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Reasoning about Dynamic Networks of Infinite-State Processes with Global Synchronization

We propose a generic framework for reasoning about dynamic networks of infinite state processes such as counter processes, timed processes, or pushdown processes, with complex synchronization mechanisms, including global synchronization (i.e., broadcast communication). We define models for such networks, called CTN, based on Petri nets with transfer operations. Tokens (representing occurrences of processes) have attached colors over infinite domains (representing data values, clocks, stacks, etc.). We also define a (secondorder) logic called CTSL allowing to express constraints on locations of tokens in the nets and on their colors. We prove that the ∃ * ∀ * fragment of CTSL is decidable whenever the underlying logic for expressing constraints on colors is decidable. Moreover, we show that the same fragment is closed under post and pre image computations. These results can be used in verification such as in invariance checking. We show that our framework can be applied for reasoning about multithreaded programs with procedure calls and dynamic creation of process with global synchronization, and on dynamic programs with real-time constraints.

Introduction

Automated verification of modern software systems require reasoning about several complex features such as dynamic creation of concurrent threads, data manipulation, procedure calls, timing constraints, etc. For that infinite-state models must be considered allowing to capture these features, and algorithmic techniques must be designed allowing to cope with these multiple sources of infinity in the state space.

In this paper, we address the problem of defining a generic framework for automated reasoning about dynamic/parametrized networks of various classes of infinite-state processes (e.g., timed processes, processes with infinite data domains, processes with recursive procedure calls, etc). In particular, we are interested in developing a framework which can be used for the verification of multithreaded programs (written in languages such as (real-time) Java, C, etc).

In the last decade, a lot of work has been done concerning the algorithmic verification of dynamic/parametrized networks of finite-state processes (see, e.g., [START_REF] Emerson | On model checking for non-deterministic infinite-state systems[END_REF][START_REF] Delzanno | Towards the automated verification of multithreaded java programs[END_REF][START_REF] Bouajjani | Regular symbolic analysis of dynamic networks of pushdown systems[END_REF][START_REF] Clarke | Verifying parameterized networks[END_REF][START_REF] Abdulla | A Survey of Regular Model Checking[END_REF][START_REF] Bouajjani | Abstract Regular Model Checking[END_REF]), and the verification of infinite-state models with various kinds of variables and data structures such as counters, clocks, stacks, queues, etc. (see, e.g., [START_REF] Abdulla | General decidability theorems for infinite-state systems[END_REF][START_REF] Bouajjani | Reachability analysis of pushdown automata: Application to model-checking[END_REF][START_REF] Wolper | Verifying systems with infinite but regular state spaces[END_REF][START_REF] Boigelot | Symbolic Methods for Exploring Infinite State Space[END_REF][START_REF] Annichini | Symbolic techniques for parametric reasoning about counter and clock systems[END_REF][START_REF] Finkel | Well-structured transition systems everywhere![END_REF][START_REF] Finkel | How to compose presburger-accelerations: Applications to broadcast protocols[END_REF]). However, fewer work has been done concerning the verification of unbounded networks of infinite-state processes [START_REF] Abdulla | Verifying networks of timed processes (extended abstract)[END_REF][START_REF] Delzanno | An assertional language for the verification of systems parametric in several dimensions[END_REF][START_REF] Bozzano | Beyond Parameterized Verification[END_REF][START_REF] Abdulla | On the Coverability Problem for Constrained Multiset Rewriting[END_REF][START_REF] Arons | Parameterized Verification with Automatically Computed Inductive Assertions[END_REF] (see related work). In a previous work [START_REF] Bouajjani | A generic framework for reasoning about dynamic networks of infinite-state processes[END_REF], we have introduced a framework for reasoning about such systems based on constrained Petri nets (CPN). Tokens in these models represent occurrences of processes (which can be dynamically created and deleted) and colors are associated with each token representing its local state (e.g., data values, age, etc). Then, to express constraints on the location of tokens and on their colors, we introduced a first-order logic over tokens and colors, called CML, which is parametrized by a logic on the color domain (e.g., Presbuger arithmetics, logic over reals, etc). We have shown in [START_REF] Bouajjani | A generic framework for reasoning about dynamic networks of infinite-state processes[END_REF] that the ∃ * ∀ * fragment of CML is decidable whenever the underlying color logic is, and we have also shown that this fragment is closed under computation of post and pre images. These results can be used, e.g., in Hoare-style pre-post condition reasoning, for bounded model-checking, and for checking inductive invariance of given assertions. We have shown that this framework allows indeed to handle non trivial examples of parametrized/dynamic systems (such as a parametrized Reader-Writer lock protocol).

However, CPN models do not allow to consider global synchronization (broadcast communication) between processes. For instance, synchronization mechanisms in programming languages include broadcast primitive (such as notifyAll in Java). Also, in networks of timed systems, time progress can be seen as global synchronization since all clocks must be increased with the same amount of time. Therefore, we investigate in this paper the extension of our framework of [START_REF] Bouajjani | A generic framework for reasoning about dynamic networks of infinite-state processes[END_REF] in order to take into account global synchronization. This extension is not straightforward. We extend CPN models by allowing, in parallel with usual transitions, transfer operations moving simultaneously all tokens from a place to another one (may be under some constraint on their colors, and by applying a uniform transformation to the color of each of them). The new class of models is called Constrained Transfer Nets (CTN). However, the main problem for extending the previous framework is that the logic CML cannot express the effect of a transfer operation (which means that it is not closed under post and pre computations for CTN models). Actually, to express the effect of transfer operations, the (first-order) CML logic must be extended to a second-order logic where it is possible to refer to sets of tokens, and also to coloring mappings between tokens and colors. The new logic is called CTSL (for Colored Token Sets Logic). Then, we show that analogous decidability and closure properties of CML holds also for CTSL. We prove that the satisfiability problem of this new logic is decidable for the fragment ∃ * ∀ * (where quantifications are this time about individuals as well as on sets) whenever the used color logic is decidable. Also, the same fragment is shown to be closed under computation of post and pre images. As previously, these results allow to automatize the reasoning about CTN models (in particular, for checking inductive invariance properties).

Then, to demonstrate the genericity and the applicability of our framework, we show that two important classes of dynamic systems can be handled as instance of this framework. First, we consider boolean Java programs with dynamic creation of concurrent threads and procedure calls, where threads are synchronized on their access to shared objects. Reasoning about such programs and their properties is quite complex [START_REF] Lee | The problem with threads[END_REF]. We provide a modeling of this class of programs using CTN. Basically, these programs can be seen as networks of synchronizing pushdown systems. Therefore, in this case colors attached to tokens in CTN models are words representing the stack contents of the corresponding process. For that, we define an appropriate color logic, called SRC, for expressing constraints on vectors of stack contents and we prove that it is decidable (by showing that each formula can be translated into a finite transducer). Then, we show that important properties relevant for these programs can be expressed and checked in our framework (such as deadlock freeness when threads share multiple resources, mutual exclusion, etc). Interestingly, both modeling of the considered systems and the expression of their properties involve constraints on stack contents which cannot be expressed using a finite amount of information. This is due to the fact that unbounded nesting of procedure calls makes necessary to handle the whole content of the stack. For instance, nesting of procedure calls may generate unbounded nesting of acquire-release blocks. Therefore, to release a lock needs checking the content of the stack. Notice that the ability of expressing constraints on stack contents is also useful for other applications such as in access control issues (e.g, to model stack inspection mechanisms).

Furthermore, we consider the case of real-time Java multithreaded programs which can be modeled as dynamic networks of timed automata (with control state invariants and urgent transitions). We show a CTN modeling of these systems using transfer operation to encode time elapsing transitions. Urgency can be handled in our framework due to the fact that the allowed logical language for expressing transition guards is closed under negation. As an illustrating example, we have carried out a parametrized proof of the Fisher mutual exclusion protocol where parameters are (1) the number of processes, and (2) the delays spent at each control location. We prove that the protocol is correct under a condition between these delays, for any number of processes. Previous works on the parametric verification of this protocol either consider fixed delays [START_REF] Abdulla | Verifying networks of timed processes (extended abstract)[END_REF] or a fixed number of processes [START_REF] Annichini | Symbolic techniques for parametric reasoning about counter and clock systems[END_REF].

