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Homogenization of linear transport equations in a stationary

ergodic setting

Anne-Laure Dalibard∗

Abstract

We study the homogenization of a linear kinetic equation which models the evolution of the

density of charged particles submitted to a highly oscillating electric field. The electric field and the

initial density are assumed to be random and stationary. We identify the asymptotic microscopic

and macroscopic profiles of the density, and we derive formulas for these profiles when the space

dimension is equal to one.

1 Introduction

This note is concerned with the homogenization of a linear transport equation in a stationary ergodic
setting. The equation studied here describes the evolution of the density of charged particles in a rapidly
oscillating random electric potential. This equation can be derived by passing to the semi-classical limit
in the Schrödinger equation (see [9], [11], and the presentation in [7]). Our work generalizes a result of
E. Frénod and K. Hamdache (see [7]) which was obtained in a periodic setting. The strategy of proof we
have chosen here is different from the one of [7], and allows us to retrieve some of the results in [7] in a
rather simple and explicit fashion.

Let us mention a few related works on the homogenization of linear transport equations; we emphasize
that this list is by no means exhaustive. In [1], Y. Amirat, K. Hamdache and A. Ziani study the
homogenization of a linear transport equation in a periodic setting and give an application to a model
describing a multidimensional miscible flow in a porous media. In [3] (see also [8]), Laurent Dumas and
François Golse focus on the homogenization of linear transport equations with absorption and scattering
terms, in periodic and stationary ergodic settings. And in [4], Weinan E derives strong convergence
results for the homogenization of linear and nonlinear transport equations with oscillatory incompressible
velocity fields in a periodic setting.

Let us now present the context we will be working in : let (Ω,F , P ) be a probability space, and let
(τx)x∈RN be a group transformation acting on Ω. We assume that τx preserves the probability measure
P for all x ∈ R

N , and the group transformation is ergodic, which means

∀A ∈ F ,
(

τxA = A ∀x ∈ R
N ⇒ P (A) = 0 or 1

)

.

The periodic setting can be embedded the stationary ergodic setting (see [13]). We will denote by E[·]
the expectation with respect to the probability measure P ; in the periodic case, we will write 〈f〉 rather
than E[f ] to refer to the average of f over one period.

We consider a potential function u = u(y, ω) ∈ L∞(RN × Ω) which is assumed to be stationary, i.e.

u(y + z, ω) = u(y, τzω) ∀(y, z, ω) ∈ R
N × R

N × Ω

Moreover, we assume that 0 ≤ u(y, ω) ≤ umax = supu for all y ∈ R
N , ω ∈ Ω, and u(·, ω) ∈ W 2,∞

loc (RN )
for almost every ω ∈ Ω, so that ∇yu (y, ω) is well-defined and locally Lipschitz continuous with respect
to its y variable.
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Let fε = fε(t, x, ξ, ω), (t ≥ 0, x ∈ R
N , ξ ∈ R

N , ω ∈ Ω) be the solution of the transport equation
{

∂tf
ε(t, x, ξ, ω) + ξ · ∇xfε(t, x, ξ, ω) − 1

ε∇yu
(

x
ε , ω

)

· ∇ξf
ε(t, x, ξ, ω) = 0,

fε(t = 0, x, ξ, ω) = f0

(

x, x
ε , ξ, ω

)

.
(1)

Here, we assume that the initial data f0 = f0(x, y, ξ, ω) belongs to L1
loc(R

N
x ×R

N
ξ , L∞(RN

y ×Ω)) and
is stationary in y, i.e.

f0(x, y + z, ξ, ω) = f0(x, y, ξ, τzω) for all (x, y, z, ξ, ω) ∈ R
4N × Ω.

It is well-known from the classical theory of linear transport equations that for every ω ∈ Ω, there
exists a unique solution fε of (1) in L∞

loc((0,∞), L1
loc(R

N
x × R

N
ξ )). The goal of this paper is to study the

asymptotic behavior of fε as ε → 0. Thus, following [7], we define the constraint space K :

Definition 1.1. Let
ξ · ∇yf(y, ξ, ω) −∇yu(y, ω) · ∇ξf(y, ξ, ω) = 0 (2)

be the constraint equation, and let

K := {f ∈ L1
loc(R

N
ξ × R

N
y , L1(Ω)); f satisfies (2) in D′(RN

y × R
N
ξ ) a.s. in ω}.

We also define the projection P onto the constraint space K, characterised by P (f) ∈ K for f ∈
L1

loc(R
N
ξ × R

N
y , L1(Ω)) stationary, and

∫

RN×Ω

(P (f) − f)(y, ξ, ω) g(y, ξ, ω) dξ dP (ω) = 0 for a.e. y ∈ R
N

for all stationary functions g ∈ L∞(RN
y × R

N
ξ × Ω) ∩ K, with compact support in ξ.

(A more precise definition of the projection P will be given in the second section).
Finally, we define K

⊥ as

K
⊥ := {f ∈ L1

loc(R
N
ξ × R

N
y , L1(Ω)); ∃g ∈ L1

loc(R
N
ξ × R

N
y , L1(Ω)), f = P (g) − g}.

Remark 1.1. Let us indicate that the constraint equation can easily be derived thanks to a formal two-
scale Ansatz : indeed, assume that

fε(t, x, ξ, ω) ≈ f
(

t, x,
x

ε
, ξ, ω

)

as ε → 0;

inserting this asymptotic expansion in equation (1), we see that f necessarily satisfies the constraint
equation (2).

Remark 1.2. Let f, g ∈ L∞(RN
y , L2(RN

ξ ×Ω)) be stationary, and assume that f ∈ K and g ∈ K
⊥. Then

for a.e. y ∈ R
N ,

∫

RN×Ω

f(y, ξ, ω)g(y, ξ, ω) dξ dP (ω) = 0.

This is a characterization of K
⊥ for the class of stationary functions in L∞(RN

y , L2(RN
ξ × Ω)).

Here, we provide another proof for the result of E. Frénod and K. Hamdache in [7] in the “non-
perturbed case”. Our proof is based on the use of the ergodic theorem, and gives a more concrete insight
of the projection P and of the microscopic behavior of the sequence fε. Moreover, it allows us to retrieve
the explicit formulas of the integrable case.

The first result we prove in this paper is the following

Theorem 1. Let f0 ∈ L1
loc(R

N
x × R

N
ξ × R

N
y ; L1(Ω)) stationary.

Let fε = fε(t, x, ξ, ω) be the solution of (1). Then for all ε > 0, there exist f = f(t, x, y, ξ, ω) and
g = g(t, x; τ, y, ξ, ω), both stationary in y, and a sequence {rε(t, x, ξ, ω)}ε>0 such that

fε(t, x, ξ, ω) = f
(

t, x,
x

ε
, ξ, ω

)

+ g

(

t, x;
t

ε
,
x

ε
, ξ, ω

)

+ rε(t, x, ξ, ω)

and :
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• ||rε||L1
loc

((0,∞)×RN
x ×R

N
ξ

,L1(Ω)) → 0 as ε → 0;

• f ∈ L∞
loc((0,∞); L1

loc(R
N
x × R

N
ξ × R

N
y ; L1(Ω))), and f(t, x) ∈ K for a.e. t ≥ 0, x ∈ R

N ;

• For all T > 0, for all compact K ⊂ R
N
x × R

N
ξ × R

N
y ,

sup
0≤t≤T,0≤τ≤T

||g||L1(K×Ω) < ∞.

Moreover, g(t, x; τ, ·) ∈ K
⊥ for a.e. (t, x, τ) ∈ (0,∞) × R

N × (0,∞);

• Microscopic evolution equation for g : for a.e. t, x ∈ (0,∞) × R
N , g(t, x; ·) is a solution of

∂g

∂τ
+ ξ · ∇yg −∇yu · ∇ξg = 0. (3)

Moreover, for all T > 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫ T

0

g

(

t, x;
t

ε
,
x

ε
, ξ, ω

)

dt

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L1
loc

(RN
x ×R

N
ξ

,L1(Ω))

→ 0 as ε → 0.

• Macroscopic evolution equation : f and g satisfy

∂t

(

f
g

)

+ ξ♯(y, ξ, ω) · ∇x

(

f
g

)

= 0, (4)

where
ξ♯(y, ξ, ω) := P (ξ)(y, ξ, ω);

• Initial data :

f(t = 0, x, y, ξ, ω) = P (f0)(x, y, ξ, ω),

g(t = 0, x; τ = 0, y, ξ, ω) = [f0 − P (f0)] (x, y, ξ, ω).

Before going any further, we wish to make a few comments on the above results. First, let us stress
that it is not obvious that the function g is well-defined : indeed, let S(t) (t ≥ 0) denote the semi-group
associated to the macroscopic evolution equation (4), and let T (τ) (τ ≥ 0) be the semi-group associated
to the microscopic evolution equation (3). Then g is well defined if and only if, for all stationary function
g0 = g0(x, y, ξ, ω), for all t, τ ≥ 0,

T (τ) [S(t)g0] = S(t) [T (τ)g0] .

This identity follows from the fact that the speed ξ♯(y, ξ, ω) appearing in equation (4) is a stationary
solution of (3) by definition of the projection P , and is thus invariant by the semi-group T (τ).

