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We investigate the sample paths regularity of operator scaling α-stable random fields. Such fields were introduced in [6] as anisotropic generalizations of self-similar fields and satisfy the

In the case of harmonizable operator scaling random fields, the sample paths are locally Hölderian and their Hölder regularity is characterized by the eigen decomposition of R d with respect to E. In particular, the directional Hölder regularity may vary and is given by the eigenvalues of E. In the case of moving average operator scaling random α-stable random fields, with α ∈ (0, 2) and d ≥ 2, the sample paths are almost surely discontinous.

Introduction

In this paper we consider operator scaling stable random fields as introduced in [START_REF] Biermé | Operator scaling stable random fields[END_REF]. More precisely, for E a real d × d matrix with positive real parts of the eigenvalues, a scalar valued random field (X(x)) x∈R d is called operator scaling for E and H > 0 if for every c > 0 (1)

{X(c E x); x ∈ R d } (f dd) = {c H X(x); x ∈ R d },
where

(f dd)
= means equality of finite dimensional distributions and as usual c E = exp(E log c) with exp

(A) = ∞ k=0 A k
k! is the matrix exponential. Let us remark that up to consider the matrix E/H, we may assume, without loss of generality, that H = 1.

These fields can be seen as anisotropic generalizations of self-similar random fields. Let us recall that a scalar valued random field (X(x)) x∈R d is said to be H-self-similar with H ∈ R if

{X(cx); x ∈ R d } (f dd)
= {c H X(x); x ∈ R d } for every c > 0. Then a H-self-similar field is also an operator scaling field for the matrix E = I d /H, where I d is the identity matrix of size d×d. Self-similar random fields are used in various applications such as internet traffic modelling [START_REF] Willinger | Self-similarity and heavy tails: Structural modeling of network traffic[END_REF], ground water modelling and mathematical finance, just to mention a few. Various examples can be found for instance in the books [START_REF] Véhel | Fractals in engineering: from theory to industrial applications[END_REF][START_REF] Abry | Lois d'échelle, fractales et ondelettes[END_REF][START_REF] Samorodnitsky | Stable non-Gaussian random processes[END_REF]. A very important class of such fields are given by Gaussian random fields and especially by the fractional Brownian field B H , where H ∈ (0, 1) is the so-called Hurst parameter. The random field B H is H-self-similar and has stationary increments, e.g.

{B H (x + h) -B H (h); x ∈ R d } (f dd) = {B H (x); x ∈ R d } for any h ∈ R d .
It is an isotropic generalization of the famous fractional Brownian motion, implicitely introduced in [START_REF] Kolmogorov | Wienersche Spiralen und einige andere interessante Kurven in Hilbertsche Raum[END_REF] and defined in [START_REF] Mandelbrot | Fractional Brownian motion, fractionnal noises and applications[END_REF].

Nevertheless, Gaussian random fields are not convenient for some heavy tails phenomena modelling. For this purpose, α-stable random fields have been introduced. A scalar valued random field {X(x); x ∈ R d } is said to be symmetric α-stable (SαS), for α ∈ (0, 2), if any linear combination n k=1 a k X(x k ) is SαS. We address to the book [START_REF] Samorodnitsky | Stable non-Gaussian random processes[END_REF] for a well understanding of such fields. The selfsimilar α-stable fields with stationary increments have been extensively used to propose alternative to Gaussian modelling (see [START_REF] Mikosch | Is network traffic approximated by stable Lévy motion or fractional Brownian motion?[END_REF][START_REF] Willinger | Self-similarity and heavy tails: Structural modeling of network traffic[END_REF] for instance) and are isotropic.