For lack of space, proofs and presentation of examples are given in [START_REF] Bouajjani | Reasoning about dynamic networks of infinitestate processes with global synchronization[END_REF]. Related work: The use of unbounded Petri nets as models for parametrized networks of processes has been proposed in many existing works such as [START_REF] German | Reasoning about systems with many processes[END_REF][START_REF] Emerson | On model checking for non-deterministic infinite-state systems[END_REF][START_REF] Delzanno | Towards the automated verification of multithreaded java programs[END_REF]. However, these works consider networks of finite-state processes and do not address the issue of manipulating infinite data domains. The extension of this idea to networks of infinitestate processes has been addressed in few works [START_REF] Abdulla | Verifying networks of timed processes (extended abstract)[END_REF][START_REF] Delzanno | An assertional language for the verification of systems parametric in several dimensions[END_REF][START_REF] Bozzano | Beyond Parameterized Verification[END_REF][START_REF] Abdulla | On the Coverability Problem for Constrained Multiset Rewriting[END_REF]. In [START_REF] Abdulla | Verifying networks of timed processes (extended abstract)[END_REF], Abdulla and Jonsson consider the case of networks of 1-clock timed systems and show, using the theory of well-structured systems and well quasi orderings [START_REF] Abdulla | General decidability theorems for infinite-state systems[END_REF][START_REF] Finkel | Well-structured transition systems everywhere![END_REF], that the verification problem for a class of safety properties is decidable. Their approach has been extended in [START_REF] Delzanno | An assertional language for the verification of systems parametric in several dimensions[END_REF][START_REF] Bozzano | Beyond Parameterized Verification[END_REF] to a particular class of multiset rewrite systems with constraints (see also [START_REF] Abdulla | On the Coverability Problem for Constrained Multiset Rewriting[END_REF] for recent developments of this approach). Our modeling framework is inspired by these works. However, while they address the issue of deciding the verification problem of safety properties (by reduction to the coverability problem) for specific classes of systems, we consider in our work a general framework, allowing to deal in a generic way with various classes of systems, where the user can express assertions about the configurations of the system, and check automatically that they hold (using post-pre reasoning and inductive invariant checking) or that they do not hold (using bounded reachability analysis). Our framework allows to reason automatically about systems which are beyond the scope of the techniques proposed in [START_REF] Abdulla | Verifying networks of timed processes (extended abstract)[END_REF][START_REF] Delzanno | An assertional language for the verification of systems parametric in several dimensions[END_REF][START_REF] Bozzano | Beyond Parameterized Verification[END_REF][START_REF] Abdulla | On the Coverability Problem for Constrained Multiset Rewriting[END_REF].

In a series of papers, Pnueli et al. developed an approach for the verification of parameterized systems combining abstraction and proof techniques (see, e.g., [START_REF] Arons | Parameterized Verification with Automatically Computed Inductive Assertions[END_REF]). We propose here a different framework for reasoning about these systems. In [START_REF] Arons | Parameterized Verification with Automatically Computed Inductive Assertions[END_REF], the authors consider a logic on (parametric-bound) arrays of integers, and they identify a fragment of this logic for which the satisfiability problem is decidable. In this fragment, they restrict the shape of the formula (quantification over indices) to formulas in the fragment ∃ * ∀ * similarly to what we do, and also the class of used arithmetical constraints on indices and on the associated values. In a recent work by Bradley and al. [START_REF] Bradley | What's decidable about arrays?[END_REF], the satisfiability problem of the logic of unbounded arrays with integers is investigated and the authors provide a new decidable fragment, which is incomparable to the one defined in [START_REF] Arons | Parameterized Verification with Automatically Computed Inductive Assertions[END_REF], but again which imposes similar restrictions on the quantification alternation in the formulas, and on the kind of constraints that can be used. In contrast with these works, we consider a logic on multisets of elements with any kind of associated data values, provided that the used theory on the data domain is decidable. For instance, we can use in our logic general Presburger constraints whereas [START_REF] Arons | Parameterized Verification with Automatically Computed Inductive Assertions[END_REF] and [START_REF] Bradley | What's decidable about arrays?[END_REF] allow limited classes of constraints. On the other hand, we cannot specify faithfully unbounded arrays in our decidable fragment because formulas of the form ∀∃ are needed to express that every non extremal element has a successor/predecessor. Nevertheless, for the verification of safety properties and invariant checking, expressing this fact is not necessary, and therefore, it is possible to handle in our framework all usual examples of parametrized systems (such as mutual exclusion protocols) considered in the works mentioned above.

Colored Token Sets Logic

Preliminaries

Consider an enumerable set of tokens and let us identify this set with the set of natural numbers N. Intuitively, tokens represent occurrences of (parallel) threads. We assume that tokens may have colors corresponding for instance to data values attached to the corresponding threads. Let C be a (potentially infinite) token color domain. Examples of color domains are the set of natural numbers N and the set of real numbers R.

To express constraints on token colors, we use first-order logics over the considered color domains. In the sequel we refer to such logics as color logics. Presburger arithmetics PA = (N, {0, 1, +}, {≤}) is an example of such a logic. It is well known that the satisfiability problem of Presburger arithmetics is decidable. First-order theory of reals FO R = (R, {0, 1, +, ×}, {≤}) is also a decidable logic which can be used as a color logic. We introduce in section 4 another example of color logic allowing to reason about vectors of stacks (which is useful in modeling programs with procedure calls).

Syntax and semantics of CTSL

We define hereafter the syntax of the Colored Token Sets Logic, CTSL(L), which is parametrized with a color logic L. Then, let L = (C, Ω, Ξ) be the first-order logic over the color domain C, the set of functions Ω, and the set of relations Ξ. In the sequel, we omit the parameter of CTSL when its specification is not necessary.

Let T be the set of token variables and let C be the set of color variables. Colors are associated with tokens through coloring functions, i.e., mappings from tokens to colors. Let Γ be a set of token coloring variables. We assume that T , C, and Γ are disjoint.

Then, the set of CTSL terms (called token color terms) is given by the grammar:

t ::= z | γ(x) | ω(t 1 , . . . ,t n )
where z ∈ C, γ ∈ Γ, x ∈ T , and ω ∈ Ω.

We consider a set of second order variables X , called token set variables, representing sets of tokens. Then, the set of CTSL formulas is given by: ϕ

::= x = y | X(x) | ξ(t 1 , . . . ,t m ) | ¬ϕ | ϕ ∨ ϕ | ∃z. ϕ | ∃x. ϕ | ∃X. ϕ | ∃γ. ϕ
where x, y ∈ T , z ∈ C, ξ ∈ Ξ, X ∈ X , γ ∈ Γ, and t 1 , . . . ,t m are token color terms. Boolean connectives such as conjunction (∧), implication (⇒), and universal quantification (∀) can be defined in terms of ¬, ∨, and ∃. We also use ∃x ∈ X. ϕ (resp. ∀x ∈ X. ϕ) as an abbreviation of the formula ∃x. X(x) ∧ ϕ (resp. ∀x. X(x) ⇒ ϕ). Notice that the set of terms (resp. formulas) of L is included in the set of terms (resp. formulas) of CTSL(L).

The notions of free/bound occurrences of variables in formulas and the notions of closed/open formulas are defined as usual in second-order logics. In the sequel, we assume w.l.o.g. that in every formula, each variable is quantified at most once.

A valuation of token (resp. color , token coloring) variables is a mapping in

[T → N] (resp. [C → C], [Γ → (N → C)]). A valuation of token set variables is a mapping in [X → 2 N ].
Then, we define a token sets coloring to be a pair ν, µ where ν (resp. µ) is valuation of the token set variables (resp. token coloring variables).

We define a satisfaction relation between set colorings and CTSL formulas. For that, we need first to define the semantics of CTSL terms. Given valuations θ ∈

[T → N], δ ∈ [C → C], and µ ∈ [Γ → (N → C)],
we define a mapping • θ,δ,µ which associates with each color term a value in C:

z θ,δ,µ = δ(z) γ(x) θ,δ,µ = µ(γ)(θ(x)) ω(t 1 , . . . ,t n ) θ,δ,µ = ω( t 1 θ,δ,µ , . . . , t n θ,δ,µ )
We define inductively the satisfaction relation |= θ,δ between token sets coloring ν, µ and CTSL formulas as follows:

ν, µ |= θ,δ ξ(t 1 , . . . ,t m ) iff ξ( t 1 θ,δ,µ , . . . , t m θ,δ,µ ) ν, µ |= θ,δ X(x) iff θ(x) ∈ ν(X) ν, µ |= θ,δ x = y iff θ(x) = θ(y) ν, µ |= θ,δ ¬ϕ iff ν, µ |= θ,δ ϕ ν, µ |= θ,δ ϕ 1 ∨ ϕ 2 iff ν, µ |= θ,δ ϕ 1 or ν, µ |= θ,δ ϕ 2 ν, µ |= θ,δ ∃x. ϕ iff ∃t ∈ N. ν, µ |= θ[x←t],δ ϕ ν, µ |= θ,δ ∃z. ϕ iff ∃c ∈ C. ν, µ |= θ,δ[z←c] ϕ ν, µ |= θ,δ ∃X. ϕ iff ∃N ⊂ N. ν[X → N], µ |= θ,δ ϕ ν, µ |= θ,δ ∃γ. ϕ iff ∃ f ∈ [N → C]. ν, µ[γ ← f ] |= θ,δ ϕ
For every formula ϕ, we define [[ϕ]] θ,δ to be the set of sets coloring ν, µ such that ν, µ |= θ,δ ϕ. A formula ϕ is satisfiable iff there exist valuations θ and δ s.t.

[[ϕ]] θ,δ = / 0.
If ϕ is satisfiable for a subset N of N, i.e., when the valuations ν, µ, and θ are restricted to N, we use the notation ν, µ |= N θ,δ ϕ.

Syntactical forms and fragments

Prenex normal form: A formula is in prenex normal form (PNF) if it is of the form

Q 1 y 1 Q 2 y 2 . . . Q m y m . ϕ
where (1) Q 1 , . . . , Q m are (existential or universal) quantifiers, (2) y 1 , . . . , y m are variables in T ∪C ∪ X ∪ Γ, and ϕ is a quantifier-free formula. For every formula ϕ in CTSL, there exists an equivalent formula ϕ ′ in prenex normal form.

