([W]).

Proof. Let(?P, G, L) be aformula o£TSL(L), and lett be a transition i\. We define
hereafter the formulag,.s: andyyy. for this single transition. The generalization to the
set of all transitions is straightforward. The construstad the formulasp,os: andypre

is trivial due to the fact that our logic allows to use quanéfion over places and color-
ing symbols (representing with local variables). In thédwaing, we use the notatioft?

for 3py,..., pn With 2 = {py,..., pn}. Also, ¢[P’ < P] meansp[p; < Px,..., Pp < Pml.
Similar notations are used for sefsand L. Theny,.s: andy,. are defined by:

Wpost = (3P 3G L. YAreach) [P’ — P|[G' — G][L' + L]
Wpre = (3P 3G 3L Q[P «— PG «— G'|[L + L] Areach)

Itis easy to see that i andreach are in a fragmeni,, for anyn > 1, then both of the
formulasy,.s: andy,.. are also in the same fragmexri.

See in [12] an example @hst-image computation.

3.4 Invariance checking

The results above allow to perform various kinds of anal§&i<TN, e.g., Hoare-style
post-pre condition reasoning, bounded reachability aisyor invariance checking
problem. We detail here the caselductive invariance checking probledn instance
of such a problem is given by a triplénit, Inv,Aux) of sets of configurations, where
Init is a set of initial configurations$nv is the invariant to be proved, akdixis an aux-
illiary invariant. It consists in deciding whether (it C Aux (2) AuxC Inv, and (3)
Auxis an inductive invariant, i.e., thabst(Aux) C Aux The following result follows
from Theorem 3, Theorem 1, and the previous theorem.

Theorem 4. Let S be a&CTN[>,]. The inductive invariance checking problem is decid-
able for every instanc€[Winit [, [W]], [W']) whereWinit € Z2, andy, ' € B(Z1).

In the full version [12], we give an example illustrating thee of this theorem.

4 Boolean Multithread Programs with Infinite Control

We consider here boolean Java programs with dynamic creafithreads, recursive
methods, and threads synchronized on a set of shared obj¢etshow how to verify
the absence/presence of deadlock in such programs by mgdeid reasoning about
the stack of each thread.

Let us first recall briefly the semantics of synchronizatietween threads in Java.
Threads synchronize their access to global shared objsictg alock mechanism: each
object has a lock that may be owned by at most one thread. Adroens the lock of
an objecto while executing blocks of code labeled bynchroni zed(0) or methods
of the objecto declared asynchroni zed. A synchronized method or block of code
can contain calls to other synchronized methods of the sanoé @ different object.
To avoid starvation or deadlocks, threads can suspenddkedution and free the lock
of the object it owns by calling theai t method. While owning a lock on object
a thread can awake one or all threads suspended asing methodsiotify resp.
notifyAl l. The latter method is a mean of global synchronization cédls in Java.
The call of these methods is not blocking and the caller colt to own the lock
of 0. The awakened threads are nhow competing for the owning olbttieon o with
other threads wanting to loakk An awakened thread continues its executon with the
statement after theai t call.

To obtain the model of a Java program of this class, we sténttiveInterprocedural
Control Flow Graph(ICFG) of the program. The ICFG arcs are labeled by actions
like: call of an user-defined method on an object, call of agefned methodvi t ,
notify, notifyA I) on ashared object, and return from a method. Wlog, we censid
thatsynchr oni zed code is present only in user-defined methods, and this irgtiom
is available in the ICFG. We show in this section how to tratesthe ICFG into &TN.
The color logic used is th8RC logic presented below, which allows to model and
reason about the stacks of threads. (See example in [12].)

Synchronous Rational Constraints Logic: Let Z be a finite alphabet, ariReg(Z) be
the class of regular languages o¥eMhen,SRC = (Z*, {Au. u-a : a€ Z},{<pref, =¢
}U{R(:) : R€ Reg(X)}) where:

— <pref IS the prefix ordering, i.e., for every,v € Z*. u <, Viff 3w v=uw,
— =¢is the length equality predicate i.e., for every € =¥, u=, viff |u| = |v|, and
— for everyR € Reg(Z), R(+) is the unary predicate sfu € *, R(u) iff ue R

Notice that the equality predicate can be defined using taéoas<,.f and=,u=v
is equivalent ta <pf VAU=, V.

Theorem 5. The satisfiability problem &RC is decidable.

Modeling method calls: Places are associated with nodes (control points) of the
ICFG; a token in a place represents a thread ready to exduoeitstatements on the
outgoing edges. The coloring symbmlattached to tokens represents the stack of the
thread. Stack values are works ont the alphabwthich contains the set of all con-

trol points in the ICFG. Constrained transitions@iN are obtained from edges of the

ICFG as follows. An edgepﬂq whereP is a user-defined method with start-

ing nodestartr is modeled by the transitior. p — starp : o'(x) = a(x).q. An
edgeexip ™ q representing the return from methBds modeled by the transition
X. exit — p : o/(X).p = a(x). Finally, an edgep— g representing change of control
point p to g inside a method is represented by the transiiop— g : o/(x) = a(x).
The basic model above may be adapted to store in the stackosddiinformation
about the methods called and not exited by the thread, as wetHe following.

Modeling synchronization: To model ICFG edges including call to synchronization
methods, we first create for each objeatsed as a lock (i.e., for which there exists a
statement 8. m() ” where mis a synchronized method) three places:|¢igk, models
the lock of the object: at most one token is presenty@i}, stores tokens representing
threads competing to obtain the lock@f(3) susp stores tokens representing threads
which are self-suspended by the execution ofwai t () ” statement while owning the
lock of 0. To the stack alphab&tis added the set of objects used as locks.