Next, let us explain briefly the meaning of theorem 1. The idea is the following : write f0 as
f0 = f0‖ + f0⊥, with f0‖(x, ·) ∈ K and f0⊥(x, ·) ∈ K

⊥ a.e. Then fε can be written as fε
‖ + fε

⊥, where

fε
‖ (resp. fε

⊥) is the solution of equation (1) with initial data f0‖
(

x, x
ε , ξ, ω

)

(resp. f0⊥
(

x, x
ε , ξ, ω

)

).
Theorem 1 states that

fε
‖ − f

(

t, x,
x

ε
, ξ, ω

)

→ 0

strongly in L1
loc norm. In particular, there are no microscopic oscillations in time in this part of fε. We

wish to emphasize that this result appears to us to be new.
We now focus on the other part, namely fε

⊥. An easy consequence of the theorem is

∫ T

0

fε
⊥(t, x, ξ, ω) dt → 0

3



in L∞
loc(R

N
x ; L1

loc(R
N
ξ ; L1(Ω))) and for all T > 0. However, it would be wrong to think that fε

⊥ vanishes

in L1
loc((0,∞) × R

N
x × R

N
ξ , L1(Ω)), for instance. Indeed

fε
⊥(t, x, ξ, ω) ≈ g

(

t, x;
t

ε
,
x

ε
, ξ, ω

)

in L1
loc, and

||g(t = 0, x; τ, y)||L1(RN
ξ
×Ω) = ||f0⊥(x, y)||L1(RN

ξ
×Ω)

as soon as f0⊥(x, y) ∈ L1(RN
ξ × Ω) for almost every x, y. Consequently, if f0⊥ 6= 0, then for all T > 0

and for all compact K ⊂ R
N , there exists a constant C > 0 depending only on K, ||f0⊥||L1

loc
, and T such

that
∫ T

0

∣

∣

∣

∣

∣

∣

∣

∣

g

(

t, x;
t

ε
,
x

ε
, ξ, ω

)∣

∣

∣

∣

∣

∣

∣

∣

L1(K×R
N
ξ
×Ω)

dt ≥ C.

Hence fε
⊥ does not vanish strongly in general. In other words, there are fast oscillations in time, due to

the ill-preparedness of the initial data (i.e. f0(x, ·) /∈ K), but these oscillations do not cancel out as ε
vanishes.

Let us now explain briefly here how our strategy of proof differs from the one of E. Frénod and K.
Hamdache. The key of our analysis lies in the study of the behavior as ε → 0 of the Hamiltonian system







Ẏ ε(t, x, ξ, ω) = −Ξε(t, x, ξ, ω), t > 0

Ξ̇ε(t, y, ξ, ω) = 1
ε∇yu(Y ε(t, x, ξ, ω), ω), t > 0

Y ε(t = 0, x, ξ, ω) = x, Ξε(t = 0, x, ξ, ω) = ξ, (x, ξ, ω) ∈ R
2N × Ω.

Indeed,

fε(t, x, ξ, ω) = f0

(

Y ε(t, x, ξ, ω),
Y ε(t, x, ξ, ω)

ε
, Ξε(t, y, ξ, ω), ω

)

,

so that we can deduce the asymptotic behavior of fε from the one of (Y ε, Ξε). And it is easily checked
that

Y ε(t, x, ξ, ω) = εY
(

t
ε , x

ε , ξ, ω
)

Ξε(t, y, ξ, ω) = Ξ
(

t
ε , x

ε , ξ, ω
)

,

where (Y, Ξ) is the solution of the system







Ẏ (t, y, ξ, ω) = −Ξ(t, y, ξ, ω), t > 0

Ξ̇(t, y, ξ, ω) = ∇yu(Y (t, y, ξ, ω), ω), t > 0
Y (t = 0, y, ξ, ω) = y, Ξ(t = 0, y, ξ, ω) = ξ, (y, ξ, ω) ∈ R

2N × Ω.

(5)

Hence, in order to study the limit of fε as ε → 0, we have to investigate the long time behavior of the
system (Y, Ξ), and this will be achieved with the help of the ergodic theorem in the second section.

In the case when N = 1, we can give explicit formulas for ξ♯(y, ξ, ω); the proof of this formula in the
stationary ergodic case is strongly linked to methods from the Aubry-Mather theory (see [5], [6], [12]),
and thus also to the homogenization of Hamilton-Jacobi equations. Let us first recall the definition of
the homogenized Hamiltonian H̄ (see [10])

H̄(p) = umax +
1

2







0 if |p| < E
[

√

2(umax − u)
]

λ if |p| ≥ E
[

√

2(umax − u)
]

, where |p| = E
[

√

2(umax − u) + λ
]

Proposition 1.1. Assume that N = 1.
Let (y, ξ, ω) ∈ R × R × Ω such that H(y, ξ, ω) > umax. Assume that for all Q ∈ R, for all ω ∈ Ω,

there exists a Lipschitz continuous function v(·, ω), viscosity solution of

H(y, Q + ∇yv(y, ω), ω) = H̄(Q)
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such that
v(y, ω)

1 + |y| → 0 as |y| → ∞ (6)

a.s. in ω.
Let P = P (y, ξ, ω) ∈ R such that H̄(P ) = H(y, ξ, ω) and sgn(P ) = sgn(ξ). Then

ξ♯(y, ξ, ω) = H̄ ′(P )

Moreover, if L is the dual function of H, i.e.

L(y, p, ω) = sup
ξ∈R

(pξ − H(y, ξ ω)) =
1

2
|p|2 − u(y, ω),

and L̄ is the homogenized Lagrangian, then

P (L)(y, ξ, ω) = L̄(ξ♯(y, ξ, ω).)

In the periodic case, we will give another proof of the above result; the strategy chosen in that case
is inspired from techniques and calculations in classical mechanics. It also allows to give a formula for
ξ♯ for low energies in the periodic setting only:

Proposition 1.2. Assume that N = 1 and that the environment is periodic.
Let (y, ξ) ∈ R

2 such that H(y, ξ) < umax. Then ξ♯(y, ξ) = 0.

The organisation of this note is the following : in the second section, we derive some preliminary
results on the long-time behavior of the system (Y, Ξ) thanks to the ergodic theorem. Those will be
useful in the proof of theorem 1, to which is devoted the third section. Eventually, the fourth and last
section is concerned with results in the integrable case, both in the periodic and the stationary ergodic
settings.

2 Preliminaries

This section is largely devoted to the study of the long-time behavior of the Hamiltonian system (Y, Ξ)
defined by (5). First, notice that the Hamiltonian H(y, ξ, ω) := 1

2 |ξ|2 + u(y, ω) is constant along the
curves of the system (Y, Ξ), and if f ∈ L∞(Ω, C1(RN

y × R
N
ξ )) is stationary, then

f ∈ K ⇐⇒ f (Y (t, y, ξ, ω), Ξ(t, y, ξ, ω), ω) = f(y, ξ, ω) ∀(y, ξ, ω) ∈ R
N × R

N × Ω.

Indeed, for all f ∈ L∞(Ω, C1(RN
y × R

N
ξ )), we have

∂

∂t
f (Y (t, y, ξ, ω), Ξ(t, y, ξ, ω), ω) = {H, f} (Y (t, y, ξ, ω), Ξ(t, y, ξ, ω), ω) ,

where {H, f} denotes the Poisson bracket of f and H , i.e.

{H, f} (y, ξ, ω) = ξ · ∇yf(y, ξ, ω) −∇yu(y, ξ, ω) · ∇ξf(y, ξ, ω).

Let us mention an easily checked property of the trajectories (Y, Ξ) which will be used extensively in
the rest of the article : for all (y, z, ξ) ∈ R

3N , for all ω ∈ Ω, t ≥ 0,

Y (t, y, ξ, τzω) + z = Y (t, y + z, ξ, ω),

Ξ(t, y, ξ, τzω) = Ξ(t, y + z, ξ, ω). (7)

In the periodic case, this invariance entails that the hamiltonian system (Y, Ξ) can be considered as a
dynamical system on the N dimensional torus [0, 2π)N . In this periodic setting, it is somewhat natural
to introduce the semi-group of transformations (Tt)t≥0 on [0, 2π)N × R

N given by

Tt(y, ξ) = (Y (t, y, ξ), Ξ(t, y, ξ)), y ∈ [0, 2π)N , ξ ∈ R
N .

5



According to Liouville’s theorem, this semi-group preserves the Lebesgue measure on [0, 2π)N × R
N ;

moreover, we can construct a family of finite invariant measures on [0, 2π)N × R
N by setting mc(y, ξ) =

1H(y,ξ)≤c dy dξ for c > 0 (remember that the Hamiltonian is constant along the hamiltonian curves).
This construction is the root of the ergodic theorem (see corollary 2.1), and thus of the study of the
long-time behavior of the system (Y, Ξ).

In the stationary ergodic setting, this construction can be generalized as follows : we define the
transformation Tt : R

N
ξ × Ω → R

N
ξ × Ω by

Tt(ξ, ω) =
(

Ξ(t, 0, ξ, ω), τY (t,0,ξ,ω)ω
)

together with the family of measures

µc := 1H(ξ,ω)≤c dξ dP (ω)

where H(ξ, ω) := 1
2 |ξ|2 + u(0, ω). It is obvious that for all c ∈ (0,∞), µc is a finite measure on R

N
ξ × Ω.

Notice that the “good” generalization to the stationary ergodic setting of the semi-group (Tt) is
a semi-group which acts on R

N
ξ × Ω rather than R

N
y × R

N
ξ . Thanks to the group of transformations

(τx)x∈RN , the transformations in Ω can result in transformations in R
N
y , but the definition chosen here

allows us to define a family of finite invariant measures, whereas such a construction is rather difficult if
one tries to define a semi-group acting on R

N
y × R

N
ξ . This will be fundamental in the rest of the proof.

Lemma 2.1. (Tt)t≥0 is a semi-group on R
N
ξ × Ω and preserves the family of measures µc.