However, certain applications (see, e.g., [START_REF] Benson | Aquifer operator-scaling and the effect on solute mixing and dispersion[END_REF][START_REF] Bonami | Anisotropic analysis of some Gaussian models[END_REF] and references therein) require that the random field is anisotropic and satisfies a scaling relation. This scaling relation should have different Hurst indices in different directions and these directions should not necessarily be orthogonal. To reach this goal the authors of [START_REF] Biermé | Operator scaling stable random fields[END_REF] propose a new class of random fields with an anisotropic behavior driven by a d × d matrix E. More precisely, they introduce α-stable random fields which have stationary increments and satisfy the operator scaling property [START_REF] Abry | Lois d'échelle, fractales et ondelettes[END_REF]. Two different classes of such fields are defined and analyzed, using a moving average representation as well as an harmonizable one. In the Gaussian case α = 2, according to [START_REF] Biermé | Operator scaling stable random fields[END_REF] there exist modifications of these fields which are almost surely Hölder-continuous of certain indices. We give similar results here in the stable case α ∈ (0, 2) for harmonizable operator scaling stable random fields. Actually, we obtain their critical global and directional Hölder exponents, which are given by the eigenvalues of E. In general, such fields are anisotropic and their sample paths properties varies with the direction. In particular, in the case where E is diagonalizable, for any eigenvector θ j associated with the real eigenvalue λ j , harmonizable operator scaling stable random field admits H j = 1/λ j as critical Hölder exponent in direction θ j . Let us point out that we establish an accurrate upper bound for the modulus of continuity. Such upper bound has already been given in the case of real harmonizable fractional stable motions, which are self-similar, in [START_REF] Kôno | Hölder continuity of sample paths of some self-similar stable processes[END_REF] and in the case of some Gaussian random processes in [START_REF] Kôno | On the modulus of continuity of sample functions of gaussian processes[END_REF]. Then, in this paper, we generalize these results to any dimension d and any harmonizable operator scaling stable fields. From this upper bound, we can deduce the Hölder sample paths regularity. Let us point out that we also obtain this upper bound in the case of Gaussian operator scaling random field, which improves the sample paths properties establishes in [START_REF] Biermé | Operator scaling stable random fields[END_REF].

Furthermore, whereas in the Gaussian case α = 2, moving average and harmonizable fields have the same kind of regularity properties, this is no more true in the case α ∈ (0, 2). In particular, we show that for d ≥ 2, a moving average operator scaling stable random field does not admit any continuous modification. Remark that if d = 1, the sample paths regularity properties are already known since the processes studied are self-similar moving average stable processes, see for example [START_REF] Samorodnitsky | Stable non-Gaussian random processes[END_REF][START_REF] Kôno | Hölder continuity of sample paths of some self-similar stable processes[END_REF][START_REF] Takashima | Sample path properties of ergodic self-similar processes[END_REF].

One of the main tool for the study of sample paths of operator scaling random fields is the change of polar coordinates with respect to the matrix E introduced in [START_REF] Meerschaert | Limit distributions for sums of independent random vectors[END_REF] and used in [START_REF] Biermé | Operator scaling stable random fields[END_REF]. For X a Gaussian operator scaling random field with stationary increments, using (1), we can write the variogramme of X as

v 2 (x) = E X 2 (x) = τ E (x) 2H E X 2 ( E (x)) ,
where τ E (x) is the radial part of x with respect to E and E (x) is its polar part. Therefore, in the Gaussian case, the sample paths regularity depends on the behavior of the polar coordinates (τ E (x), E (x)) around x = 0. Such property also holds in the stable case α ∈ (0, 2). The Hölder regularity of the sample paths follows from estimates of τ E (x) compared to x . These estimates are given in Section 3 and their proof are postponed to the Appendix.

Furthermore, to study the sample paths in the stable case, the other main tool we use is a series representation of harmonizable operator scaling α-stable random fields. Such representations in series of infinitely divisible laws have been studied in [START_REF] Lepage | Conditional moments for coordinates of stable vectors[END_REF][START_REF] Lepage | Multidimensional infinitely divisible variables and processes. II. In Probability in Banach spaces[END_REF][START_REF] Rosiński | On series representations of infinitely divisible random vectors[END_REF][START_REF] Rosiński | On path properties of certain infinitely divisible processes[END_REF]. As in [START_REF] Kôno | Hölder continuity of sample paths of some self-similar stable processes[END_REF], our study is based on a LePage series representation. Actually, the main idea is to choose a representation which is a conditionnally Gaussian series.

In Section 2, we recall the definition of harmonizable operator scaling random fields. Then, Sections 3 and 4 are devoted to the main tools we need for the study of the sample paths of these fields. More precisely, Section 3 deals with the polar coordinates with respect to a matrix E and Section 4 gives the LePage series representation. In Section 5, the sample paths properties and the Hausdorff dimension of the graph are given. Section 6 is concerned with moving average operator scaling random fields.

Harmonizable representation

Let us recall the definition of harmonizable operator scaling stable random fields, given by [START_REF] Biermé | Operator scaling stable random fields[END_REF].