An ICFG edgequ with m being a synchronized method is modeled by
the following four transitions:

ms: (%,Y). (p,locky) < (startm, L) : a’(x) =a(x).q.0)
me : X. p < starty, s a(x) € (2F.0.2) Ad/(X) = a(X).q.0
me X. p — walito
: =(3y. locks(y)) A—(a(x) € (Z.0.2%)) Aa’(x) = a(x).g.starty
me - (x,y). (waity,locky) < (g, L) 3w a(x) = wgAa’(x) = w.o

The first transition is the case of an available lock. Thes, Itick is taken and the
thread starts procedureand puts in its stack the information about having the lock of
objecto. The second transition is the case where the thread is gli@ading the lock
of o, so it starts immediately the execution of metm@objecto is added on stack for
uniformity). The third transition shows the case where theklis not available and it is
not owned by the thread. The thread is sent intoth#, place and the stack stores the
return address and the start address of the called methedfolinth transition shows
that a lock may be taken by a thread in the waiting state whisraitailable. Like for
the first transition, the information about owning lockais put on the stack.

The transitions below show respectively the modeling ofdaléof methodswai t
notify, andnotifyAl | ina synchronized method of objext

walty (%,Y). (p, L) — (susp,locky) D 3w a(x) =w.oAd’(X) =w(q
notifyo: (X,y). (p,susp) — (g, wait) Da(x) =a'(x) Aa(y) =a'(y)
notifyAll, : X.p—q :a(x)=a’(x)

| y.susp— waity : a(y) =a’(y)
Finally, the return from a synchronized method is modelethisyfollowing transition:

sret : (X,Y). (eXitn, L) — (g,locky) : Iw. a(x) =woAw=a'(x).qA~(w e (£*.0.2*))
srep X. €Xity — q D 3w a(x) =woAw=a'(x).gA (W€ (Z*.0.Z2¥))

where the lock of the object is freed only if the thread hasoadied the method from
another synchronized method of the object.

The property of deadlock freedom can be expressed as a pyagehe stack as-
sociated with each thread. For example, the deadlock igladai a thread trying to
acquire the lock of an objectby calling a synchronized method of this object at con-
trol point!l cannot be delayed by another thread owning the lock of thsobb

vt,u. l(t) = —(a(u) € Z".0.2%)

CTSL(SRC) allows also to express properties about the order in whietothjects are
locked (or methods are called) by the thread. For exampéeptbperty saying that all
threads at locatiof have first acquired, and thero, can be express as follows:

Vt. 1(t) = a(u) € (£—{01,02})".01.(X — {02})*.02.(Z— {01 })*

5 Multithreaded Programs with Timed Constraints

We consider here real-time Java programs with dynamic iomeatf threads (without
procedure calls). Such programs can be modeled as dynarnvionke of timed au-
tomata [5]. We show how to define such networks in our framé&wadfe consider that
clocks variables range over the domain of reals. Then, ther ¢ogic L can be the
first-order theory of realsOr = (R,{0,1,+, x },{<}) or its subfragments (e.g., linear
first-order theory).

Theglobal and local clocksised in the network aretranslated into variablegsin
resp.L. We suppose thaf contains a variablemeasuring the global time. The trans-
lation of automata locations is immediate into places.

Then, we model discrete transitiorfrom location/; to location/, whose guard is
¢ and whichresetdocal clockc by the transition:

X Ay — Ll AC(X) =0

In timed automatajme elapsingncreases all clocks by the same amount of time.
We model such it by a unique constrained transition changnifprmly the global and
local colors of threads in placgs where the time can elapse:

2 0<zAt =t+2| V. P—P: AY(Y)=UY)+t'—tA A ¢ =c+t'—t

yeL ceg

Time invariants are associated with locations and reptesmrstraints which must
be satisfied while time elapses at these locations. Invariased in timed automata
can be expressed are formulas in ffiiefragment ofCTSL. Let denote byinv(p) the
invariant formula obtained for the location representegb¥hen, we modify the time
elapsing transition to take into account invariants:

—:3z0<zAt =t +z

| VPP AV (V) =WY) +U —tA A € =t —t
(VZ.0<Z <t/ —t = (Apep IV(R)ILOK) — L) +2])

From the decidability results given by Theorem 3, it resthtst tractable modelsTN
are obtained if time invariants are at most formulaBlinfragment.

Urgent transitionsare discrete transitions which have more priority that tipass-
ing, i.e., they must be executed immediatly. LetX. (P — @ : @) be a discrete
urgent transition. Then, to express its urgency, we mustifptiche elapsing transition
by imposing—@in the guard, i.e., time can progress only if the urgent ftarsis not
enabled:

—:3z0<zAt =t+z

| Y. P—TP: /\yeLOV(V) :V(V)‘f‘t/—t/\/\cegd:C—Ft/—t
AN(VZ.0<SZ <t —t = (Apep V(D)LY < L) +7Z])
A-(TFX. P (X)AQL(X) — L(X)+2Z]))

From Theorem 3, it follows that tractab@&N models are obtained if guards of urgent
transitions are irk; fragment ofCTSL.