Proof. Let us first prove the semi-group property : let t, s ∈ [0,∞), and (ξ, ω) ∈ R
N × Ω; then

Tt ◦ Ts(ξ, ω) = Tt

(

Ξ(s, 0, ξ, ω), τY (s,0,ξ,ω)ω
)

=
(

Ξ(t, 0, Ξ(s, 0, ξ, ω), τY (s,0,ξ,ω)ω), ω′)

and using the properties (7) we deduce

Ξ(t, 0, Ξ(s, 0, ξ, ω), τY (s,0,ξ,ω)ω) = Ξ(t, Y (s, 0, ξ, ω), Ξ(s, 0, ξ, ω), ω),

= Ξ(t + s, 0, ξ, ω)

and

ω′ = τY (t,0,Ξ(s,0,ξ,ω),τY (s,0,ξ,ω)ω)τY (s,0,ξ,ω)ω

= τY (t,0,Ξ(s,0,ξ,ω),τY (s,0,ξ,ω)ω)+Y (s,0,ξ,ω)ω

= τY (t,Y (s,0,ξ,ω),Ξ(s,0,ξ,ω),ω)ω

= τY (t+s,0,ξ,ω)ω

Thus
Tt ◦ Ts(ξ, ω) =

(

Ξ(t + s, 0, ξ, ω), τY (t+s,0,ξ,ω)ω
)

= Tt+s(ξ, ω).

Since it is obvious that T0 = Id, (Tt)t≥0 is a semi-group on R
N × Ω.

We now have to check the invariance property; let F ∈ L1(RN ×Ω; µc) arbitrary. We set f(y, ξ, ω) :=
F (ξ, τyω) for (y, ξ, ω) ∈ R

N
y × R

N
ξ × Ω, and we compute

∫

RN×Ω

F (Tt(ξ, ω)) dµc(ξ, ω) = E

[
∫

RN

f(Y (t, 0, ξ, ω), Ξ(t, 0, ξ, ω), ω)1H(Y (t,0,ξ,ω),Ξ(t,0,ξ,ω),ω)≤c dξ

]

Since the probability measure P is invariant by the group of transformation τy, and

f(Y (t, y, ξ, ω), Ξ(t, y, ξ, ω), ω) = f(Y (t, 0, ξ, τyω), Ξ(t, 0, ξ, τyω), τyω),

we have, for all y ∈ R
N

E
[

f(Y (t, 0, ξ, ω), Ξ(t, 0, ξ, ω), ω)1H(Y (t,0,ξ,ω),Ξ(t,0,ξ,ω),ω)≤c

]

=

= E
[

f(Y (t, y, ξ, ω), Ξ(t, y, ξ, ω), ω)1H(Y (t,y,ξ,ω),Ξ(t,y,ξ,ω),ω)≤c

]

.
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Take an arbitrary function φ ∈ L1(RN
y ), and write

∫

RN×Ω

F (Tt(ξ, ω)) dµc(ξ, ω)

= E

[
∫

R2N

dy dξφ(y)f(Y (t, y, ξ, ω), Ξ(t, y, ξ, ω), ω)1H(Y (t,y,ξ,ω),Ξ(t,y,ξ,ω),ω)≤c

]

We change variables in the integral in (y, ξ) by setting (x, v) = (Y (t, y, ξ, ω), Ξ(t, y, ξ, ω)); according to
Liouville’s theorem, the jacobian of this change of variables is equal to 1, and

(x, v) = (Y (t, y, ξ, ω), Ξ(t, y, ξ, ω)) ⇐⇒ (y, ξ) = (X(t, x, v, ω), V (t, x, v, ω)),

where (X, V ) is a solution of the Hamiltonian system






Ẋ = V,

V̇ = −∇u(X, ω),
(X, V )(t = 0, x, v) = (x, v).

Observe that in the present case, we have simply

X(t, x, v, ω) = Y (t, x,−v, ω),

so that (X, V ) satisfies relations (7).
Hence

∫

R2N

dy dξφ(y)f(Y (t, y, ξ, ω), Ξ(t, y, ξ, ω), ω)1H(Y (t,y,ξ,ω),Ξ(t,y,ξ,ω),ω)≤c

=

∫

R2N

dx dvφ(X(t, x, v, ω))f(x, v, ω)1H(x,v,ω)≤c

=

∫

R2N

dx dvφ(X(t, 0, v, τxω) + x)F (v, τxω)1H(v,τxω)≤c

so that
∫

RN×Ω

F (Tt(ξ, ω)) dµc(ξ, ω)

= E

[
∫

R2N

dx dvφ(X(t, 0, v, τxω) + x)F (v, τxω)1H(v,τxω)≤c

]

= E

[
∫

R2N

dx dvφ(X(t, 0, v, ω) + x)F (v, ω)1H(v,ω)≤c

]

= E

[
∫

RN

dv

(
∫

RN

φ(X(t, 0, v, ω) + x) dx

)

F (v, ω)1H(v,ω)≤c

]

= E

[
∫

RN

dvF (v, ω)1H(v,ω)≤c

]

=

∫

RN×Ω

F dµc

since the integral of φ is equal to 1.

The following corollary is an immediate consequence of Birkhoff’s ergodic theorem:

Corollary 2.1. Let F ∈ L1(RN × Ω; µc). There exists a function F̄ ∈ L1(RN × Ω; µc) such that as
T → ∞,

1

T

∫ T

0

F (Tt(ξ, ω)) dt → F̄ (ξ, ω)

a.e. on R
N × Ω and in L1(µc). Moreover, F̄ is invariant by Tt for all t > 0, and

∫

RN×Ω

F dµc =

∫

RN×Ω

F̄ dµc. (8)
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Additionally, if f̄ = f̄(y, ξ, ω) is the stationary function associated to F̄ , that is, f̄(y, ξ, ω) = F̄ (ξ, τyω),
then f̄ is invariant by the hamiltonian flow (Y, Ξ); precisely, for all (y, ξ, ω) ∈ R

2N × Ω, t > 0

f̄(Y (t, y, ξ, ω), Ξ(t, y, ξ, ω), ω) = f̄(y, ξ, ω).

Proof. We only have to prove the invariance of f̄ by the Hamiltonian flow; first, for y = 0, we have

f̄(Y (t, 0, ξ, ω), Ξ(t, 0, ξ, ω), ω) = F̄ (Ξ(t, 0, ξ, ω), τY (t,0,ξ,ω)ω) = F̄ (Tt(ξ, ω))

= F̄ (ξ, ω) = f̄(0, ξ, ω)

and the property is proved when y = 0.
For y ∈ R

N arbitrary,

f̄(Y (t, y, ξ, ω), Ξ(t, y, ξ, ω), ω) = f̄(Y (t, 0, ξ, τyω) + y, Ξ(t, 0, ξ, τyω), ω)

= f̄(Y (t, 0, ξ, τyω), Ξ(t, 0, ξ, τyω), τyω)

= f̄(0, ξ, τyω) = f̄(y, ξ, ω)

according to the result in the case y = 0.

Remark 2.1. We mention here an important but easy consequence of the relations (7) and the invariance
of the measure P w.r.t. τy, y ∈ R

N : for any stationary function f = f(y, ξ, ω) = F (ξ, τyω), F ∈
L∞(RN × Ω), we have

E[f(Y (t, y, ξ, ·), Ξ(t, y, ξ, ·), ·)] = E[F (Tt(ξ, ·))]
for all t > 0, y, ξ ∈ R

N ; in particular, the left-hand side of the above equality does not depend on y.
This property was used in the proof of lemma 2.1

Remark 2.2. Let us precise a little what happens when the function F ∈ L1
loc(R

N
ξ , L1(Ω)). In that case,

F ∈ L1(RN
ξ ×Ω; µc) for all c > 0. Consequently, for any c > 0, we can define the function F̄c associated

to F by corollary 2.1.
It is then easily proved that for any 0 < c < c′, F̄c = F̄c′ , µc-almost everywhere. Setting An =

{(ξ, ω) ∈ Suppµn; F̄n(y, ξ) 6= F̄n+1(y, ξ)}, and A = ∪∞
n=0An, we see that µc(A) = 0 for all c > 0.

Moreover, for all (ξ, ω) ∈ R
N × Ω \ A, for all integers k, l such that (ξ, ω) ∈ Suppµk ∩ Suppµl, we have

F̄k(ξ, ω) = F̄l(ξ, ω). We can thus define a function F̄ (ξ, ω) on R
N × Ω \ A by

F̄ (ξ, ω) = F̄n(ξ, ω) for any n ∈ N such that (ξ, ω) ∈ Suppµn

We then now that
1

T

∫ T

0

F (Tt(ξ, ω)) dt → F̄ (ξ, ω) (9)

as T → ∞, and the convergence holds in L1(µc) for all c > 0, and µn almost everywhere for n ∈ N.
Eventually, setting

B := {(ξ, ω) ∈ R
N × Ω \ A;

1

T

∫ T

0

F (Tt(ξ, ω)) dt does not converge towards F̄ (ξ, ω)}

it is easily proved that µc(B) = 0 for all c > 0 (the equality is true for c ∈ N, and is then deduced for
c > 0 arbitrary because the family of measures (µc) is increasing in c).

Eventually, we have found a function F̄ ∈ L1
loc(R

N , L1(Ω)), independent of c, such that (9) holds in
L1(µc) and µc-almost everywhere for all c > 0.

Remark 2.3. The construction above allows us to make more precise what we mean by projection P :
let f = f(y, ξ, ω) be a stationary function, f ∈ L∞(RN

y , L1
loc(R

N
ξ , L1(Ω))), and set F (ξ, ω) = f(0, ξ, ω) ∈

8



L1
loc(R

N
ξ , L1(Ω)). We can then associate to F a function F̄ ∈ L1

loc(R
N
ξ , L1(Ω)) such that (9) holds in

L1(µc) for all c (see remark 2.2). We set

P (f)(y, ξ, ω) := F̄ (ξ, τyω).

It follows from corollary 2.1 that P (f) is invariant by the hamiltonian flow (5), and thus satisfies the
constraint equation. From now on, we take this definition for the projection P , instead of the one given
in the introduction. Notice that, for all y ∈ R

N and µc-almost everywhere,

P (f)(y, ξ, ω) = lim
T→∞

1

T

∫ T

0

F (Tt(ξ, τyω)) dt

= lim
T→∞

1

T

∫ T

0

f (Y (t, 0, ξ, τyω), Ξ(t, 0, ξ, τyω), τyω) dt

= lim
T→∞

1

T

∫ T

0

f (Y (t, y, ξ, ω), Ξ(t, y, ξ, ω), ω) dt

And we also give a more precise definition of ξ♯(y, ξ, ω) : let

ξ̂ :
R

N × Ω → R
N

(ξ, ω) 7→ ξ
.