Quantifier alternation hierarchy:

We consider two families {Σ n } n≥0 and {Π n } n≥0 of fragments of CTSL defined according to the alternation depth of existential and universal quantifiers in their PNF:

-Σ 0 = Π 0 be the set of formulas in PNF where all quantified variables are in C, -For n ≥ 0, let Σ n+1 (resp. Π n+1 ) be the set of formulas Qy 1 . . . y m . ϕ in PNF where

y 1 , . . . , y m ∈ T ∪ C ∪ X ∪ Γ, Q is the existential (resp. universal) quantifier ∃ (resp.
∀), and ϕ is a formula in Π n (resp. Σ n ).

It is easy to see that, for every n ≥ 0, Σ n and Π n are closed under conjunction and disjunction, and that the negation of a Σ n formula is a Π n formula and vice versa. For every n ≥ 0, let B(Σ n ) denote the set of all boolean combinations of Σ n formulas. Clearly, B(Σ n ) subsumes both Σ n and Π n , and is included in both Σ n+1 and Π n+1 .

Satisfiability Problem

We investigate the decidability of the satisfiability problem of the logic CTSL(L), assuming that the underlying color logic L has a decidable satisfiability problem.

Theorem 1. If the satisfiability problem of L is decidable, then the fragment Σ 2 of CTSL(L) is decidable.
Theorem 1 cannot be extended beyond the Σ 2 fragment, even for simple color logics.

Theorem 2. ([11]

) The satisfiability problem is undecidable for the first-order Π 2 fragment of CTSL(OL) where OL = (N, 0, ≤).

Colored Transfer Nets

We present hereafter our program models which are based on Petri nets with transfer arcs. We need first to introduce some definitions and notations. Let P be a finite subset of X . Elements of P are called places and denoted by p, q, r, s, .... ⊥ is a special elements of P called nowhere place. Let P ′ ⊂ X be a set disjoint from P such that |P | = |P ′ |; its elements are denoted by p ′ , q ′ , r ′ , s ′ , .... Let G be a finite subset of C, which elements are called global variables and are denoted by g, l, .... Let G ′ ⊂ C be a set of color variables disjoint from G such that |G| = |G ′ |; its elements are denoted by g ′ , l ′ , .... Let L be a finite subset of Γ, which elements are called local variables. Let L ′ ⊂ Γ a set of coloring symbols disjoint from L and with the same size. Primed (resp. unprimed) variables are used to refer to values after (resp. before) the execution of transitions.

A Colored Transfer Net (CTN) is a tuple S = (P , G,L,L,∆) where L = (C, Ω, Ξ) is a color logic and ∆ is a finite set of constrained transitions of the form:

- → x . ( -→ p ֒→ -→ q : ϕ) | -→ y . ( -→ r → -→ s : ψ) (1) 
where

-→ x , -→ y ∈ T , -→ p , -→ q , -→ s , -→ r ∈ P , ⊥ ∈ -→ r , | -→ x | = | -→ p | = | -→ q | = n, | -→ y | = | -→ r | = | -→ s | = m, -→ p ∩ -→ r = / 0, -→ p ∩ -→ s = / 0, -→ q ∩ -→ r = / 0
, and all places in -→ r are disjoint. ϕ is a formula in CTSL(L) whose free variables are -→ x , global variables in G ∪ G ′ , local variables in L, and symbol colors of L ′ if they are applied to variables in -

→ x . ψ is a formula in CTSL(L)
whose free variables are -→ y , global variables in G ∪ G ′ , local variables in L, and symbol colors of L ′ if they are applied to variables in -→ y .

A CTN transition has two parts separated by |. The left-hand-side, called the existential part, corresponds to Petri nets arcs with bounded cardinality: a variable x i of -→ x is bound to a selected token in the corresponding place p i of -→ p , the token selected is deleted from p i and put in the corresponding place q i of -→ q . Formula ϕ gives the selection criterion for tokens in -→ p and how the colors of these tokens are changed (using variables in L ′ applied to -→ x ). Also, ϕ describe changes on global variables by defining the value of G ′ . The right-hand-side of a rule, called the universal part, corresponds to Petri nets arcs with unbounded cardinality (transfer arcs): all tokens of each place in -→ r satisfying the selection criterion given by ψ are transfered to the corresponding place in -→ s and theirs colors are changed according to ψ. (Formula ψ uses variables in -→ y to refer to each transfered token.)

Transitions as formulas

We associate with each transition τ of the form (1) a CTSL(L) formula:

reach τ (P , P ′ , G,G ′ , L,L ′ ) = ∃x 1 , ..., x n . ∃Y 1 , ...,Y m . (∧ n i=1 p i (x i ) ∧ (∀t. (∧ m j=1 ¬Y j (t)) ⇒ ∧ n i=1 (q ′ i (t) ⇔ (q i (t) ∨ t = x i )))) ∧ ϕ ∧ (∀t. ((∧ m j=1 ¬Y j (t)) ∧ (∧ n i=1 t = x i )) ⇒ (∧ a∈L a ′ (t) = a(t) ∧ ∧ p∈P p(t) ⇔ p ′ (t))) ∧ ∧ m j=1 (∀y. (r ′ j (y) ⇒ r j (y)) ∧ (Y j (y) ⇒ r j (y))∧ (r j (y) ⇒ ((r ′ j (y) ∧ ¬Y j (y)) ∨ (¬r ′ j (y) ∧Y j (y))))) ∧ (∀y. ∧ m j=1 (s ′ j (y) ⇔ (s(y) ∨Y j (y)))) ∧ (∀y 1 , ..., y m . (∧ m j=1 Y j (y j )) ⇔ ψ)
Token variables x 1 , ..., x n represent moved token by the existential part of the rule, and the token sets variables Y 1 , ...,Y m are used to describe the transfered tokens by the universal part. The first line of the formula models the moving of tokens by the existential part of the transition, and imposes the constraints ϕ on the moved tokens. The second line says that the tokens which are not involved in the transition keep the same places and local colors. The third and fourth line says that r j is partitioned between sets Y j and r ′ j . The fifth line says that the set of tokens Y j is added to the corresponding target place s ′ j after the transfer. The last line constrains the sets Y j and their color change by ψ.

Given a fragment Θ of CTSL, we denote by CTN[Θ] the class of CTN where each transition corresponds to a formula in the fragment Θ. Due to the (un)decidability results of section 2.4, we focus in the sequel on the classes CTN[Σ 2 ] and CTN[Σ 1 ].

Semantics

Configurations of CTNs, called colored markings, are triples M, µ, δ where (1) M ∈ [N → P ] is an application, called marking, which associates to each token a place, ( 2

) µ ∈ [L → (N → C)] is a valuation of local variabes in L, and (3) δ ∈ [G → C] is a valuation of global variables in G.
For a marking M, let ν M be a mapping in

[P → 2 N ] such that for all p ∈ P ν M (p) = {t ∈ N | M(t) = p}.
For a mapping ν M (resp. µ, δ), we denote by ν M (resp. µ, δ) the mapping obtained by replacing each variable in P (resp. L, G) by its corresponding element in P ′ (resp. L ′ , G ′ ). The union of mappings defined on disjoint domains is denoted by the ⊕ operator. Constrained transitions of CTN define a transition relation → S between CTN configurations as follows: For every two configurations

M 1 , µ 1 , δ 1 and M 2 , µ 2 , δ 2 , we have M 1 , µ 1 , δ 1 → S M 2 , µ 2 , δ 2 iff
there exists a constrained transition τ ∈ ∆ such that:

ν M 1 ⊕ ν M 2 , µ 1 ⊕ µ 2 |= / 0,δ 1 ⊕ δ 2 reach τ (P , P ′ , G,G ′ , L,L ′ ) Given M = M, µ, δ , let post S (M ) = {M ′ : M → S M ′ }
be the set of its immediate successors, and let pre S (M ) = {M ′ : M ′ → S M } be the set of its immediate predecessors. These definitions can be generalized to sets of configurations.

Computing post and pre images

We show hereafter the following closure property of CTSL fragments under the computation of immediate successors and predecessors for CTNs. Proof. Let ψ(P , G,L) be a formula of CTSL(L), and let τ be a transition in ∆. We define hereafter the formulas ψ post and ψ pre for this single transition. The generalization to the set of all transitions is straightforward. The construction of the formulas ψ post and ψ pre is trivial due to the fact that our logic allows to use quantification over places and coloring symbols (representing with local variables). In the following, we use the notation ∃P for ∃p 1 , ..., p n with P = {p 1 , ..., p n }. Also, φ[

P ′ ← P ] means φ[p ′ 1 ← p 1 , ..., p ′ n ← p m ].
Similar notations are used for sets G and L. Then ψ post and ψ pre are defined by:

ψ post = (∃P ∃G ∃L. ψ ∧ reach τ )[P ′ ← P ][G ′ ← G][L ′ ← L] ψ pre = (∃P ′ ∃G ′ ∃L ′ . ψ[P ← P ′ ][G ← G ′ ][L ← L ′ ] ∧ reach τ )
It is easy to see that if ψ and reach τ are in a fragment Σ n , for any n ≥ 1, then both of the formulas ψ post and ψ pre are also in the same fragment Σ n .

See in [START_REF] Bouajjani | Reasoning about dynamic networks of infinitestate processes with global synchronization[END_REF] an example of post-image computation.

