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HÖLDER REGULARITY FOR OPERATOR SCALING STABLE RANDOM

FIELDS

HERMINE BIERMÉ AND CÉLINE LACAUX

Abstract. We investigate the sample paths regularity of operator scaling α-stable random fields.
Such fields were introduced in [6] as anisotropic generalizations of self-similar fields and satisfy the

scaling property {X(cEx);x ∈ Rd}
(fdd)
= {cHX(x);x ∈ Rd} where E is a d× d real matrix and H > 0.

In the case of harmonizable operator scaling random fields, the sample paths are locally Hölderian
and their Hölder regularity is characterized by the eigen decomposition of Rd with respect to E. In
particular, the directional Hölder regularity may vary and is given by the eigenvalues of E. In the
case of moving average operator scaling random α-stable random fields, with α ∈ (0, 2) and d ≥ 2,
the sample paths are almost surely discontinous.

1. Introduction

In this paper we consider operator scaling stable random fields as introduced in [6]. More precisely,
for E a real d × d matrix with positive real parts of the eigenvalues, a scalar valued random field
(X(x))x∈Rd is called operator scaling for E and H > 0 if for every c > 0

(1) {X(cEx);x ∈ Rd} (fdd)
= {cHX(x);x ∈ Rd},

where
(fdd)
= means equality of finite dimensional distributions and as usual cE = exp(E log c) with

exp(A) =
∑∞

k=0
Ak

k! is the matrix exponential. Let us remark that up to consider the matrix E/H,
we may assume, without loss of generality, that H = 1.

These fields can be seen as anisotropic generalizations of self-similar random fields. Let us recall
that a scalar valued random field (X(x))x∈Rd is said to be H-self-similar with H ∈ R if

{X(cx);x ∈ Rd} (fdd)
= {cHX(x);x ∈ Rd}

for every c > 0. Then a H-self-similar field is also an operator scaling field for the matrix E = Id/H,
where Id is the identity matrix of size d×d. Self-similar random fields are used in various applications
such as internet traffic modelling [29], ground water modelling and mathematical finance, just to
mention a few. Various examples can be found for instance in the books [18, 1, 27]. A very important
class of such fields are given by Gaussian random fields and especially by the fractional Brownian
field BH , where H ∈ (0, 1) is the so-called Hurst parameter. The random field BH is H-self-similar

and has stationary increments, e.g. {BH(x + h) − BH(h);x ∈ Rd} (fdd)
= {BH(x);x ∈ Rd} for any

h ∈ Rd. It is an isotropic generalization of the famous fractional Brownian motion, implicitely
introduced in [12] and defined in [19].

Nevertheless, Gaussian random fields are not convenient for some heavy tails phenomena mod-
elling. For this purpose, α-stable random fields have been introduced. A scalar valued random field
{X(x);x ∈ Rd} is said to be symmetric α-stable (SαS), for α ∈ (0, 2), if any linear combination
n
∑

k=1

akX(xk) is SαS. We address to the book [27] for a well understanding of such fields. The self-

similar α-stable fields with stationary increments have been extensively used to propose alternative
to Gaussian modelling (see [23, 29] for instance) and are isotropic.

However, certain applications (see, e.g., [5, 7] and references therein) require that the random
field is anisotropic and satisfies a scaling relation. This scaling relation should have different Hurst
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indices in different directions and these directions should not necessarily be orthogonal. To reach
this goal the authors of [6] propose a new class of random fields with an anisotropic behavior driven
by a d × d matrix E. More precisely, they introduce α-stable random fields which have stationary
increments and satisfy the operator scaling property (1). Two different classes of such fields are
defined and analyzed, using a moving average representation as well as an harmonizable one. In
the Gaussian case α = 2, according to [6] there exist modifications of these fields which are almost
surely Hölder-continuous of certain indices. We give similar results here in the stable case α ∈ (0, 2)
for harmonizable operator scaling stable random fields. Actually, we obtain their critical global and
directional Hölder exponents, which are given by the eigenvalues of E. In general, such fields are
anisotropic and their sample paths properties varies with the direction. In particular, in the case
where E is diagonalizable, for any eigenvector θj associated with the real eigenvalue λj , harmonizable
operator scaling stable random field admits Hj = 1/λj as critical Hölder exponent in direction θj.
Let us point out that we establish an accurrate upper bound for the modulus of continuity. Such
upper bound has already been given in the case of real harmonizable fractional stable motions, which
are self-similar, in [14] and in the case of some Gaussian random processes in [13]. Then, in this
paper, we generalize these results to any dimension d and any harmonizable operator scaling stable
fields. From this upper bound, we can deduce the Hölder sample paths regularity. Let us point out
that we also obtain this upper bound in the case of Gaussian operator scaling random field, which
improves the sample paths properties establishes in [6].

Furthermore, whereas in the Gaussian case α = 2, moving average and harmonizable fields have
the same kind of regularity properties, this is no more true in the case α ∈ (0, 2). In particular,
we show that for d ≥ 2, a moving average operator scaling stable random field does not admit
any continuous modification. Remark that if d = 1, the sample paths regularity properties are
already known since the processes studied are self-similar moving average stable processes, see for
example [27, 14, 28].

One of the main tool for the study of sample paths of operator scaling random fields is the change
of polar coordinates with respect to the matrix E introduced in [22] and used in [6]. For X a Gaussian
operator scaling random field with stationary increments, using (1), we can write the variogramme
of X as

v2(x) = E
(

X2(x)
)

= τE(x)2H
E
(

X2(`E(x))
)

,

where τE(x) is the radial part of x with respect to E and `E(x) is its polar part. Therefore, in
the Gaussian case, the sample paths regularity depends on the behavior of the polar coordinates
(τE(x), `E(x)) around x = 0. Such property also holds in the stable case α ∈ (0, 2). The Hölder
regularity of the sample paths follows from estimates of τE(x) compared to ‖x‖. These estimates are
given in Section 3 and their proof are postponed to the Appendix.

Furthermore, to study the sample paths in the stable case, the other main tool we use is a series
representation of harmonizable operator scaling α-stable random fields. Such representations in
series of infinitely divisible laws have been studied in [17, 16, 25, 24]. As in [14], our study is based
on a LePage series representation. Actually, the main idea is to choose a representation which is a
conditionnally Gaussian series.

In Section 2, we recall the definition of harmonizable operator scaling random fields. Then, Sec-
tions 3 and 4 are devoted to the main tools we need for the study of the sample paths of these
fields. More precisely, Section 3 deals with the polar coordinates with respect to a matrix E and
Section 4 gives the LePage series representation. In Section 5, the sample paths properties and the
Hausdorff dimension of the graph are given. Section 6 is concerned with moving average operator
scaling random fields.

2. Harmonizable representation

Let us recall the definition of harmonizable operator scaling stable random fields, given by [6].
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Let E be a real d× d matrix. Let λ1, . . . , λd be the complex eigenvalues of E and aj = <(λj) for
each j = 1, . . . , d. We assume that

(2) min
1≤j≤d

aj > 1.

Let ψ : Rd → [0,∞) be a continuous, Et-homogeneous function, which means according to Defini-
tion 2.6 of [6] that

ψ(cE
t

x) = cψ(x) for all c > 0.

We assume moreover that ψ(x) 6= 0 for x 6= 0. Such functions were studied in detail in [22], Chapter 5
and various examples are given in Theorem 2.11 and Corollary 2.12 of [6].

Let 0 < α ≤ 2 and Wα(dξ) be a complex isotropic α-stable random measure on Rd with Lebesgue
control measure (see [27] p.281). If α = 2, Wα(dξ) is a complex isotropic Gaussian random measure.
Let q = trace (E).