Then

ξ♯(y, ξ, ω) = P (ξ̂)(y, ξ, ω) = lim
T→∞

1

T

∫ T

0

Ξ(t, y, ξ, ω) dt

a.e. and in L1(µc) for all 0 < c < ∞.

Eventually, we mention here a property that will be used in the proof of the theorem; with the same
notations as above, let

φ(τ, y, ξ, ω) = F (Tτ (ξ, τyω)) .

Then φ is a solution of the evolution equation

∂τφ + ξ · ∇yφ −∇yu · ∇ξφ = 0,

with initial data φ(τ = 0, y, ξ, ω) = f(y, ξ, ω) = F (ξ, τyω).

3 The general N-dimensional case

This section is devoted to the proof of theorem 1. The proof is divided in three steps : first, we study
the case of an initial data which does not depend on x, then the case when the initial data only depends
on x (and not on y, ξ, ω), and eventually, we treat the general case.

3.1 First case : f0 does not depend on x

Here, we assume that f0 = f0(y, ξ, ω) ∈ L1
loc(R

N
ξ ; L∞(RN

y × Ω). Recall that f0 is stationary, i.e. f0(y +

z, ξ, ω) = f0(y, ξ, τzω) a.s. in ω, for all (y, z, ξ) ∈ R
3N . In the rest of the subsection, we set

F0(ξ, ω) := f0(0, ξ, ω)

and

F̄0(ξ, ω) := lim
T→∞

1

T

∫ T

0

F (Tt(ξ, ω)) dt, f̄0(y, ξ, ω) = F̄0(ξ, τyω).

Notice that F ∈ L1
loc(R

N
ξ ; L∞(Ω)), and thus F ∈ L1(RN × Ω; µc) for all c > 0.
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In that case,

fε(t, x, ξ, ω) = f0

(

Y

(

t

ε
,
x

ε
, ξ, ω

)

, Ξ

(

t

ε
,
x

ε
, ξ, ω

)

, ω

)

= f0

(

Y

(

t

ε
, 0, ξ, τx

ε
ω

)

, Ξ

(

t

ε
, 0, ξ, τx

ε
ω

)

, τx
ε
ω

)

= F0

(

T t
ε

(

ξ, τx
ε
ω
)

)

= f̄0

(x

ε
, ξ, ω

)

+
{

F0

(

T t
ε

(

ξ, τx
ε
ω
)

)

− F̄0

(

ξ, τx
ε
ω
)

}

In accordance with theorem 1, we set

g(τ, y, ξ, ω) =
(

F0 − F̄0

)

(Tτ (ξ, τyω)) ,

and rε = 0. Then g satisfies the microscopic evolution equation (3) thanks to the remark at the end
of the preceding section. Moreover, g(τ) ∈ K

⊥ by definition of K
⊥ and because P (F0 (Tτ (ξ, τyω))) =

F̄0(ξ, τyω).
It only remains to check that

∫ T

0

g

(

t

ε
,
x

ε
, ξ, ω

)

dt → 0 as ε → 0

in L1
loc(R

N
x , L1(RN × Ω, µc)) for all T > 0 and c > 0.

The invariance of the measure P with respect to the group of transformations (τx)x∈RN (see remark
2.1) entails that

∫

Ω×R
N
ξ

∣

∣

∣

∣

∣

1
T
ε

∫ T
ε

0

f0

(

Y
(

t,
x

ε
, ξ, ω

)

, Ξ
(

t,
x

ε
, ξ, ω

)

, ω
)

dt − f̄0

(x

ε
, ξ, ω

)

∣

∣

∣

∣

∣

dµc(ξ, ω)

=

∫

Ω×R
N
ξ

∣

∣

∣

∣

∣

1
T
ε

∫ T
ε

0

F0 (Tt(ξ, ω)) dt − F̄0 (ξ, ω)

∣

∣

∣

∣

∣

dµc(ξ, ω)

and the term above goes to 0 as ε → 0 according to corollary 2.1 and is independent of x ∈ R
N . There

remains to check that f̄0 = P (f0). This follows directly from remark 2.3. Thus theorem 1 is proved in
the case when f0 does not depend on the macroscopic variable x.

The following remark will prove to be useful when treating the general case :

Remark 3.1. If f0 ∈ L∞, then for any function a ∈ L∞((0,∞) × R
N
y × R

N
ξ × Ω), stationary in y, we

have
∫ T

0

a
(

t,
x

ε
, ξ, ω

)

g

(

t

ε
,
x

ε
, ξ, ω

)

dt → 0 as ε → 0

in L1
loc(R

N
x , L1(RN × Ω, µc)) for all T > 0 and c > 0.

Indeed, prove the property first for a = a1(t)a2(y, ξ, ω), with a1, a2 ∈ L∞. For a arbitrary, take a
sequence aδ with δ > 0, converging to a in L1

loc, and such that

aδ =

nδ
∑

k=0

aδ
1(t)a

δ
2(y, ξ, ω).

with aδ
1, a

δ
2 in L∞. The property is known for aδ, and it is thus easily deduced for a.

3.2 Second case : f0 = f0(x)

Unlike the preceding subsection, we now focus on the case when f0 only depends on the macroscopic
variable x. In order to simplify the analysis, we assume that f0 ∈ W 1,∞(RN

x ) (the case when f0 is not
smooth in x will be treated in the next subsection). In that case,

fε(t, x, ξ, ω) = f0

(

εY

(

t

ε
,
x

ε
, ξ, ω

))

.
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Hence we have to investigate the behavior as ε → 0 of

εY

(

t

ε
,
x

ε
, ξ, ω

)

.

We prove the following

Lemma 3.1. Let T > 0 arbitrary. As ε vanishes,

εY

(

t

ε
,
x

ε
, ξ, ω

)

− x + tξ♯
(x

ε
, ξ, ω

)

→ 0

in L∞((0, T )× R
N
x ; L1(RN

ξ × Ω, µc)).

Proof. Let us write, for t > 0

εY

(

t

ε
,
x

ε
, ξ, ω

)

− x + tξ♯
(x

ε
, ξ, ω

)

= ε

∫ t
ε

0

Ẏ
(

s,
x

ε
, ξ, ω

)

ds + tξ♯
(x

ε
, ξ, ω

)

= −t
ε

t

∫ t
ε

0

Ξ
(

s,
x

ε
, ξ, ω

)

ds + tξ♯
(x

ε
, ξ, ω

)

= −t

{

ε

t

∫ t
ε

0

ξ̂
(

Ts(ξ, τx
ε
ω)

)

ds − ξ♯
(x

ε
, ξ, ω

)

}

Let 0 < α < T arbitrary. For α ≤ t ≤ T , we have
∫

R
N
ξ
×Ω

∣

∣

∣

∣

εY

(

t

ε
,
x

ε
, ξ, ω

)

− x + tξ♯
(x

ε
, ξ, ω

)

∣

∣

∣

∣

dµc(ξ, ω)

= t

∫

R
N
ξ
×Ω

∣

∣

∣

∣

∣

ε

t

∫ t
ε

0

ξ̂ (Ts(ξ, ω)) ds − ξ♯ (0, ξ, ω)

∣

∣

∣

∣

∣

dµc(ξ, ω)

≤ T sup
τ≥α

ε

∣

∣

∣

∣

∣

∣

∣

∣

1

τ

∫ τ

0

ξ̂ (Ts(ξ, ω)) ds − ξ♯ (0, ξ, ω)

∣

∣

∣

∣

∣

∣

∣

∣

L1(RN×Ω,µc)

and the upper-bound vanishes as ε → 0 for any α > 0 thanks to corollary 2.1. Notice that the upper-
bound does not depend on x, hence the convergence holds in L∞(RN

x ; L1(µc)).
We now have to investigate what happens when t is close to 0; notice that

sup
x∈RN

||ξ♯
(x

ε
, ξ, ω

)

||L1(RN×Ω,µc) ≤ C0

where the constant C0 only depends on N and c. Similarly, for all t ≥ 0,

sup
x∈RN

∣

∣

∣

∣

∣

∣
ξ̂
(

Ts(ξ, τx
ε
)
)

∣

∣

∣

∣

∣

∣

L1(RN×Ω,µc)
≤ C0.

Hence, if 0 ≤ t ≤ α, we have

sup
x∈RN

∫

R
N
ξ
×Ω

∣

∣

∣

∣

εY

(

t

ε
,
x

ε
, ξ, ω

)

− x + ξ♯
(x

ε
, ξ, ω

)

∣

∣

∣

∣

dµc(ξ, ω) ≤ 2αC0.

Eventually,

∣

∣

∣

∣

∣

∣

∣

∣

εY

(

t

ε
,
x

ε
, ξ, ω

)

− x + tξ♯
(x

ε
, ξ, ω

)

∣

∣

∣

∣

∣

∣

∣

∣

L∞((0,T )×RN ;L1(µc))

≤

≤ inf
0<α<T

{

2C0α + T sup
τ≥α

ε

∣

∣

∣

∣

∣

∣

∣

∣

1

τ

∫ τ

0

ξ̂ (Ts(ξ, ω)) ds − ξ♯ (0, ξ, ω)

∣

∣

∣

∣

∣

∣

∣

∣

L1(µc)

}

and the lemma is proved.
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We easily deduce that theorem 1 is true when f0 ∈ W 1,∞(RN ) with

f(t, x, y, ξ, ω) := f0(x − tξ♯(y, ξ, ω)), g = 0,

rε(t, x, ξ, ω) := fε(t, x, ξ, ω) − f
(

t, x,
x

ε
, ξ, ω

)

and it is easily checked that f satisfies P (f) = f , f(t = 0) = P (f0) = f0 (since f0 is independent of y
and ξ), and that f is a solution of the evolution equation (4).