Let E be a real d × d matrix. Let λ 1 , . . . , λ d be the complex eigenvalues of E and a j = (λ j ) for each j = 1, . . . , d. We assume that [START_REF] Adler | The Geometry of Random Field[END_REF] min

1≤j≤d a j > 1.
Let ψ : R d → [0, ∞) be a continuous, E t -homogeneous function, which means according to Definition 2.6 of [START_REF] Biermé | Operator scaling stable random fields[END_REF] that ψ(c E t x) = cψ(x) for all c > 0. We assume moreover that ψ(x) = 0 for x = 0. Such functions were studied in detail in [START_REF] Meerschaert | Limit distributions for sums of independent random vectors[END_REF], Chapter 5 and various examples are given in Theorem 2.11 and Corollary 2.12 of [START_REF] Biermé | Operator scaling stable random fields[END_REF].

Let 0 < α ≤ 2 and W α (dξ) be a complex isotropic α-stable random measure on R d with Lebesgue control measure (see [START_REF] Samorodnitsky | Stable non-Gaussian random processes[END_REF] p.281). If α = 2, W α (dξ) is a complex isotropic Gaussian random measure. Let q = trace (E). Definition 2.1. Since (2) is fulfilled, the random field

(3) X α (x) = R d e i x,ξ -1 ψ(ξ) -1-q/α W α (dξ) , x ∈ R d ,
is well defined and called harmonizable operator scaling stable random field.

From Theorem 4.1 and Corollary 4.2 of [START_REF] Biermé | Operator scaling stable random fields[END_REF], X α is stochastically continuous, has stationary increments and satisfies the following operator scaling property

(4) ∀c > 0, X α (c E x); x ∈ R d (f dd) = cX α (x); x ∈ R d .
For notational sake of simplicity we denote the kernel function by 3) is a real harmonizable stable random field (see [START_REF] Samorodnitsky | Stable non-Gaussian random processes[END_REF] for details on such fields). In this case, X α is self-similar with exponent H, i.e.

(5) f (x, ξ) = e i x,ξ -1 ψ(ξ) -1-q/α . Let us recall that f (x, •) ∈ L α (R d ) for any x ∈ R d ,
∀c > 0, {X α (cx); x ∈ R d } (f dd) = {c H X α (x); x ∈ R d }.
Let us quote that, if α = 2, X α is a fractional Brownian field and its critical Hölder exponent is given by its Hurst index H (see Theorem 8.3.2 of [START_REF] Adler | The Geometry of Random Field[END_REF] for instance).

Example 2.2. Assume that E is diagonalizable. Then, all the eigenvalues of E are real given by (a j ) 1≤j≤d . Let (θ j ) 1≤j≤d be a basis of some corresponding eigenvectors and consider the function ψ defined by

ψ(x) =   d j=1 | x, θ j | 2/a j   1/2 , x ∈ R d .
The function ψ is clearly continuous and non negative on R d . Moreover, since c E t x, θ j = x, c E θ j = c a j x, θ j , it is also E t -homogeneous. Finally, since (θ j ) 1≤j≤d is a basis of R d we have that ψ(x) = 0 if and only if x = 0. Then we can define X α by (3) and in this case the operator scaling property (4) implies that ∀j = 1, . . . , d, ∀c > 0, {X α (ctθ j ); t ∈ R}

(f dd) = c 1/a j X α (tθ j ); t ∈ R .
The random field X α is self-similar with Hurst index H j = 1/a j in the direction θ j . In particular, in the Gaussian case (α = 2), (X 2 (tθ j )) t∈R is a fractional Brownian motion with Hurst index H j . Then, in this case, its critical Hölder exponent is equal to H j .

The main tool in the study of operator scaling random fields is the change of coordinates in a kind of polar coordinates with respect to the matrix E. Then, before we study the sample paths of X α , we recall in the next section the definition of these coordinates and give some estimates of the radial part.

Polar coordinates

According to Chapter 6 of [START_REF] Meerschaert | Limit distributions for sums of independent random vectors[END_REF], since E is a real d × d matrix with positive real parts of the eigenvalues there exists a norm • E on R d such that for the unit sphere

S E = {x ∈ R d : x E = 1} the map Ψ E : (0, ∞) × S E -→ R d \ {0} (r, θ) -→ r E θ
is a homeomorphism. Hence we can write any x ∈ R d \{0} uniquely as x = τ E (x) E E (x) for some radial part τ E (x) > 0 and some direction E (x) ∈ S E such that x → τ E (x) and x → E (x) are continuous. Observe that

S E = {x ∈ R d : τ E (x) = 1} is compact and set (6) m E = min S E
x and M E = max

S E
x .