6 Conclusion

We have defined a generic framework for reasoning about umdex networks of
infinite-state processes. Various instances of this frapnkewallow to deal in a uniform
way with important classes of system models such as dynaghizonks of counter pro-
cesses, timed processes, or pushdown processes, witheogyplchronization mech-
anisms. This is based on generic decidability and closwdtsefor a (useful fragment
of a) logic for specifying configurations of such networksigrhallow to reason both
on the control locations of the processes and on their ddta.ekpressiveness of our
framework has been demonstrated by showing its applicédiomasoning about multi-
threaded Java programs with global synchronization, andtahultithreaded programs
with timing constraints.

The complexity of the decision procedures is doubly exptiakim the size of for-
mulas (more precisely, in the number of quantified varigbleswever, formulas we
need to consider when reasoning about CTN models (assegiqressing invariants
and transition guards) are of a special form. Indeed, theyaually first-order formu-
las which implies thapost/pre computations do not generate formulas with universal
second order quantification. Moreover, token variablegangition formulas are de-
terministically associated with places. These facts alloweduce the complexity by
an exponential factor. Furthermore, transition formulagally introduce a small num-
ber (2 or 3) of new token variables (the number of synchrahjz@cesses). This fact
reduces significantly the complexity in practice.

References

(&3]

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. CGardecidability theorems for

infinite-state systems. IRAroc. of LICS’96 pages 313—-321, 1996.

. P. A, Abdulla and G. Delzanno. On the Coverability Probifam Constrained Multiset

Rewriting. InProc. of AVIS’06, Satellite workshop of ETAPS'®&enna, Austria, 2006.

. P. A. Abdulla, B. Jonsson, M. Nilsson, and M. Saksena. A&uof Regular Model Check-

ing. InProc. of CONCUR’04volume 3170 of.NCS Springer, 2004.

. P.A. Abdulla and B. Jonsson. Verifying networks of timedqesses (extended abstract).

In Bernhard Steffen, editoRroc. of TACAS’98volume 1384 ofLNCS pages 298-312.
LNCS 1384, 1998.

. R. Alurand D.L. Dill. Atheory of timed automatd.CS 126:183-235, 1994.
. A. Annichini, E. Asarin, and A. Bouajjani. Symbolic teéhunes for parametric reasoning

about counter and clock systems.Rroc. of CAV’00 LNCS 1855, 2000.

. T. Arons, A. Pnueli, S. Ruah, J. Xu, and L.D. Zuck. Paranweéd Verification with Auto-

matically Computed Inductive Assertions. Pmoc. of CAV'01LNCS 2102, 2001.

. B. Boigelot. Symbolic Methods for Exploring Infinite State SpaBéD thesis, Faculté des

Sciences, Université de Liege, volume 189, 1999.

. A. Bouajjani, J. Esparza, and O. Maler. Reachability gsialof pushdown automata: Appli-

cation to model-checking. IRroc. of CONCUR’97volume 1243 oL NCS pages 135-150.
LNCS 1243, 1997.

A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract Ragivlodel Checking. IrProc. of
CAV’04, volume 3114 oL NCS Springer, 2004.

A. Bouajjani, Y. Jurski, and M. Sighireanu. A genericnfiework for reasoning about dy-
namic networks of infinite-state processesTACAS'07 LNCS, 2007.

A. Bouajjani, Y. Jurski, and M. Sighireanu. Reasoninguttdlynamic networks of infinite-
state processes with global synchronization. TechnicabR€007-03, LIAFA lab, January
2007. Available abttp://waw. | iafa.jussieu.fr/~abou/publis.htm.

A. Bouajjani, M. Muller-Olm, and T. Touili. Regular symalic analysis of dynamic networks
of pushdown systems. Rroc. of CONCUR’'05volume 3653 of NCS Springer, 2005.

M. Bozzano and G. Delzanno. Beyond Parameterized \@itit. InProc. of TACAS’02
volume 2280 oLNCS Grenoble, France, 2002. Springer Pub.

A. R. Bradley, Z. Manna, and H. B. Sipma. What's decidaideut arrays? IfProc. of
VMCAI'06, volume 3855 o£ NCS Springer, 2006.

Christian Choffrut. The Reachability Problem RequiEsponential Space. Technical Re-
port 62, Yale University, 1976.

E. M. Clarke, O. Grumberg, and S. Jha. Verifying paranmwegd networks TOPLAS 19(5),
1997.

G. Delzanno. An assertional language for the verificatibsystems parametric in several
dimensions Electr. Notes Theor. Comput. S&0(4), 2001.

G. Delzanno, J.-F. Raskin, and L. Van Begin. Towards theraated verification of multi-
threaded java programs. TTACAS volume 2280 o£ NCS pages 173-187. Springer, 2002.
E. A. Emerson and K. S. Namjoshi. On model checking foraeterministic infinite-state
systems. IrnLICS’98 IEEE, 1998.

A. Finkel and J. Leroux. How to compose presburger-acagbns: Applications to broad-
cast protocols. IfProc. of FST&TCS’02volume 2556 o£ NCS Springer, 2002.

A. Finkel and Ph. Schnoebelen. Well-structured traorsgystems everywherd@heor. Com-
put. Sci, 256(1-2):63-92, 2001.

S. M. German and P. A. Sistla. Reasoning about systerhsweihy processeSACM, 39(3),
1992.

24. Leslie Lamport. A fast mutual exclusion algorithlACM Transactions on Computer Sys-
tems 5(1):1-11, 1987.

25. Edward A. Lee. The problem with threads. Technical Reg@B/EECS-2006-1, Electrical
Engineering and Computer Science University of CalifoatiBerkeley, January 2006.