3.3 Third case : f0 arbitrary

We now tackle the case of an arbitrary stationary function f0 ∈ L1
loc(R

N
x ×R

N
ξ , L∞(RN

y ×Ω)). We begin
with the case when

f0(x, y, ξ, ω) = a(x)b(y, ξ, ω),

with a ∈ W 1,∞(RN ) and b ∈ L1
loc(R

N
ξ , L∞(RN

y ×Ω))∩L∞(RN
y ×R

N
ξ ×Ω), b stationary. This case follows

directly from the two first subsections. Indeed, let

f(t, x, y, ξ, ω) = a(x − tξ♯(y, ξ, ω)) P (b)(y, ξ, ω),

and
g(t, x; τ, y, ξ, ω) = a(x − tξ♯(y, ξ, ω)) (b − P (b)) (Tτ (y, ξ, ω)).

It is already known that f and g satisfy (4), that f(t, x, ·) ∈ K, and that g satisfies (3) thanks to the
preceding subsections and the fact that ξ♯(y, ξ, ω) is invariant by the Hamiltonian flow (Y, Ξ). Notice
that it is capital here that the coefficient ξ♯(y, ξ, ω) in the transport equation (4) belongs to K.

There remains to check that g(t, x; τ, ·) ∈ K
⊥, that the remainder rε goes to 0 strongly in L1

loc and that
g(t, x; t/ε, x/ε, ξ, ω) goes weakly to 0 in the sense of theorem 1. First, notice that a(x− tξ♯(y, ξ, ω)) ∈ K

and (b − P (b)) (Tτ (y, ξ, ω) ∈ K
⊥. Thus, a(x − tξ♯)P (b) = P (a(x − tξ♯)b) almost everywhere (because

a(x − tξ♯(0, ξ, ω)) is invariant by the semi-group Tτ ), and consequently

g(t, x; τ, y, ξ, ω) =
[

a(x − tξ♯)b − P
(

a(x − tξ♯)b
)]

(Tτ (ξ, τyω)).

Hence g(t, x; τ) ∈ K
⊥ a.e.

Then, setting

rε(t, x, ξ, ω) = fε(t, x, ξ, ω) − f
(

t, x,
x

ε
, ξ, ω

)

− g

(

t, x;
t

ε
,
x

ε
, ξ, ω

)

,

we have to prove that rε goes to 0 strongly in L1
loc. We compute the difference

fε(t, x, ξ, ω) − f
(

t, x,
x

ε
, ξ, ω

)

− g

(

t, x;
t

ε
,
x

ε
, ξ, ω

)

= a

(

εY

(

t

ε
,
x

ε
, ξ, ω

))

b

(

Y

(

t

ε
,
x

ε
, ξ, ω

)

, Ξ

(

t

ε
,
x

ε
, ξ, ω

)

, ω

)

−a
(

x − tξ♯
(x

ε
, ξ, ω

))

P (b)
(x

ε
, ξ, ω

)

−a
(

x − tξ♯
(x

ε
, ξ, ω

))

[b − P (b)]

(

Y

(

t

ε
,
x

ε
, ξ, ω

)

, Ξ

(

t

ε
,
x

ε
, ξ, ω

)

, ω

)

=

[

a

(

εY

(

t

ε
,
x

ε
, ξ, ω

))

− a
(

x − tξ♯
(x

ε
, ξ, ω

))

]

b

(

Y

(

t

ε
,
x

ε
, ξ, ω

)

, Ξ

(

t

ε
,
x

ε
, ξ, ω

)

, ω

)

The right-hand side of the above equality is bounded by

||a||W 1,∞ ||b||L∞

∣

∣

∣

∣

εY

(

t

ε
,
x

ε
, ξ, ω

)

− x + tξ♯
(x

ε
, ξ, ω

)

∣

∣

∣

∣

and thus converges to 0 as ε → 0 in L∞((0, T )×R
N
x ; L1(RN

ξ ×Ω, µc))) according to the second subsection.
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Moreover, it is easily proved that as ε → 0,

∫ T

0

g

(

t, x;
t

ε
,
x

ε
, ξ, ω

)

dt → 0

strongly in L1
loc(R

N
x × R

N
ξ , L1(Ω)) thanks to remark 3.1. Hence theorem 1 is proved in that case.

Now, let f0 ∈ L1
loc(R

N
x × R

N
ξ , L∞(RN

y × Ω)) arbitrary, and set F0(x, ξ, ω) := f0(x, 0, ξ, ω). Take a

sequence of functions Fn ∈ L1(RN
x × R

N
ξ × Ω) such that

• Fn → F0 as n → ∞ in L1
loc(R

N
x × R

N
ξ × Ω);

• For all n ∈ N, there exist functions an
k ∈ L1 ∩ W 1,∞(RN ), bn

k ∈ L1 ∩ L∞(RN
ξ × Ω), 1 ≤ k ≤ n such

that

Fn(x, ξ, ω) =
n

∑

k=1

an
k (x) bn

k (ξ, ω) a.e.

Let fε
n be the solution of (1) with initial data Fn

(

x, ξ, τx
ε
ω
)

, and let fn = fn(t, x, y, ξ, ω), gn =
gn(t, x; τ, y, ξ, ω) be the functions associated to fε

n by theorem 1 for all n.
Let f(t, x, y, ξ, ω), g(t, x; τ, y, ξ, ω) be the solutions of the system

P (f) = f, P (g) = 0,

∂t

(

f
g

)

+ ξ♯(y, ξ, ω) · ∇x

(

f
g

)

= 0,

∂τg + ξ · ∇yg −∇yu(y, ω) · ∇ξg = 0,

f(t = 0) = P (f0), g(t = 0, x; τ = 0, y, ξ, ω) = [f0 − P (f0)] (x, y, ξ, ω).

We have already proved that fn, gn satisfy the above system. We denote by F̄0, F̄n, the functions
associated to F0, Fn respectively by corollary 2.1, so that P (f0)(x, y, ξ, ω) = F̄0(x, ξ, τyω), and fn(t =
0, x, y, ξ, ω) = F̄n(x, ξ, τyω), gn(t = 0, x, τ = 0, y, ξ, ω) = (Fn − F̄n)(x, ξ, τyω).

We use the following lemma, of which we postpone the proof :

Lemma 3.2. Let gε be a solution of (1) with initial data g0

(

x, x
ε , ξ, ω

)

, and g0 ∈ L1
loc(R

N
x ×R

N
ξ , L∞(RN

y ×
Ω)) stationary. Then for all R, R′, T > 0, for all t ∈ [0, T ],

∫

x∈BR, ξ∈BR′

|gε(t, x, ξ, ω)| dx dξ ≤ ||g0||L1(KT,R,R′ ,L∞(RN
y ×Ω))

where

KT,R,R′ =

{

(x, ξ) ∈ R
N × R

N , |x| ≤ R + T

√

R′2 + 2umax, |ξ| ≤
√

R′2 + 2umax

}

.

Similarly, if g is a solution of (4) with initial data g0 ∈ L1
loc(R

N
x × R

N
ξ , L∞(RN

y × Ω)), then

∫

x≤R

|g(t, x, y, ξ, ω)| dx ≤
∫

x≤R+T
√

ξ2+2umax

|g0(x, y, ξ, ω)| dx

Consequently, with CR,T,ξ := {x ∈ R
N , |x| ≤ R + T

√

ξ2 + 2umax}, we have

||f(t, ·, y, ξ, ω) − fn(t, ·, y, ξ, ω)||L1(BR) ≤
∣

∣

∣

∣F̄0(·, ξ, τyω) − F̄n(·, ξ, τyω)
∣

∣

∣

∣

L1(CR,T,ξ)

≤
∣

∣

∣

∣

∣

∣
|F0 − Fn|(·, ξ, τyω)

∣

∣

∣

∣

∣

∣

L1(CR,T,ξ)

||f(t, x, y, ξ, ω) − fn(t, x, y, ξ, ω)||L1(BR×R
N
ξ
×Ω,dx dµc(ξ,ω)) ≤

∣

∣

∣

∣

∣

∣
|F0 − Fn|(x, ξ, ω)

∣

∣

∣

∣

∣

∣

L1(CR,T,
√

2c×R
N
ξ
×Ω,dxdµc(ξ,ω))

≤ ||F0 − Fn(x, ξ, ω)||L1(CR,T,
√

2c×R
N
ξ
×Ω,dxdµc(ξ,ω)) .
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In the last inequality, we have used property (8).
And similarly,

||fε(t, x, ξ, ω) − fε
n(t, x, ξ, ω)||L1(BR×BR′×Ω) ≤ ||F0 − Fn||L1(KT,R,R′ ,L∞(Ω)) ,

||g(t, x; τ, y, ξ, ω) − gn(t, x; τ, y, ξ, ω)||L1(BR×R
N
ξ
×Ω,dx dµc(ξ,ω)) ≤ 2 ||F0 − Fn(x, ξ, ω)||L1(CR,T,

√
2c×R

N
ξ
×Ω,dxdµc(ξ,ω)) .

The above inequalities are true for all t ∈ [0, T ] and for all τ ≥ 0.
Set

rε(t, x, ξ, ω) := fε(t, x, ξ, ω) − f
(

t, x,
x

ε
, ξ, ω

)

− g

(

t, x;
t

ε
,
x

ε
, ξ, ω

)

.

Then for all t ∈ [0, T ], for all n ∈ N, setting c = 1
2R′2 + umax,

||rε(t)||L1(BR×BR′×Ω) ≤ ||fε(t) − fε
n(t)||L1(BR×BR′×Ω)

+||f(t) − fn(t)||L∞(RN
y ;L1(BRx×R

N
ξ
×Ω,dx dµc(ξ,ω)))

+||g(t) − gn(t)||L∞((0,∞)τ×RN
y ;)L1(BR×R

N
ξ
×Ω,dx dµc(ξ,ω))

+||rε
n(t)||L1(BR×BR′×Ω)

≤ 4 ||F0 − Fn||L1(CR,T,
√

2c×R
N
ξ
×Ω,dxdµc(ξ,ω)) + ||rε

n(t)||L1(BR×BR′×Ω)

Thus rε → 0 as ε → 0 in L∞([0,∞); L1
loc(R

N
x × R

N
ξ ; L1(Ω)).