Definition 2.1. Since (2) is fulfilled, the random field

(3) Xα(x) = <
∫

Rd

(

ei〈x,ξ〉 − 1
)

ψ(ξ)−1−q/α Wα(dξ) , x ∈ Rd,

is well defined and called harmonizable operator scaling stable random field.

From Theorem 4.1 and Corollary 4.2 of [6], Xα is stochastically continuous, has stationary incre-
ments and satisfies the following operator scaling property

(4) ∀c > 0,
{

Xα(cEx);x ∈ Rd
}

(fdd)
=

{

cXα(x);x ∈ Rd
}

.

For notational sake of simplicity we denote the kernel function by

(5) f(x, ξ) =
(

ei〈x,ξ〉 − 1
)

ψ(ξ)−1−q/α.

Let us recall that f(x, ·) ∈ Lα(Rd) for any x ∈ Rd, which is a necessary and sufficient condition
for Xα to be defined.

Now, let us give some examples of such random fields.

Example 2.1. Let Id be the identity matrix of size d× d, E = Id/H (with 0 < H < 1) and ψ(x) =

‖x‖H with ‖·‖ the Euclidean norm. Then the random field defined by (3) is a real harmonizable stable
random field (see [27] for details on such fields). In this case, Xα is self-similar with exponent H, i.e.

∀c > 0, {Xα(cx);x ∈ Rd} (fdd)
= {cHXα(x);x ∈ Rd}.

Let us quote that, if α = 2, Xα is a fractional Brownian field and its critical Hölder exponent is given
by its Hurst index H (see Theorem 8.3.2 of [2] for instance).

Example 2.2. Assume that E is diagonalizable. Then, all the eigenvalues of E are real given
by (aj)1≤j≤d. Let (θj)1≤j≤d be a basis of some corresponding eigenvectors and consider the function

ψ defined by

ψ(x) =





d
∑

j=1

|〈x, θj〉|2/aj





1/2

, x ∈ Rd.

The function ψ is clearly continuous and non negative on Rd. Moreover, since 〈cEt
x, θj〉 = 〈x, cEθj〉 =

caj 〈x, θj〉, it is also Et-homogeneous. Finally, since (θj)1≤j≤d is a basis of Rd we have that ψ(x) = 0
if and only if x = 0. Then we can define Xα by (3) and in this case the operator scaling property (4)
implies that

∀j = 1, . . . , d, ∀c > 0, {Xα(ctθj); t ∈ R} (fdd)
=

{

c1/ajXα(tθj); t ∈ R

}

.

The random field Xα is self-similar with Hurst index Hj = 1/aj in the direction θj. In particular, in
the Gaussian case (α = 2), (X2(tθj))t∈R

is a fractional Brownian motion with Hurst index Hj. Then,
in this case, its critical Hölder exponent is equal to Hj.
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The main tool in the study of operator scaling random fields is the change of coordinates in a kind
of polar coordinates with respect to the matrix E. Then, before we study the sample paths of Xα,
we recall in the next section the definition of these coordinates and give some estimates of the radial
part.

3. Polar coordinates

According to Chapter 6 of [22], since E is a real d × d matrix with positive real parts of the
eigenvalues there exists a norm ‖ · ‖E on Rd such that for the unit sphere SE = {x ∈ Rd : ‖x‖E = 1}
the map

ΨE : (0,∞) × SE −→ Rd \ {0}
(r, θ) 7−→ rEθ

is a homeomorphism. Hence we can write any x ∈ Rd\{0} uniquely as x = τE(x)E`E(x) for some
radial part τE(x) > 0 and some direction `E(x) ∈ SE such that x 7→ τE(x) and x 7→ `E(x) are
continuous. Observe that SE = {x ∈ Rd : τE(x) = 1} is compact and set

(6) mE = min
SE

‖x‖ and ME = max
SE

‖x‖.

We know that τE(x) → ∞ as x → ∞ and τE(x) → 0 as x → 0. Hence we can extend τE(·)
continuously by setting τE(0) = 0.
Let us recall the formula of integration in polar coordinates established in [6].

Proposition 3.1. There exists a unique finite Radon measure σE on SE such that for all f ∈
L1(Rd, dx) we have

∫

Rd

f(x) dx =

∫ ∞

0

∫

SE

f(rEθ)σE(dθ) rq−1 dr.

In the Gaussian case (α = 2), the variogramme of X2 can be rewritten as follows

v2(x) = τE(x)2E

(

X2 (`E(x))2
)

,

using the operator scaling property (4). Then, the Hölder regularity of X2 follows from estimates
of τE(x) compared to ‖x‖ around x = 0, e.g. the Hölder regularity of τE around 0, see [6]. Then,
in order to get an upper bound for the modulus of continuity (for any α), we need precise estimates
of τE(x).

As done in [21] for the study of operator-self-similar Gaussian random fields we use the Jordan
decomposition of the matrix E to get estimates of τE. From the Jordan decomposition’s theorem
(see [10] p. 129 for instance), there exists a real invertible d × d matrix P such that D = P −1EP
is of the real canonical form, which means that D is composed of diagonal blocks which are either
Jordan cell matrix of the form











λ 1 . . . 0

0 λ
. . .

...
...

. . .
. . . 1

0 . . . 0 λ











with λ a real eigenvalue of E or blocks of the form

(7)

















Λ I2 0 . . . 0

0 Λ I2
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . .

. . . I2
0 . . . . . . 0 Λ

















with Λ =

(

a −b
b a

)

and I2 =

(

1 0
0 1

)

,

where the complex numbers a± ib (b 6= 0) are complex conjugated eigenvalues of E.
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Let us denote by ‖ · ‖ the subordinated norm of the Euclidean norm on the matrix space. Precise
estimates of τE follow from the next lemma.

Lemma 3.2. Let J be either a Jordan cell matrix of size l or a block of the form (7) of size 2l
associated with the eigenvalue λ = a+ ib. Then, for any t ∈ (0, e−1] ∪ [e,+∞)

ta ≤ ‖tJ‖ ≤
√

2l e ta |log t|l−1 .

Proof. see the Appendix. �

Let us be more precise on the Jordan decomposition of E. Let us recall that the eigenvalues of
E are denoted by λj , j = 1 . . . d and that aj = <(λj) > 1 for j = 1, . . . , d. There exist J1, . . . , Jm,
where each Jj is either a Jordan cell matrix or a block of the form (7), and P a real d× d invertible
matrix such that

E = P











J1 0 . . . 0

0 J2 0
...

...
. . .

. . . 0
0 . . . 0 Jm











P−1.

We can assume that each Jj is associated with the eigenvalue λj of E and that

1 < a1 ≤ · · · ≤ am.

We also set Hj = a−1
j and have

(8) 0 < Hm ≤ · · · ≤ H1 < 1.

If λj ∈ R, Jj is a Jordan cell matrix of size l̃j = lj ∈ N\{0}. If λj ∈ C\R, Jj is a block of the form (7)

of size l̃j = 2lj ∈ 2N\{0}. Then for any t > 0,

tE = P













tJ1 0 . . . 0

0 tJ2 0
...

...
. . .

. . . 0
0 . . . 0 tJm













P−1

We denote by (e1, . . . , ed) the canonical basis of Rd and set fj = Pej for every j = 1, . . . , d.

Hence, (f1, . . . , fd) is a basis of Rd. For all j = 1, . . . ,m, let

(9) Wj = Vect

(

fk ;

j−1
∑

i=1

l̃i + 1 ≤ k ≤
j
∑

i=1

l̃j

)

.

Then, each Wj is a E-invariant set and E =
⊕m

j=1Wj.

The following result gives bounds on the growth rate of τE(x) in terms of the real parts of the
eigenvalues of E.

