N
N

N

HAL

open science

A Generic Framework for Reasoning about Dynamic
Networks of Infinite-State Processes

Ahmed Bouajjani, Yan Jurski, Mihaela Sighireanu

» To cite this version:

Ahmed Bouajjani, Yan Jurski, Mihaela Sighireanu. A Generic Framework for Reasoning about Dy-
namic Networks of Infinite-State Processes. 2006. hal-00129018

HAL Id: hal-00129018
https://hal.science/hal-00129018

Preprint submitted on 5 Feb 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00129018
https://hal.archives-ouvertes.fr

A Generic Framework for Reasoning about
Dynamic Networks of Infinite-State Processes

Ahmed Bouajjani, Yan Jurski, and Mihaela Sighireanu

LIAFA, University of Paris 7, Case 7014, 2 place Jussieu515Raris 05, France.
{abou, jurski,sighirea}@iafa.jussieu.fr

Abstract. We propose a framework for reasoning about unbounded dyraeti
works of infinite-state processes. We propose Constraimdd Rets CPN) as
generic models for these networks. They can be seen as Bttnivhere tokens
(representing occurrences of processes) are colored hgsalver some poten-
tially infinite data domain such as integers, reals, etctHeumore, we define
a logic, calledCML (colored markings logic), for the description GPN con-
figurations.CML is a first-order logic over tokens allowing to reason aboetirth
locations and their colors. BothPNs andCML are parametrized by a color logic
allowing to express constraints on the colors (data) aasegtiwith tokens.

We investigate the decidability of the satisfiability pretn of CML and its ap-
plications in the verification oEPNs. We identify a fragment cEML for which
the satisfiability problem is decidable (whenever it is tasecfor the underlying
color logic), and which is closed under the computationsast andpre images
for CPNs. These results can be used for several kinds of analydisasuicvari-
ance checking, pre-post condition reasoning, and bourszhability analysis.

1 Introduction

The verification of software systems requires in generalcthresideration of infinite-
state models. The sources of infinity in software models auttiphe. One of them is
the manipulation of variables and data structures rangweg iofinite domains (such as
integers, reals, arrays, etc). Another source of infinithesfact that the number of pro-
cesses running in parallel in the system can be either a mdeautiixed but arbitrarily
large), or it can be dynamically changing due to processtioreaWhile the verifica-
tion of parameterized systems requires reasoning unifoahbut the infinite family
of (static) networks corresponding to any possible numligrocesses, the verifica-
tion of dynamic systems requires reasoning about the iefimitmber of all possible
dynamically changing network configurations.

There are many works and several approaches on the venficatiinfinite-state
systems taking into account either the aspects relatedfitotéendata domains, or the
aspects related to unbounded network structures due tane#eazation or dynamism.
Concerning systems with data manipulation, a lot of workidiesen devoted to the verifi-
cation of, for instance, finite-structure systems with wnided counters, clocks, stacks,
queues, etc. (see, e.g., [1,11,30,7,5,27,26]). On the bidned, a lot of work has
been done for the verification of parameterized and dynamiiworks of boolean (or
finite-data domain) processes, proposing either exact atubeking and reachability

analysis techniques for specific classes of systems (sublpadcast protocols, mul-
tithreaded programs, etc) [24, 25, 22, 16, 15], or genegorghmic techniques (which
can be approximate, or not guaranteed to terminate) sucktasrk invariants-based
approaches [31, 20], and (abstract) regular model cheddifgl7, 3, 12]. However,
only few works consider both infinite data manipulation asdgmetric/dynamic net-
work structures (see the paragraph on related work).

In this paper, we propose a generic framework for reasonioyiaparameterized
and dynamic networks of concurrent processes which canpukate (local and global)
variables over infinite data domains. Our framework is pagtarized by a data domain
and a first-order theory on it (e.g., Presburger arithmeditsatural numbers). It con-
sists of (1) expressive models allowing to cover a wide afdisystems, and (2) a logic
allowing to specify and to reason about the configuratiortae$e models.

The models we propose are called Constrained Petri N&8! (for short). They
are based on (place/transition) Petri nets where tokensadoeed by data values. In-
tuitively, tokens represent different occurrences of pases, and places are associ-
ated with control locations and contain tokens correspugdd processes which are
at a same control location. Since processes can manipolzakvariables, each token
(process occurrence) has several colors correspondifgteaiues of these variables.
Then, configurations of our models are markings where eaabeptontains a set of
colored tokens, and transitions modify the markings asluspgeemoving tokens from
some places and creating new ones in some other placesitimasigire guarded by
constraints on the colors of tokens before and after firirggttansition. We show that
CPNs allow to model various aspects such as unbounded dynaesiti@n of processes,
manipulation of local and global variables over unboundewhdins such as integers,
synchronization, communication through shared variglteks, etc.

The logic we propose for specifying configurations@?N'’s is called Colored
Markings Logic CML for short). It is a first order logic over tokens and their aslo
It allows to reason about the presence of tokens in placesakso about the relations
between the colors of these tokens. The Idgid¢L is parametrized by a first order logic
over the color domain allowing to express constraints oemsk

We investigate the decidability of the satisfiability pretw of CML and its appli-
cations in verification oCPNs. While the logic is decidable for finite color domains
(such as booleans), we show that, unfortunately, the sdtibfy problem of this logic
becomes undecidable as soon as we consider as a color déraaiettof natural num-
bers with the usual ordering relation (and without any anitiical operations). We
prove that this undecidability result holds already for fitegymenty*3* of the logic (in
the alternation hierarchy of the quantifiers over tokenalalgs) with this color domain.

On the other hand, we prove that the satisfiability probledeisidable for the frag-
ment3*V* of CML whenever the underlying color logic has a decidable salidifia
problem, e.g., Presburger arithmetics, the first-ordeicled addition and multiplica-
tion over reals, etc. Moreover, we prove that the fragm&it of CML is effectively
closed undepost and pre image computations (i.e., computation of immediate suc-
cessors and immediate predecessorsiCfol’s where all transition guards are also in
F*V*. We show also that the same closure results hold when wedzmmntsie fragment
3* instead ofH*v*.

These generic decidability and closure results can be egbpli the verification of
CPN models following different approaches such as pre-postlitiom (Hoare triples
based) reasoning, bounded reachability analysis, andiivéunvariant checking. More
precisely, we derive from our results mentioned above thptlecking whether start-
ing from a3*Vv* pre-condition, &*3* condition holds after the execution of a transition
is decidable, that (2) the bounded reachability problervbeh twod*v* definable sets
is decidable, and that (3) checking whether a formula defameimductive invariant is
decidable for boolean combinations=fformulas.

These results can be used to deal with non trivial examplaeysiEms. Indeed, in
many cases, program invariants and the assertions nee@sthtulish them fall in the
considered fragments of our logic. We illustrate this byrgiauig out in our framework
the parametric verification of a Reader-Writer lock with ahitarily large number of
processes. This case study was introduced in [28] whereutws provide a correct-
ness proof for the case of one reader and one writer.

Proofs as well as the exposition of the Reader-Writer casgysare provided in
appendix.

Related work: The use of unbounded Petri nets as models for parametrizearies
of processes has been proposed in many existing works syél,@st, 22]. However,
these works consider networks firfiite-stateprocesses and do not address the issue of
manipulating infinite data domains. The extension of theaitb networks of infinite-
state processes has been addressed only in very few wols [8, 2]. In [4], Abdulla
and Jonsson consider the case of networks of 1-clock timsigsys and show, using
the theory of well-structured systems and well quasi ordgi[1, 27], that the verifi-
cation problem for a class of safety properties is decidabieir approach has been
extended in [21, 18] to a particular class of multiset regvsystems with constraints
(see also [2] for recent developments of this approach). @adeling framework is
actually inspired by these works. However, while they adgtle issue of deciding the
verification problem of safety properties (by reductionte toverability problem) for
specific classes of systems, we consider in our work a gefrarakwork, allowing to
deal in a generic way with various classes of systems, witer@iser can express as-
sertions about the configurations of the system, and checkraatically that they hold
(using post-pre reasoning and inductive invariant chegkor that they do not hold
(using bounded reachability analysis). Our frameworkvedldo reason automatically
about systems which are beyond the scoop of the techniqoesged in [4,21, 18, 2]
(such as, for instance, the parametrized Reader-Writérdgstem of Appendix E).