26. P. Wolper and B. Boigelot. Verifying systems with infenliut regular state spaces.Rroc.
of CAV’'98 volume 1427 oL NCS Springer, 1998.

A Proof of Theorem 1

We reduce the satisfiability problem &b formulas inCTSL(L) to the satisfiability
problem ofZg formulas which correspond to formulas in the token coloiddgwhich
is supposed to has a decidable satisfiability problem. Toefs constructive: we build
from a formula inZz a formula inL which has an equivalent satisfaction problem. The
complexity of this construction is given at the end of thetisec

In the remaining of the section, we denotepa closed formula irk; in prenex
form 3X3IX IMIY. ¢, whered is a formula inMy in prenex formv VY VRVT. @,
with X,V €T, X,Y e x, M, €C, V,d €T, andg € Zo. We assume that all
quantified variables are different.

We prove first that the fragmefb, has the small model property, i.e., every satis-
fiable formulay in 2, has a model of a bounded size (where the size is the number of
tokens in each place).

Lemma 1. TheZ, fragment ofcTSL(L) has a small model property.

Proof. Suppose that there is a set colorifwgp) which satisfies th&, formulay. This
means that there is a set of tokéhs N (resp. of colorsc’) and a mapping € [X — N]
(resp.d € [M —) such thatv,) g5 9.

Let N; be the finite subset dfl corresponding to the image of the (finite set of)
existential quantified token variablé€ through®, i.e.,N; = U, +0(x). Let A be a
fresh symbol inX. Without changing the satisfiability df, we strengthen it by stating
that A captures exactli;. Indeed,(v, 1) =g 5 ¢ is equivalent to(V[A — Ni|,1t) =g 5
All (X ,A) A ¢ where:

AlL(X,A) = A(X) A (Y. (AgexY # %) == =A(Y))

From¢, we obtain a weaker formulpy (i.e., ba = ¢) by restricting the universal
—_—
quantified variables/ and Y to the set of tokenbl; represented bj:

oa=VYVY.(A\ Ayi)A A Subsety,A)) = VAVd.
Viey YiGV
where SubsetY,A) =Vz Y(z) = A(2)

Then,(V[A — NiJ, 1) g5 All(X,A) Ada. In pa andAll (X, A), all universally quanti-
fied token variables are tested to belong to the finité\sethich means that only tokens
in Np are relevant. Ifv1,) is the restrictions 06 andp overNy, then(v1[A «— Ny], p1)
is a model forga A All(X,A) which is finite. Butda A All(X,A) = ¢ over Ny so
(V1[A«— Nyp], 1) is also a model of.

So, we have shown that if & formula has a model, they has also a model
over a finite domain of tokens which size is bounded by the rarmobthe existential
quantified token variables i (denoted here byc).

Based on the above result, we are able to get rid of the umibgusntifications over
token and sets of token variablesinformula by replacing them by finite conjunctions.

Lemma 2. The satisfiability problem for thE, fragment ofcTSL reduces to the satis-
fiability problem for thex; fragment.

Proof. Let N be the finite set of tokens on which is built the finite modelred @ for-
mulainZy, and let(v,), 8, andd be this finite model, i.e (v,) =¢ 5 VYVYVRVE. @
with v, |, ande restricted toN. Recall thaiN is the image of variables ixX by 6. This
means that, from a syntactic point of view, the universe dfdes in'y andY is fully
described by variables ix . Then, we can replace any universal quantification over to-
kens by a finite conjunction where each conjunct is obtainechfh by a substitution

of variables iny with variables inX:

V.0 Fes A\ YYVAVS. glo]
ocly—X]

Elimination of universally quantified variables W is done by a slight general-
ization of the above construct: we guess all the possibleati@ins for variables i
in terms of sets of variables iiX. A such valuatiorg is a mapping ir{? — (X —
{true,false})]. The effect of applyind, to a formula inCTSL is to replace all subfor-
mulaY (x) by §(Y)(x) € {true,false}. However, valuation§ shall satisfy the following
consistency property wrt valuation of token variables gitg the mappind: if vari-
ablesx andx; in X are mapped to the same token@yythen they have to belong to the

same setinY . This consistency property is given by the following formul

ConsistY,X)= A (x=x)= A (Y(x) & Y(X))
XX EX Yey

We use it as premise in each conjunct corresponding to a tiahsafor universally
quantified variables irY :

V. Fes A A (Consist Y, X) = VRV ¢fa])[g]

oc[Y—=X] ge[Y (X —{truefalse})]

The formula above has no more universal quantification aear or sets of tokens.

To eliminate the universal quantification over coloring $ats in o', we note that
mappings ina are only applied now to variables iX. We define a substitution
which maps each occurrence of a tearfx) with a € o andx € X to a new color
variable inC, given byn(a)(x). A similar consistency property as the one used for the
elimination second order of variables ¥ has to be satisfied by the substitutignif
two variablesq andx; are mapped to the same token, then the substitatisimall map
them to the same color for any coloring symboldh We can combine these properties
and obtain the formula:

Consist(Y, @, X) = A x=x)= N\ Yx)<YX))A N (@) =a(x))
X X EX YeyY aca
Then, if @ c Cis the image ofy, the satisfaction o) is equivalent to the following

satisfaction problem:
R

V.0 Fes A A VT, 3. (Consist(Y, d, X) = glo])[E][n]

oe[V—X] &ec[Y (X —{truefalse)]

which concerns a; formula.

Finally, we eliminate the existential quantifiers over togesets of tokens, and col-
oring symbols variables by introducing new existentialmfifeers on color variables.