We know that τ E (x) → ∞ as x → ∞ and τ E (x) → 0 as x → 0. Hence we can extend τ E (•) continuously by setting τ E (0) = 0. Let us recall the formula of integration in polar coordinates established in [START_REF] Biermé | Operator scaling stable random fields[END_REF].

Proposition 3.1. There exists a unique finite Radon measure σ E on S E such that for all f ∈ L 1 (R d , dx) we have

R d f (x) dx = ∞ 0 S E f (r E θ) σ E (dθ) r q-1 dr.
In the Gaussian case (α = 2), the variogramme of X 2 can be rewritten as follows

v 2 (x) = τ E (x) 2 E X 2 ( E (x)) 2 ,
using the operator scaling property (4). Then, the Hölder regularity of X 2 follows from estimates of τ E (x) compared to x around x = 0, e.g. the Hölder regularity of τ E around 0, see [START_REF] Biermé | Operator scaling stable random fields[END_REF]. Then, in order to get an upper bound for the modulus of continuity (for any α), we need precise estimates of τ E (x). As done in [START_REF] Mason | Sample path properties of operator-self-similar Gaussian random fields[END_REF] for the study of operator-self-similar Gaussian random fields we use the Jordan decomposition of the matrix E to get estimates of τ E . From the Jordan decomposition's theorem (see [START_REF] Hirsch | Differential equations, dynamical systems, and linear algebra[END_REF] p. 129 for instance), there exists a real invertible d × d matrix P such that D = P -1 EP is of the real canonical form, which means that D is composed of diagonal blocks which are either Jordan cell matrix of the form

     λ 1 . . . 0 0 λ . . . . . . . . . . . . . . . 1 0 . . . 0 λ     
with λ a real eigenvalue of E or blocks of the form

(7)         Λ I 2 0 . . . 0 0 Λ I 2 . . . . . . . . . . . . . . . . . . 0 . . . . . . . . . . . . I 2 0 . . . . . . 0 Λ         with Λ = a -b b a and I 2 = 1 0 0 1 ,
where the complex numbers a ± ib (b = 0) are complex conjugated eigenvalues of E.

Let us denote by • the subordinated norm of the Euclidean norm on the matrix space. Precise estimates of τ E follow from the next lemma. Lemma 3.2. Let J be either a Jordan cell matrix of size l or a block of the form (7) of size 2l associated with the eigenvalue λ = a + ib. Then, for any t ∈ (0, e -1 ] ∪ [e, +∞)

t a ≤ t J ≤ √ 2l e t a |log t| l-1 .
Proof. see the Appendix.

Let us be more precise on the Jordan decomposition of E. Let us recall that the eigenvalues of E are denoted by λ j , j = 1 . . . d and that a j = (λ j ) > 1 for j = 1, . . . , d. There exist J 1 , . . . , J m , where each J j is either a Jordan cell matrix or a block of the form [START_REF] Bonami | Anisotropic analysis of some Gaussian models[END_REF], and P a real d × d invertible matrix such that

E = P      J 1 0 . . . 0 0 J 2 0 . . . . . . . . . . . . 0 0 . . . 0 J m      P -1 .
We can assume that each J j is associated with the eigenvalue λ j of E and that

1 < a 1 ≤ • • • ≤ a m .
We also set H j = a -1 j and have [START_REF] Clausel | Gaussian fields with a group self-similarity[END_REF] 0

< H m ≤ • • • ≤ H 1 < 1.
If λ j ∈ R, J j is a Jordan cell matrix of size lj = l j ∈ N\{0}. If λ j ∈ C\R, J j is a block of the form [START_REF] Bonami | Anisotropic analysis of some Gaussian models[END_REF] of size lj = 2l j ∈ 2N\{0}. Then for any t > 0,

t E = P       t J 1 0 . . . 0 0 t J 2 0 . . . . . . . . . . . . 0 0 . . . 0 t Jm       P -1
We denote by (e 1 , . . . , e d ) the canonical basis of R d and set f j = P e j for every j = 1, . . . , d.

Hence, (f 1 , . . . , f d ) is a basis of R d . For all j = 1, . . . , m, let

W j = Vect f k ; j-1 i=1 li + 1 ≤ k ≤ j i=1 lj . (9) 
Then, each W j is a E-invariant set and E = m j=1 W j .