In a series of papers, Pnueli et al. developed an approatchdaerification of pa-
rameterized systems combining abstraction and proof tqaks (see, e.g., [6]). This
is probably one of the most advanced existing approachewiall to deal with un-
bounded networks of infinite-state processes. We proposeahdifferent framework
for reasoning about these systems. In [6], the authors denailogic on (parametric-
bound)arraysof integers, and they identify a fragment of this logic forieththe sat-
isfiability problem is decidable. In this fragment, theytras the shape of the formula
(quantification over indices) to formulas in the fragmafit* similarly to what we do,
and also the class of used arithmetical constraints onésdiod on the associated val-
ues. In a recent work by Bradley and al. [19], the satisfigbproblem of the logic of

unbounded arrays with integers is investigated and theoasifirovide a new decidable
fragment, which is incomparable to the one defined in [6], dgdin which imposes
similar restrictions on the quantification alternation e tformulas, and on the kind
of constraints that can be used. In contrast with these wavksconsider a logic on
multisetsof elements withany kind of associated data values, provided that the used
theory on the data domain is decidable. For instance, we sarinuour logic general
Presburger constraints whereas [6] and [19] allow limitledses of constraints. On the
other hand, we cannot specify faithfully unbounded arraysur decidable fragment
because formulas of the ford are needed to express that every non extremal element
has a successor/predecessor. Nevertheless, for the aoifiof safety properties and
invariant checking, expressing this fact is not necesseamy,therefore, it is possible to
handle in our framework all usual examples of parametrizestesns (such as mutual
exclusion protocols) considered in the works mentionedrabo

Let us finally mention that there are recent works on logiasttfirder logics, or
temporal logics) over finite/infinite structures (words oeds) over infinite alphabets
(which can be considered as abstract infinite data dom&n8) 23]. The obtained pos-
itive results so far concern logics with very limited dataxtin (basically infinite sets
with only equality, or sometimes with an ordering relaticem)d are based on reduction
to complex problems such as reachability in Petri nets.

2 Colored Markings Logic

2.1 Preliminaries

Consider an enumerable settokensand let us identify this set with the set of natural
numbersN. Intuitively, tokens represent occurrences of (parapebcesses. We assume
that tokens may have colors corresponding for instance t@ viues attached to the
corresponding processes. [&be a (potentially infinitejoken color domainExamples
of color domains are the set of natural numi¥rand the set of real numbeks

Colors are associated with tokens throwgiforing functionsLetI” be a finite set of
token coloring symbol€ach element it is interpreted as a mapping from (the set
of tokens) toC (the set of colors). Then, let a valuation of the token caolggymbols
be a mapping il — (N — C)].

To express constraints on token colors, we use first-ordgedmver the considered
color domains. In the sequel we refer to such logicsalsr logics Presburger arith-
meticsPA = (N, {0,1,+},{<}) is an example of such a logic. It is well known that the
satisfiability problem of Presburger arithmetics is debldaAn interesting sublogic of
PA is thedifference logicDL = (N, {0},{<x: k> 0}) where, for everyu,v,k € N,

u <k vholds if and only ifu— v < k. Theorder logicon natural numbers is the sublogic
of DL defined byOL = (N, {0}, <). Another example of a decidable logic which can
be used as a color logic is the first-order theory of ré&@lg = (R,{0,1,+, x},{<}).

We consider that tokens can be locatedlates LetP be a finite set of such places.
A markingis a mapping ifN — PU{_L }] which associates with each token the unique
place where it is located if it is defined, dr otherwise. Acolored markings a pair
(M, whereM is a marking andliis a valuation of the token coloring symbols.

2.2 Syntax and semantics oEML

We define hereafter the syntax of the log@ored markings logi€ML(L,,P) which
is parametrized with a color logig a finite set of token coloring symbdls and a finite
set of place®. Then, letL = (C,Q, =) be the first-order logic over the color domain
of the set of function$) and the set of relations. In the sequel, we omit all or some
of the parameters diML when their specification is not necessary.

Let T be set otoken variablesnd letC be set ofcolor variables and assume that
TNC =0. The set ofCML terms (calledoken color termjgis given by the grammar:

ti=z|y(x)| w(ta,...,tn)

whereze C,ye ', xe T, andw € Q. Then, the set oEML formulas is given by:

¢ i=x=y[p() [&(ts,---stm) [~d [0V |32 ¢ |3x ¢

wherex,ye T,zeC, pe PU{L},& € =, andty,...,tn are token color terms. Boolean
connectives such as conjunctior) @nd implication &), and universal quantification
(V) can be defined in terms of, v, and3. We also usélx € p. ¢ (resp.vx € p. ¢) as
an abbreviation of the formulax. p(x) A ¢ (resp.vx. p(x) = ¢). Notice that the set of
terms (resp. formulas) df is included in the set of terms (resp. formulas@fL(L).

The notions of free/bound occurrences of variables in fdaswiand the notions of
closed/open formulas are defined as usual in first-ordec$od the sequel, we assume
w.l.0.g. that in every formula, each variable is quantifiethast once.

We define a satisfaction relation between colored marking<L formulas. For
that, we need first to define the semanticEbfL terms. Given valuatior8 € [T — NJ,
de[C—C],andue [— (N — C)], we define a mapping-))g 5, Which associates
with each color term a value i@:

{(2)esn=0(2)
(YO) e = H(Y)(B(X))
{((ts, s tn)Dosp = W((t)esp - -» () esu)

Then, we define inductively the satisfaction relatiep s between colored markings
(M,) andCML formulas as follows:

(M, W) o5 &(t1, ... tm) iff & (<<tl>>eau, s ((tm))e.s0)
(M, 1) F=e,5 P(X) iff M(B(x)) =
(M, 1) Fesx=Y iff B(x) =8()
(M, Fos ¢ iff (M,[) o509
(M, o b1V 2 iff (ML) o5 ¢10r (M, 1) o592
(M,1) o5 X ¢ iff St eT. (M,l) Fox1)5 9
(M, 1) Fe5 3z ¢ iff Jce C. (M,1) Fosz—q ¢

For every formulap, we define[¢]q 5 the be the set of marking®/,) such that
(M, 1) Fo.5 9. Aformulag is satisfiableff there exist valuation8 andd s.t. [¢] g 5 # 0.

2.3 Syntactical forms and fragments

Prenex normal form: A formulais inprenex normal fornfPNF) if it is of the form

Q1y1Q2Y2. .. Qmym- ¢

where (1)Qq,...,Qm are (existential or universal) quantifiers, (&) ...,ymn are vari-
ables inT UC, and¢ is a quantifier-free formula. It can be proved that for evenyriula
¢ in CML, there exists an equivalent formuain prenex normal form.

Quantifier alternation hierarchy: We consider two familie$>,}n>0 and{IMn}n>o of
fragments oLML defined according to the alternation depth of existentidlariversal
quantifiers in their PNF:

— LetZg =T be the set of formulas in PNF where all quantified variablesa€,

— Forn> 0, letZy 1 (resp.Mp;1) be the set of formula®y; . .. ym. ¢ in PNF where
Y1,---,Ym € TUC, Qis the existential (resp. universal) quantifiefresp.v), andd
is a formula inMy (resp.Zp).

It is easy to see that, for every> 0, Z,, and[1, are closed under conjunction and dis-
junction, and that the negation okga formula is al'l,, formula and vice versa. For every
n > 0, letB(Z,) denote the set of all boolean combinationsSgfformulas. Clearly,
B(Zn) subsumes both, andl,, and is included in botB;1 andMy 1.

Special form: The set of formulas in special form is given by the grammar:

d:i=x=Yy|&ts,....tn) |0 | OV |Tz d|Ixep.

wherex,y € T,ze C, pe PU{L}, § € =, andty,...,t, are token color terms. It is
not difficult to see that for every closed formupain CML, there exists an equivalent
formula ¢’ in special form. The transformation is based on the follapiact: since
variables are assumed to be quantified at most once in fogyedah formulax. ¢ can
be replaced by/pcpug 1) IX € p. @ p Wheregy p is obtained by substituting ip each
occurrence of)(x) by true, and each occurrence qfx), with p # g, by false

3 Satisfiability Problem

We investigate the decidability of the satisfiability preiwl of the logicCML(L), as-
suming that the underlying color logichas a decidable satisfiability problem.

Let us mention that in the case of a finite color domain, fotainse for the domain
of booleans with equality and usual operations, the I&dil. is decidable. The result
is a direct consequence of the decidability of the class latiomal monadic formulae
in first-order logic, also known as the Lowenheim class eigjuality [10].