Lemma 3. The satisfiability problem for th&; fragment ofCTSL(L) reduces to the
satisfiability problem for L.

Proof. Lety be aX; formulainCTSL(L) of the prenex fornﬂ?’ﬂ?ﬂv. ¢ with¢ € L.
From Lemma 1 we know thait is satisfiable iff it exists a modeéV,) and mapping$
andd defined on a set of tokeMgwhich size is at most = | X |.

We build fromy a formula inL which has an equivalent satisfiability problem. First,
we transformy in order to eliminate atomic subformulas correspondinggoadity of
token variables, and so to obtainza formula where all quantified token variables
are distinct. For this, leB(X) be the set of mappings< [X — X] representing an
equivalence relation between variablesxh (The size ofB(X) is less tham" but
has no simple formulation.) For atye B(X), b(x;) = x; if x; uniquely represents the
equivalence class of. We denote byx}, = Img(b) the set of variables representing
equivalence classes m A mappingb applied to a formulap(X), denoted byp[b],
substitutes each occurence of a variabfe’X by b(x) and replaces all atomic formulas
Xi = Xj by true if b(x;) = b(xj) and by false otherwise. Thew, is satisfiable iff the
following formula is satisfiable:

\/ IX3X3V.ob]

beB(X)

The problem is now to reduce the satisfiability okaformula where all quantified
token variables range over distinct tokens to the satidifialoif an L formula.

To eliminate existential quantifiers over sets of toké_)hswe use the finite model
property in a similar way than in Lemma 2: we consider all aions of variables i
in terms of sets of variables iR . Since all variables ifX, are distinct, we don't need
the consistency property. Thap,s satisfiable iff the following formula is satisfiable:

\/ \/ IXpI Y. (9[0])[€]

beB(X) ge[X —(RXp—{truefalse})]

The second order quantifiers on color symbglsare eliminating like in the proof
of Lemma 2. We define a substitutionwhich maps each occurrence of a tey(w)
with y € Y andx € X', to a new color variable i€, given byn(y)(x). If @ c Cis the
image off], theny is satisfiable iff the following formula is satisfiable:

V V IXp3a. (¢[b])[€]]

beB(X) ge[X —(Xp—{truefalse})]

Note that mapping®, &, andn replace all occurences of token variablesi, by
constant formulat(ue, false or color variables. The[b][§][n] does not contain any
occurence of variables iX ,, so the3' X}, can be eliminated, QED.

Complexity of satisfiability checking: The proof above builds from a formulain 2>
an equivalent formulay in Zo. Let be the prenex form formuldX 3X ImM3Y. ¢,
where¢ is a formula inlM4 in prenex formVVVVVWVE’. @. The size of the formula
Yo depends on the size gfas follows:

The reduction proposed in the proof of Lemma 2 eIimin&t?s(resp.vV) guanti-
fiers by introducingX|!Y! (resp, Y |2 ¥1) conjuncts. Each conjunct contains formgla
and a formulaConsist which contain37|2.(|7| +|a|) atomic formula. The number
of quantified color variables added hyis equal to is equal toa’|.| X|. We obtain from
¢ aZo formulado which is prefixed by at lea$ty' |.| X | + |7 | universal quantifiers over

color variables and which size [&| V.| Y [2X1.(|g|+ | X [2.(|Y |+ |@])). Let call gy
< —
the formula3 X 3IX 3ImM3IY . do.
Y, is further reduced by the proof of Lemma 3 intzg formula by eliminating

3% and3X quantifiers. The reduction adds at megt| ¥1.| X 2! disjuncts (the first

term is an over approximation of the size @(Y)). Each disjunct is built frompy
prefixed by at mostm|.|y|.|X| existential quantifiers. We obtain%y formula W

which number of atomic subformula@(| X || X171 Y 2. |X|2*") greater than the
one ofy and which is prefixed by at mogK |.(| | + | Y |) new quantifiers.

Note that each reduction step has been considered abogenniist combinatorial
case assumptions. However, the initial formula comes bswéth syntactic properties
that reduce this high complexity.

For example, constraints in program models and invariaop@ities are usually
first-order formulas (see examples in the appendix). Thest-images do not involve
second order universal quantification and the decisionquore is applied in this case
to formulas of the formBX3X IMIY. VYV T. ¢. Moreover, the existentially quan-
tified second order variables appearing in plwst-images are all disjoint because they
are included in disjoint places ¢. This implies a one-to-one mapping between vari-
ables inX and those inX . This mapping is further improved if variables i have
explicitely specified places (which is true if they corresgdo variables of the existen-
tial part of a transition), which reduces the combinatoxrplesion due to case splitting
according to all possible locations of tokens in places.nTlige decision procedure of
the color logic is invoked on a formula which is prefixed py|.| X| new existential
quantification and i€(|X| XI*¥) times greater in size thap. Finally, transitions
of CTN have only few (2 or 3) variables in the s&t (see examples) since local syn-
chronization involve in general two processes. Hence, theigg factor| X || X171 is
small in practice.

B Alogic for reasoning about stacks

Processes with procedure calls can be modeled using pushsigstems. Therefore,
tokens representing occurrences of such processes mustdsectby the contents of
their stacks. Let us consider the case where the alphabkésé tstack is finite. Then,
stacks can be represented as finite words over this alplraimbtonstraints over stack
contents can be defined using logics over finite words. Wedhice hereafter such a
logic calledSRC (for Synchronous Rational Constraints).