The following result gives bounds on the growth rate of τ E (x) in terms of the real parts of the eigenvalues of E. Proposition 3.3. For any r ∈ (0, 1) there exist c 1 , c 2 > 0 such that for every

1 ≤ j 0 ≤ j ≤ m, c 1 x H j 0 |log x | -(p j 0 ,j -1)H j 0 ≤ τ E (x) ≤ c 2 x H j |log x | (p j 0 ,j -1)H j holds for any x ∈ ⊕ j k=j 0 W k with x ≤ r and p j 0 ,j = max j 0 ≤k≤j l k .
Proof. See the Appendix.

Then, we easily deduce the following corollary.

Corollary 3.4. For any r ∈ (0, 1) there exist c 1 , c 2 > 0 such that for any x ∈ W j with x ≤ r

(10) c 1 x H j |log x | -(l j -1)H j ≤ τ E (x) ≤ c 2 x H j |log x | (l j -1)H j and for any x ∈ R d with x ≤ r (11) c 1 x H 1 |log x | -(l-1)H 1 ≤ τ E (x) ≤ c 2 x Hm |log x | (l-1)Hm
where l = max 1≤j≤m l j .

Therefore we have precise estimates for the Hölder regularity of the radial part. Let us remark that we improve the first statement of Lemma 2.1 of [START_REF] Biermé | Operator scaling stable random fields[END_REF] and that the second one can also be improved in a similar way. From these estimates we deduce the Hölder regularity of X α in Section 5. As already mentionned, the study of the sample paths is based on a series representation. Then, before we state regularity properties, it remains to give the LePage series representation of harmonizable operator scaling random fields X α defined by (3).

Representation as a LePage series

An overview on series representations of infinitely divisible random variable without Gaussian part can be found for example in [START_REF] Rosiński | On path properties of certain infinitely divisible processes[END_REF][START_REF] Rosiński | Series representations of Lévy processes from the perspective of point processes[END_REF] and references therein. In particular, LePage series representation ( [START_REF] Lepage | Conditional moments for coordinates of stable vectors[END_REF][START_REF] Lepage | Multidimensional infinitely divisible variables and processes. II. In Probability in Banach spaces[END_REF]) have been used in [START_REF] Kôno | Self-similar stable processes with stationary increments[END_REF][START_REF] Kôno | Hölder continuity of sample paths of some self-similar stable processes[END_REF] to study the sample paths regularity of some self-similar α-stable random motions with α ∈ (0, 2). Here, this representation is also the main representation we use in the case α ∈ (0, 2). Actually, in the Gaussian case α = 2, such representation does not hold.

Let us now introduce some notations that will be used throughout the paper. Let µ be an arbitrary probability measure equivalent to the Lebesgue measure on R d and let m be its Radon-Nikodym derivative that is µ(dξ) = m(ξ)dξ. Notation Let (T n ) n≥1 , (g n ) n≥1 and (ξ n ) n≥1 be independent sequences of random variables.

• T n is the nth arrival time of a Poisson process with intensity 1.

• (g n ) n≥1 is a sequence of i.i.d. isotropic complex random variables so that g n (d) = e iθ g n for any θ ∈ R. We also assume that 0

< E(|g n | α ) < +∞. • (ξ n ) n≥1 is a sequence of i.i.d. random variables with common law µ(dξ) = m(ξ)dξ.
According to Chapter 3 and Chapter 4 of [START_REF] Samorodnitsky | Stable non-Gaussian random processes[END_REF], stochastic integrals with respect to an α-stable random measure Λ can be represented as a LePage series as soon as the control measure of Λ is a finite measure. The next proposition generalizes this to W α whose control measure is the Lebesgue measure. It is a consequence of Lemma 4.1 of [START_REF] Kôno | Self-similar stable processes with stationary increments[END_REF], which is a correction of Lemma 1.4 of [START_REF] Marcus | Characterizations of almost surely continuous p-stable random Fourier series and strongly stationary processes[END_REF]. This proposition can also be deduced from [START_REF] Rosiński | On path properties of certain infinitely divisible processes[END_REF][START_REF] Rosiński | On series representations of infinitely divisible random vectors[END_REF], concerned with series representations of stochastic integrals with respect to infinitely divisible random measures. Proposition 4.1. Assume that α ∈ (0, 2). Then, for every complex valued function h ∈ L α R d , the series

(12) Y h = +∞ n=1 T -1/α n m(ξ n ) -1/α h(ξ n )g n converges almost surely. Furthermore, C α Y h (d) = R d h(ξ)W α (dξ) with (13) C α = E(| (g 1 )| α ) -1/α 1 2π π 0 |cos (x)| α dx 1/α +∞ 0 sin (x) x α dx -1/α . Remark 4.1.
According to Proposition 4.1, taking α ∈ (0, 2), the random measure

Λ α (dξ) = C α +∞ n=1 T -1/α n m(ξ n ) -1/α g n δ ξn (dξ)
is a complex isotropic α-stable random measure.