Proposition 3.3. For any r ∈ (0, 1) there exist c1, c2 > 0 such that for every 1 ≤ j0 ≤ j ≤ m,

c1‖x‖Hj0 |log ‖x‖|−(pj0,j−1)Hj0 ≤ τE(x) ≤ c2‖x‖Hj |log ‖x‖|(pj0,j−1)Hj

holds for any x ∈ ⊕j
k=j0

Wk with ‖x‖ ≤ r and pj0,j = max
j0≤k≤j

lk.

Proof. See the Appendix. �

Then, we easily deduce the following corollary.

Corollary 3.4. For any r ∈ (0, 1) there exist c1, c2 > 0 such that for any x ∈Wj with ‖x‖ ≤ r

(10) c1‖x‖Hj |log ‖x‖|−(lj−1)Hj ≤ τE(x) ≤ c2‖x‖Hj |log ‖x‖|(lj−1)Hj

and for any x ∈ Rd with ‖x‖ ≤ r

(11) c1‖x‖H1 |log ‖x‖|−(l−1)H1 ≤ τE(x) ≤ c2‖x‖Hm |log ‖x‖|(l−1)Hm
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where l = max
1≤j≤m

lj.

Therefore we have precise estimates for the Hölder regularity of the radial part. Let us remark that
we improve the first statement of Lemma 2.1 of [6] and that the second one can also be improved in
a similar way. From these estimates we deduce the Hölder regularity of Xα in Section 5. As already
mentionned, the study of the sample paths is based on a series representation. Then, before we state
regularity properties, it remains to give the LePage series representation of harmonizable operator
scaling random fields Xα defined by (3).

4. Representation as a LePage series

An overview on series representations of infinitely divisible random variable without Gaussian part
can be found for example in [24, 26] and references therein. In particular, LePage series represen-
tation ([17, 16]) have been used in [15, 14] to study the sample paths regularity of some self-similar
α-stable random motions with α ∈ (0, 2). Here, this representation is also the main representation
we use in the case α ∈ (0, 2). Actually, in the Gaussian case α = 2, such representation does not hold.

Let us now introduce some notations that will be used throughout the paper. Let µ be an arbitrary
probability measure equivalent to the Lebesgue measure on Rd and let m be its Radon-Nikodym
derivative that is µ(dξ) = m(ξ)dξ.
Notation Let (Tn)n≥1, (gn)n≥1 and (ξn)n≥1 be independent sequences of random variables.

• Tn is the nth arrival time of a Poisson process with intensity 1.

• (gn)n≥1 is a sequence of i.i.d. isotropic complex random variables so that gn
(d)
= eiθgn for any

θ ∈ R. We also assume that 0 < E(|gn|α) < +∞.
• (ξn)n≥1 is a sequence of i.i.d. random variables with common law µ(dξ) = m(ξ)dξ.

According to Chapter 3 and Chapter 4 of [27], stochastic integrals with respect to an α-stable
random measure Λ can be represented as a LePage series as soon as the control measure of Λ is a
finite measure. The next proposition generalizes this to Wα whose control measure is the Lebesgue
measure. It is a consequence of Lemma 4.1 of [15], which is a correction of Lemma 1.4 of [20]. This
proposition can also be deduced from [24, 25], concerned with series representations of stochastic
integrals with respect to infinitely divisible random measures.

Proposition 4.1. Assume that α ∈ (0, 2). Then, for every complex valued function h ∈ Lα
(

Rd
)

, the

series

(12) Y h =

+∞
∑

n=1

T−1/α
n m(ξn)−1/αh(ξn)gn

converges almost surely. Furthermore,

CαY
h (d)

=

∫

Rd

h(ξ)Wα(dξ)

with

(13) Cα = E(|<(g1)|α)−1/α

(

1

2π

∫ π

0
|cos (x)|αdx

)1/α(∫ +∞

0

sin (x)

xα
dx

)−1/α

.

Remark 4.1. According to Proposition 4.1, taking α ∈ (0, 2), the random measure

Λα(dξ) = Cα

+∞
∑

n=1

T−1/α
n m(ξn)−1/αgnδξn(dξ)

is a complex isotropic α-stable random measure.
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Proof. Let Vn = m(ξn)−1/αh(ξn)gn. Then, Vn, n ≥ 1, are i.i.d. isotropic complex random variables.
By Lemma 4.1 in [15], Y h converges almost surely and

∀z ∈ C, E

(

exp
(

i<
(

z̄Y h
)))

= exp (−σα|z|α)

with

σα = E(|<(V1)|α)

∫ +∞

0

sin (x)

xα
dx.

Since g1 is invariant by rotation and independent with ξ1,

E(|<(V1)|α) = E

(

m(ξ1)
−1|h(ξ1)|α

)

E(|<(g1)|α) = E(|<(g1)|α)

∫

Rd

|h(ξ)|αdξ.

Moreover, by definition of an isotropic α-stable random stable measure (see [27]),

∀z ∈ C,E

(

exp

(

i<
(

z̄

∫

Rd

h(ξ)M(dξ)

)))

= exp (−cαα(h)|z|α)

with cαα(h) =

(

1

2π

∫ π

0
|cos (x)|αdx

)

∫

Rd |h(ξ)|αdξ. Therefore, we have

CαY
h (d)

=

∫

Rd

h(ξ)Wα(dξ)

where Cα is defined by (13), which concludes the proof. �

From the previous proposition, we deduce the following statement which is the main series repre-
sentation we use in our investigation.

Proposition 4.2. Let α ∈ (0, 2). For every x ∈ Rd, the series

(14) Yα(x) = Cα<
(

+∞
∑

n=1

T−1/α
n m(ξn)−1/αf(x, ξn)gn

)

,

where Cα is defined by (13), converges almost surely. Furthermore,
{

Yα(x) : x ∈ Rd
}

(fdd)
=

{

Xα(x) : x ∈ Rd
}

.

Proof. From Proposition 4.1, for any x ∈ Rd, the convergence of the series follows from the fact that
f(x, ·) ∈ Lα

(

Rd
)

. The equality in distribution between Xα and Yα is obtained by linearity of both
fields. �

Using LePage representation (14) of Xα and the estimates given in Section 3, we give an upper
bound for the modulus of continuity of Xα and obtain the critical Hölder regularity of its sample
paths in the next section.

5. Hölder regularity and Hausdorff dimension

Throughout this section we fix K a compact set of Rd and investigate the Hölder regularity of the
sample paths of Xα on K, with Xα the harmonizable operator scaling stable random field defined
by (3).

Let us recall that for the Gaussian case α = 2, according to Theorem 5.4 of [6], the Hölder regularity
of X2 depends on the subspaces (Wj)1≤j≤m defined by (9) and associated to the eigenvalues of E.

More precisely, Theorem 5.4 of [6] implies that, when restricted to the subspace Wj , the Gaussian
random field {X2(x);x ∈Wj} admits Hj as critical Hölder exponent. This follows from the fact
that the regularity of X2 is determined by the regularity of τE around 0, which is given by Hj

according to (10). Here, we give an upper bound for the modulus of continuity of Xα in the general
case α ∈ (0, 2]. Then we prove that the critical Hölder exponents are the same than in the Gaussian
case α = 2. Let us state our main result.
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Theorem 5.1. Let α ∈ (0, 2). There exists a modification X ∗
α of Xα on K such that

(15) lim
δ↓0

sup
x,y∈K

‖x−y‖≤δ

|X∗
α(x) −X∗

α(y)|
τE(x− y)|log τE(x− y)|1/α+1/2+ε

= 0 a.s.

for any ε > 0.