There only remains to check that
∫ T

0
g(t, x; t/ε, x/e, ξ, ω) dt goes strongly to 0 in L1

loc norm as ε
vanishes; this result follows immediately from the same property for gn and the above inequalities.
Therefore, we skip its proof.

Proof of Lemma 3.2. First, let us recall that

fε(t, x, ξ, ω) = f0

(

εY

(

t

ε
,
x

ε
, ξ, ω

)

, Y

(

t

ε
,
x

ε
, ξ, ω

)

, Ξ

(

t

ε
,
x

ε
, ξ, ω

)

, ω

)

,

and the Jacobian of the change of variables

(x, ξ) →
(

εY

(

t

ε
,
x

ε
, ξ, ω

)

, Ξ

(

t

ε
,
x

ε
, ξ, ω

)

, ω

)

is equal to 1.
On the other hand, since

1

2
|Ξ(t, y, ξ, ω)|2 + u (Y (t, y, ξ, ω)) =

1

2
|ξ|2 + u(y, ω)

we have
|Ξ(t, y, ξ, ω)| ≤

√

|ξ|2 + 2u(y, ω) ≤
√

|ξ|2 + 2umax

and
∣

∣

∣

∣

εY

(

t

ε
,
x

ε
, ξ, ω

)

− x

∣

∣

∣

∣

≤ t
√

|ξ|2 + 2umax.

Thus
∫

x∈BR, ξ∈BR′

|fε(t, x, ξ, ω)| dx dξ

=

∫

x∈BR, ξ∈BR′

∣

∣

∣

∣

f0

(

εY

(

t

ε
,
x

ε
, ξ, ω

)

, Y

(

t

ε
,
x

ε
, ξ, ω

)

, Ξ

(

t

ε
,
x

ε
, ξ, ω

)

, ω

)
∣

∣

∣

∣

dx dξ

≤
∫

x∈BR, ξ∈BR′

sup
y∈RN

∣

∣

∣

∣

f0

(

εY

(

t

ε
,
x

ε
, ξ, ω

)

, y, Ξ

(

t

ε
,
x

ε
, ξ, ω

)

, ω

)∣

∣

∣

∣

dx dξ

≤
∫

RN×RN

1(εY ( t
ε
, x

ε
,ξ,ω),Ξ( t

ε
, x

ε
,ξ,ω))∈KT,R,R′

sup
y∈RN

∣

∣

∣

∣

f0

(

εY

(

t

ε
,
x

ε
, ξ, ω

)

, y, Ξ

(

t

ε
,
x

ε
, ξ, ω

)

, ω

)∣

∣

∣

∣

dx dξ

=

∫

KT,R,R′

sup
y∈RN

|f0 (x, y, ξ, ω)| dx dξ
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The proof of the other inequality goes along the same lines.

4 The integrable case

In this section, we treat independently the periodic and the stationary ergodic case. Indeed, some results
of the periodic case are no longer true in the stationary ergodic setting, and the results which do remain
valid are not proved with the same tools.

Let us make precise what we mean about “integrable case” : in the periodic case, we take a function
u(y) which has the form

u(y) =
N

∑

i=1

ui(yi), (10)

where each function ui is periodic with period 1 (1 ≤ i ≤ N). The Hamiltonian H(y, ξ) can be written

H(y, ξ) =
1

2
|ξ|2 + u(y) =

N
∑

i=1

Hi(yi, ξ)

where Hi(yi, ξ) = 1
2 |ξi|2 + ui(yi) (1 ≤ i ≤ N). And the Hamiltonian system (5) becomes







Ẏi = −Ξi,

Ξ̇i = u′
i(Yi),

Yi(t = 0) = yi, Ξi(t = 0) = ξi.

(11)

Thus it is enough to investigate the behavior of each one-dimensional Hamiltonian system (11) individ-
ually, and for most calculations, we can assume without loss of generality that N = 1, and we drop all
indices i. However, for the calculation of the projection P , a more thorough discussion will be needed,
and we will come back to the case when N > 1 in the corresponding paragraph.

In the stationary ergodic setting, expression (10) can be transposed in the following way : assume
that Ω = ΠN

i=1Ωi, where each Ωi is a probability space, and assume that for 1 ≤ i ≤ N , an ergodic group
transformation, denoted by (τi,y)y∈R, acts on each Ωi.

Then for ω = (ω1, · · · , ωN ) ∈ Ω, and y = (y1, · · · , yN) ∈ R
N , we set τyω := (τ1,y1ω1, · · · , τN,yN

ωN ).
And we assume that the function u can be written

u(y, ω) =

N
∑

i=1

Ui (τi,yi
ωi) ,

where Ui ∈ L∞(Ωi) for all 1 ≤ i ≤ N . The same remarks as in the periodic case can be made, and thus
we will only consider the case N = 1; note that in the stationary ergodic case, we are unable to compute
the projection P when N > 1.

4.1 Periodic setting

The goal of this subsection is to give another proof of the results of K. Hamdache and E. Frénod in [7],
based on the study of the system







Ẏ = −Ξ,

Ξ̇ = u′(Y ),
Y (t = 0) = y, Ξ = ξ, y ∈ R, ξ ∈ R.

(12)

The Hamiltonian H(y, ξ) = 1
2 |ξ|2 + u(y) is constant along the trajectories of the system (12), so that

1

2
|Ξ(t, yξ)|2 + u(Y (t, y, ξ)) = H(y, ξ).
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We now fix y, ξ ∈ R
N . Without any loss of generality, we assume y ∈ [− 1

2 , 1
2 ), and we set E :=

H(y, ξ). The above equation describes the movement of a single particle in a periodic potential u, with
0 ≤ u ≤ umax. It is well-known that there are two kinds of behavior, depending on the value of the energy
E : if E < umax, the particle is “trapped” in a well of potential around y, and Y (t) remains bounded as
t → ∞. In that case, the trajectories in the phase space are closed curves. If E > umax, the trajectory
of the particle is unconstrained and |Y (t)| → ∞ as t → ∞. We study more precisely these two cases
and their consequences on the expression of the projection P in the following; we refer for instance to
[2] for further calculations and results about Hamiltonian dynamics and ordinary differential equations
in general.

4.1.1 Expression of ξ♯(y, ξ)

We begin with the case when H(y, ξ) < umax. In that case, u(y) ≤ H(y, ξ) < umax. By continuity of
the potential u, there exists y− < y and y+ > y such that H(y, ξ) < u(y±) < umax, and the periodicity
of u allows us to choose y± such that |y+ − y−| < 1. Then y− < Y (t, y, ξ) < y+ for all t ≥ 0. Indeed,
assume that there exists t > 0 such that Y (t, y, ξ) ≥ y+ > y = Y (t = 0, y, ξ). Since the trajectory Y is
continuous in time, there exists 0 < t0 ≤ t such that Y (t = t0, y, ξ) = y+, which is absurd since

H(Y (t = t0, y, ξ), Ξ(t = t0, y, ξ)) = H(y, ξ) ≥ u(Y (t = t0, y, ξ)) > H(y, ξ).

Thus Y (t, y, ξ) is bounded. Since

ξ♯(y, ξ) = lim
T→∞

1

T

∫ T

0

Ξ(t, y, ξ) dt = − lim
T→∞

1

T

∫ T

0

Ẏ (t, y, ξ) dt = lim
T→∞

y − Y (T, y, ξ)

T

we deduce that ξ♯(y, ξ) = 0 for all y, ξ such that H(y, ξ) < umax.

We now study the case H(y, ξ) > umax. Since

|Ẏ (t, y, ξ)|2 = 2 (H(y, ξ) − u(Y (t, y, ξ))) ≥ 2(H(y, ξ) − umax) > 0

Ẏ does not vanish for t ≥ 0. Consequently,

Ξ(t, y, ξ) = −Ẏ (t, y, ξ) = sgn(ξ)
√

2 (H(y, ξ) − u(Y (t, y, ξ))),

and since |Y (t, y, ξ) − y| ≥
√

2 (H(y, ξ) − umax)t, |Y (t)| → ∞ as t → ∞. We immediately deduce that
Ξ(t, y, ξ) is periodic in time: indeed, there exists t0 > 0 such that

Y (t0, y, ξ) = y − sgn(ξ).

And

Ξ(t = t0, y, ξ) = sgn(ξ)
√

2 (H(y, ξ) − u(Y (t0, y, ξ))) = sgn(ξ)
√

2 (H(y, ξ) − u(y)) = ξ = Ξ(t = 0, y, ξ),

so that for s ≥ 0,

Y (t0 + s, y, ξ) = Y (s, y, ξ) − sgn(ξ),

Ξ(t0 + s, y, ξ) = Ξ(s, yξ),

and Ξ is periodic with period t0.
Consequently,

ξ♯(y, ξ) = lim
T→∞

1

T

∫ T

0

Ξ(t, y, ξ) dt =
1

t0

∫ t0

0

Ξ(t, y, ξ) dt.