Let X be a finite alphabet, and IBeg(Z) be the class of regular languages o¥er
Then, we consider the following relations:

— let <, be the prefix ordering between words, i.e., for everyc Z*. u <ps v iff

Jw. v =uw,
— let =, be the length equality predicate i.e., for every € *, u=, viff |u| =|v|,
and

— for everyR € Reg(%), let R(-) be the unary predicate such that for everg >*,
R(u) iffue R

Notice that the equality predicate can be defined using taéoas<,.f and=,.u=v
is equivalent ta <p.f VAU=, V.

Then, letSRC = (Z*,{Au.u-a: a€ Z}, {<prf, =¢} U{R(:) : REReg(X)}).
Theorem 6. The satisfiability problem &RC is decidable.

Proof. (Sketch) Given a formulg(zi,...,z,), let [¢] be the set of vectors of words
w e (Z¥)" such thad |=src @wheredis the valuation such that, for everg {1,...,n},
6(z) = wi. We prove that for every formul@ with n free variables, the sdftg] is an-
dim rational set, i.e., definable bynatape finite-state automaton (transducer), for which
the emptyness problem is of course decidable. For that, e hat all atomic formu-
las definesynchronousational sets, and we use the fact that the class of syncbhsono
rational sets is closed under boolean operations and piamjesee [16]).

C Example: Accessing Multiple Shared Resources

Let us consider a concurrent Java application where antefseit of threads are sharing
the objects in the séd = {0,01,02,03,04}. Suppose that threads are executing non-
deterministically two tasks, each task acquiring a subisisoshared objects by calling
synchronized methods of these objects.

For example, consider the ICFG given in the listing L below:

taskl () {
1: ol.ml();
2.}
task2 () {
02.ml();
)

synchronized m1() {

o.m();
o}

synchronized m2() {

0.n();
o}

synchronized m() {
9: 03.m3();
10:}

W

o Ol

0

synchronized n() {
11: o04.m4();
12:}
synchronized m3() {
13: o04.n4();
14:}
synchronized n3() {
15: [/« some action on 02, o, 03, 04/
/+ but not wait or notify x/
}
synchronized m4() {
16: 03.n3();
17:}
synchronized n4() {
18: [/« some action on ol, o, 03, o4&/
/+ but not wait or notify x/

}

This example does not respect the simple rule of acquirireyesh objects (here
{0,03,03}) in the same order. So it is potentially generator of deadio@/e will show
in the following that our methodology is able to prove abgent deadlocks for this
example.

Since this ICFG does not call anywdi t , noti fy, ornoti fyAl I methods, places
susp (with i € O) are not connected in the corresponding model. So, we dodwt a
these places in our model, nor consider the rules correspgmalthe translation of the
call of these methods.

TheCTN[SRC] obtained is given in Table 1.

To this model, we have to add the following assertions sajfiwadg places corre-
sponding to locks have at most one token:

Lock= /\pe{loclq)17...,loc|~'o4wvt/- p(t) A p(t’) = t=t
On this model, we want to verify the following properties:

— If it exists a thread at control poit, there is no thread having the lock on object

03:
®(lg,03) = Vi, t. lo(t) = ﬂ(G(t/) S Z*.03.Z*)

This property ensures that when a thread tries to acagyjrié will acquire it imme-
diately and cannot be delayed by a thread owning the lockisfibject.
The same property is true for paiflg1,04), (113,04), (115,03). Then, the conjuction
of these properties says that it is not possible to have dekdihen acquiring
objectoz andog, though they are not acquired in the same order by all tasks.

— There is at most one thread waiting to obtain the lock on dlgec

vt,t'. waity(t) Awaity(t') = t=t'

This property ensures that a single thread executasdi (i = 1..2) wis trying to
lock objecto.

mi o (xy). (Inlocky,) < (Is, L) : a’(X) =a(x).l2.01
mi3 x 11— s D a(x) € (ZF.01.Z°) Ad' (X) = a(x).lp.01
mi3 X. 1 — waity,
: =(3y. locky, (¥)) A=(a(x) € (£F.01.2%)) Aa’(X) = a(X).l2.15
mlé,‘1 (X,y). (waity,,locky,) — (Is, L) & 3w a(x) =wlsAa’(X) =w.op

m2b . (%) (Ia,locky,) < (I7,L) @ a’(X) = a(x).14.0
m22, x|z <17 D a(X) € (Z6.00.) A (X) = a(X).14.02
m23, : X. I3 < walto,

: =(3y. locky, (y)) A= (a(X) € (£F.02.2%)) Ad’(X) = a(X).l4.17
ngz (X,y). (waity,, locky,) — (I7,L) @ Iw a(x) =wlz Aa’(X) = w0y

mg (x,Y). (Is,locks) < (lg, L) : a’(x) =a(x).le.0
me: x5 < g D a(x) € (Z.0.2*) Ad/(X) = a(x).lg.0
e x. I — waito
: =(3y. locks(y)) A= (a(x) € (£F.0.2%)) Aa’(X) = a(X).lg.lg
m (%,Y). (waity,locks) — (lg, L) : I a(x) =wlgAa’(X) =w.o

ng: (%,Y). (I7,l0cks) = (11, 1) : a’(x) = a(x).lg.0
n2: X7 =111 D a(x) € (Z.0.2*) Ad/(x) = a(x).lg.0
nd: X. |7 — waity
: =(3y. locks(y)) A= (a(x) € (£F.0.2%)) Aa’(X) = a(X).lg.l11
nd: (%,y). (waity,locky) — (I17, L) : 3w a(x) =wlipAad’(x) =w.o
maj, (%,Y). (lg,l0CKo,) — (I3, L) : o’(xX) = a(X).110.03
m3z, : X lg <= li3 D ax) € (ZF.03.2°) Ad’(X) = a(x).l10.03
ma3, : X. lg < waity,