This result was proved in the case of harmonizable self-similar processes in [14], e.g. in the case
of Example 2.1 with d = 1. The main idea is to use the LePage series representation (14) where gn,
n ≥ 1, are Gaussian complex isotropic random variables. Furthermore, it remains to choose the
density distribution m of the ξn. In [14], the authors choose

m(ξ) =
cη

|ξ||log |ξ||1+η , ξ ∈ R\{0}

where cη > 0. A straightforward generalization in higher dimension d leads to choose

m(ξ) =
cη

‖ξ‖d|log ‖ξ‖|1+η
, ξ ∈ Rd\{0}.

Remark that in this case (e.g. Example 2.1) the matrix E = Id/H = Et and that we can choose
‖ · ‖Et = ‖ · ‖. Then, using classical polar coordinates, we obtain that for x 6= 0,

τEt(x) = ‖x‖H and `Et(x) =
x

‖x‖
and therefore

m(ξ) =
cη

τEt(ξ)q|log τEt(ξ)|1+η

since q = trace(E) = d/H. Then we choose this density in the general case. The advantage is that m
only depends on the radial part τEt.

Proof of Theorem 5.1. We can assume without loss of generality that K = [0, 1]d. According to
Proposition 4.2 for every x ∈ Rd

Yα(x) = Cα<
(

+∞
∑

n=1

T−1/α
n m(ξn)−1/αf(x, ξn)gn

)

converges almost surely and Yα
(fdd)
= Xα. As already mentionned, we assume that gn, n ≥ 1 are

Gaussian complex isotropic random variables and that the density distribution of ξn is defined by

m(ξ) =
cη

τEt(ξ)q|log τEt(ξ)|1+η , ξ ∈ Rd\{0},

where η > 0 and cη is chosen such that
∫

Rd m(ξ)dξ = 1. In particular, conditionally to (Tn, ξn)n, Yα(x)
is a real-valued Gaussian random variable.

As in the proof of Kolmogorov-Centsov Theorem (see [11]), we first prove that almost surely
for τE(xk − xk′) small enough,

|Yα(xk) − Yα(xk′)| ≤ CτE(xk − xk′)|log τE(xk − xk′)|1/α+1/2+ε.

where (xk)k is some countable dense sequence of K. Then, Xα satisfies the same property.
Finally, we give a modification X∗

α of Xα for which (15) holds. In the first step, we construct the
sequence (xk)k we use.

Step 1. For k ∈ N\{0} let us choose νk ∈ N\{0} the smallest integer such that

c2d
Hm/22−νkHm |νk log 2|(l−1)Hm ≤ 2−k,

where c2 and l are given by Corollary 3.4 for r = 1/2. Remark that by definition, νk ≤ νk+1. Up to
change c2 in Proposition 3.4, we can assume that

c2d
Hm/22−Hm |log 2|(l−1)Hm > 1,



HÖLDER REGULARITY FOR OPERATOR SCALING STABLE RANDOM FIELDS 9

which implies that νk > 1 for every k. Then, since 1 ≤ νk − 1 ≤ νk,

c2d
Hm/22−(νk−1)Hm |(νk − 1) log 2|(l−1)Hm > 2−k

and we have

(16) 2−k
(

2
√
d
)−Hm

c−1
2 <

(

2−νk (νk log 2)l−1
)Hm

≤ 2−k
(√

d
)−Hm

c−1
2 .

Let us remark that (νk)k≥1 is an increasing sequence and then that νk ≥ k for every k. Furthermore,

taking the logarithm of (16), one easily proves that

lim
k→+∞

k

νk
= Hm,

which implies νk = O(k).
For every k ∈ N\{0} and j = (j1, . . . , jd) ∈ Zd we set

xk,j =
j

2νk
, Dk =

{

xk,j : j ∈ Zd ∩ [0, 2νk ]d
}

and Nk = cardDk = (2νk + 1)d.

Then Dk is a 2−k net of K for τE in the sense that for any x ∈ K one can find xk,j ∈ Dk such that

τE(x−xk,j) ≤ 2−k. Actually, by Proposition 3.4, it is sufficient to choose j such that ji ≤ 2νkxi < ji+1
for 1 ≤ i ≤ d.

Let us remark that the sequence (Dk)k is increasing and set D =

+∞
⋃

k=1

Dk.

Step 2. Almost surely, for any x, y ∈ D

Yα(x) − Yα(y) = Cα<
(

+∞
∑

n=1

T−1/α
n m(ξn)−1/α(f(x, ξn) − f(y, ξn))gn

)

,

where Cα is defined by (13). Since the sequences (Tn)n, (ξn)n and (gn)n are independent and (gn)n
is a sequence of i.i.d. Gaussian complex isotropic random variables

R(x, y) =

+∞
∑

n=1

T−1/α
n m(ξn)−1/α(f(x, ξn) − f(y, ξn))gn

is a Gaussian isotropic complex random variable conditionally to (Tn, ξn)n. Remark that Yα(x) −
Yα(y) = Cα<(R(x, y)) almost surely. Therefore, conditionally to (Tn, ξn)n, Yα(x) − Yα(y) is a real
centered Gaussian random variable with variance

v2((x, y) | (Tn, ξn)n) =
C2

α

2
E

(

|R(x, y)|2 | (Tn, ξn)n

)

=
C2

α

2
E

(

|g1|2
)

+∞
∑

n=1

T−2/α
n m(ξn)−2/α|f(x− y, ξn)|2,

since |f(x, ξn) − f(y, ξn)| = |f(x− y, ξn)|.
We consider the set

Ek
i,j = {ω : |Yα(xk,i) − Yα(xk,j)| > v((xk,i, xk,j) | (Tn, ξn)n)ϕ(τE(xk,i − xk,j))} ,

where, as in [13],

ϕ(t) =

√

2Cϕd log
1

t
, t > 0

and Cϕ > 0 will be chosen later. Then, for every (k, i, j),

P

(

Ek
i,j

)

= E

(

E

(

1Ek
i,j

| (Tn, ξn)n

))

.

We give in the following an upper bound of this probability for well chosen (k, i, j). Note that if Z
is a real centered Gaussian random variable with variance 1, we have

E

(

1Ek
i,j

| (Tn, ξn)n

)

= P(|Z| > ϕ(τE(xk,i − xk,j))) almost surely.
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Let us choose δ ∈ (0, 1) and set for k ∈ N\{0}, δk = 2−(1−δ)k and

Ik =
{

(i, j) ∈ Zd ∩ [0, 2νk ]d : τE(xk,i − xk,j) ≤ δk

}

.

For every (i, j) ∈ Ik, since ϕ is a decreasing function

P(|Z| > ϕ(τE(xk,i − xk,j))) ≤ P(|Z| > ϕ(δk)).

Then, we recall that

∀u ≥ 0,P(Z > u) ≤ e−u2/2

√
2πu

.

Therefore, for every k ∈ N\{0} and (i, j) ∈ Ik,

P

(

Ek
i,j

)

≤
√

2

π

e−ϕ2(δk)/2

ϕ(δk)
=

2−(1−δ)kCϕd

√

2Cϕd(1 − δ)k log 2
.

Hence,
∞
∑

k=1

∑

(i,j)∈Ik

P

(

Ek
i,j

)

≤ 1
√

2Cϕd(1 − δ) log 2

+∞
∑

k=1

2−(1−δ)kCϕd card Ik.

Since νk = O(k), the lower bounds of (16) and Corollary 3.4 leads to

card
{

j ∈ Zd ∩ [0, 2νk ]d : (i, j) ∈ Ik

}

= O
(

δ
d/H1

k 2dk/Hmk2d(l−1)
)

,

for any i ∈ Zd ∩ [0, 2νk ]d. Then one can find a finite constant C > 0 such that

∞
∑

k=1

∑

(i,j)∈Ik

P

(

Ek
i,j

)

≤ C
√

Cϕ(1 − δ)

∞
∑

k=1

k3d(l−1)2
−kd

(

− 2
Hm

+ 1−δ
H1

+(1−δ)Cϕ

)

,

which is finite for Cϕ >
2

Hm
− 1

H1
and δ small enough. By the Borel-Cantelli Lemma, almost surely

there exists an integer k∗(ω) such that for every k ≥ k∗(ω),

|Yα(x) − Yα(y)| ≤ v((x, y) | (Tn, ξn)n)ϕ(τE(x− y))

as soon as x, y ∈ Dk with τE(x− y) ≤ δk.