Proof. 

Let V n = m(ξ n ) -1/α h(ξ n )g n . Then, V n ,
σ α = E(| (V 1 )| α ) +∞ 0 sin (x)
x α dx. Since g 1 is invariant by rotation and independent with ξ 1 ,

E(| (V 1 )| α ) = E m(ξ 1 ) -1 |h(ξ 1 )| α E(| (g 1 )| α ) = E(| (g 1 )| α ) R d |h(ξ)| α dξ.
Moreover, by definition of an isotropic α-stable random stable measure (see [START_REF] Samorodnitsky | Stable non-Gaussian random processes[END_REF]),

∀z ∈ C, E exp i z R d h(ξ)M (dξ) = exp (-c α α (h)|z| α ) with c α α (h) = 1 2π π 0 |cos (x)| α dx R d |h(ξ)| α dξ. Therefore, we have C α Y h (d) = R d h(ξ)W α (dξ)
where C α is defined by [START_REF] Kôno | On the modulus of continuity of sample functions of gaussian processes[END_REF], which concludes the proof.

From the previous proposition, we deduce the following statement which is the main series representation we use in our investigation. Proposition 4.2. Let α ∈ (0, 2). For every x ∈ R d , the series

(14) Y α (x) = C α +∞ n=1 T -1/α n m(ξ n ) -1/α f (x, ξ n )g n ,
where C α is defined by [START_REF] Kôno | On the modulus of continuity of sample functions of gaussian processes[END_REF], converges almost surely. Furthermore,

Y α (x) : x ∈ R d (f dd) = X α (x) : x ∈ R d .
Proof. From Proposition 4.1, for any x ∈ R d , the convergence of the series follows from the fact that f (x, •) ∈ L α R d . The equality in distribution between X α and Y α is obtained by linearity of both fields.

Using LePage representation ( 14) of X α and the estimates given in Section 3, we give an upper bound for the modulus of continuity of X α and obtain the critical Hölder regularity of its sample paths in the next section.

Hölder regularity and Hausdorff dimension

Throughout this section we fix K a compact set of R d and investigate the Hölder regularity of the sample paths of X α on K, with X α the harmonizable operator scaling stable random field defined by [START_REF] Ayache | A Fourier formulation of the Frostman criterion for random graphs and its applications to wavelet series[END_REF].

Let us recall that for the Gaussian case α = 2, according to Theorem 5.4 of [START_REF] Biermé | Operator scaling stable random fields[END_REF], the Hölder regularity of X 2 depends on the subspaces (W j ) 1≤j≤m defined by [START_REF] Falconer | Fractal geometry[END_REF] and associated to the eigenvalues of E. More precisely, Theorem 5.4 of [START_REF] Biermé | Operator scaling stable random fields[END_REF] implies that, when restricted to the subspace W j , the Gaussian random field {X 2 (x); x ∈ W j } admits H j as critical Hölder exponent. This follows from the fact that the regularity of X 2 is determined by the regularity of τ E around 0, which is given by H j according to [START_REF] Hirsch | Differential equations, dynamical systems, and linear algebra[END_REF]. Here, we give an upper bound for the modulus of continuity of X α in the general case α ∈ (0, 2]. Then we prove that the critical Hölder exponents are the same than in the Gaussian case α = 2. Let us state our main result.

Theorem 5.1. Let α ∈ (0, 2). There exists a modification X * α of X α on K such that (15) lim δ↓0 sup

x,y∈K

x-y ≤δ

|X * α (x) -X * α (y)| τ E (x -y)|log τ E (x -y)| 1/α+1/2+ε = 0 a.s.
for any ε > 0.