: =(3y. locky, (y)) A= (a(x) € (£*.03.2%)) A’ (X) = a(X).l10.113
mSé,‘3 :(X,y). (waity,, locky,) — (l13,L) @ Iw a(x) =wlizAd’(X) =w.03

mag, 1 (xY). (l1g,locky,) — (I16, L) : o'(X) = a(X).112.04
. : x. 111 — lgg D a(X) € (Z5.04.ZF) A0 (X) = a(X).112.04
3, X. 111 — waito,
: =(3y. locky, (y)) A= (a(xX) € (£*.04.2%)) A/ (X) = a(X).l12.116
m4§4 D (%,Y). (waity,,locks,) — (I16, L) @ Iw a(x) =wligAd’(X) =wW.04

Mg, 1 (xY). (l1z,locky,) < (l1g, L) o' (X) =a(x).l14.04
nz, X l13 < l1g Da(x) € (2%.04.2%) A0 (X) = 0(X).114.04
s, x. 113 — waity,

: =(3y. locky, (y)) A= (a(x) € (£%.04.2%)) A/ (X) = a(X).l14.118
n4f)‘4 D (%,Y). (waity,,lock,) — (l1g, L) @ Iw a(x) =wligAd’(X) =wW.04

) =0a(x).l17.03

nség : (X7y)' (|163|0CK33) — (|157J-) : a/
€ (Z*.03.Z)Ad/(X) = a(x).117.03

n3z, : X l16 = l15 o
n3s, : X. l1g < Walty,

: =(3y. locky, (y)) A= (a(x) € (£*.03.2%)) Ad’ (X) = a(X).117.115
nSf)‘3 D (X,Y). (waity,,locky,) — (I35, L) @ Iw a(x) =wlisAd’(X) = w.03

X
X

Table 1. Model of the ICFG of listing L.

D Example: Fischer’s Protocol

The protocol [24] is to guarantee mutual exclusion in a corgt system consisting
of any number of processes. It assumes only atomic reads dtess\and the mutual
exclusion relies heavily on timing constraints associatét the execution of instruc-
tions.

D.1 Protocol program

Informally, the protocol proceeds as follows. A global adnlieg is used to store identi-
ties of process or 0. Its value is initialy 0. When a prodegants to access to the critical
section, it waits to seg at 0. Then, it assigng to its identity. After that, it waits for
some time (greater than the time taken by assignment irgins}, and ifg has a value
equal to its identity after this time, it is safe to enter thiéical section. The pseudo-C
code executed by each process is the following:

do {
do {
await (x==0);
x = 1; /] takes time in [A,A’]
delay; // takes time in [D,D’]
} while (x!=id); // atomic test
critical_section;
X = 0; [/l takes time in [A,A’]
} while (1);

D.2 CTN model

The model of this protocol usingTN[FOg] is given in Table 2. We model each process
by a token. Each token is assumed to have two local clogks @ d) measuring the
time taken by assignment resp. delay instructions, and amtitgt (id). Our model is
parameterized in two dimensions. First, the number of geesg is not fixed. Second,
we suppose that an assignment takes betWee| time units and the delay instruction
betweenD,D’] time units. Test instructions take no time.

D.3 Mutual exclusion property and its proof

It has been proven that for a finite number of processes, Eiscprotocol ensures the
mutual exclusion property if & A <A’ < D < D’. The mutual exclusion property is
expressed by the following ; formula:

CS=Wx,X.csx) AcsX) = x=X

which, due to the unicity of identities, it is a consequent¢he following simpler

formula:
CS=vt.cqt) = g=id(t)

try: xidle < try
:g=0Aad(x)=0Aid(x) =id'(xX) Ad =gAd(x) =d'(x)
set: X. try — wait
a(x) > AAd =id(x) Ad'(x) = 0Aid(x) =id’(x) Aa(x) = & (X)
enter: X. wait — cs
d(X) >DAg=id(x)Aid(x) =id’(X) Ad =gAd(x) =d' (x) Aa(x) = & (X)
retry: x. wait — idle
d(X) >DAg#id(X)Aid(x) =id’ (X) Ad =gAad(x) =d' (x) Aa(x) = & (x)
exit: X. cs— idle
1 d =0Aid(x) =id’ (x) Ad(x) = d'(x) Aa(x) = & (X)
time: —:3z0<zAt =t+zAd =g
| (i,r,w,c). (idle,try,wait, cs) — (idle,try, wait, cs)
sd(i)=al)+ (' —t)Ad'(i)=d(i)+ (' —t)Aid'(i) = (
Ad(ry=a(r)+{t' —t)Ad'(r) =d(r)+ ' —t) Aid’(r
Ad (W) = a(w) + (t' —t) Ad’ (w) = d()+(t’—t)/\|d (w)
nd(c)=a(c)+ (t' —t)and'(c)=d(c)+ (t' —)/\ld():
ANVZ.0<Z<(t'-t) = a(r)+Z <A Ad(w)+Z <D

Table 2.CTN model for the Fischer’s protocol.