Then, let us consider the case of infinite data domains., Fuesprove that as soon
as we consider natural numbers with ordering, the satisifiaproblem of CML is un-
decidable already for the fragmdng. The proof (see Appendix A) is by a reduction of

the halting problem of Turing machines. The idea is to en@demputation of a ma-
chine, seen as a sequence of tape configurations, usingstekigrinteger colors. Each
token represents a cell in the tape of the machine at somewtatign step. Therefore
the token has two integer colors, its position in the tapd,tha position of its configura-
tion in the computation (the corresponding computatiop)st€he other informations
such as the contents of the cell, the fact that a cell corredpto the position of the
head, and the control state, are encoded using a finite nuofipdaces. Then, using
v*3* formulas, it is possible to express that two consecutivdigarations correspond
indeed to a valid transition of the machine. Intuitivelyistis possible because these
formulas allow to relate each cell at some configuration éodbrresponding cell at the
next configuration.

Theorem 1. The satisfiability problem of the fragmdng of CML(OL) is undecidable.

Nevertheless, we can prove the following generic decidgbi#sult for the frag-
mentZ, of our logic:

Theorem 2. Let L be a colored tokens logic. If the satisfiability problefi_ is decid-
able, then the fragmer, of CML(L) is decidable.

The idea of the proof (see Appendix B) is to reduce the sabidifiaproblem of>,
to the satisfiability problem oXy formulas (which are formulas in the color logig.
We proceed as follows: we prove first that the fragnterttas the small model property,
i.e., every satisfiable formulfrin 2> has a model of a bounded size (where the size is
the number of tokens in each place). This bound correspoctdsléy to the number
of existentially quantified token variables in the formWlatice that this fact does not
lead directly to an enumerative decision procedure for #isfability problem since
the number of models of a bounded size is infinite in genenaé (@ infinite color
domains). Then, we use the fact that over a finite model, usedeuantifications i
can be transformed into finite conjunctions, in order to dailformulad in Z; which
is satisfiable if and only if the original formuld is satisfiable. Actuallyp defines
precisely the upward-closure of the set of markings defined w.r.t. the inclusion
ordering between sets of colored markings, extended tooxedf places). Finally, it
can be shown that thE; formula @ is satisfiable if and only if th&g obtained by
transforming existential quantification over token intdsgantial quantification over
colors is decidable.

4 Constrained Petri Nets

LetT be a set of token variables a@e a set of color variables such tiahC #£ 0. A
Constrained Petri NefCPN) is a tupleS= (P,L,I",A) whereP is a finite set of places,
L =(C,Q,Z) is a colored tokens logid; is a finite set of token coloring symbols, and
Ais a finite set otonstrained transitionsf the form:

XeP = VeTq:¢(X.y) €y

Where? = (Xla"'7xn) € Tni 7 = (YL---aYm) € Tm1 _p> = (pl7'-'apn) €]an a =
(.. .,0m) € P™ andd(X,y) is aCML(L,T,P) formula called theransition guard

Given a fragmen® of CML, we denote byCPN[@] the class ofCPN where all
transition guards are formulas in the fragméntDue to the (un)decidability results of
section 3, we focus in the sequel on the clagseN[Z,] andCPN[Z4].

Configurations of.PN’s are colored markings. Constrained transitions definestra
formation rules of these markings. Given(@N S, we define a transition relation
—g between colored markings as follows: For every two coloredkimgs(M, 1) and
(M), we have(M, 1) —g (M, () iff there exists a constrained transition of the form
(1), and there exist tokens,ty andt],... .t s.t.Vi,j € {1,...,n}. i # j =t #tj,
andvi,je{1,...,m}.i# j=1t #ti, and

1. vie{l,...,n}.M(t)=p andM'(tj) = L,

2. Vie{l,...,m}. M(t/) = L andM'(t/) = q;,

3. vteN,ifvie{l,...,n}.t At andvj e {1,...,m}.t #tf, thenM(t) = M'(t) and
vy e uy)(t) =Hy(),

4. (M,pUl) f=g5, 9(X,Y), where € [T — NJ is a valuation of the token variables
suchthati € {1,...,n}. 8(x) =t andvj € {1,....m}. 6(yj) =tj, & is the empty
domain valuation of color variables, apdJ |/ is such that: for every € I, and
every tokert € T, if t € {ty,....ta} thenpU P (y)(t) = p(y)(t), if t € {t],....,t}}
thenpU /() (t) = ' (y)(t), anduU K (y) (t) = u(y)(t) = K (y)(t) otherwise.

Intuitively, the definition above says that firing a trarmitimeans than different
tokensty,...,t, are deleted from the places, ..., pn (1), andm new different tokens
t;,...,t,, are added to the places, ... ,gm (2), provided that the colors of all these (old
and new) tokens satisfy the formuja which may also involve constraints on other
tokens in the whole markinigl (4). Moreover, this operation does not modify the rest
of the tokens (others thanp,ty andty, ..., t;) in the marking (3).

Given a colored marking/, let postg(M) = {M' : M —s M’} be the set of its
immediate successors, andpetg(M) = {M' : M’ —s M} be the set of its immediate
predecessors. These definitions can be generalized tofseddooed markings in the

obvious way. Finally, for every set of colored markintyk let preg(M) = preg(M),

where(™) denotes complementation (w.r.t. the set of all colored mnags).

5 Modeling power of CPN

We show in this section ho@PN can be used to model (unbounded) dynamic networks
of parallel processes. We assume w.l.0.g. that all prosemseidentically defined. We
consider that a process is defined by a finite control statehimasupplied with vari-
ables and data structures ranging over potentially infohd@ains (such as integer vari-
ables, reals, etc). Processes running in parallel can corwae and synchronize using
various kinds of mechanisms (rendez-vous, shared vasableks, etc). Moreover, they
can dynamically spawn new (copies of) processes in the mktwo

Dynamic networks of processeget £ be the set of control locations of each of the
processes. (Remember that this set is the same for all mex¢dNe associate with
each process control locatidre £ a place. Then, each running process is represented

by a token, and in every marking, a place contains preciseytékens representing
processes which are at the corresponding control location.

Assume for the moment that processes do not manipulateif@filomain) data.
Then, a basic actioh— ¢’ of a process moving its control from a locatiéto another

location?’ is modeled by a transitionxe ¢ — y € ¢ : true. An action spawning a new

proces%wﬂ’ is modeled using a transition which creates a new token in the

initial control location of the new processe ¢ < y; € ¢/, y> € £y : true.

Local variables: Consider now that each process has a vecton &fcal variables
V = (V1,...,Vq) over some (potentially infinite) data domain. Then, we coesia
set of coloring symbol§ = {y1,...,yn} associating with each tokemcolors (in the
considered data domain) corresponding to the values ofate bariables: for each
process, represented by a tokefor each local variablg, yi(t) defines the value of.

A process actiord M(’ which (in addition of changing the control location

from ¢ to ') performs the assignmeit := ?(7), where f is a vector of expressions
over the considered data domain, is modeled by the transitio

xel—yel: Avi(y) = fi(va(x),...,¥n(x))
i—1

For that, we use a token color logic which allows to expressetfiects of the actions.
For instance, in the case of processes with integer vadadme linear assignments,
Presburger arithmetic®Q) can be used as colored tokens logic.

Global variables: Assume that processes share global variables= {us,...,um}
(which are read and updated in a concurrent way). We assowitlt each global vari-
ableu; a placeg; containing a single tokefy, and we associate with this token a color
a(ty) representing the value af, wherea € I is a special coloring symbol. Then,

a process actio = f(T.V) ¢’ (assigning to global variables values depending on

both global variables and local variables of the processjddeled by the transition:

XELXLEQL,. ... XmEIm—YEL Y1 €T1,...,Ym E Um:

n m
(A =vix) A Aa) = fi(@(x),...,a(m), v1(X),- -, Yn(X)
i=1 i=1

In the modeling above, we consider that the execution of thegss action is atomic.
When assignments are not atomic, we must transform eaclsigiasent action into a
sequence of atomic operations: read first the global vaatadhd assign their values to
local variables, then compute locally the new values to B&gasd to global variables,
and finally assign these values to global variables.

Rendez-vous synchronizatio®ynchronization between a finite number of processes
can be modeled as in Petri nef2Ns allow in addition to put constraints on the colors
(data) of the involved processes.

Priorities: Various notion of priorities, such as priorities betweefiatent classes of
processes (defined by properties of their colors), or gresibetween different actions,
can be modeled iRPNs. This can be done by imposing in transition guards that tran
sitions (performed by processes or corresponding to agfiohhigher priority are not
enabled. These constraints can be expressed Okifigrmulas. In particular, checking
that a placep is empty can be expressed by € p. false (Which shows that as soon
as universally quantified formulas are allowed in guardsoodels are as powerful as
Turing machines, even for color logics over finite domains.)