Invariance checking

The results above allow to perform various kinds of analysis for CTN, e.g., Hoare-style post-pre condition reasoning, bounded reachability analysis, or invariance checking problem. We detail here the case of inductive invariance checking problem. An instance of such a problem is given by a triple (Init, Inv, Aux) of sets of configurations, where Init is a set of initial configurations, Inv is the invariant to be proved, and Aux is an auxilliary invariant. It consists in deciding whether (1) Init ⊆ Aux, (2) Aux ⊆ Inv, and (3) Aux is an inductive invariant, i.e., that post(Aux) ⊆ Aux. The following result follows from Theorem 3, Theorem 1, and the previous theorem. In the full version [START_REF] Bouajjani | Reasoning about dynamic networks of infinitestate processes with global synchronization[END_REF], we give an example illustrating the use of this theorem.

Boolean Multithread Programs with Infinite Control

We consider here boolean Java programs with dynamic creation of threads, recursive methods, and threads synchronized on a set of shared objects. We show how to verify the absence/presence of deadlock in such programs by modeling and reasoning about the stack of each thread.

Let us first recall briefly the semantics of synchronization between threads in Java. Threads synchronize their access to global shared objects using a lock mechanism: each object has a lock that may be owned by at most one thread. A thread owns the lock of an object o while executing blocks of code labeled by synchronized(o) or methods of the object o declared as synchronized. A synchronized method or block of code can contain calls to other synchronized methods of the same or of a different object. To avoid starvation or deadlocks, threads can suspend their execution and free the lock of the object it owns by calling the wait method. While owning a lock on object o, a thread can awake one or all threads suspended on o using methods notify resp. notifyAll. The latter method is a mean of global synchronization of threads in Java. The call of these methods is not blocking and the caller continues to own the lock of o. The awakened threads are now competing for the owning of the lock on o with other threads wanting to lock o. An awakened thread continues its executon with the statement after the wait call.

To obtain the model of a Java program of this class, we start with the Interprocedural Control Flow Graph (ICFG) of the program. The ICFG arcs are labeled by actions like: call of an user-defined method on an object, call of a pre-defined method (wait, notify, notifyAll) on a shared object, and return from a method. Wlog, we consider that synchronized code is present only in user-defined methods, and this information is available in the ICFG. We show in this section how to translate the ICFG into a CTN. The color logic used is the SRC logic presented below, which allows to model and reason about the stacks of threads. (See example in [START_REF] Bouajjani | Reasoning about dynamic networks of infinitestate processes with global synchronization[END_REF].) Synchronous Rational Constraints Logic: Let Σ be a finite alphabet, and Reg(Σ) be the class of regular languages over Σ. Then, SRC = (Σ * , {λu. u • a : a ∈ Σ}, {≤ pref , = ℓ } ∪ {R(•) : R ∈ Reg(Σ)}) where:

-≤ pref is the prefix ordering, i.e., for every u, v ∈ Σ * . u ≤ pref v iff ∃w. v = uw, -= ℓ is the length equality predicate i.e., for every u, v ∈ Σ * , u = ℓ v iff |u| = |v|, and

-for every R ∈ Reg(Σ), R(•) is the unary predicate s.t. ∀u ∈ Σ * , R(u) iff u ∈ R.
Notice that the equality predicate can be defined using the relations ≤ pref and = ℓ :

u = v is equivalent to u ≤ pref v ∧ u = ℓ v.
Theorem 5. The satisfiability problem of SRC is decidable.

Modeling method calls: Places are associated with nodes (control points) of the ICFG; a token in a place represents a thread ready to execute the statements on the outgoing edges. The coloring symbol α attached to tokens represents the stack of the thread. Stack values are works ont the alphabet Σ which contains the set of all control points in the ICFG. Constrained transitions of CTN are obtained from edges of the ICFG as follows. An edge p callP() ----→ q where P is a user-defined method with starting node start P is modeled by the transition x. p ֒→ start P : α ′ (x) = α(x).q. An edge exit P return ----→ q representing the return from method P is modeled by the transition x. exit P ֒→ p : α ′ (x).p = α(x). Finally, an edge p -→ q representing change of control point p to q inside a method is represented by the transition x. p ֒→ q : α ′ (x) = α(x). The basic model above may be adapted to store in the stack additional information about the methods called and not exited by the thread, as we do in the following.

Modeling synchronization: To model ICFG edges including call to synchronization methods, we first create for each object o used as a lock (i.e., for which there exists a statement "o.m()" where m is a synchronized method) three places: ------→ q with m being a synchronized method is modeled by the following four transitions:

m 1 o : (x, y). (p, lock o ) ֒→ (start m , ⊥) : α ′ (x) = α(x).q.o) m 2 o : x. p ֒→ start m : α(x) ∈ (Σ * .o.Σ * ) ∧ α ′ (x) = α(x).q.o m 3 o : x. p ֒→ wait o : ¬(∃y. lock o (y)) ∧ ¬(α(x) ∈ (Σ * .o.Σ * )) ∧ α ′ (x) = α(x).q.start m m 4 o : (x, y). (wait o , lock o ) ֒→ (q, ⊥) : ∃w. α(x) = w.q ∧ α ′ (x) = w.o
The first transition is the case of an available lock. Then, the lock is taken and the thread starts procedure m and puts in its stack the information about having the lock of object o. The second transition is the case where the thread is already owning the lock of o, so it starts immediately the execution of method m (object o is added on stack for uniformity). The third transition shows the case where the lock is not available and it is not owned by the thread. The thread is sent into the wait o place and the stack stores the return address and the start address of the called method. The fourth transition shows that a lock may be taken by a thread in the waiting state when it is available. Like for the first transition, the information about owning lock of o is put on the stack.

The transitions below show respectively the modeling of the call of methods wait, notify, and notifyAll in a synchronized method of object o:

wait o : (x, y). (p, ⊥) ֒→ (susp o , lock o ) : ∃w. α(x) = w.o ∧ α ′ (x) = w.q noti f y o : (x, y). (p, susp o ) ֒→ (q, wait o ) : α(x) = α ′ (x) ∧ α(y) = α ′ (y) noti f yAll o : x. p ֒→ q : α(x) = α ′ (x) | y. susp o → wait o : α(y) = α ′ (y)
Finally, the return from a synchronized method is modeled by the following transition:

sret 1 : (x, y). (exit m , ⊥) ֒→ (q, lock o ) : ∃w. α(x) = w.o ∧ w = α ′ (x).q ∧ ¬(w ∈ (Σ * .o.Σ * )) sret 2 : x. exit m ֒→ q : ∃w. α(x) = w.o ∧ w = α ′ (x).q ∧ (w ∈ (Σ * .o.Σ * ))
where the lock of the object is freed only if the thread has not called the method from another synchronized method of the object.

The property of deadlock freedom can be expressed as a property of the stack associated with each thread. For example, the deadlock is avoided if a thread trying to acquire the lock of an object o by calling a synchronized method of this object at control point l cannot be delayed by another thread owning the lock of this object:

∀t, u. l(t) =⇒ ¬(α(u) ∈ Σ * .o.Σ * )
CTSL(SRC) allows also to express properties about the order in which the objects are locked (or methods are called) by the thread. For example, the property saying that all threads at location ℓ have first acquired o 1 and then o 2 can be express as follows:

∀t. l(t) =⇒ α(u) ∈ (Σ -{o 1 , o 2 }) * .o 1 .(Σ -{o 2 }) * .o 2 .(Σ -{o 1 }) *

Multithreaded Programs with Timed Constraints

We consider here real-time Java programs with dynamic creation of threads (without procedure calls). Such programs can be modeled as dynamic networks of timed automata [START_REF] Alur | A theory of timed automata[END_REF]. We show how to define such networks in our framework. We consider that clocks variables range over the domain of reals. Then, the color logic L can be the first-order theory of reals FO R = (R, {0, 1, +, ×}, {≤}) or its subfragments (e.g., linear first-order theory).

The global and local clocks used in the network aretranslated into variables in G resp. L. We suppose that G contains a variable t measuring the global time. The translation of automata locations is immediate into places.

Then, we model a discrete transition from location ℓ 1 to location ℓ 2 whose guard is φ and which resets local clock c by the transition:

x. ℓ 1 ֒→ ℓ 2 : φ ∧ c ′ (x) = 0
In timed automata, time elapsing increases all clocks by the same amount of time. We model such it by a unique constrained transition changing uniformly the global and local colors of threads in places -→ p where the time can elapse:

֒→: ∃z. 0 < z ∧ t ′ = t + z | -→ y . -→ p → -→ p : γ∈L γ ′ ( -→ y ) = γ( -→ y ) + t ′ -t ∧ ĉ∈G c ′ = c + t ′ -t
Time invariants are associated with locations and represent constraints which must be satisfied while time elapses at these locations. Invariants used in timed automata can be expressed are formulas in the Σ 0 fragment of CTSL. Let denote by Inv(p) the invariant formula obtained for the location represented by p. Then, we modify the time elapsing transition to take into account invariants:

֒→ : ∃z. 0 < z ∧ t ′ = t + z | -→ y . -→ p → -→ p : V γ∈L γ ′ ( -→ y ) = γ( -→ y ) + t ′ -t ∧ V c∈G c ′ = c + t ′ -t (∀z ′ . 0 ≤ z ′ ≤ t ′ -t =⇒ ( V p i ∈ -→ p Inv(p i )[L(y i ) ← L(y i ) + z ′ ]))
From the decidability results given by Theorem 3, it results that tractable models CTN are obtained if time invariants are at most formulas in Π 1 fragment.