This result was proved in the case of harmonizable self-similar processes in [START_REF] Kôno | Hölder continuity of sample paths of some self-similar stable processes[END_REF], e.g. in the case of Example 2.1 with d = 1. The main idea is to use the LePage series representation [START_REF] Kôno | Hölder continuity of sample paths of some self-similar stable processes[END_REF] where g n , n ≥ 1, are Gaussian complex isotropic random variables. Furthermore, it remains to choose the density distribution m of the ξ n . In [START_REF] Kôno | Hölder continuity of sample paths of some self-similar stable processes[END_REF], the authors choose

m(ξ) = c η |ξ||log |ξ|| 1+η , ξ ∈ R\{0} where c η > 0. A straightforward generalization in higher dimension d leads to choose m(ξ) = c η ξ d |log ξ | 1+η , ξ ∈ R d \{0}.
Remark that in this case (e.g. Example 2.1) the matrix E = I d /H = E t and that we can choose

• E t = • .
Then, using classical polar coordinates, we obtain that for x = 0,

τ E t (x) = x H and E t (x) = x x and therefore m(ξ) = c η τ E t (ξ) q |log τ E t (ξ)| 1+η since q = trace(E) = d/H.
Then we choose this density in the general case. The advantage is that m only depends on the radial part τ E t .

Proof of Theorem 5.1. We can assume without loss of generality that

K = [0, 1] d . According to Proposition 4.2 for every x ∈ R d Y α (x) = C α +∞ n=1 T -1/α n m(ξ n ) -1/α f (x, ξ n )g n converges almost surely and Y α (f dd) = X α .
As already mentionned, we assume that g n , n ≥ 1 are Gaussian complex isotropic random variables and that the density distribution of ξ n is defined by

m(ξ) = c η τ E t (ξ) q |log τ E t (ξ)| 1+η , ξ ∈ R d \{0},
where η > 0 and c η is chosen such that R d m(ξ)dξ = 1. In particular, conditionally to (T n , ξ n ) n , Y α (x) is a real-valued Gaussian random variable.

As in the proof of Kolmogorov-Centsov Theorem (see [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF]), we first prove that almost surely for τ E (x k -x k ) small enough,

|Y α (x k ) -Y α (x k )| ≤ Cτ E (x k -x k )|log τ E (x k -x k )| 1/α+1/2+ε .
where (x k ) k is some countable dense sequence of K. Then, X α satisfies the same property. Finally, we give a modification X * α of X α for which [START_REF] Kôno | Self-similar stable processes with stationary increments[END_REF] holds. In the first step, we construct the sequence (x k ) k we use.

Step 1. For k ∈ N\{0} let us choose ν k ∈ N\{0} the smallest integer such that

c 2 d Hm/2 2 -ν k Hm |ν k log 2| (l-1)Hm ≤ 2 -k ,
where c 2 and l are given by Corollary 3.4 for r = 1/2. Remark that by definition, ν k ≤ ν k+1 . Up to change c 2 in Proposition 3.4, we can assume that c 2 d Hm/2 2 -Hm |log 2| (l-1)Hm > 1, which implies that ν k > 1 for every k. Then, since 1

≤ ν k -1 ≤ ν k , c 2 d Hm/2 2 -(ν k -1)Hm |(ν k -1) log 2| (l-1)Hm > 2 -k and we have (16) 2 -k 2 √ d -Hm c -1 2 < 2 -ν k (ν k log 2) l-1 Hm ≤ 2 -k √ d -Hm c -1 2 .
Let us remark that (ν k ) k≥1 is an increasing sequence and then that ν k ≥ k for every k. Furthermore, taking the logarithm of ( 16), one easily proves that lim

k→+∞ k ν k = H m , which implies ν k = O(k).
For every k ∈ N\{0} and j = (j 1 , . . . , j d ) ∈ Z d we set

x k,j = j 2 ν k , D k = x k,j : j ∈ Z d ∩ [0, 2 ν k ] d and N k = card D k = (2 ν k + 1) d .
Then D k is a 2 -k net of K for τ E in the sense that for any x ∈ K one can find x k,j ∈ D k such that τ E (x-x k,j ) ≤ 2 -k . Actually, by Proposition 3.4, it is sufficient to choose j such that

j i ≤ 2 ν k x i < j i +1 for 1 ≤ i ≤ d.
Let us remark that the sequence (D k ) k is increasing and set D = +∞ k=1 D k .