Process identitieslt is possible to associate with each newly created proceskeatity
defined by an integer number. For that, we consider a spegiatiog symbolld € I
associating to each token the identity of the process iits. To ensure that different
processes have different identities, we express in thedgofaevery transition which
creates a process (i.e., adds a token to the place corrasgatiadits initial control
location) the fact that the identity of this process doesex@t already among tokens in

places corresponding to control locations. This can edslygone using a universally

quantified (11) formula. Therefore, a spawn actiér™*"““. ¢/ is modeled by:

Xel—syr el yoely:

n
1d(x) =1d(y2) A (AW =vi(X) A A Vteloc. ~(ld(y2) =Id(t))

i=1 loceL
and the modeling of other actions (such as local/globabides assignments) can be
modified accordingly in order to propagate the process itletitrough the transition.
Notice that process identities are different from tokerueal Indeed, in some cases
(e.g., for modeling value passing as described below), we use different tokens (at
some special places representing buffers for instanceg¢geonding to the samd.

Locks: Locks can be simply modeled using global variables stottiregidentity of the
owner process, or a special value (e-d.) if it is free. A process who acquires the lock
must check if it is free, and then write his identity:

X1 € £, %z €lock—y; € £/, yo € lock: a(x2) = —1A0a(yz) = Id(X1) A ...

To release the lock, a process assigtisto the lock, which can be modeled in a similar
way. Other kinds of locks, such as reader-writer locks, cian &e modeled in our
framework (see Appendix E). The modeling of such locks wimennumber of readers
and writers can be arbitrarily large requires the use of ersal quantification in guards.

Value passing, return valuesProcesses may pass/wait for values to/from other pro-
cesses with specific identities. They can use for that shemags of data indexed by
process identities. Such an arrAycan be modeled in our framework using a special
place containing for each process a token. Initially, thé&ce is empty, and whenever
a new process is created, a token with the same identity iscattdthis place. Then,

to model that a process read/write 8fi], we use a transition which takes from the
place associated witA the token withld equal toi, read/modifies the value attached

with this token, and put the token again in the same placeinstance, an assignment

actionémy executed by some process is modeled by the transition:

X1ElXxo EA—y el Yo EA:
Id(x1) = 1d(y1) A (A Yi(xa) = Vi(yr) Ald(x2) = kAa(y2) = eAld(yz) = Id(x2)
i=1

Notice that, while it is possible to model usiGNs systems manipulating parametric-
size arrays (using multisets of tokens with integer colong cannot express in the
decidable fragmeni, of CML the fact that a multiset indeed encodes an array of el-
ements indexed by integers in some given interval. The re&sthat, while we can
express i1, the fact that each token has a unigue color in the intervaheesl to use

M, formulas to say that for each color in the interval there xstoken with that color.
Nevertheless, for the verification of safety properties enecking invariants, it is not
necessary to require the latter property.

6 Computing post and pre images

We prove hereafter closure properties@L fragments under the computation of im-
mediate successors and predecessorSRiNs. The main result of this section is:

Theorem 3. Let S be aCPN[Z,], for n € {1,2}. Then, for every closed formulain
the fragmenk, of CML, it is possible to construct two closed formulis,s: and e

in the same fragmerd, such thaf[$,est] = posts([¢]]) and [¢pre]] = pres([[d])-

We give hereafter a sketch of the proof. lgetbe a closed formula, and letbe
a transitionX € P — ¥ € q : Y of the systenS. W.l.o.g., we suppose thgt and
Y are in special form. We define hereafter the formuas. andd,. for this single
transition. The generalization to the set of all transigissstraightforward.

The construction of the formulag,.: and¢ . is not trivial because our logic does
not allow to use quantification over places and color mapp{agsociated with coloring
symbols). Intuitively, the idea is to express first the efffaleleting/adding tokens, and
then composing these operations to compute the effect ahaition.

Let us introduce two transformations and® corresponding to deletion and cre-
ation of tokens. These operations are inductively definedhenstructure of special
form formulas in Table 1.

The operatiort is parameterized by a vect@ of token variables to be deleted, a
mappingloc associating with token variables i@ the places from which they will be
deleted, and a mapping1 associating with each coloring symbollirand each token
variable in'Z a fresh color variable i€. Intuitively, © projects a formula on all vari-
ables which are not ifz. Rule©; substitutes in a color formul&(t) all occurences
of colored tokens inZ by fresh color variables given by the mappiagl. A formula
X =Yy is unchanged by the application ©fis the token variables andy are notinz;
otherwise, rules; replacesx =y by true if it is trivially true (i.e., we have the same
variable in both sides of the equality) or by falseibr y is in Z. Indeed, each token

variable inZ represents (by the semantics @N) a different token, and since this
token is deleted by the transition rule, it cannot appeahereached configuration.

Rulesos ando4 are straightforward. Finally, rules does a case splitting according to
the fact whether a deleted token is precisely the one refedthy the existential token

quantification or not.

The operationp is parameterized by a vecta of token variables to be added and a
mappindloc associating with each variableire Z a place (in which it will be added).
Intuitively, @ transforms a formula taking into account that the addedrteksy the
transition were not present in the previous configuratiom (@erefore not constrained
by the original formula describing the configuration beftlie transition). Then, the
application of& has no effect on color formula t') (rule ®1). When equality of
tokens is tested, rule, takes into account that all added tokens are distinct aferdiit
from the existing tokens. For token quantification, rgle says that quantified tokens
of the previous configuration cannot be equal to the addezhimk

Then, we defing,.s: to be the formula:

3y €q.37T. ((d)/\l]J)@(Y,YH_p),rH(YH?)))@(V,VHa)

In the formula above, we first delete the tokens correspanttinX from the current
configuration¢ intersected with the guard of the rule Then, we add tokens corre-
sponding toy . Finally, we close the formula by quantifying existentyathe color
variables and the token variables corresponding to thedatidens.

Similarly, we definep. to be the formula:

IXep.3c. (e (X, X —=PHAY) (Y, Yy~ q,F—(Y—T7))

For predecessor computation, we add to the current configarthe tokens represented
by the left hand side of the rul® in order to obtain a configuration on which the guard
Y can be applied. Then, we remove the tokens added by the rinig teden variables
Y . Finally, we close the formula by quantifying existentjathe color variables and the
token variables corresponding to the added tokens. It ig teesee that i) andy are

in a fragment,, for anyn > 1, then both of the formulats,es: andd,.. are also in the
same fragment,.

Corollary 1. Let S be aCPN[Z1]. Then, for every formul@ in MMy, it is possible to
construct a formula . also inMMy s.t. [¢ 5] = pres([$]]).

7 Applications in Verification

We show in this section how to use the results of the previeasan to perform various
kinds of analysis. Let us fix for the rest of the section a cadotokens logid. with a
decidable satisfiability problem, andZ®N Sdefined ovet and the logicCML(L).

7.1 Pre-post condition reasoning

Given a transitiort in Sand given two formulag andd’, (¢,1,¢’) is a Hoare triple if
whenever the conditiog holds, the conditio’ holds after the execution of In other

o1 §(T)o(Z,10c,c01) = &(T)[col(y)(D/YDyer 7
x=y ifxy¢g7Z

©2: (x=y)©(Z,loc,col) = { true ifx=y
false otherwise

o3 (=$)©(Z,loc,col) = —($©(Z,loc,col))

Oa: (01V2)©(Z,loc,col) = ($10(7Z,1loc,col))V ($20(Z,1oc,col))

Os5: (Ixe p.) ©(Z,10c,col) = Ixep. ($O(Z,1loc,col))V
Vze?:loc(z):p((b[z/x])@(?71007(301)

P Et)e(Z,10c) = &)
x=y ifxy¢7Z
@2 (x=y)®(Z,loc) = { true ifx=y
false otherwise
®s: (~0)®(Z,10c) = (6 (Z,1oc))
@4 (¢1\/¢2)@(?,100) = (¢1@(?,1OC))\/(¢2@(?,10C))
®5: (Ixep. ¢)®(?7loc) = xep (¢@(?J-OC))/\/\ZE?:loc(Z):pﬁ(XZ ?)

Table 1. Definition of the® ando operators.

words, we must haveost, ([¢]) C [¢'], or equivalently thapost,([¢])) N [~¢'] = ©.

Then, by Theorem 3 and Theorem 2 we deduce the following:

Theorem 4. If S is aCPN[Z2], then the problem whethéd, T,¢’) is a Hoare triple is
decidable for every transitionof S, every formul@g € 2, and every formulg’ € M.