Urgent transitions are discrete transitions which have more priority that time passing, i.e., they must be executed immediatly. Let -→ x . ( -→ p ֒→ -→ q : φ) be a discrete urgent transition. Then, to express its urgency, we must modify time elapsing transition by imposing ¬φ in the guard, i.e., time can progress only if the urgent transition is not enabled:

֒→ : ∃z. 0 < z ∧ t ′ = t + z | -→ y . -→ p → -→ p : V γ∈L 0 γ ′ ( -→ y ) = γ( -→ y ) + t ′ -t ∧ V c∈G c ′ = c + t ′ -t ∧ (∀z ′ . 0 ≤ z ′ ≤ t ′ -t =⇒ ( V p i ∈ -→ p Inv(p i )[L(y i ) ← L(y i ) + z ′ ]) ∧¬(∃ -→ x . -→ p ( -→ x ) ∧ φ[L( -→ x ) ← L( -→ x ) + z ′ ]))
From Theorem 3, it follows that tractable CTN models are obtained if guards of urgent transitions are in Σ 1 fragment of CTSL.

Conclusion

We have defined a generic framework for reasoning about unbounded networks of infinite-state processes. Various instances of this framework allow to deal in a uniform way with important classes of system models such as dynamic networks of counter processes, timed processes, or pushdown processes, with complex synchronization mechanisms. This is based on generic decidability and closure results for a (useful fragment of a) logic for specifying configurations of such networks which allow to reason both on the control locations of the processes and on their data. The expressiveness of our framework has been demonstrated by showing its application to reasoning about multithreaded Java programs with global synchronization, and about multithreaded programs with timing constraints.

The complexity of the decision procedures is doubly exponential in the size of formulas (more precisely, in the number of quantified variables). However, formulas we need to consider when reasoning about CTN models (assertions expressing invariants and transition guards) are of a special form. Indeed, they are usually first-order formulas which implies that post/pre computations do not generate formulas with universal second order quantification. Moreover, token variables in transition formulas are deterministically associated with places. These facts allow to reduce the complexity by an exponential factor. Furthermore, transition formulas usually introduce a small number (2 or 3) of new token variables (the number of synchronized processes). This fact reduces significantly the complexity in practice.

A Proof of Theorem 1

We reduce the satisfiability problem of Σ 2 formulas in CTSL(L) to the satisfiability problem of Σ 0 formulas which correspond to formulas in the token color logic L which is supposed to has a decidable satisfiability problem. The proof is constructive: we build from a formula in Σ 2 a formula in L which has an equivalent satisfaction problem. The complexity of this construction is given at the end of the section.

In the remaining of the section, we denote by ψ a closed formula in

Σ 2 in prenex form ∃ -→ x ∃ -→ X ∃ -→ m ∃ -→ γ . ϕ, where ϕ is a formula in Π 1 in prenex form ∀ -→ y ∀ -→ Y ∀ -→ n ∀ -→ α . φ, with -→ x , -→ y ∈ T , -→ X , -→ Y ∈ X , -→ m , -→ n ∈ C, -→ γ , -→ α ∈ Γ, and φ ∈ Σ 0 .
We assume that all quantified variables are different. We prove first that the fragment Σ 2 has the small model property, i.e., every satisfiable formula ψ in Σ 2 has a model of a bounded size (where the size is the number of tokens in each place).

Lemma 1. The Σ 2 fragment of CTSL(L) has a small model property.

Proof. Suppose that there is a set coloring ν, µ which satisfies the Σ 2 formula ψ. This means that there is a set of tokens N ⊆ N (resp. of colors -→ c ) and a mapping θ ∈

[ -→ x → N] (resp. δ ∈ [ -→ m → -→ c ) such that ν, µ |= θ,δ ϕ.
Let N 1 be the finite subset of N corresponding to the image of the (finite set of) existential quantified token variables -→ x through θ, i.e., N 1 = ∪ x∈ -→ x θ(x). Let A be a fresh symbol in X . Without changing the satisfiability of ψ, we strengthen it by stating that A captures exactly

N 1 . Indeed, ν, µ |= θ,δ ϕ is equivalent to ν[A ← N 1 ], µ |= θ,δ All( -→ x , A) ∧ ϕ where: All( -→ x , A) ≡ A( -→ x ) ∧ (∀y. (∧ x i ∈ -→ x y = x i ) =⇒ ¬A(y))
From ϕ, we obtain a weaker formula ϕ A (i.e., ϕ A ⇒ ϕ) by restricting the universal quantified variables -→ y and -→ Y to the set of tokens N 1 represented by A:

ϕ A ≡ ∀ -→ y ∀ -→ Y . ( ŷ i ∈ -→ y A(y i ) ∧ Ŷ i ∈ -→ Y Subset(Y i , A)) ⇒ ∀ -→ n ∀ -→ α . φ where Subset(Y, A) ≡ ∀z. Y (z) ⇒ A(z) Then, ν[A ← N 1 ], µ |= θ,δ All( -→ x , A) ∧ ϕ A .
In ϕ A and All( -→ x , A), all universally quantified token variables are tested to belong to the finite set A, which means that only tokens in N 1 are relevant. If ν 1 , µ 1 is the restrictions of ν and µ over N 1 , then

ν 1 [A ← N 1 ], µ 1 is a model for ϕ A ∧ All( -→ x , A) which is finite. But ϕ A ∧ All( -→ x , A) ⇒ ϕ over N 1 so ν 1 [A ← N 1 ], µ 1 is also a model of ψ.
So, we have shown that if a Σ 2 formula ψ has a model, then ψ has also a model over a finite domain of tokens which size is bounded by the number of the existential quantified token variables in ψ (denoted here by -→ x ).

Based on the above result, we are able to get rid of the universal quantifications over token and sets of token variables in Σ 2 formula by replacing them by finite conjunctions.

Lemma 2. The satisfiability problem for the Σ 2 fragment of CTSL reduces to the satisfiability problem for the Σ 1 fragment.

Proof. Let N be the finite set of tokens on which is built the finite model of the ψ formula in Σ 2 , and let ν, µ , θ, and δ be this finite model, i.e., ν, µ |= θ,δ ∀ -→ y ∀ -→ Y ∀ -→ n ∀ -→ α . φ with ν, µ, and θ restricted to N. Recall that N is the image of variables in -→ x by θ. This means that, from a syntactic point of view, the universe of variables in -→ y and -→ Y is fully described by variables in -→ x . Then, we can replace any universal quantification over tokens by a finite conjunction where each conjunct is obtained from ϕ by a substitution of variables in -→ y with variables in -→ x :

ν, µ |= θ,δ σ∈[ -→ y → -→ x ] ∀ -→ Y ∀ -→ n ∀ -→ α . φ[σ]

Elimination of universally quantified variables in -→

Y is done by a slight generalization of the above construct: we guess all the possible valuations for variables in

-→ Y in terms of sets of variables in -→ x . A such valuation ξ is a mapping in [ -→ Y → ( -→ x → {true, false})].
The effect of applying ξ to a formula in CTSL is to replace all subformula Y (x) by ξ(Y )(x) ∈ {true, false}. However, valuations ξ shall satisfy the following consistency property wrt valuation of token variables given by the mapping θ: if variables x i and x j in -→ x are mapped to the same token by θ, then they have to belong to the same set in -→ Y . This consistency property is given by the following formula:

Consist( -→ Y , -→ x ) ≡ xi ,x j ∈ -→ x (x i = x j ) ⇒ Ŷ ∈ -→ Y (Y (x i ) ⇔ Y (x j ))
We use it as premise in each conjunct corresponding to a valuations for universally quantified variables in -→ Y :

ν, µ |= θ,δ σ∈[ -→ y → -→ x ] ξ∈[ -→ Y →( -→ x →{true,false})] (Consist( -→ Y , -→ x ) ⇒ ∀ -→ n ∀ -→ α . φ[σ])[ξ]
The formula above has no more universal quantification over token or sets of tokens.

To eliminate the universal quantification over coloring symbols in -→ α , we note that mappings in -→ α are only applied now to variables in -→ x . We define a substitution η which maps each occurrence of a term α(x) with α ∈ -→ α and x ∈ -→ x to a new color variable in C, given by η(α)(x). A similar consistency property as the one used for the elimination second order of variables in -→ Y has to be satisfied by the substitution η: if two variables x i and x j are mapped to the same token, then the substitution η shall map them to the same color for any coloring symbol in -→ α . We can combine these properties and obtain the formula:

Consist ′ ( -→ Y , -→ α , -→ x ) ≡ xi ,x j ∈ -→ x (x i = x j ) ⇒ Ŷ∈ -→ Y (Y (x i ) ⇔ Y (x j )) ∧ α∈ -→ α (α(x i ) = α(x j ))
Then, if -→ a ⊂ C is the image of η, the satisfaction of ψ is equivalent to the following satisfaction problem:

ν, µ |= θ,δ σ∈[ -→ y → -→ x ] ξ∈[ -→ Y →( -→ x →{true,false})] ∀ -→ n , -→ a . (Consist ′ ( -→ Y , -→ α , -→ x ) ⇒ φ[σ])[ξ][η]
which concerns a Σ 1 formula.