But
∫ t0

0

Ξ(t, y, ξ) dt = −
∫ t0

0

Ẏ (t, y, ξ) dt

= − (Y (t0, y, ξ) − y)

= sgn(ξ).
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Thus we only have to compute t0. With this aim in view, we use the change of variables s = Y (t), with
Jacobian ds = Ẏ dt (recall that Ẏ (t, y, ξ) = −sgn(ξ)

√

2 (H(y, ξ) − u(Y (t, y, ξ))) ), in the formula

t0 =

∫ t0

0

dt

=

∫ Y (t0)

Y (t=0)

1

−sgn(ξ)
√

2 (H(y, ξ) − u(s))
ds

= −sgn(ξ)

∫ y−sgn(ξ)

y

1
√

2 (H(y, ξ) − u(s))
ds

=

∫ 1

0

1
√

2 (H(y, ξ) − u(s))
ds

Eventually, we deduce
ξ♯(y, ξ) = sgn(ξ)ϕ(H(y, ξ)),

where

ϕ(E) =
√

21E>umax

1
〈

1√
(E−u(s))

〉

We close this paragraph with a calculation which allows us to express ξ♯ in terms of the homogenized
Hamiltonian H̄ . The result we will obtain will be justified in more abstract and theoretical terms in the
last subsection, using arguments similar to those of the theory of Aubry-Mather.

First, let us recall the expression of the homogenized Hamiltonian H̄ (see [10]) : we have

H(y, ξ) =
1

2
|ξ|2 + u(y), with inf u = 0, sup u = umax,

and thus

H̄(p) = umax +
1

2







0 if p <
〈

√

2(umax − u)
〉

λ if |p| ≥
〈

√

2(umax − u)
〉

, where |p| =
〈

√

2(umax − u) + λ
〉

In other words, setting

θ :
[0,∞) → [0,∞)

λ 7→
〈

√

2(umax − u) + λ
〉

we have

H̄(p) = umax +
1

2
1|p|≥θ(0)θ

−1(|p|).

Hence,

H̄ ′(p) = sgn(p)
1

2
1|p|≥θ(0)

1

θ′ (θ−1(|p|)) ;

and

θ′(λ) =
1

2

〈

1
√

2(umax − u) + λ

〉

,

θ−1(|p|) = 2
(

H̄(p) − umax

)

∀|p| ≥ θ(0),

|p| > θ(0) ⇐⇒ H̄(p) > umax ∀p.

Gathering all the terms, we are led to

H̄ ′(p) = sgn(p)
√

21H̄(p)>umax

1
〈

1√
H̄(p)−u

〉

= sgn(p)ϕ
(

H̄(p)
)

17



Thus, the final expression is
ξ♯(y, ξ) = H̄ ′(p),

where p is such that
H̄(p) = H(y, ξ) ∨ umax, sgn(p) = sgn(ξ).

4.1.2 Expression of the projection P

We also mention here how to find a general expression of the projection P in the special case N = 1,
and we explain how to generalize this expression in some particular cases when N > 1. Recall that if
f = f(y, ξ) ∈ L1

loc(R
N
y × R

N
ξ ) is periodic in y, then

P (f)(y, ξ) = lim
T→∞

1

T

∫ T

0

f(Y (t, y, ξ), Ξ(t, y, ξ)) dt

and the limit holds almost everywhere and in L1([0, 1) × R
N , mc), with dmc(y, ξ) = 1H(y,ξ)≤c dy dξ.

We begin with the case H(y, ξ) > umax. We have seen in the previous paragraph that there exists
t0 > 0, which depends only on H(y, ξ) such that for all t > 0, for all k ∈ N

Y (t + kt0, y, ξ) = Y (t, y, ξ) − ksgn(ξ), Ξ(t + kt0, y, ξ) = Ξ(t, y, ξ).

Thus f(Y (t), Ξ(t)) is periodic in time with period t0, and

P (f)(y, ξ) =
1

t0

∫ t0

0

f(Y (t, y, ξ), Ξ(t, y, ξ)) dt.

We use once again the change of variables s = Y (t), so that

∫ t0

0

f(Y (t, y, ξ), Ξ(t, y, ξ)) dt

=

∫ y−sgn(ξ)

y

f(s, sgn(ξ)
√

2 (H(y, ξ) − u(s)))
1

−sgn(ξ)
√

2 (H(y, ξ) − u(s))
ds

=

〈

f
(

·, sgn(ξ)
√

2 (H(y, ξ) − u(·))
) 1

√

2 (H(y, ξ) − u(·))

〉

.

And eventually,
P (f)(y, ξ) = f̄(sgn(ξ), H(y, ξ)) (13)

with

f̄(η, E) :=

〈

f
(

·, η
√

2 (E − u(·))
)

1√
(E−u(·))

〉

〈

1√
(E−u)

〉 η = ±1, E > umax

We now focus on the case 0 < E < umax. In order to simplify the analysis we assume that E /∈
{u(y) ; u has a local extremum at y} (this set is finite or countable), and that

∀y ∈ R, u′(y) = 0 ⇒ u has a local extremum at y.

In that case, it can be easily proved that Y (t, y, ξ) is periodic in t; this follows directly from the fact
that the trajectory in the phase space is closed (see [2]). Indeed, pushing a little further the analysis of
the previous paragraph, we construct z± such that

|z+ − z−| < 2π, z− < z+,

u(z±) = E ,

z− ≤ y ≤ z+,

u(z) < E ∀z ∈ (z−, z+).
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Then the particle starting from y with initial speed −ξ reaches either z+ or z− in finite time; the speed
of the particle is 0 at that moment since

|Ẏ |2 = 2(E − u(Y )),

but its acceleration is −u′(z±) 6= 0, so the particle turns around and goes back in the reverse direction.
It then reaches the other extremity of the interval (z−, z+) in finite time, and the same phenomena
occurs. Hence after a finite time t0, the particle is back at its starting point y with the same speed −ξ.
Consequently, the movement of the particle is periodic in time with period t0. Thus, we have

P (f)(y, ξ) =
1

t0

∫ t1+t0

t1

f(Y (t, y, ξ), Ξ(t, y, ξ)) dt,

where t1 ≥ 0 is arbitrary. It is convenient to choose for t1 the first time when the particle hits z−. In
that case, it is easily seen that t0 is twice the time it takes to the particle to go from z− to z+, so that

t0
2

=

∫ t1+t0/2

t1

dt =

∫ z+

z−

1
√

2 (E − u(s))
ds =

〈

1u<E
1

√

2 (E − u)

〉

and

∫ t1+
t0
2

t1

f(Y (t, y, ξ), Ξ(t, y, ξ)) dt =

〈

1u<Ef(s,− 1
√

2 (E − u)
)

1
√

2 (E − u)

〉

,

∫ t1+t0

t1+
t0
2

f(Y (t, y, ξ), Ξ(t, y, ξ)) dt =

〈

1u<Ef(s,
1

√

2 (E − u)
)

1
√

2 (E − u)

〉

.

Gathering all the terms, we are led to

P (f)(y, ξ) =

〈

1u<E

[

f

(

·, 1√
2(E−u)

)

+ f

(

·,− 1√
2(E−u)

)]

1√
(E−u)

〉

2

〈

1u<E
1√

(E−u)

〉 (14)

Expressions (13) and (14) are compatible with the ones in [7].

Let us now come back to the case when N > 1, and take a function ϕ(y, ξ) = ϕ1(y1, ξ1) · · ·ϕN (yN , ξN ),
where each ϕi is periodic with period 1. We want to compute the limit

1

T

∫ T

0

ϕ1(Y1(t, y1, ξ1), Ξ1(t, y1, ξ1)) · · ·ϕN (YN (t, yN , ξN ), ΞN (t, yN , ξN )) dt.

In general, knowing the behavior of each trajectory (Yi, Ξi) independently is not enough to compute such
a product. However, here, we recall that each function ϕi(Yi(t, yi, ξi), Ξi(t, yi, ξi)) (1 ≤ i ≤ N) is periodic
in time. The period depends only on Hi(yi, ξi) and on the function ui. More precisely, setting

Ti(E) :=
√

2

∫ 1

0

1ui(z)<E
1

√

E − ui(z)
dz ∀E > 0, E 6= umax,

ϕi(Yi(t, yi, ξi), Ξi(t, yi, ξi)) is periodic in time with period Ti(Hi(yi, ξi)).
We can thus use the following result :

Lemma 4.1. Let f1, · · · , fN ∈ L∞(R) such that fi is periodic with period θi, and set 〈fi〉 = 1
θi

∫ θi

0
fi.

Assume that
k1

θ1
+ · · · + kN

θN
6= 0 ∀(k1, · · · , kN ) ∈ Z

N \ {0}. (15)

Then as T → ∞,
1

T

∫ T

0

f1(t) · · · fN (t) dt → 〈f1〉 · · · 〈fN〉 .
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Sketch of proof. By density, it is enough to prove the lemma for f1, ·, fN ∈ C∞(R). Write fi as a Fourier
series (the series converges thanks to the regularity assumption), and use the fact that for all α 6= 0,

1

T

∫ T

0

eiαt dt → 0 as T → ∞.

In the present setting, we deduce the following result :

Proposition 4.1. Let ϕ : (y, ξ) 7→ ϕ1(y1, ξ1) · · ·ϕN (yN , ξN ), where ϕi ∈ L∞
per(Ry × R

ξ).

Let (y, ξ) ∈ [0, 1)N × R
N , and let θi = θi(yi, ξi) = Ti(Hi(yi, ξi)) for 1 ≤ i ≤ N . Assume that

(θ1, · · · , θN ) satisfy condition (15). Then

P (ϕ)(y, ξ) = P1(ϕ1)(y1, ξ1) · · ·PN (ϕN )(yN , ξN ) (16)

where each Pi is the projection in dimension 1 with potential ui, given by expressions (13) and (14).

In particular, when the set

{(y, ξ) ∈ [0, 1]N × R
N ; (θ1(y1, ξ1), · · · , θN (yN , ξN )) satisfy condition (15)}

has zero Lebesgue measure, equality (16) holds almost everywhere. It can then be generalized to arbitrary
functions ϕ ∈ L∞

per(R
N ×R

N) (always by linearity and density). The correct expression of the projection
P is then

P = P1 ◦ P2 ◦ · · · ◦ PN , (17)

where each projection Pi acts on the variables (yi, ξi) only. Notice that all projections Pi thus commute
with one another; hence the order in which they are taken is unimportant.