7.2 Bounded reachability analysis

An instance of the bounded reachability analysis problem igple (Init, Target k)
wherelnit andTargetare two sets of configurations, akds a positive integer. The
problem consists in deciding whether there exists a contiputaf length at mosk
which starts from some configurationiinit and reaches a configurationTarget In
other words, the problem consists in deciding whetranget o posts(Init) # 0,
or equivalently whetheimit N o pres(Target) # 0. The following result is a direct
consequence of Theorem 3 and Theorem 2.

Theorem 5. If S is a CPN[Z], then, for every k& N, and for every two formulas
d1, 1 € Xp, the bounded reachability probleffid,]|, [¢T],K) is decidable.

7.3 Checking invariance properties

An instance of thénvariance checking probleiis given by a pair of sets of configura-
tions (colored markings)init, Inv), and consists in deciding whether starting from any
configuration inlnit, every computation o§ can only visit configurations ihnv, i.e.,
Uk=0 post‘g(lnit) C Inv. This problem is of course undecidable in general. Howexver,

deductive approach using inductive invariants (providedhe user) can be adopted.
We show that our results allow to automatize the steps ofaysoach.

A set of configuration®1 is aninductive invariantif postg(M) C M, or equiva-
lently, if Ml C preg(M). By Theorem 3 and Theorem 2, we have:

Theorem 6. If S is aCPN[Z], then for every formulg in B(X1), the problem of check-
ing whetherp defines an inductive invariant is decidable.

The deductive approach for establishing an invariancegatggonsiders thnduc-
tive invariance checking problegiven by a triple(Init, Inv, Aux) of sets of configura-
tions, and which consists in deciding whetherl{) C Aux, (2) AuxC Inv, and (3)Aux
is an inductive invariant. Indeed, a (sound and) compldeefar solving an invariance
checking problengInit, Inv) consists in finding a set of configuratioAsxallowing to
solve the inductive invariance checking problémit, Inv, Aux). The following result
follows directly from Theorem 3, Theorem 2, and the previtheorem.

Theorem 7. If S is aCPN[X], then the inductive invariance checking problem is de-
cidable for every instanc€dinic]], [¢]]. [¢')) wheredinir € 22, and¢, ¢’ € B(2).

Of course, the difficult part in applying the deductive awio is to find useful
auxiliary inductive invariants. One approach to tacklesthroblem is to try to com-
pute the largest inductive invariant included limv which is the se{,-g |5rve§(lnv).
Therefore, a method to derive auxiliary inductive invatgis to try iteratively the sets
Inv, Inv preg(Inv), InvN pres(Inv) N prea(Inv), etc. In many practical cases, only few
strengthening steps are needed to find an inductive invafisudeed, the user is able
in general to provide accurate invariant assertions foheaatrol point of his system.)
The result below implies that the steps of this iterativersithening method can be
automatized whe®PN[Z;] models and1; invariants are considered. This result is a
direct consequence of Corollary 1.

Theorem 8. If Sis aCPN[Z4], then for every formulg in M, and every positive integer
k, it is possible to construct a formula fiy defining the seff)y; pres([¢]).

We show in the full paper the applicability of our framework a nontrivial ex-
ample. We present the verification of a Reader-Writer loakaio unbounded number
of processes using the inductive invariant checking apgro@his example has been
considered in [28] for a fixed number of processes.

8 Conclusion

We have presented a framework for reasoning about dynaanapetric networks of
processes manipulating data over infinite domains. We haveided generic mod-
els for these systems and a logic allowing to specify theifigorations, both being
parametrized by a logic on the considered data domain. We idawntified a fragment
of this logic having a decidable satisfiability problem anldiet is closed undesost
andpre image computation, and we have shown the application oétresaults in veri-
fication.

The complexity of the decision procedure and of gat/pre computation is ex-
ponential in the size of the formula, and more precisely ia ttumber of quanti-
fied variables. However, formulas which appear in the amalg$ systems such as
parametrized/dynamic networks (such as assertions esipggigivariants at each partic-
ular control location) are naturally in special form (seéimigon in Section 2.3) where
each token variable is bound to a unique place (this alloves/tad the case splitting
according to all possible mappings between token varianesplaces), and moreover,
new token variables introduced by post/pre computatioasér fixed small number
(the number of synchronized processes by the considenesiticn which is in general
equal to two). These facts reduce significantly the complémipractice.

Our framework allows to deal in a uniform way with all class#ssystems ma-
nipulating infinite data domains with a decidable first-artheory. In this paper, we
have considered instantiations of this framework baseagit$ over integers or reals
(which allows to consider systems with numerical variapl&fferent data domains
can be considered in order to deal with other classes ofmgsseich as multithreaded
programs where each process (thread) has an unboundedduadio procedure calls).
We will address in more details the issue of applying our amrk to the verification
of multithreaded programs in a forthcoming paper. Our fetwork includes also the
extension of our framework to other classes of systems aautirfes such as dynamic
networks of timed processes, networks of processes withdmast communication,
interruptions and exception handling, etc.

References

1. P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. Gardgcidability theorems for
infinite-state systems. IRAroc. of LICS’96 pages 313—-321, 1996.

2. P. A. Abdulla and G. Delzanno. On the Coverability Problfem Constrained Multiset
Rewriting. InProc. of AVIS'06, Satellite workshop of ETAPS'®&nna, Austria, 2006.

3. P. A. Abdulla, B. Jonsson, M. Nilsson, and M. Saksena. A8uof Regular Model Check-
ing. InProc. of CONCUR’04volume 3170 o NCS Springer, 2004.

4. Parosh Aziz Abdulla and Bengt Jonsson. Verifying netwarktimed processes (extended
abstract). In Bernhard Steffen, editétroc. of TACAS'98volume 1384 ofLNCS pages
298-312. Springer, 1998.

5. A. Annichini, E. Asarin, and A. Bouajjani. Symbolic teéfnes for parametric reasoning
about counter and clock systems.Rroc. of CAV’00 LNCS 1855, 2000.

6. T. Arons, A. Pnueli, S. Ruah, J. Xu, and L.D. Zuck. Paranmwed Verification with Au-
tomatically Computed Inductive Assertions. Bmoc. of CAV'01 volume 2102 oftNCS
Springer, 2001.

7. Bernard BoigelotSymbolic Methods for Exploring Infinite State SpaeaD thesis, Faculté
des Sciences, Université de Liege, volume 189, 1999.

8. M. Bojanczyk, C. David, A. Muscholl, Th. Schwentick, and3egoufin. Two-variable logic
on data trees and XML reasoning. Proc. of PODS'06ACM, 2006.

9. M. Bojanczyk, A. Muscholl, Th. Schwentick, L. Segoufinda®. David. Two-variable logic
on words with data. IfProc. of LICS’06 IEEE, 2006.

10. E. Borger, E. Gradel, and Y. Gurevicfihe Classical Decision ProblemPerspectives of
Mathematical Logic. Springer-Verlag, 1997. Second pnigt{Universitext) 2001.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

A. Bouajjani, J. Esparza, and O. Maler. Reachabilityyesigof pushdown automata: Appli-
cation to model-checking. IRroc. of CONCUR’97volume 1243 oL NCS pages 135-150.
Springer, 1997.

A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract Ragiodel Checking. IrProc. of
CAV’04, volume 3114 oL NCS Springer, 2004.

A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. RegiModel Checking. IrProc. of
CAV’00 volume 1855 oL NCS Springer, 2000.

A. Bouajjani, Y. Jurski, and M. Sighireanu. A genericnfi@vork for reasoning about dy-
namic networks of infinite-state processes. Technical R&gfi7-01, LIAFA lab, January
2007. Available abttp://ww. | i afa.jussieu.fr/ ~abou/publis.htm.

A. Bouajjani, M. Muller-Olm, and T. Touili. Regular symalic analysis of dynamic networks
of pushdown systems. Rroc. of CONCUR’'05volume 3653 of NCS Springer, 2005.

A. Bouajjani and T. Touili. On computing reachabilittsef process rewrite systems. In
Proc. of RTA'05volume 3467 oL NCS Springer, 2005.

Ahmed Bouajjani. Languages, Rewriting systems, andit@tion of Infinte-State Systems.
In Proc. of ICALP’01 volume 2076 oL NCS Springer Pub., 2001.

M. Bozzano and G. Delzanno. Beyond Parameterized \@itit. InProc. of TACAS’02
volume 2280 oLNCS Grenoble, France, 2002. Springer Pub.