Finally, we eliminate the existential quantifiers over tokens, sets of tokens, and coloring symbols variables by introducing new existential quantifiers on color variables. Lemma 3. The satisfiability problem for the Σ 1 fragment of CTSL(L) reduces to the satisfiability problem for L.

Proof. Let ψ be a Σ 1 formula in CTSL(L) of the prenex form ∃ -→ x ∃ -→ X ∃ -→ γ . ϕ with ϕ ∈ L. From Lemma 1 we know that ψ is satisfiable iff it exists a model ν, µ and mappings θ and δ defined on a set of tokens N which size is at most n = | -→ x |.

We build from ψ a formula in L which has an equivalent satisfiability problem. First, we transform ψ in order to eliminate atomic subformulas corresponding to equality of token variables, and so to obtain a Σ 1 formula where all quantified token variables are distinct. For this, let B( -→ x ) be the set of mappings b ∈ [ -→ x → -→ x ] representing an equivalence relation between variables in -→ x . (The size of B( -→ x ) is less than n n but has no simple formulation.) For any b ∈ B( -→ x ), b(x i ) = x j if x j uniquely represents the equivalence class of x i . We denote by -→ x b = Img(b) the set of variables representing equivalence classes in b. A mapping b applied to a formula ϕ( -→ x ), denoted by ϕ[b], substitutes each occurence of a variable x ∈ -→ x by b(x) and replaces all atomic formulas x i = x j by true if b(x i ) = b(x j ) and by false otherwise. Then, ψ is satisfiable iff the following formula is satisfiable:

_ b∈B( -→ x ) ∃ -→ x b ∃ -→ X ∃ -→ γ . ϕ[b]
The problem is now to reduce the satisfiability of a Σ 1 formula where all quantified token variables range over distinct tokens to the satisfiability of an L formula.

To eliminate existential quantifiers over sets of tokens -→ X , we use the finite model property in a similar way than in Lemma 2: we consider all valuations of variables in -→ X in terms of sets of variables in -→ x b . Since all variables in -→ x b are distinct, we don't need the consistency property. Then, ψ is satisfiable iff the following formula is satisfiable:

_ b∈B( -→ x ) _ ξ∈[ -→ X →( -→ x b →{true,false})] ∃ -→ x b ∃ -→ γ . (ϕ[b])[ξ]
The second order quantifiers on color symbols -→ γ are eliminating like in the proof of Lemma 2. We define a substitution η which maps each occurrence of a term γ(x) with γ ∈ -→ γ and x ∈ -→ x b to a new color variable in C, given by η(γ)(x). If -→ a ⊂ C is the image of η, then ψ is satisfiable iff the following formula is satisfiable:

_ b∈B( -→ x ) _ ξ∈[ -→ X →( -→ x b →{true,false})] ∃ -→ x b ∃ -→ a . (ϕ[b])[ξ][η]
Note that mappings b, ξ, and η replace all occurences of token variables in -→ x b by constant formula (true, false) or color variables. Then ϕ[b][ξ][η] does not contain any occurence of variables in -→ x b , so the ∃ -→ x b can be eliminated, QED.

Complexity of satisfiability checking:

The proof above builds from a formula ψ in Σ 2 an equivalent formula ψ 0 in Σ 0 . Let ψ be the prenex form formula

∃ -→ x ∃ -→ X ∃ -→ m ∃ -→ γ . ϕ, where ϕ is a formula in Π 1 in prenex form ∀ -→ y ∀ -→ Y ∀ -→ n ∀ -→ α . φ.
The size of the formula ψ 0 depends on the size of ψ as follows:

The reduction proposed in the proof of Lemma 2 eliminates ∀ -→ y (resp. ∀

-→ Y ) quanti- fiers by introducing | -→ x | | -→ y | (resp. | -→ Y | 2 |-→ x | ) conjuncts. Each conjunct contains formula φ and a formula Consist ′ which contains | -→ x | 2 .(| -→ Y | + | -→ α |) atomic formula.
The number of quantified color variables added by η is equal to is equal to

| -→ α |.| -→ x |. We obtain from ϕ a Σ 0 formula ϕ 0 which is prefixed by at least | -→ α |.| -→ x | + | -→ n | universal quantifiers over color variables and which size is | -→ x | | -→ y | .| -→ Y | 2 |-→ x | .(|φ| + | -→ x | 2 .(| -→ Y | + | -→ α |)). Let call ψ 1 the formula ∃ -→ x ∃ -→ X ∃ -→ m ∃ -→ γ . ϕ 0 . ψ 1 is
further reduced by the proof of Lemma 3 into a Σ 0 formula by eliminating

∃ -→ x and ∃ -→ X quantifiers. The reduction adds at most | -→ x | | -→ x | .| -→ X | 2 | -→ x | disjuncts (the first
term is an over approximation of the size of B(

-→ X )). Each disjunct is built from ψ 1 prefixed by at most | -→ m |.| -→ γ |.| -→ x | existential quantifiers. We obtain a Σ 0 formula ψ 0 which number of atomic subformulais O(| -→ x | | -→ x |+| -→ y | .| -→ Y | 2 | -→ x | .| -→ X | 2 | -→ x | )
,greater than the one of ψ and which is prefixed by at most

| -→ x |.(| -→ α | + | -→ γ |) new quantifiers.
Note that each reduction step has been considered above in its worst combinatorial case assumptions. However, the initial formula comes usually with syntactic properties that reduce this high complexity.

For example, constraints in program models and invariant properties are usually first-order formulas (see examples in the appendix). Then, post-images do not involve second order universal quantification and the decision procedure is applied in this case to formulas of the form

∃ -→ x ∃ -→ X ∃ -→ m ∃ -→ γ . ∀ -→ y ∀ -→ n . ϕ.
Moreover, the existentially quantified second order variables appearing in the post-images are all disjoint because they are included in disjoint places of P . This implies a one-to-one mapping between variables in -→ x and those in -→ X . This mapping is further improved if variables in -→ x have explicitely specified places (which is true if they correspond to variables of the existential part of a transition), which reduces the combinatoric explosion due to case splitting according to all possible locations of tokens in places. Then, the decision procedure of the color logic is invoked on a formula which is prefixed by

| -→ γ |.| -→ x | new existential quantification and is O(| -→ x | | -→ x |+| -→ y | )
times greater in size than ϕ. Finally, transitions of CTN have only few (2 or 3) variables in the set -→ x (see examples) since local synchronization involve in general two processes. Hence, the growing factor

| -→ x | | -→ x |+| -→ y | is small in practice.

B A logic for reasoning about stacks

Processes with procedure calls can be modeled using pushdown systems. Therefore, tokens representing occurrences of such processes must be colored by the contents of their stacks. Let us consider the case where the alphabet of these stack is finite. Then, stacks can be represented as finite words over this alphabet, and constraints over stack contents can be defined using logics over finite words. We introduce hereafter such a logic called SRC (for Synchronous Rational Constraints).

Let Σ be a finite alphabet, and let Reg(Σ) be the class of regular languages over Σ. Then, we consider the following relations:

-let ≤ pref be the prefix ordering between words, i.e., for every u, v ∈ Σ * . u ≤ pref v iff ∃w. v = uw, -let = ℓ be the length equality predicate i.e., for every u, v ∈ Σ * , u = ℓ v iff |u| = |v|, and -for every R ∈ Reg(Σ), let R(•) be the unary predicate such that for every u ∈ Σ * , R(u) iff u ∈ R.

Notice that the equality predicate can be defined using the relations ≤ pref and = ℓ :

u = v is equivalent to u ≤ pref v ∧ u = ℓ v. Then, let SRC = (Σ * , {λu. u • a : a ∈ Σ}, {≤ pref , = ℓ } ∪ {R(•) : R ∈ Reg(Σ)}).
Theorem 6. The satisfiability problem of SRC is decidable.

Proof. (Sketch) Given a formula φ(z 1 , . . . , z n ), let [[φ]] be the set of vectors of words w ∈ (Σ * ) n such that δ |= SRC φ where δ is the valuation such that, for every i ∈ {1, . . . , n}, δ(z i ) = w i . We prove that for every formula φ with n free variables, the set [[φ]] is a ndim rational set, i.e., definable by a n-tape finite-state automaton (transducer), for which the emptyness problem is of course decidable. For that, we show that all atomic formulas define synchronous rational sets, and we use the fact that the class of synchronous rational sets is closed under boolean operations and projection (see [START_REF] Choffrut | The Reachability Problem Requires Exponential Space[END_REF]). This example does not respect the simple rule of acquiring shared objects (here {o, o 3 , o 3 }) in the same order. So it is potentially generator of deadlocks. We will show in the following that our methodology is able to prove absence of deadlocks for this example.

C Example: Accessing Multiple Shared Resources

Since this ICFG does not call any of wait, notify, or notifyAll methods, places susp i (with i ∈ O) are not connected in the corresponding model. So, we do not add these places in our model, nor consider the rules corresponding to the translation of the call of these methods.

The CTN[SRC] obtained is given in Table 1.