Step 3. As in [14] let us give an upper bound of

v2((x, y) | (Tn, ξn)n) =
C2

α

2
E

(

|g1|2
)

+∞
∑

n=1

T−2/α
n m(ξn)−2/α|f(x− y, ξn)|2

with respect to τE(x− y). By definition of f

v2((x, y) | (Tn, ξn)n) ≤ C2
α

2
E

(

|g1|2
)

σ2 (τE(x− y)) ,

where for all h > 0

σ2(h) =

+∞
∑

n=1

T−2/α
n m(ξn)−2/α min

(

ME

∥

∥

∥hEt

ξn

∥

∥

∥ , 2
)2
ψ(ξ)−2−2q/α,

with ME given by (6). For the sake of clearness we postpone the proof of the control of σ2(h) in
Appendix and state it in the following lemma.

Lemma 5.2. For any γ ∈ (0, 1) there exists a finite constant c > 0 such that

E
(

σ2(h) | (Tn)n
)

≤ c

+∞
∑

n=1

T−2/α
n h2|log h|(1+η)(2/α−1)

almost surely

as soon as h ≤ 1 − γ.
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Following [14] let us denote

b(h) = h| log h|(1+η)/α.

Then by Lemma 5.2,

E

(

+∞
∑

k=1

σ2(2−k)

b2(2−k)

∣

∣

∣

∣

∣

(Tn)n

)

< +∞.

Therefore by independence of (Tn)n and (ξn)n, almost surely

lim
k→+∞

σ2(2−k)

b2(2−k)
= 0.

Up to change the Euclidean norm ‖ · ‖ by the equivalent norm ‖ · ‖Et defined in Lemma 6.1.5 of [22]

the map h 7→
∥

∥

∥hEt
ξ
∥

∥

∥ is increasing and so is σ2. Also, one can conclude, as in [14], that almost surely

lim
h→0

σ2(h)

b2(h)
= 0.

Therefore, up to change k∗ one can assume that for every k ≥ k∗(ω), for every x, y ∈ Dk,

(17) |Yα(x) − Yα(y)| ≤
√

2dCϕτE(x− y)|log τE(x− y)|(1+η)/α+1/2 .

as soon as τE(x− y) ≤ δk. Let

Ω∗ =
+∞
⋃

n=1

⋂

k≥n

⋂

x,y∈Dk
τE(x−y)≤δk

{

|Xα(x) −Xα(y)| ≤
√

2dCϕτE(x− y)|log τE(x− y)|(1+η)/α+1/2
}

Since Xα and Yα have the same finite dimensional margins P(Ω∗) = 1.

Step 4. Let ω ∈ Ω∗. By Step 3 there exists k∗(ω) ≥ 1 such that Xα satisfies (17) for
k ≥ k∗(ω), x, y ∈ Dk and τE(x− y) ≤ δk.

Let us recall that by Lemma 2.2 of [6], there exists KE ≥ 1 such that for all x, y ∈ Rd

τE(x+ y) ≤ KE (τE(x) + τE(y)) .

Let us denote F (h) =
√

2dCϕ h|log h|(1+η)/α+1/2 and choose k0 ∈ N such that 2k0δk0+1 > 3K2
E

and F is increasing on (0, δk0 ]. Up to change k∗(ω), we can assume that k∗(ω) ≥ k0.

Let x, y ∈ D with x 6= y such that 3K2
EτE(x− y) ≤ δk∗(ω). Then there exists a unique k ≥ k∗(ω)

such that δk+1 < 3K2
EτE(x− y) ≤ δk. Since x, y ∈ D, there exists n ≥ k + 1 such that x, y ∈ Dn.

Moreover, by Step 1, for j = k, . . . , n− 1, we can choose x(j), y(j) ∈ Dj such that

τE

(

x− x(j)
)

≤ 2−j and τE

(

y − y(j)
)

≤ 2−j .

By construction τE
(

x(k) − y(k)
)

≤ K2
E

(

τE(x− y) + 22−k
)

. Let us point out that since k ≥ k0,

2kδk+1 ≥ 2k0δk0+1 > 3K2
E . Therefore, one easily sees that

τE

(

x(k) − y(k)
)

≤ 3K2
EτE(x− y).

Since 3K2
EτE(x− y) ≤ δk we obtain by Step 3 on the one hand that

∣

∣

∣
Xα

(

x(k)
)

−Xα

(

y(k)
)∣

∣

∣
≤ F

(

τE

(

x(k) − y(k)
))

.

On the other hand we can write

Xα(x) −Xα

(

x(k)
)

=

n−1
∑

j=k

(

Xα

(

x(j+1)
)

−Xα

(

x(j)
))
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with τE
(

x(j+1) − x(j)
)

≤ 3K2
E2−(j+1) ≤ δj+1 since j ≥ k0. Moreover, note that x(j) ∈ Dj ⊂ Dj+1

and then by Step 3

∣

∣

∣
Xα(x) −Xα

(

x(k)
)∣

∣

∣
≤

n−1
∑

j=k

F
(

τE

(

x(j+1) − x(j)
))

≤ CF (δk+1),

where C =
+∞
∑

j=0

(j + 1)(1+η)/α+1/2 δj < +∞. Using similar computations for Xα(y) − Xα

(

y(k)
)

, we

obtain that

|Xα(x) −Xα(y)| ≤ F
(

τE

(

x(k) − y(k)
))

+ 2CF (δk+1)

≤ (1 + 2C)F
(

3K2
EτE(x− y)

)

.

Then one can find a constant C > 0 such that for 3K2
EτE(x− y) ≤ δk∗(ω)

(18) |Xα(x) −Xα(y)| ≤ CτE(x− y)|log τE(x− y)|(1+η)/α+1/2 .

We now give a modification of Xα. For x ∈ D, we set

X∗
α(x)(ω) = Xα(x)(ω).

For x ∈ K let x(n) ∈ D such that limn→+∞ x(n) = x. In view of (18),
(

X∗
α

(

x(n)
)

(ω)
)

n
is a Cauchy

sequence and then converges. We set

X∗
α(x)(ω) = lim

n→+∞
X∗

α

(

x(n)
)

(ω).

Remark that this limit does not depend on the choice of
(

x(n)
)

. Moreover, since Xα is stochastically
continuous, X∗

α is a modification of Xα.
By continuity of τE, we easily see that

∣

∣X∗
α(x)(ω) −X∗

α

(

x′
)

(ω)
∣

∣ ≤ CτE(x− y)|log τE(x− y)|(1+η)/α+1/2

as soon as 3K2
EτE(x− y) < δk∗(ω), which concludes the proof. �

Following the same lines as the proof of Theorem 5.1 we obtain a similar result in the Gaussian
case (α = 2) for more general fields. Let us remark that Yα is not defined for α = 2. However, in
Step 2 of the proof, let us replace Yα by X a centered Gaussian random field and v2((x, y) | (Tn, ξn)n)
by the variance of X(x) −X(y)

v2((x, y)) = E

(

(X(x) −X(y))2
)

.

Furthermore let us replace Step 3 by the assumption that for some β ∈ R and δ > 0 there exists a
finite constant C > 0 such that for x, y ∈ K with τE(x− y) ≤ δ

(19) E

(

(X(x) −X(y))2
)

≤ CτE(x− y)2|log τE(x− y)|β.