A. R. Bradley, Z. Manna, and H. B. Sipma. What's decidatieut arrays ? IfProc. of
VMCAI'06, volume 3855 o NCS Springer, 2006.

E. M. Clarke, O. Grumberg, and S. Jha. Verifying paranmwetd networks TOPLAS 19(5),
1997.

G. Delzanno. An assertional language for the verificatibsystems parametric in several
dimensions Electr. Notes Theor. Comput. S&0(4), 2001.

G. Delzanno, J.-F. Raskin, and L. Van Begin. Towards theraated verification of multi-
threaded java programs. TTACAS volume 2280 o£ NCS pages 173-187. Springer, 2002.
S. Demri and R. Lazic. LTL with the freeze quantifier andister automata. IfProc. of
LICS’06. IEEE, 2006.

E. A. Emerson and K. S. Namjoshi. On model checking foraeterministic infinite-state
systems. IrnLICS’98 IEEE, 1998.

J. Esparza, A. Finkel, and R. Mayr. On the verificationroBlolcast protocols. IRroceedings
of LICS '99 pages 352—359. IEEE Computer Society, 1999.

A. Finkel and J. Leroux. How to compose presburger-acatbns: Applications to broad-
cast protocols. IfProc. of FST&TCS'02volume 2556 o£ NCS Springer, 2002.

A. Finkel and Ph. Schnoebelen. Well-structured traorsgystems everywherd@heor. Com-
put. Sci, 256(1-2):63-92, 2001.

C. Flanagan, S.N. Freund, and S. Qadeer. Thread-moekriéication for shared-memory
programs. IrProc. of ESOP’02pages 262—-277. LNCS 2305, 2002.

S. M. German and P. A. Sistla. Reasoning about systerhswaihy processeSACM, 39(3),
1992.

P. Wolper and B. Boigelot. Verifying systems with infentiut regular state spaces.Rmoc.
of CAV’'98 volume 1427 oL NCS Springer, 1998.

P. Wolper and V. Lovinfosse. Verifying properties ofgarsets of processes with network
invariants. InProc. Intern. Workshop on Automatic Verification MethodsFimite State
SystemsLNCS 407, 1989.

A Proof of Theorem 1

We reduce the halting problem of a Turing machine to the fiabidity problem of
CML[P,OL]. Let us describe informally how we encode computations offargTur-
ing machine: A computation is a sequence of tape configursiteach of them being a
sequence of symbols. Then, we associate a different to tekbreach position of each
configuration in the computation. we associate with eaclhe$¢ tokens two integer
colors:stepcorresponding to the the position number of its correspogdonfigura-
tion in the computation (i.e., to ordering number of the comagion step corresponding
to the configuration), andell corresponding to its position number in its own config-
uration. The other informations we need to associated wigse tokens are the tape
symbol, whether it corresponds to the position of the heati@imachine, and in this
case, the control state of the machine. These informatianger over finite sets and
therefore can be encoded using a finite number of differextigd. For instance, a token
x in the placeA_Head g encodes a cell carrying the lett&rand which corresponds to
the position of the head of the machine, and the state of thehimag. We show that
we can encode valid succession of configurations usintprmulas.

LetM = (Q,I',B,qs,A) be a turing machine, whef@is a finite set of statd, is the
finite tape alphabet containimgjthe default blank symbodjs is the final state, andl is
the transition relation. Without loss of generality we sapg that the machine has no
deadlocks, and once it reach the final state it stops.

We define the séP of places to be the produEtx {Head Nohead x Q. In order
to describe the encoding of the transition of the machineneed to introduce the
following notations:

Headq(x) == \/ A.Headq(x)
Acl

Headx) = \/ Head.q(x)
geQ

Blank(x) ::=\/ B_Headq(x) v \/ B_NotHeadq(x)
geQ geQ

SameletterPassiyey) ::= /\ A_NotHeadq(x) <& A_NotHead(y)

Acl,geQ
SameLetterActivate y) := /\ ANotHeadq(x) < \/ AHeadp(y)
AcT geQ peQ

Then, we give hereafter the encoding of a run of the machiaeirsg from the
initial configuration and reaching the control stafe The encoding is given by the
conjunction of several formulas we define below.

Initially (i.e., at the first step), all the cells in the tapentain the blank symbol, the
machine is in the statgy and the head is at the left most position of the tape (i.€l., cel
number 0). This is expressed by the following formula:

Init ::= (Vx.stegx) = 0= Blank(x)) A 3x.stefx) = cell(x) = 0AHead qo(X)

Then, we need to require that there is a complete and sourudiiergcof each tape (at
every computation step) :

Tapes:= (Vx. ¥n. Jy. stegx) = stefy) Acell(y) =n)
AVX,y. (stedx) = stefy) Acell(x) =cell(y)) = x=y

and that at each step there is at most one cell correspormlithg tposition of the
head:

OneHead perStep=Vx,y.(Headx) AHead(y)) = stefdx) # stefy)
Moreover, we need to require that each step is followed byrer@ne:
Liveness:= ¥x.3y.stefdy) > stefx)
and that the computation reaches at some step the final state:
Acceptance= dx.Head.q;(x)

Now, it remains to encode a transition step, i.e., to reqihia¢ every two successive
configurations correspond to a valid transition in the maehConsider the case of a
transition of the form: if the machine is at staigit reads a symbda on the tape, writes
b at the same position, moves its head to the left, and goeatigst(The other cases
can be handled in a similar way.)

Informally we use token variable, to,t3 as follows :t; corresponds to the holder of
the head and carry the letteand the stat@, t3 represents the cell that repladces the
next step and carry the lettbyandt, corresponds the cell which is just to the lefttgf
that is the next holder of the head and of the stpt€he variabld, is used to express
thatt; andts belong to consecutive steps. The variadesmdy express that all cells of
the tape different fronty, to, t3 remain the same.

Vig,to,13 [a_Head_p(tl) N
steft;) < stef{ts) A —3ts. (stefty) < stefts) < stefts)) Acell(tz) = cell(ty)
Astef(ts) = steftz) A —3ts. cell(t2) < cell(ts) < cell(tz)
] = b_NotHeadts3) AHeadq(t2)
AVX, Y. [steX) = stef{t1) Astedy) = steftz) Acell(x) = cell(y) Ay # t3]
= (SameLetterPassifey) Ay #£ty) V (y =t A SameLetterActivatg, y))

B Proof of Theorem 2

We reduce the satisfiability problem &p formulas to the satisfiability problem &y
formulas (which correspond to formulas in the token colagidowhich is supposed to
has a decidable satisfiability problem).

We prove first that the fragmeb has the small model property, i.e., every satis-
fiable formulag in 2> has a model of a bounded size (where the size is the number of
tokens in each place). Létbe a closed formula ill, in prenex fornrdx.3Z.VY. @

whereX,y are token variables and color variables, and let us assume that all vari-
ables are different.

Suppose that there is a colored markifd,) which satisfiesh. This means that
there exist a vector of tokens (resp. of colorsc) and a mappin (resp.d) associat-
ing these tokens (resp. colors) to the variabkegresp.Z) such that{M, 1) =g 5 VY .¢.

It is easy to see that, for every universally quantified folamthat if it is satisfied
by a marking, it is also satisfied by all its submarkings fvitrclusion ordering). Let
(M’ /) be the finite colored marking defined as the restrictiofiMfy) to tokens and
colors in the vectord” and . Then clearly, we havaVl’, I{) =56 VY .@, and therefore
we have(M’, /) = 3X.37Z.0.

This shows a small model property for the fragm&pt every satisfiable formula
¢ =3IX.3ZVZ.phas amodel of size less or equal thaf|. However this fact does not
imply the decidability of the satisfiability problem sindestcolor domains are infinite.

Nevertheless, we show that it is possible to reduce thdfisdiity problem from;
to 3;. We denote by'y — X] the set of mappings from elements ofy to elements
of X. Since the modelM’, f) is finite, the fact tha{M’, /) |=5¢ VY .@ is equivalent
to the fact that

M W) E3X.3Z. A\ Y —o(Y)
oc[y—X]

Finally let us show that the satisfiability problem can beueatl fromZ; to .
Consider a formulg = 3X.q.

First, we do the following transformations: (1) we elimiaabken equality by enu-
merating all the possible equivalent classes for equaktyben the finite number of
variables inX, (2) we eliminate formulas of the form(x) by enumerating all the pos-
sible mappings from a token variabt¢o a place, and (3) we replace terms of the form
y(x) by fresh color variables. Let us describe more formally éheeansformations.

Let B('X) be the set of all possible equivalence classes (w.r.t. teduality rela-
tion) over elements oK : an elemenein B(X) is a mapping fromx to X that gives
a single representant for each class.