To prove invariance o€S for our model, we use our verification methodology to
show that the following formul& (in fragmentil4) is an inductive invariant:

I = CS AlpAlnv(try) Alnv(wait) A liry A lwait A les

where
lp=0<A<A <D<D
Inv(try) = Wt. try(t) = a(t) <A’

Inv(wait) = Vt. wait(t) = d(t) <D’

lry = (V8. try(t) Atry(t)) = |at) —a(t’)| < A)

A (Ve try(t) Await(t)) = |a(t) —a(t')| < A)

vt wait(t) Await(t) = (|a(t) —a(t’)| <A Ald(t) —d(t)| < A))
vt. wait(t) = A<a(t)—d(t) <A)
vt,t'. wait(t) Ad(t) > D = —try(t))
vt cqt) < —try(t))
Vt.g=0 = —(cHt) Vwait(t)))

IWait
N
N

ICS—

e N e N N N

Intuitively, invariantly, expresses the property that the time between the arrival of
two processes itry state may not be greater thah This property is also true for any
pair of processes, one in they state and the other in theait state. In the proofly
is useful to establishygit which says that the difference between the arrival times of
processes in thevait state is also bounded Y. This implies that (see last conjunct of
lwait), When processes stay more tHan- A’ in statewait, there is no more process in
statetry. Then, when a process enters in stedeno process are itry state to change

global variableg and so to allow another processwmit state to enter ircs. This last
property is expressed by invariaigi.

For all discrete transitions (i.e., with an empty universaift), we can compute the
post image of the transition on our invariant using the simplifeesnputation defined
in [11] based on the the first order versionfL.

Transition try: Thepost-image ofl by transitiontry is given by:

postyy (1) = Jy. Jidy, dxax. 3g~. (I[g+ g7] © (x+— idle) @ (y — try))A
g =0Analy)=0Aidy=id(y)Ag=g~ Ady=d(y)

The parts ofl changed bypost are Inv(try) and liyy. Inv(try) is true fory because
a(y) = 0. Forlyy, the proof uses first the fact thgit= 0 to obtain thatt. —wait(t) from

Ics SO, the second conjuct &fy is trivial for y. The first conjuct is a consequence of
the invariantyy and ofa(y) = 0.

Transition set: Thepost-image ofl by transitionsetis given by:

postge(l) = Jy. Jidy, dkax. Ig~. (1[g— g]© (X —try) @ (y — wait))A
ax > AANg=idxAd(y) =0AIdy=id(y) Aax = a(y)

Invariants changed by thgost image above ardnv(try), Inv(wait), liry, and lyait.
Inv(try) andInv(wait) are trivially conserved by this transition sindéy) = 0.

lery is kept true becauss = a(y) and (from first conjunct oy instantiated fos)
vt'. lax—a(t’)| < A'. So the second conjuct &fy is also satisfied foy.

The second conjunct dfyi is satisfied due to the fact thaf > ay = a(y) > A
andd(y) = 0. The third conjunct is trivially true foy (the premise is false). The first
conjunctis conserved fgrbecause:

1. Bylyy for x says thatt’. wait(t') = |ax—a(t’)| <A

2. Byax=a(y), itresults thavt’. wait(t') = |a(y)—a(t’)| <A, sowt’. wait(t') =
alt’) <a(y)+A,

3. BY lwait, we have thavt’. wait(t') = A<a(t’) —d(t') <A sovt'. wait(t') =
alt)—A <d{t')<at')—A

4. Combining the last two results, we have thtt wait(t') = d(t') <a(y) — A+
A < A which is the first conjunct offyait fort =y.

Transition retry: Thepost-image ofl by transitionretry is given by:

POstretry(l) = 3. Jidx, dxax. 39~ ({9« g7] © (x+— wait) © (y — idle))A
dy > DAg #idyAidxk=id(y)Agt =g~ Adk=d(y) Aax = a(y)

Since none of the part dfconcern thédle place where the token is added, all invariants
are conserved trivially by this transition.

Transition enter: The post-image ofl by transitionenteris given by:

postented 1) = Jy. Jidx, dkax. 3g7. (1[g— g~] © (X — wait) @ (y+— c9))A
dy >DAg =idxAidx=id(y)Agt =g~ Adk=d(y) Aax = a(y)

The only affected part of arel.s andCS for which we should show that it is
satisfied byy.

CSis true by the guard of the transitiggm = idx =id(y) =g" =g.

Ics is true due to the third conjunct dfai applied tox which givesvt’. —try(t).
The second conjunct is trivially true because: id(y) # 0.

Transition time: The post-image ofl by transitiontime can be computed using the
reachgy, formula given in section 3. However, the folowing propertip@as us to sim-
plify this formula due to the fact that théme transition satisfies the conditions of the
property.

Property 1. Let T be aCTN transition satisfying the following properties:

— the existential part does not move tokens, ne=, | X | = 0, but¢ may be not empty,

— the universal part transfers all the tokens of all place® o the same places, i.e.,
T =S =P {1} andy does not select tokens i, and

— the color of all tokens transferred is changed indepengefthe token place.

Then, thereach formula simplifies to:
reach(?,?,G,G . L,L") = ¢ A (Vu. Y)
Then, thepost-image of the invariant becomes:

postime(l) = (3g73t3a,d,id3zvu.
INO<zAt =t+2zAd =g
Ad (u) =a(u)+ (' —t) Ad'(u) =d(u) + (t' —t) Aid’(u) =id(u)
AVZ.0<Z < (' —t) = (try(u) = a(u)+Z <A))A
(wait(u) = d(u)+Z <D’)
g «— gt «—t,a«—ad «d,id «id]

Due to the fact that coloring symbols corresponding to ctoake evolving with the
same quantity, the invariahtalso is conserved by transitidime.