Then Step 1, Step 2 and Step 4 yields the following proposition.

Proposition 5.3. Let X be a centered Gaussian random field satisfying (19). There exists a modi-

fication X∗ of X on K such that

(20) lim
δ↓0

sup
x,y∈K
‖x−y‖≤δ

|X∗(x) −X∗(y)|
τE(x− y)|log τE(x− y)|1/2+β+ε

= 0 a.s.

for any ε > 0.
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Let us point out that if X2 is an operator scaling Gaussian random field as defined in [6], then

E
(

(X2(x) −X2(y))
2
)

= τE(x− y)2E
(

X2(`E(x− y))2
)

,

and X2 satisfies (19) with β = 0 by (5.2) of [6]. Therefore this result is more precise than one could
expect from the Theorem 5.1, replacing α by 2.

Let us also mention that Marianne Clausel gives a different proof of a similar result for some
Gaussian operator scaling random fields with stationary increments in [8].

Now, as in [6], we are looking for global and directional Hölder critical exponents of the harmo-
nizable stable random field Xα. These exponents have been introduced in [7] in the Gaussian realm
but can be defined for any random field. Following Definition 5.1 of [6], H ∈ (0, 1) is said to be the
Hölder critical exponent of a random field (X(x))x∈Rd if there exists a modification X∗ of X such
that for any s ∈ (0,H), the sample paths of X∗ satisfy almost surely a uniform Hölder condition of
order s on K, that is there exists a finite positive random variable A such that almost surely

(21) |X∗(x) −X∗(y)| ≤ A‖x− y‖s for all x, y ∈ K

while for any s ∈ (H, 1), almost surely (21) fails. Note that the Hölder critical exponent, if exists,
is well defined since any continuous modification of X and X ∗ are indistinguishable. Moreover,
according to Definition 5.3 of [6] we say that X admits H(u) as directional regularity in direction
u ∈ Sd−1, with Sd−1 the Euclidean unit sphere, if the process (X(tu))t∈R

admits H(u) as Hölder
critical exponent on K ∩ Ru.

For all j = 1, . . . ,m we set Kj = K ∩⊕j
k=1Wk. Let us remark that Km = K.

Corollary 5.4. Let α ∈ (0, 2]. There exists a modification X ∗
α of Xα on K such that for all j =

1, . . . ,m

lim
δ↓0

sup
x,y∈Kj
‖x−y‖≤δ

|X∗
α(x) −X∗

α(y)|
‖x− y‖Hj |log ‖x− y‖|Hj(pj−1)+β+1/2+ε

= 0 a.s.

for any ε > 0, where pj = max
1≤k≤j

lk, β = 1/α if α 6= 2 and β = 0 if α = 2.

Proof. It follows from Theorem 5.1 and Corollary 3.3, since aj ≤ ad for any j = 1 . . . d. �

Corollary 5.5. Let α ∈ (0, 2]. The random field X∗
α has locally H-Hölder sample paths on Rd for

every H ∈ (0,Hm).

Now let us give the directional and global Hölder critical exponents of Xα.

Proposition 5.6. The random field Xα admits Hm as Hölder critical exponent.

Moreover, for any j = 1, . . . ,m, for any direction u ∈ Wj, the field Xα admits Hj as directional

regularity in the direction u.

Proof. For Z a real SαS random variable we let

‖Z‖α = (− log (E(exp (iZ))))1/α.

Then, for any x, y ∈ Rd,

‖X∗
α(x) −X∗

α(y)‖α = Cα(`E(x− y))τE(x− y)

where for all θ ∈ SE

Cα(θ) =

(

cα

∫

Rd

∣

∣

∣
ei〈θ,ξ〉 − 1

∣

∣

∣

α
ψ(ξ)−α−qdξ

)1/α

and cα =
1

2π

∫ π

0
|cos(t)|αdt.

From Lebesgue’s Theorem, the function Cα is continuous on the compact set SE with positive values.
Let us denote mα = min

θ∈SE

Cα(θ) > 0. According to (10) in Corollary 3.4, for any j = 1, . . . ,m and u

a direction in Wj ,

‖X∗
α(tu) −X∗

α(su)‖α ≥ mαc1 |t− s|Hj |log |t− s||−(lj−1)Hj .
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Therefore, for any s > Hj, it implies that X∗
α(tu)−X∗

α(su)
|t−s|s is almost surely unbounded as |t− s| ↓ 0

so (21) fails almost surely on K ∩ Ru.
Moreover, Corollary 5.4 implies that (X∗

α(tu))t∈R
satisfies (21) on K∩Ru for any s < Hj and thus Hj

is the directional regularity of Xα in the direction u.
Moreover, one can find a direction u ∈ Sd−1 in which almost surely (X∗

α(tu))t∈R
does not satisfy (21)

on K ∩ Ru for any s > Hm. Therefore, almost surely (X∗
α(x))x∈Rd can not satisfy (21) on K for

any s > Hm. Then, by Corollary 5.5 Xα admits Hm as Hölder critical exponent.
�

Remark 5.1. In the diagonalizable case (see Example 2.2), the Wj are the eigenspaces associated
with the eigenvalues of E. In particular, for θj an eigenvector associated with the eigenvalue λj = aj ,
the critical Hölder exponent in direction θj is Hj = 1/aj .

Proposition 5.6 compared to Theorem 5.4 of [6] shows that the operator scaling stable field, defined
through an harmonizable representation share the same sample paths properties as the Gaussian ones.
Therefore it is natural to have also the same result of Theorem 5.6 [6] for the box- and the Hausdorff-
dimensions of their graphs on a compact set. We also refer to Falconer [9] for the definitions and
properties of box- and the Hausdorff-dimension and keep the notations of [6]. More precisely, we fix
a compact set K ⊂ Rd and consider G(X∗

α)(ω) = {(x,X∗
α(x)(ω));x ∈ K} the graph of a realization of

the field X∗
α over the compact K. We denote dimHG(X∗

α), resp dimBG(X∗
α), the Hausdorff-dimension

and the box-dimension of G(X∗
α), respectively.

Proposition 5.7. Almost surely

dimH G(X∗
α) = dimB G(X∗

α) = d+ 1 −Hm.

Proof. The proof is very similar to those of Theorem 5.6 [6]. It also uses same kinds of arguments as
in [4]. For sake of completeness we recall the main ideas. Corollary 5.5 allows as usual to state the
upper bound

dimHG(X∗
α) ≤ dimBG(X∗

α) ≤ d+ 1 −Hm, a.s.

where dimB denotes the upper box-dimension. The lower bound will also follows from Frostman
criterion (Theorem 4.13 (a) in [9]). One has to prove that the integral Is

Is =

∫

K×K
E

[

(

(X∗
α(x) −X∗

α(y))2 + ‖x− y‖2
)−s/2

]

dx dy,

is finite to get that almost surely dimHG(X∗
α) ≥ s. In our case, the fundamental lemma of [3] allows

us to write this integral using the characteristic function of the SαS field X ∗
α. Actually, when one

remarks that, using Fourier-inversion, (ξ2 + 1)−s/2 = 1
2π

∫

R
eiξtfs(t)dt, where fs ∈ L∞(R) ∩ L1(R),

one gets

Is =

∫

K×K

(

1

2π
‖x− y‖−s

∫

R

e
−|t|α

‖X∗
α(x)−X∗

α(y)‖α
α

‖x−y‖α fs(t)dt

)

dx dy.