Clearly ¢ is equivalent to

\/ 3% A # i) AGe(¥)
ecB(X) i#]

whereyz is e(X) andqe is build from@by giving to equalities; = Xj the value true iff
the representam(x) ande(x;) are the same.

Similarly, we eliminate fromNpe the occurences of formulggx;). We already have
defined the notatiofix — P] to be the set of all the mappings from element&irto
elements irP. We have an equivalent formula :

\V Vo IV AW £Yi)AYe € PEAGeo(Ve)
ecB(X) oc[ye—P) i#]

whereps is the value of the mapping(ye), and(ﬁacy is built from @e by replacing each
occurence op(y) by trueiff o(y) = p.

Finally, for each coloring symbal € I" and each token variabiein the vectorys,
we define a color variabls,y, and we lets to be a vector containing all such color
variables.

It is now easy to see that the formula

%6 A\ #¥i) A Ve € Po A e (Ve)
i]

is satisfiable iff the followindo formula

IS QoelVY) — Syylyeryer

is satisfiable. Therefore, the satisfiability problentgfcan be reduced to satisfiability
problem ofZg, which is a decidable problem by hypothesis.

C Reader-Writer lock: An example of modeling

Reader-writer is a classical synchronisation scheme usegerating systems or other
large scale systems. Several readers and writers work omecondata. Readers may
read data in parallel but they are exclusive with writersité¥s can only work in ex-
clusive mode with other threadReader-writer locks used to implement such kind of
synchronization. Readers have to acquire the lockead modeand writers inwrite
mode

The implementation in Java of atomic operations for accarelease in read and
write mode is classical. This implementation usesrdegerw to identifies the thread
holding the lock in write mode or -1 if no such thread exista¢ads identifiers are
suppsed to be positive integers). Also,iateger setr is used to store the identifiers of
all threads holding the lock in read mode. Acquire and redegeerations are accessing
variables w and r in mutual exclusion.

Our model of reader-writer lock follows the implementatiabove. The (global)
lock variable is modeled by a place where each token represents a thread using the
lock (i.e., it has acquired but not yet released the lockyhEaken inrw has two colors:
ty gives the type of the access to the lock (read or write),ldngives the identifier of
the thread represented by the token. Ttheolor is useful to ensure that the releasing
of a lock is done by the thread which acquired it. Since aegaird release should be
atomic operations, we model them by single transitions {sdxte C).

Let consider the program using the reader-writer lock givemable C. It consists
on several Reader and Writer threads, a global readernoit& variable |, a global
variable x, and a local variable y for Reader threads. Wiiteeads change the value
of the global variable x after acquiring in write mode thekoReader threads are set-
ting their local variable y to a value depending on x afteruaggg in read mode the
lock. (Let us assume that for example the variables rangetbeedomain of positive
integers.) Each thread has an unique identifier represémtdte _pid local variable.

For this program, the safety property to verify is the abgsewicrace on variable x:
value ofx should not change while the lock is held in read mode, i.e2pder thread at
line 3 has a value of local variable y equal to f(x).

threads Writer: threads Reader:

1: |l.acgwrite(-pid); 1 |.acqgread(_pid);
2: x = g(x); 2: y = f(x);

3: l.rel_write(_pid); 3: l.rel_read(-pid);
4: 4:

Table 2. Example of program using reader-writer lock.

The CPN model corresponding to this program is given in Table C. We the
logic DL as colored tokens logic. To each control point we associptace (e.g., place
r3 for control point corresponding to line 3 of Reader thrgaatyd a transition (e.g.,
transitionrs for statement at line 3 of Reader threads). The global vlriais modeled
as explained in previous section: we have a placeontaining an unique token which
color a stores the current value of x. With each token in the placesesponding to
Reader control points we associate a cgléo model the local variable y. We denote
by I'(t’,t) the (conjunctive) formula expressing thaandt have the same colors. It can
be observed that the obtained model SRN[Z;].

wy tewl—t ew2l’ erw
i =(Fzerw.true) A ld(I") =1d(t) A ty(I') =W A T(t,t)

Wo it e W2ty € px — t e w3t} € px
a(t) =g(alt) ATt

w3: tew3lerw —t' ews
Sld() =1d(t) Aty(l) =W A T(t')t)

ry: terl—tecr2l'crw
D =(Fzerwty(z) =W) A ld(I)) =1d(t) A ty(l")=R A T(t',t)

rp: ter2tye px —t' erdt; e px
Dyt = fa(tk) A ld) =1d(t) A T(t],t)

rg: terdlerw—terd
Sld()=1d(t) Aty(l) =R A T(',1)

Table 3. Model of reader-writer lock.

The race-free property that the system must satisfy can peesged by the follow-
ing N4 formula:

RF =Vt €r3. Wty € px. Y(t) = f(a(tx))

Actually, in order to establish the invariance of the prapebove, it must be
strengthened by other auxiliary properties:

— Placepy contains a single token:
A= VXX € px. X=X
— Reader-writer lock is either kept by a set of readers or byiguewriter:

RW = vu,Uu € rw. (ty(u) =ty(U)) A (ty(u)=W = u=U)
A (ty(u) = Rvty(u) =W)

— For all threads in places2 andw3 of the Writer, the tokens in the lock place have
the same identities and are of writer type:

RWy, = vYw € {w2,w3}. VI, € rw. Id(w) = Id (Iw) Aty(lw) =W

— If threads exist in place2 andr3 of the Reader, then there is a token in the lock
place with reader type:

RW = (3r € {r2,r3}.true) = (3I; erw. ty(l;) = R)

It can be seen that all the formulas above are in the fragBext).
We show in Section E how to check these properties on the ngdazi in Table C.

D Reader-writer lock: An example of Post image computation

Consider the reader-writer example of Section C. We showdfesr the computation
of the post-image of theRW property w.r.t. the transitiom;.

First, we instantiate the,.s; formula given in the proof of Theorem 3 usiiRyV for
the initial closed formulap, and the side condition of transitiam for Y. The colorld
of the tokent deleted byw; is mapped to a new color variabld;. Colors symbols not
used for the deleted tokens (ety.anda for t andt’) are not mapped to color variables.

post,, (RW) = 3t" e w2,1" € rw. 3id;. [RWA =(3z € rw. true) Ald(I’) = Id(t)
Aty(I') =WAId (') = Id (1)
Jo (tewl,ld(t) — Idy))
Bt ew2 !’ €rw)

Next, we apply the definition ob and® operators, mainly rules;, ©s, and®s. For
example, by applying rule>s on formula3z € rw.true for added toker’ € rw, we
obtaindz e rw. truenz#1".

pOStwl(RVV) =3t'e VV2,|/ € rw. 3ld;. RW(V) /_‘(326 rw. Z;ﬁ |/)
Ald(I") = ldg Aty(lI") =W AT (L) = Id;

where:
RW (") = Vu,u € rw. (ty(u) =ty(U) A (ty(u) =W = u=1U)

A (ty(u) = RVty(U) = W))
v =l"vu=1I

To obtain this result, we applied the following property bétspecial form universal
quantification:(¥x € p. @X)) V@ < (Vx € p. @x) vV ¢) with x ¢ FreeVargq). The
resulting formula is in th&, fragment.
post,, (RW) = 3t" e w2,1" € rw. Jidy. Vu, U,z
(=rw(u) vV —rw(u’) v
(ty(u) =ty(U) A(ty(u) =W = u=U) A(ty(u) = RVty(u) =W))
vu =1"vu=I)
Aw(Z)vz=1)Ald(I') = 1di Aty(I") =W AId(t') = Id;
The computation of theost-image w.r.t. other transitions of the model is given in
Section E.