To this model, we have to add the following assertions saying that places corresponding to locks have at most one token:

Lock ≡ ∧ p∈{lock o 1 ,...,lock o 4 ∀t,t ′ . p(t) ∧ p(t ′ ) =⇒ t = t ′
On this model, we want to verify the following properties:

-If it exists a thread at control point l 9 , there is no thread having the lock on object o 3 :

φ(l 9 , o 3 ) ≡ ∀t,t ′ . l 9 (t) =⇒ ¬(α(t ′ ) ∈ Σ * .o 3 .Σ * )
This property ensures that when a thread tries to acquire o 3 , it will acquire it immediately and cannot be delayed by a thread owning the lock of this object. The same property is true for pairs (l 11 , o 4 ), (l 13 , o 4 ), (l 15 , o 3 ). Then, the conjuction of these properties says that it is not possible to have deadlock when acquiring object o 3 and o 4 , though they are not acquired in the same order by all tasks. -There is at most one thread waiting to obtain the lock on object o:

∀t,t ′ . wait o (t) ∧ wait o (t ′ ) =⇒ t = t ′
This property ensures that a single thread executing taski (i = 1..2) wis trying to lock object o. 

. α(x) = w.l 11 ∧ α ′ (x) = w.o m3 1 o 3 : (x, y). (l 9 , lock o 3 ) ֒→ (l 13 , ⊥) : α ′ (x) = α(x).l 10 .o 3 m3 2 o 3 : x. l 9 ֒→ l 13 : α(x) ∈ (Σ * .o 3 .Σ * ) ∧ α ′ (x) = α(x).l 10 .o 3 m3 3 o 3 : x. l 9 ֒→ wait o 3 : ¬(∃y. lock o 3 (y)) ∧ ¬(α(x) ∈ (Σ * .o 3 .Σ * )) ∧ α ′ (x) = α(x).l 10 .l 13 m3 4 o 3 : (x, y). (wait o 3 , lock o 3 ) ֒→ (l 13 , ⊥) : ∃w. α(x) = w.l 13 ∧ α ′ (x) = w.o 3 m4 
: α(x) ∈ (Σ * .o 3 .Σ * ) ∧ α ′ (x) = α(x).l 17 .o 3 n3 3 o 3 : x. l 16 ֒→ wait o 3 : ¬(∃y. lock o 3 (y)) ∧ ¬(α(x) ∈ (Σ * .o 3 .Σ * )) ∧ α ′ (x) = α(x).l 17 .l 15 n3 4 o 3 : (x, y). (wait o 3 , lock o 3 ) ֒→ (l 15 , ⊥) : ∃w. α(x) = w.l 15 ∧ α ′ (x) = w.o 3

D Example: Fischer's Protocol

The protocol [START_REF] Lamport | A fast mutual exclusion algorithm[END_REF] is to guarantee mutual exclusion in a concurrent system consisting of any number of processes. It assumes only atomic reads and writes and the mutual exclusion relies heavily on timing constraints associated with the execution of instructions.

D.1 Protocol program

Informally, the protocol proceeds as follows. A global variable g is used to store identities of process or 0. Its value is initialy 0. When a process i wants to access to the critical section, it waits to see g at 0. Then, it assigns g to its identity. After that, it waits for some time (greater than the time taken by assignment instructions), and if g has a value equal to its identity after this time, it is safe to enter the critical section. The pseudo-C code executed by each process is the following: 

do { do { a w a i t ( x = = 0 ) ; x = 1 ; / / t

D.2 CTN model

The model of this protocol using CTN[FO R ] is given in Table 2. We model each process by a token. Each token is assumed to have two local clocks (a and d) measuring the time taken by assignment resp. delay instructions, and an identity (id). Our model is parameterized in two dimensions. First, the number of processes is not fixed. Second, we suppose that an assignment takes between [A, A ′ ] time units and the delay instruction between [D, D ′ ] time units. Test instructions take no time.

D.3 Mutual exclusion property and its proof

It has been proven that for a finite number of processes, Fischer's protocol ensures the mutual exclusion property if 0 ≤ A ≤ A ′ < D ≤ D ′ . The mutual exclusion property is expressed by the following Π 1 formula:

CS ≡ ∀x, x ′ . cs(x) ∧ cs(x ′ ) =⇒ x = x ′
which, due to the unicity of identities, it is a consequence of the following simpler formula: r,w,c). (idle,try, wait, cs) → (idle,try, wait, cs)

CS ′ ≡ ∀t. cs(t) =⇒ g = id(t) try : x. idle ֒→ try : g = 0 ∧ a ′ (x) = 0 ∧ id(x) = id ′ (x) ∧ g ′ = g ∧ d(x) = d ′ (x) set : x. try ֒→ wait : a(x) ≥ A ∧ g ′ = id(x) ∧ d ′ (x) = 0 ∧ id(x) = id ′ (x) ∧ a(x) = a ′ (x) enter : x. wait ֒→ cs : d(x) ≥ D ∧ g = id(x) ∧ id(x) = id ′ (x) ∧ g ′ = g ∧ d(x) = d ′ (x) ∧ a(x) = a ′ (x) retry : x. wait ֒→ idle : d(x) ≥ D ∧ g = id(x) ∧ id(x) = id ′ (x) ∧ g ′ = g ∧ d(x) = d ′ (x) ∧ a(x) = a ′ (x) exit : x. cs ֒→ idle : g ′ = 0 ∧ id(x) = id ′ (x) ∧ d(x) = d ′ (x) ∧ a(x) = a ′ (x) time : ֒→: ∃z. 0 < z ∧ t ′ = t + z ∧ g ′ = g | (i,
:

a ′ (i) = a(i) + (t ′ -t) ∧ d ′ (i) = d(i) + (t ′ -t) ∧ id ′ (i) = id(i) ∧a ′ (r) = a(r) + (t ′ -t) ∧ d ′ (r) = d(r) + (t ′ -t) ∧ id ′ (r) = id(r) ∧a ′ (w) = a(w) + (t ′ -t) ∧ d ′ (w) = d(w) + (t ′ -t) ∧ id ′ (w) = id(w) ∧a ′ (c) = a(c) + (t ′ -t) ∧ d ′ (c) = d(c) + (t ′ -t) ∧ id ′ (c) = id(c) ∧(∀z ′ . 0 ≤ z ′ ≤ (t ′ -t) =⇒ a(r) + z ′ ≤ A ′ ∧ d(w) + z ′ ≤ D ′ )
Table 2. CTN model for the Fischer's protocol.

To prove invariance of CS ′ for our model, we use our verification methodology to show that the following formula I (in fragment Π 1 ) is an inductive invariant: Intuitively, invariant I try expresses the property that the time between the arrival of two processes in try state may not be greater than A ′ . This property is also true for any pair of processes, one in the try state and the other in the wait state. In the proof, I try is useful to establish I wait which says that the difference between the arrival times of processes in the wait state is also bounded by A ′ . This implies that (see last conjunct of I wait ), when processes stay more than D > A ′ in state wait, there is no more process in state try. Then, when a process enters in state cs, no process are in try state to change global variable g and so to allow another process in wait state to enter in cs. This last property is expressed by invariant I cs . For all discrete transitions (i.e., with an empty universal part), we can compute the post image of the transition on our invariant using the simplified computation defined in [START_REF] Bouajjani | A generic framework for reasoning about dynamic networks of infinite-state processes[END_REF] based on the the first order version of CML. The second conjunct of I wait is satisfied due to the fact that A ′ ≥ a x = a(y) ≥ A and d(y) = 0. The third conjunct is trivially true for y (the premise is false). The first conjunct is conserved for y because:

I ≡ CS ′ ∧ I p ∧ Inv(try) ∧ Inv(wait) ∧ I try ∧ I wait ∧ I cs where I p ≡ 0 ≤ A ≤ A ′ < D ≤ D ′ Inv(
1. By I try for x says that ∀t ′ . wait(t ′ ) =⇒ |a xa(t ′ )| ≤ A ′ 2. By a x = a(y), it results that ∀t ′ . wait(t ′ ) =⇒ |a(y)-a(t ′ )| ≤ A ′ , so ∀t ′ . wait(t ′ ) =⇒ a(t ′ ) ≤ a(y) + A ′ , 3. By I wait , we have that ∀t ′ . wait(t ′ ) =⇒ A ≤ a(t ′ )d(t ′ ) ≤ A ′ so ∀t ′ . wait(t ′ ) =⇒ a(t ′ ) -A ′ ≤ d(t ′ ) ≤ a(t ′ ) -A 4. Combining the last two results, we have that ∀t ′ . wait(t ′ ) =⇒ d(t ′ ) ≤ a(y) -A + A ′ ≤ A ′ which is the first conjunct of I wait for t = y. The only affected part of I are I cs and CS ′ for which we should show that it is satisfied by y.

CS ′ is true by the guard of the transition g -= id x = id(y) = g + = g. I cs is true due to the third conjunct of I wait applied to x which gives ∀t ′ . ¬try(t ′ ). The second conjunct is trivially true because g = id(y) = 0.

Transition time: The post-image of I by transition time can be computed using the reach tau formula given in section 3. However, the folowing property allows us to simplify this formula due to the fact that the time transition satisfies the conditions of the property.

Property 1. Let τ be a CTN transition satisfying the following properties:

-the existential part does not move tokens, i.e., n = | -→ x | = 0, but ϕ may be not empty, -the universal part transfers all the tokens of all places in P to the same places, i.e., -→ r = -→ s = P -{⊥} and ψ does not select tokens in -→ r , and -the color of all tokens transferred is changed independently of the token place.