By a change of variables, as fs ∈ L∞(R), one can find C > 0 such that

Is ≤ C

∫

K×K
‖x− y‖1−s ‖X∗

α(x) −X∗
α(y)‖−1

α dx dy

≤ Cm−1
α

∫

K×K
‖x− y‖1−sτE(x− y)−1dx dy,

where mα = min
θ∈SE

(

cα
∫

Rd

∣

∣ei〈θ,ξ〉 − 1
∣

∣

α
ψ(ξ)−α−qdξ

)1/α
as introduced in the proof of Proposition 5.6.

Since
∫

K×K ‖x− y‖1−sτE(x− y)−1dx dy is proved to be finite as soon as s < d+ 1 −Hm in [6],

dimBG(X∗
α) ≥ dimHG(X∗

α) ≥ d+ 1 −Hm a.s.

and the proof is complete.
�
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Harmonizable operator scaling stable random fields share many properties with Gaussian operator
random fields. In particular, they have locally Hölder sample paths and critical directional Hölder
exponent depending on the directions. In the Gaussian case (α = 2), [6] establishes such properties in
the framework of harmonizable and moving average Gaussian operator scaling random field. However,
for stable laws, harmonizable and moving average representations do not have the same behavior as
we see in the next section.

6. Moving average representation

Let us recall the definition of moving average operator scaling stable random fields introduced
in [6]. Let 0 < α ≤ 2. We consider Mα(dy) an independently scattered SαS random measure on Rd

with Lebesgue control measure, see [27] for details on such random measures. Let us recall that, as
before, q = trace(E). Let ϕ : Rd → [0,∞) be a continuous E-homogeneous function. We assume
moreover that there exists β > 1 such that ϕ is (β,E)-admissible. According to Definition 2.7 of [6]
it means that ϕ(x) 6= 0 for x 6= 0 and that for any 0 < A < B there exists a constant C > 0 such
that, for A ≤ ‖y‖ ≤ B,

(22) |ϕ(x + y) − ϕ(y)| ≤ CτE(x)β

holds for any τE(x) ≤ 1.

Definition 6.1. Since β > 1, the α-stable random field

(23) Zα(x) =

∫

Rd

(

ϕ(x− y)1−q/α − ϕ(−y)1−q/α
)

Mα(dy) , x ∈ Rd.

is well defined and called moving average operator scaling stable random field.

From Theorem 3.1 and Corollary 3.2 of [6], it is stochastically continuous, has stationary increments
and satisfies the following operator scaling property

∀c > 0,
{

Zα(cEx);x ∈ Rd
}

(fdd)
=

{

cZα(x);x ∈ Rd
}

,

as the harmonizable field Xα.

In the Gaussian case (α = 2), the variogramme of Z2 is similar to the one of the harmonizable
field X2. Then, [6] proves that Z2 and X2 admit the same critical Hölder sample paths properties.
However, when α ∈ (0, 2), let us recall that moving average self-similar α-stable random motions
does not have in general continuous sample paths (see [27]). The next proposition states the same
property for Zα.

Proposition 6.1. Assume α ∈ (0, 2) and d ≥ 2. Then, the random field Zα is almost surely

unbounded on every open ball.

Proof. Let us remark that ϕ(0) = 0 by continuity and E-homogeneity and q =
d
∑

j=1
aj > d > α, as

soon as d ≥ 2. Then, for any U open set, since U ∗ = U ∩ Qd is dense in U , for any y ∈ U

f∗(U∗, y) = sup
x∈U∗

∣

∣

∣ϕ(x− y)1−q/α − ϕ(−y)1−q/α
∣

∣

∣ = +∞.

Then
∫

Rd f
∗(U∗, y)αdy = +∞ and the necessary condition for sample boundedness (10.2.14) of

Theorem 10.2.3 p.450 of [27] fails. We conclude the proof by Corollary 10.2.4 of [27]. �
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7. Appendix

Proof of lemma 3.2. The lower bound is straightforward. Actually, for any t > 0, tλ is an eigenvalue
of the matrix tJ and therefore ta =

∣

∣tλ
∣

∣ ≤ ‖tJ‖.
Let us prove the upper bound. First, let us assume that J is a Jordan cell matrix of size l. In this

case λ = a ∈ R and

tJ = ta













1 0 . . . 0

log t 1 0
...

...
. . .

. . . 0
(log t)l−1

(l−1)! . . . log t 1













.

Let us recall that the norm defined for a matrix A = (aij)1≤i,j,≤d by ‖A‖∞ = max
1≤i≤d

∑d
j=1 |aij | is the

subordinated norm of the infinite norm ‖x‖∞ = max
1≤i≤d

|xi| for x ∈ Rd. By definition, we can deduce

that ‖tJ‖∞ = ta
l−1
∑

j=0

|log t|j

j! . Then,

∥

∥tJ
∥

∥ ≤
√
l
∥

∥tJ
∥

∥

∞
≤

√
lta|log (t)|l−1

l−1
∑

j=0

1

j!

for any t ∈ (0, e−1] ∪ [e,+∞). Therefore, for any t ∈ (0, e−1] ∪ [e,+∞), we have

‖tJ‖ ≤
√
l e ta |log t|l−1 .

In the second case, let us assume that J is a block of the form (7) of size 2l associated with the
eigenvalue λ = a+ ib for b 6= 0. Then tJ = taR(t)N(t) where

R(t) =











Rb(t) 0 . . . 0

0 Rb(t) 0
...

...
. . .

. . . 0
0 . . . 0 Rb(t)











with Rb(t) =

(

cos(b log t) − sin(b log t)
sin(b log t) cos(b log t)

)

,

and

N(t) =











I2 0 . . . 0

N1(t) I2 0
...

...
. . .

. . . 0
Nl−1(t) . . . N1(t) I2











with Nj(t) =

(

|log t|j

j! 0

0 |log t|j

j!

)

.

Hence,
∥

∥tJ
∥

∥ ≤ tα‖R(t)‖‖N(t)‖.
Since R(t) is an orthogonal matrix, ‖R(t)‖ = 1. Furthermore, N(t) is a (2l) × (2l) matrix and

‖N(t)‖ ≤
√

2l‖N(t)‖∞ =
√

2l

l−1
∑

j=0

|log t|j
j!

Therefore, we also obtain that

‖tJ‖ ≤
√

2l eta |log t|l−1

for any t ∈ (0, e−1] ∪ [e,+∞).
�

Proof of Proposition 3.4. Let r ∈ (0, 1). One can find rE ∈ (0, r) such that for any ‖x‖ ≤ rE we

have τE(x) ≤ e−1. Let x ∈⊕j
k=j0

Wk with ‖x‖ ≤ rE . Then x = τE(x)E`E(x) and lE(x) ∈⊕j
k=j0

Wk.
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We first establish the lower bound of Proposition 3.4. Let us write lE(x) =
∑m

k=1 lk(x) where each

lk(x) ∈ Wk. Let Lk be the coordinates of lk(x) in the basis
(

f∑k−1
i=1 l̃i+1, . . . , f

∑k
i=1 l̃i

)

of Wk. Hence,

by definition of P ,

P−1lE(x) =







L1
...
Lm






and x = τE(x)ElE(x) = P







τE(x)J1L1
...

τE(x)JmLm






.