We wish to emphasize that on the open set {(y, ξ) ∈ R
2N , ∀i ∈ {1, · · · , N} Hi(yi, ξi) > max ui}, the

expression (17) is true. Indeed, the function Ti is strictly decreasing on (maxui, +∞), and thus the set

{(E1, · · · , EN ) ∈ R
N ; Ei > maxui and ∃k ∈ Z

N \ {0}, k1/T1(E1) + · · · + kN/TN(EN ) = 0}

is countable. As a consequence, the set

{(y, ξ) ∈ R
2N , Hi(yi, ξi) > max ui ∀i and (θ1(y1, ξ1), · · · , θN (yN , ξN )) satisfy condition (15)}

has zero Lebesgue measure.

However, let us mention here that in general, condition (15) cannot be relaxed : indeed, assume for
instance that ui = uj := u for i 6= j and assume that the function u is such that

∃y0 > 0, u(y) = y2 for |y| < y0,

and u(y) > y2
0 if y ∈ [− 1

2 , 1
2 ] \ [−y0, y0].

Then if |E| ≤ √
y0, we have

T (E) =

∫

√
E

−
√
E

1
√

E − y2
dy = 2

∫ 1

0

1√
1 − z2

dz =: T0

Thus, if Hi(yi, ξi) ≤ √
y0, then (Yi, Ξi)(t, yi, ξi) is periodic with period T0. Notice that T0 does not

depend on the energy Hi(yi, ξi)
In that case, the function ϕ(Y (t), Ξ(t)) is also periodic with period T0. Thus we have to compute the

limit of
1

T

∫ T

0

f1(t) · · · fN (t) dt

20



as T → ∞, where the fi are arbitrary functions with period T0. It is then easily proved that

1

T

∫ T

0

f1(t) · · · fN (t) dt →
∑

k ∈ Z
N ,

k1 + · · · + kN = 0

a1,k1 · · · aN,kN
(18)

where

aj,l =
1

T0

∫ T0

0

fj(t)e
− 2ilπt

T0 dt, 1 ≤ j ≤ N, l ∈ Z.

In general, the right-hand side of (18) differs from a1,0 · · ·aN,0, and thus

P 6= P1 ◦ · · · ◦ PN

for (y, ξ) in a neighbourhood of the origin.

4.2 Stationary ergodic setting

In the stationary ergodic setting, some of the expressions or properties above are no longer true. The
most significant difference occurs when the energy H(y, ξ) < umax; indeed, in that case the particle is
not necessarily trapped, depending on the profile of the potential u. Hence, in the rest of the subsection,
we focus on the case H(y, ξ) > umax. In that case, the movement of the particle is unbounded and has
many similarities with the periodic case. In particular, the particle sees “all the potential” during its
evolution, and this will be fundamental in the use of the ergodic theorem.

4.2.1 Expression of ξ♯(y, ξ, ω)

This paragraph is devoted to the proof of proposition 1.1 in the stationary ergodic setting. We refer for
instance to [12] for conditions on the existence of correctors for all P ∈ R in the case of a general coercive
hamiltonian. In the present case, there exist correctors if

{y ∈ R; u(y, ω) = umax} 6= ∅

a.s. in ω ∈ Ω.

Remark 4.1. We wish to point out that the expressions in the periodic and in the stationary ergodic case
when H(y, ξ, ω) > umax are exactly the same (compare proposition 1.1 and the end of paragraph 4.1.1).
This expression, and more precisely, the equality ξ♯ = H̄ ′(P ) for some P , is in fact strongly linked to
Aubry-Mather theory. Indeed,

ξ♯(y, ξ, ω) = lim
T→∞

1

T

∫ T

0

Ξ(t, y, ξ, ω) dt = − lim
T→∞

Y (T, y, ξ, ω)− y

T
,

and ξ♯(y, ξ, ω) is thus (up to a multiplication by −1) the rotation number associated to the Hamiltonian
flow starting at (y, ξ). The interested reader should compare our proposition 1.1 to lemma 2.8 in [5] or
theorem 4.1 in [6], and our proof to the ones in these articles. We refer to [5, 6] for further references
to Aubry-Mather theory and its applications to partial differential equations.

Proof of proposition 1.1. In all the proof, we fix y, ξ, ω such that H(y, ξ, ω) > umax, and we set P =
P (y, ξ, ω). Let Q ∈ R be arbitrary, and let v be a corrector, i.e.

H(y, Q + ∇yv(y, ω), ω) = H̄(Q).

Then according to the theory of viscosity solutions, for all (y, ξ, ω) ∈ R × R × Ω, for all T > 0,

v(y, ω) ≤ v(Y (T, y, ξ, ω)) +

∫ T

0

L(Y (t, y, ξ, ω), Ξ(t, y, ξ, ω), ω) dt + Q [Y (T, y, ξ, ω) − y] + H̄(Q)T. (19)
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Hence

1

T

∫ T

0

L(Y (t, y, ξ, ω), Ξ(t, y, ξ, ω), ω) dt ≥ v(y) − v(Y (T, y, ξ, ω))

T
− Q

Y (T, y, ξ, ω)− y

T
− H̄(Q)T (20)

and
1

2
|Ẏ (t, y, ξ, ω)| = H(y, ξ, ω) − u ≥ H(y, ξ, ω) − umax > 0 ∀t > 0.

Thus there exist constants α, β > 0 depending only on H(y, ξ, ω) and umax, such that

0 < α ≤
∣

∣

∣

∣

Y (T, y, ξ, ω) − y

T

∣

∣

∣

∣

≤ β ∀T > 0.

Consequently, Y (T ) → ∞ as T → ∞ and

v(y) − v(Y (T, y, ξ, ω))

T
=

v(y) − v(Y (T, y, ξ, ω))

Y (T, y, ξ, ω) − y

Y (T, y, ξ, ω) − y

T
→ 0 as T → ∞.

(remember (6)).
On the other hand, as T → ∞,

Y (T, y, ξ, ω) − y

T
= − 1

T

∫ T

0

Ξ(t, y, ξ, ω) dt → −ξ♯(y, ξ, ω).

Hence, passing to the limit in (20), we derive

P (L)(y, ξ, ω) ≥ Qξ♯(y, ξ, ω) − H̄(Q) ∀Q ∈ R. (21)

Thus
P (L)(y, ξ, ω) ≥ L̄

(

ξ♯(y, ξ, ω)
)

. (22)

In order to prove the proposition, we have to find a special Q0 ∈ R such that equality holds in (19).
This will entail that

P (L)(y, ξ, ω) = sup
Q∈R

(

Qξ♯(y, ξ, ω) − H̄(Q)
)

= L̄
(

ξ♯(y, ξ, ω)
)

,

and the sup is obtained for ξ♯(y, ξ, ω) = H̄ ′(Q0).
Let us thus prove that with Q = P = P (y, ξ, ω), equality holds in (19).
First, notice that

v(y, ω) := sgn(P )

∫ y

0

√

2(H̄(P ) − u(z, ω)) dz − Py

is a viscosity solution of
H(y, P + ∇yv, ω) = H̄(P ),

and as y → ∞
1

y

∫ y

0

√

2(H̄(P ) − u(z, ω)) dz → E

[

√

2(H̄(P ) − U)

]

.

By definition of H̄ ,

E

[

√

2(H̄(P ) − U)

]

= |P |;

consequently,
1

1 + |y|

(

sgn(P )

∫ y

0

√

2(H̄(P ) − u(z, ω)) dz − Py

)

→ 0

as y → ∞, a.s. in ω. Thus v satisfies (6), and v ∈ L∞(Ω; C1(RN )). Thus the method of characteristics,
for instance, can be used to prove that equality holds in (19), with (y, ξ) replaced by any couple (y′, ξ′) =
(y′, P + ∇yv(y′, ω)). We have to prove that we can take (y′, ξ′) = (y, ξ). First, notice that

∇yv(y′, ω) = sgn(P )
√

2(H̄(P ) − u(y′, ω)) − P,

and thus sgn (P + ∇yv(y′, ω)) = sgn(ξ′) = sgn(P ) = sgn(ξ). Hence, take y′ = y. Then |ξ|2 = |ξ′|2
because H(y, ξ) = H̄(P ) = H(y, ξ′) by definition of ξ′. Thus ξ = ξ′, and equality holds in (19).
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4.3 Expression of the projection P

The same method as in the periodic case can be used in order to find the expression of the projection P
when H(y, ξ, ω) =: E > umax; indeed, in that case, remember that

P (f)(y, ξ, ω) = lim
T→∞

1

T

∫ T

0

f (Y (t, y, ξ, ω), Ξ(t, y, ξ, ω), ω) dt

and we can use the change of variables

dt =
1

Ẏ
dY =

1

−sgn(ξ)
√

2(E − u(Y, ω))
dY

in order to obtain

∫ T

0

f (Y (t, y, ξ, ω), Ξ(t, y, ξ, ω), ω) dt

=

∫ Y (T,y,ξ,ω)

y

f
(

z, sgn(ξ)
√

2(E − u(z, ω)), ω
) 1

−sgn(ξ)
√

2(E − u(z, ω))
dz.

Since the group transformation (τx) is ergodic, and Y (T ) → ∞ as T → ∞, for all E > umax,

1

Y (T ) − y

∫ Y (T,y,ξ,ω)

y

f
(

z, sgn(ξ)
√

2(E − u(z, ω)), ω
) 1

−sgn(ξ)
√

2(E − u(z, ω))
dz →

→ E

[

F
(

sgn(ξ)
√

2(E − u(0, ω)), ω
) 1

−sgn(ξ)
√

2(E − u(0, ω))

]

Thus, we obtain
P (f)(y, ξ, ω) = ξ♯(y, ξ, ω)f̄(sgn(ξ), H(y, ξ, ω)),

where

f̄(η, E) = E

[

F
(

η
√

2(E − u(0, ω)), ω
) 1

η
√

2(E − u(0, ω))

]

.
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