E Reader-writer lock example

We illustrate here the use of our framework by showing thét fiossible to carry out
an invariant proof within the decidable fragment of @M logic. The proof presented
here has been done manually following the constructiongmtesl in the paper, and
therefore, our results can be used to automatize each aéfis.s
We consider the example of Reader-Writer lock introduce&eaation 7, and we
prove that = (AxARWARW, ARW ARF) is an invariant property for theMRS model
given in Table C. Consequently, we show that the correspytiogram is free of data
races on variablg.
Let us recall from Section C each component of the invariammhfila above:
A=V, X € p. x=X
RW = vu, U’ € rw. (ty(u) =ty(U)) A (ty(u) = RVty(u) = W)
Altylu) =W = u=1)
RWy = Yw € {w2,w3}. VI € rw. Id(w) = Id (lw) Aty(lw) =W
RW = (3r € {r2,r3}.true) = (3, erw.ty(ly) =R)
RF =Vaer3ty € px. y(a) = f(a(tx))
Transitionw; of the writer models the writer acquiring the lock in write de The
post-image ofl through this rule is given by Theorem 8.1:
posty, (1) = 3t" e w2. 31" € rw. Jid;.
[AxARWARW, A RW ARF
A=(Fzerw. true) Ald(I) = 1d (t) Aty(l") =W AL (t) = 1d(t)
Jo(tewl,ld(t) — Id;)
@t ew2,l’ €rw)
We apply the definition given in Table 1 fex ands operations.

post,, (1) = 3t" e w2. 3" € rw. Jid;.
AARW (I ARW (1" ARW (") ARF
AVzerw. z=1")Ald(l") = Id; Aty(I') =W Aldy = 1d (1)

where we denote by(v) a formulag where variabler is free, and the subformula used
are defined by:

RW (") = Vu,u’ € rw. (ty(u) =ty(U) A (ty(u) = RVty(u) =W)
A(ty(u) =W =u=U))
vu=l"vud =V
RW,(t',I") = vYw e {w2,w3}. VI, € rw. (Id(w) = Id(lw) Aty(lw) =W)
V(e =1V (W=t
RW(") = (3r € {r2,r3}.true) = (3l erw. ty(l,) =RAIL #1)

Due to the special form of formula (all tokens are localiz¢¢ formula corresponding
to the post-image increases reasonably (6 atomic formula are addesipgUhe fact
that subformulagy andRF do not contain free variables, we obtain the simpler formula

below:

posty, (1) = AKxARFAP
whereP = 3t’ e w2. 3’ € rw. 3ld;.
RW (I') A RW,(t',1') ARW/(I")
Avzerw. z=1")Ald(I") = Idi Aty(I") =W ALd; = 1d (1)

In orderto prove thapost,, (I) = | is valid, we check the satisfiability of the formula
posty, (I) A—l. We simplify this formula by removing subformula appearingositive

and negative form:

posty, (1) A=l = AAVARFAPA (=AxV =RFV -RWV -RW, V -RW)
= AAARFAPA (ARWV -RW, V -RW)
= (A\ARFAPA-RW)
V(AKARFAPA=RWy)
V(AKARFAPA-RW)

In the following, we show how the second disjunct is provebeainsatisfiable. For the
other disjuncts, the reasoning is very similar. First, wenpate its prenex form: some
quantified variables are renamed in order to have unique sdoreeach quantified

variables; then, we move quantifiers behind the formula.

AANRFAPA-RWy
=3t ew2. JI' e rw. IW € {w2,w3}. 3}, € rw. Jldk.
AARFARW (I") ARW, (', 1) ARW (1)
AVzerw. z=1")Ald(l") = Idi Aty(I") =W Aldy = Id (1)
Ad(W) # 1d (1) Viy(ly) £ W)
=3t ew2. 3" e rw. IW € {w2,w3}. 3l}, € rw. 3, € rw. Jldk.
X, X € py. Va € r3. vy € px. Yu,u' € rw
Yw e {w2,w3}. Yy € rw. vr € {r2,r3}. vze rw.
(x=x)Ay(a) = f(a(tx))
A((ty(u) =ty(U) A (ty(u) = Rvty(u) = W) A (ty(u) =W = u=1U)
vu=I"vu =I")
A((Id(w) = 1d(Iw) Aty(lw) =W) V (Ily =1") Vv (w=t))
Aty(lr) =RAL #1)
Az=1UAld(I") = ldi Aty(I") =W Aldy = Id (1)
AG(W) # 1d (1) Viy(l) # W)

Second, we reduce th® formula above to &1 formula. The procedure defined by
the proof of Theorem 4.1. generatés<B*x 1 = 162 conjuncts from the elimination of
universally quantified variables. However, the conjunditamed are very simple be-
cause a lot of subformulas produced by this procedure argiigks of (same) variable,
which may be replaced by their truth value and so simplifydbejunct. It can be seen
that the formula is unsatisfiable because it says that (1pkdins inrw are equal td’

in subformuladl’ € rw...vz € rw.... ... A(z=1")... and (2) there exists a token i,

I; which is not equal td’. Clearly (1) and (2) are in contradiction, so the formula is
unsatisfiable.

The transitionw, of the writer models the writer mutating variabte The post-
image ofl through this transition is:

posty, (1) = 3t € wa. 3ty € py. 3dt, 0.
[AxARWA RWy ARW ARF
Aa(ty) = g(a(t)) Ald(t") = 1d(t)
Jo(t e w2ty € py,ld(t) — Idi, a(ty) — 0x)
@t ewt] € py)

We apply the definition given in Table 1 fagr ando operations and explicit subformu-
las changed by these operations.

posty, (1) = 3t" € w3. Jt; € px. 3dt, 0.
AL(t) ARWA RW, (1, Id) ARW A RF' (], ary)
Aa(ty) = g(ox) Ald(t') = Id;
whereA, (X) = Vx1,X; € px. (X =t VXxg =t))
RW,(t, Idt) = (vw € {w2,w8}. (Vhy € rw. (Id(w) = 1d (Iy) Aty(ly) = W))
V(w3(w) Aw=t"))
A (V€ rw. 1dy = 1d (L) Aty(lw) = W)
RF (t),0x) = Yac 3ty € px.(y(a) = f(a(tk)) Vix =t;) Ay(a) = f(ay)

Using the fact that subformuld®wW andRW do not contain free variables, we obtain
the simpler formula below:

post,,(I) = RWARW AP

whereP = 3t" € w3. 3t} € px. Jld;, 0. AX (t)) ARW,(t',1d¢) ARF/(t}, Ox)
AA(ty) = (O(X)/\Id("y =1d;

In order to prove thapost,, (1) = | is valid, we check the satisfiability of the for-
mulaposty, (1) A =l, which may be simplified by eliminating subformula appegyiim
positive and negative form as follows:

posty, (1) A=l = RWARW APA (A V —RFV -RW,)
= (RWARWAPA—A)
V(RWARW APA—-RF)
V(RWARW APA-RWy)

It can be shown that each disjunct is unsatisfiable. For el@gme consider the third
disjunct which may be written as follows:

RWARW A PA-RWy,
= (Vu,u" € rw. (ty(u) =ty(U)) A (ty(u) = RVty(u) = W) A (ty(u) =W = u=1U))
A RW
A (Bt € W3, 3t € py. Jdk, ax. AL(t)) ARF (K., 0ty)

AW € {w2, w3} (Yl € rw. (Id(w) = 1d (L) Aty(ly) = W)

V(w3(w) Aw =t"))

AVl € W 1dg = 1d (Iy) Aty(lw) = W)

Aa(ty) = gax) Ald(t') = Idy)
A =(Yw e {w2,w3}. VI € rw. Id(w) = Id (Iw) Aty(lw) =W)

which can be proved by our method as been unsatisfiable. Hsemds that-RW, is
in contradiction with the subformuRRW,(t', Id;) Ald(t") = Id; of P.

The transitiorws models the releasing of the lock. Thest-image ofl through this
rule is:

posty, (1) = 3t € wa. 3ldy, Id), ty;.
[AxARWARW, ARW ARF
Ald(t) =1d() Aty(l) =W AId(t') = 1d(t)
Je(tewd,l erw,ld(t) — Idi,Id(l) — Id;,ty(l) — ty)
@ (t' e wd)
= 3t' e wa. Jidy, 1d;,ty;.
AN RW(ty|) N RM(|dt, Idi,tyi) A RW(|d|) ARF
Aldy = Id; Aty =W AT (t)) = Id;
whereRW (tyr) = (Vu,u’ € rw. (ty(u) =ty(U)) A (ty(u) = RVty(u) = W)A
(ty(u) =W = u=1))
AU € rw. (ty, =ty(U)) A (ty; = RVtyy =W)A
(tyy =W = false)
Aty =ty) Aty = RVtyy = W) A (tyy =W = true)
RW, (Id¢, 1dy,ty)) = (Yw € {w2,w3}. VI € rw. Id(w) = Id Iy Aty(lw) = W)
A (Vlw € rw. 1dy = 1d (lw) Aty(lw) = W)
A (Ide = Idy Aty = W)
RW (Idj,ty) = =(3r € {r2,r3}. true) v (3, e rw. ty(l,) = R) V (ty; = R)

Using the same reasoning than for previous transitiongritiie shown thagost,, (1)
is included inl.

At this point, we shown thaltis an invariant of the writer rules. Showing tHats
an invariant bypost-images of reader transitions is very similar.