Since lE(x) ∈
⊕j

k=j0
Wk, Lk = 0 for k /∈ {j0, . . . , j},

‖x‖ ≤ ‖P‖





j
∑

k=j0

∥

∥

∥τE(x)JkLk

∥

∥

∥

2





1/2

≤ ‖P‖





j
∑

k=j0

∥

∥

∥τE(x)Jk

∥

∥

∥

2
‖Lk‖2





1/2

By Lemma 3.2,

‖x‖ ≤
√

2e‖P‖





j
∑

k=j0

lkτE(x)2ak |log τE(x)|2(lk−1)‖Lk‖2





1/2

since τE(x) ≤ 1/e. Hence, since τE(x) ≤ 1, |log τE(x)| ≥ 1, ak ≥ aj0 and lk ≤ pj0,j = max
j0≤i≤j

li ≤ d,

‖x‖ ≤
√

2de‖P‖τE(x)aj0 |log τE(x)|(pj0,j−1)
(

∑j
k=j0

‖Lk‖2
)1/2

≤
√

2de‖P‖τE(x)aj0 |log τE(x)|(pj0,j−1)∥
∥P−1lE(x)

∥

∥

Then,

(24) ‖x‖ ≤
√

2deME‖P‖
∥

∥P−1
∥

∥τE(x)aj0 |log τE(x)|(pj0,j−1)

where ME is defined by (6).
Let us take the logarithm of this equation. Choosing r0 < min(1, rE) small enough, one can find

C > 0 such that

(25) | log τE(x)| ≤ C| log ‖x‖| for ‖x‖ < r0.

Using in (24), we obtain that there exists C > 0 such that for ‖x‖ ≤ r0

‖x‖Hj0 |log ‖x‖|−Hj0(pj0,j−1) ≤ CτE(x).

By continuity of the map,

x 7→ ‖x‖Hj0 |log ‖x‖|−Hj0(pj0,j−1)τE(x)−1

on
{

x ∈ Rd / 0 < ‖x‖ < 1
}

, up to change C, the previous inequality holds for ‖x‖ ≤ r, which gives
the lower bound in (11).

Let us now establish the upper bound in (11). We write x =
∑m

k=1 xk with each xk ∈Wk. We then

denote by Xk the coordinates of xk in the basis
(

f∑k−1
i=1 l̃i+1, . . . , f

∑k
i=1 l̃i

)

of Wk. Since x ∈⊕j
k=j0

Wk,

Xk = 0 for every k /∈ {j0, . . . , j}. Hence, by definition of P ,

P−1x =







X1
...
Xm






and lE(x) = τE(x)−Ex = P







τE(x)−J1X1
...

τE(x)−JmXm






.

Then, ‖lE(x)‖ ≤ ‖P‖





j
∑

k=j0

∥

∥

∥
τE(x)−JkXk

∥

∥

∥

2





1/2

.
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The Lemma 3.2 yields

‖lE(x)‖ ≤
√

2e‖P‖





j
∑

j=j0

lkτE(x)−2ak |log τE(x)|2(lk−1)‖Xk‖2





1/2

since τE(x)−1 ≥ e. Hence, since τE(x)−1 ≥ e > 1, ak ≤ aj and lk ≤ pj0,j,

0 < mE ≤
√

2de‖P‖
∥

∥P−1
∥

∥τE(x)−aj |log τE(x)|pj0,j−1
√

∑j
k=j0

‖Xk‖2

≤
√

2de‖P‖
∥

∥P−1
∥

∥τE(x)−aj |log τE(x)|pj0,j−1
∥

∥P−1x
∥

∥.

Then, using (25) and
∥

∥P−1x
∥

∥ ≤
∥

∥P−1
∥

∥‖x‖, there exists a constant C > 0 such that

τE(x) < C‖x‖Hj |log ‖x‖|Hj(pj0,j−1)

for ‖x‖ ≤ r0. By continuity of the map

x 7→ τE(x)

‖x‖Hj |log ‖x‖|Hj(pj0,j−1)

on
{

x ∈ Rd / 0 < ‖x‖ < 1
}

, up to change C, the previous inequality holds for ‖x‖ ≤ r, which gives
the upper bound in (11) and concludes the proof.

�

Proof of Lemma 5.2. It is sufficient to consider

I(h) = E

(

m(ξn)−2/α min
(

ME

∥

∥

∥hEt

ξn

∥

∥

∥ , 2
)2
ψ(ξn)−2−2q/α

)

By definition,

I(h) =

∫

Rd

m(ξ)1−2/αψ(ξ)−2−2q/α min
(

ME

∥

∥

∥hEt

ξ
∥

∥

∥ , 2
)2
dξ.

Using the formula of integration in polar coordinates with respect to E t, see Proposition 3.1,

I(h) =

∫

SEt

∫ +∞

0
m
(

rEt

θ
)1−2/α

ψ
(

rEt

θ
)−2−2q/α

min
(

ME

∥

∥

∥(hr)Et

θ
∥

∥

∥ , 2
)2
rq−1drσEt(dθ).

Since ψ is Et-homogeneous,

I(h) =

∫

SEt

∫ +∞

0
m
(

rEt

θ
)1−2/α

ψ(θ)−2−2q/α min
(

ME

∥

∥

∥
(hr)Et

θ
∥

∥

∥
, 2
)2
r−2+q−1−2q/αdrσEt(dθ)

= c
1−2/α
η

∫

SEt

∫ +∞

0
ψ(θ)−2−2q/α min

(

ME

∥

∥

∥
(hr)Et

θ
∥

∥

∥
, 2
)2
r−3|log(r)|(1+η)(2/α−1)drσEt(dθ).

By the change of variable ρ = hr, I(h) is equal to

c1−2/α
η h2

∫

SEt

∫ +∞

0
ψ(θ)−2−2q/α min

(

ME

∥

∥

∥
ρEt

θ
∥

∥

∥
, 2
)2
ρ−3
∣

∣

∣
log
(ρ

h

)∣

∣

∣

(1+η)(2/α−1)
drσEt(dθ).

For any γ ∈ (0, 1), there exists Aγ such that for every ρ > 0 and every h ≤ 1 − γ,
∣

∣

∣log
(ρ

h

)∣

∣

∣ = |log (ρ) − log (h)| ≤ Aγ ||log(ρ)| + 1||log (h)|.

Since 2/α > 1,

I(h) ≤ A2/α−1
γ c1−2/α

η h2|log (h)|(1+η)(2/α−1)(I1 + I2)

with

I1 = 4

∫

SEt

ψ(θ)−2−2q/ασEt(dθ)

∫ +∞

1
ρ−3||log (ρ)| + 1|(1+η)(2/α−1)dρ
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and

I2 = M2
EM

2
Et

∫

SEt

ψ(θ)−2−2q/ασEt(dθ)

∫ 1

0

∥

∥

∥ρEt
∥

∥

∥

2
ρ−3||log (ρ)| + 1|(1+η)(2/α−1)dρ,

where ME and MEt are defined by (6). Since ψ is continuous with positive value on the compact
set SEt,

∫

SEt

ψ(θ)−2−2q/ασ(dθ) < +∞.

Hence I1 < +∞.
It follows from Proposition 3.4 that for any δ ′ ∈ (0, 1), there exists a constant c′δ > 0 such that

‖ρEt‖ ≤ Cρa1 |log |ρ||l−1

for all ρ ≤ δ′. Hence, since a1 > 1,
∫ 1

0

∥

∥

∥ρEt
∥

∥

∥

2
ρ−3||log (ρ)| + 1|(1+η)(2/α−1)dρ < +∞

and I2 < +∞, which concludes the proof. �
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( Lańcut, 1987), volume 1391 of Lecture Notes in Math., pages 148–163. Springer, Berlin, 1989.
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pages 401–415. Birkhäuser Boston, Boston, MA, 2001.
[27] G. Samorodnitsky and M. S. Taqqu. Stable non-Gaussian random processes. Stochastic Modeling. Chapman &

Hall, New York, 1994. Stochastic models with infinite variance.
[28] K. Takashima. Sample path properties of ergodic self-similar processes. Osaka J. Math., 26(1):159–189, 1989.
[29] W. Willinger, V. Paxson, and M. S. Taqqu. Self-similarity and heavy tails: Structural modeling of network traffic.

In A practical guide to heavy tails (Santa Barbara, CA, 1995), pages 27–53. Birkhäuser Boston, Boston, MA, 1998.
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