Then, the reach τ formula simplifies to: Due to the fact that coloring symbols corresponding to clocks are evolving with the same quantity, the invariant I also is conserved by transition time.

Theorem 3 .

 3 Let S = (P , G,L,L,∆) be a CTN[Σ n ], for n ∈ {1, 2}. Then, for every formula ψ in the fragment Σ n of the logic CTSL(L) with free variables in P ∪ G ∪ L, it is possible to construct two formulas ψ post and ψ pre in the same fragment Σ n such that [[ψ post ]] = post S ([[ψ]]) and [[ψ pre ]] = pre S ([[ψ]]).

Theorem 4 .

 4 Let S be a CTN[Σ 2 ]. The inductive invariance checking problem is decidable for every instance ([[ψ Init ]], [[ψ]], [[ψ ′ ]]) where ψ Init ∈ Σ 2 , and ψ, ψ ′ ∈ B(Σ 1 ).

( 1 )

 1 lock o models the lock of the object: at most one token is present; (2) wait o stores tokens representing threads competing to obtain the lock of o; (3) susp o stores tokens representing threads which are self-suspended by the execution of an "wait()" statement while owning the lock of o. To the stack alphabet Σ is added the set of objects used as locks. An ICFG edge p call o.m()

s y n c h r o n i z e d n3 ( ) { 1 5 :

 5 Let us consider a concurrent Java application where an infinite set of threads are sharing the objects in the set O = {o, o 1 , o 2 , o 3 , o 4 }. Suppose that threads are executing nondeterministically two tasks, each task acquiring a subset of the shared objects by calling synchronized methods of these objects.For example, consider the ICFG given in the listing L below: / * some a c t i o n on o2 , o , o3 , o4 * / / * b u t n o t w a i t o r n o t i f y * / } s y n c h r o n i z e d m4 ( ) { 1 6 : o3 . n3 ( ) ; 1 7 : } s y n c h r o n i z e d n4 ( ) { 1 8 : / * some a c t i o n on o1 , o , o3 , o4 * / / * b u t n o t w a i t o r n o t i f y * / }

  Transition try: The post-image of I by transition try is given by:post try (I) ≡ ∃y. ∃id x , d x a x . ∃g -. (I[g ← g -] ⊖ (x → idle) ⊕ (y → try))∧ g -= 0 ∧ a(y) = 0 ∧ id x = id(y) ∧ g = g -∧ d x = d(y)The parts of I changed by post are Inv(try) and I try . Inv(try) is true for y because a(y) = 0. For I try , the proof uses first the fact that g = 0 to obtain that ∀t. ¬wait(t) from I cs . So, the second conjuct of I try is trivial for y. The first conjuct is a consequence of the invariant I try and of a(y) = 0.Transition set: The post-image of I by transition set is given by:post set (I) ≡ ∃y. ∃id x , d x a x . ∃g -. (I[g ← g -] ⊖ (x → try) ⊕ (y → wait))∧ a x ≥ A ∧ g = id x ∧ d(y) = 0 ∧ id x = id(y) ∧ a x = a(y)Invariants changed by the post image above are: Inv(try), Inv(wait), I try , and I wait . Inv(try) and Inv(wait) are trivially conserved by this transition since d(y) = 0. I try is kept true because a x = a(y) and (from first conjunct of I try instantiated for s) ∀t ′ . |a xa(t ′ )| ≤ A ′ . So the second conjuct of I try is also satisfied for y.

Transition retry:

  The post-image of I by transition retry is given by:post retry (I) ≡ ∃y. ∃id x , d x a x . ∃g -. (I[g ← g -] ⊖ (x → wait) ⊕ (y → idle))∧ d x ≥ D ∧ g -= id x ∧ id x = id(y) ∧ g + = g -∧ d x = d(y) ∧ a x = a(y)Since none of the part of I concern the idle place where the token is added, all invariants are conserved trivially by this transition.Transition enter: The post-image of I by transition enter is given by:post enter (I) ≡ ∃y. ∃id x , d x a x . ∃g -. (I[g ← g -] ⊖ (x → wait) ⊕ (y → cs))∧ d x ≥ D ∧ g -= id x ∧ id x = id(y) ∧ g + = g -∧ d x = d(y) ∧ a x = a(y)

  reach τ (P , P ′ , G,G ′ , L,L ′ ) = ϕ ∧ (∀u. ψ)Then, the post-image of the invariant becomes:post time (I) ≡ (∃g∃t∃a, d, id∃z∀u. I ∧ 0 < z ∧ t ′ = t + z ∧ g ′ = g ∧a ′ (u) = a(u) + (t ′t) ∧ d ′ (u) = d(u) + (t ′t) ∧ id ′ (u) = id(u) ∧(∀z ′ . 0 ≤ z ′ ≤ (t ′t) =⇒ (try(u) =⇒ a(u) + z ′ ≤ A ′ ))∧ (wait(u) =⇒ d(u) + z ′ ≤ D ′ ) )[g ′ ← g,t ′ ← t, a ′ ← a, d ′ ← d, id ′ ← id]

  (l 1 , lock o 1 ) ֒→ (l 5 , ⊥) : α ′ (x) = α(x).l 2 .o 1 m1 2 o 1 : x. l 1 ֒→ l 5 : α(x) ∈ (Σ * .o 1 .Σ * ) ∧ α ′ (x) = α(x).l 2 .o 1 m1 3 o 1 : x. l 1 ֒→ wait o 1 : ¬(∃y. lock o 1 (y)) ∧ ¬(α(x) ∈ (Σ * .o 1 .Σ * )) ∧ α ′ (x) = α(x).l 2 .l 5 m1 4 o 1 : (x, y). (wait o 1 , lock o 1 ) ֒→ (l 5 , ⊥) : ∃w. α(x) = w.l 5 ∧ α ′ (x) = w.o 1 .o 2 .Σ * )) ∧ α ′ (x) = α(x).l 4 .l 7 m2 4 o 2 : (x, y). (wait o 2 , lock o 2 ) ֒→ (l 7 , ⊥) : ∃w. α(x) = w.l 7 ∧ α ′ (x) = w.o 2 .o.Σ * )) ∧ α ′ (x) = α(x).l 6 .l 9 m 4 o : (x, y). (wait o , lock o ) ֒→ (l 9 , ⊥) : ∃w. α(x) = w.l 9 ∧ α ′ (x) = w.o n 1

	m1 1 o 1 : (x, y). m2 1 o 2 : (x, y). (l 3 , lock o 2 ) ֒→ (l 7 , ⊥) : α ′ (x) = α(x).l 4 .o 2 m2 2 x. l 3 ֒→ l 7 : α(x) ∈ (Σ * .o 2 .Σ * ) ∧ α ′ (x) = α(x).l 4 .o 2 o 2 : m2 3 o 2 : x. l 3 ֒→ wait o 2 : ¬(∃y. lock o 2 (y)) ∧ ¬(α(x) ∈ (Σ m 1 o : (x, y). (l 5 , lock o ) ֒→ (l 9 , ⊥) : α ′ (x) = α(x).l 6 .o m 2 o : x. l 5 ֒→ l 9 : α(x) ∈ (Σ * .o.Σ * ) ∧ α ′ (x) = α(x).l 6 .o m 3 o : x. l 5 ֒→ wait o : ¬(∃y. lock o (y)) ∧ ¬(α(x) ∈ (Σ

* * o : (x, y). (l 7 , lock o ) ֒→ (l 11 , ⊥) : α ′ (x) = α(x).l 8 .o n 2 o : x. l 7 ֒→ l 11 : α(x) ∈ (Σ * .o.Σ * ) ∧ α ′ (x) = α(x).l 8 .o n 3 o : x. l 7 ֒→ wait o : ¬(∃y. lock o (y)) ∧ ¬(α(x) ∈ (Σ * .o.Σ * )) ∧ α ′ (x) = α(x).l 8 .l 11 n 4 o : (x, y). (wait o , lock o ) ֒→ (l 11 , ⊥) : ∃w

Table 1 .

 1 Model of the ICFG of listing L.

  try) ≡ ∀t. try(t) =⇒ a(t) ≤ A ′ Inv(wait) ≡ ∀t. wait(t) =⇒ d(t) ≤ D ′ I

try ≡ (∀t,t ′ . try(t) ∧ try(t

′ ) =⇒ |a(t)a(t ′ )| ≤ A ′ ) ∧ (∀t,t ′ . try(t) ∧ wait(t ′ ) =⇒ |a(t)a(t ′ )| ≤ A ′ ) I wait ≡ (∀t,t ′ . wait(t) ∧ wait(t ′ ) =⇒ (|a(t)a(t ′ )| ≤ A ′ ∧ |d(t)d(t ′ )| ≤ A ′ )) ∧ (∀t. wait(t) =⇒ A ≤ a(t)d(t) ≤ A ′ ) ∧ (∀t,t ′ . wait(t) ∧ d(t) ≥ D =⇒ ¬try(t))

I cs ≡ (∀t,t ′ . cs(t) ⇔ ¬try(t ′ )) ∧ (∀t. g = 0 =⇒ ¬(cs(t) ∨ wait(t)))