Step 2. Almost surely, for any x, y ∈ D

Y α (x) -Y α (y) = C α +∞ n=1 T -1/α n m(ξ n ) -1/α (f (x, ξ n ) -f (y, ξ n ))g n ,
where C α is defined by [START_REF] Kôno | On the modulus of continuity of sample functions of gaussian processes[END_REF]. Since the sequences (T n ) n , (ξ n ) n and (g n ) n are independent and (g n ) n is a sequence of i.i.d. Gaussian complex isotropic random variables

R(x, y) = +∞ n=1 T -1/α n m(ξ n ) -1/α (f (x, ξ n ) -f (y, ξ n ))g n is a Gaussian isotropic complex random variable conditionally to (T n , ξ n ) n . Remark that Y α (x) - Y α (y) = C α (R(x, y)) almost surely. Therefore, conditionally to (T n , ξ n ) n , Y α (x) -Y α (y) is a real centered Gaussian random variable with variance v 2 ((x, y) | (T n , ξ n ) n ) = C 2 α 2 E |R(x, y)| 2 | (T n , ξ n ) n = C 2 α 2 E |g 1 | 2 +∞ n=1 T -2/α n m(ξ n ) -2/α |f (x -y, ξ n )| 2 , since |f (x, ξ n ) -f (y, ξ n )| = |f (x -y, ξ n )|.
We consider the set

E k i,j = {ω : |Y α (x k,i ) -Y α (x k,j )| > v((x k,i , x k,j ) | (T n , ξ n ) n ) ϕ(τ E (x k,i -x k,j
))} , where, as in [START_REF] Kôno | On the modulus of continuity of sample functions of gaussian processes[END_REF],

ϕ(t) = 2C ϕ d log 1 t , t > 0
and C ϕ > 0 will be chosen later. Then, for every (k, i, j),

P E k i,j = E E 1 E k i,j | (T n , ξ n ) n .
We give in the following an upper bound of this probability for well chosen (k, i, j). Note that if Z is a real centered Gaussian random variable with variance 1, we have

E 1 E k i,j | (T n , ξ n ) n = P(|Z| > ϕ(τ E (x k,i -x k,j ))) almost surely.
Let us choose δ ∈ (0, 1) and set for k ∈ N\{0}, δ k = 2 -(1-δ)k and

I k = (i, j) ∈ Z d ∩ [0, 2 ν k ] d : τ E (x k,i -x k,j ) ≤ δ k .
For every (i, j) ∈ I k , since ϕ is a decreasing function

P(|Z| > ϕ(τ E (x k,i -x k,j ))) ≤ P(|Z| > ϕ(δ k )).
Then, we recall that

∀u ≥ 0, P(Z > u) ≤ e -u 2 /2 √ 2πu .
Therefore, for every k ∈ N\{0} and (i, j) ∈ I k ,

P E k i,j ≤ 2 π e -ϕ 2 (δ k )/2 ϕ(δ k ) = 2 -(1-δ)kCϕd 2C ϕ d(1 -δ)k log 2 . Hence, ∞ k=1 (i,j)∈I k P E k i,j ≤ 1 2C ϕ d(1 -δ) log 2 +∞ k=1 2 -(1-δ)kCϕd card I k .
Since ν k = O(k), the lower bounds of ( 16) and Corollary 3.4 leads to

card j ∈ Z d ∩ [0, 2 ν k ] d : (i, j) ∈ I k = O δ d/H 1 k 2 dk/Hm k 2d(l-1) , for any i ∈ Z d ∩ [0, 2 ν k ] d . Then one can find a finite constant C > 0 such that ∞ k=1 (i,j)∈I k P E k i,j ≤ C C ϕ (1 -δ) ∞ k=1 k 3d(l-1) 2 -kd -2 Hm + 1-δ H 1 +(1-δ)Cϕ ,
which is finite for C ϕ > 2 Hm -1 H 1 and δ small enough. By the Borel-Cantelli Lemma, almost surely there exists an integer k * (ω) such that for every k ≥ k * (ω),

|Y α (x) -Y α (y)| ≤ v((x, y) | (T n , ξ n ) n ) ϕ(τ E (x -y))
as soon as x, y ∈ D k with τ E (x -y) ≤ δ k .

Step 3. As in [START_REF] Kôno | Hölder continuity of sample paths of some self-similar stable processes[END_REF] let us give an upper bound of

v 2 ((x, y) | (T n , ξ n ) n ) = C 2 α 2 E |g 1 | 2 +∞ n=1 T -2/α n m(ξ n ) -2/α |f (x -y, ξ n )| 2 with respect to τ E (x -y). By definition of f v 2 ((x, y) | (T n , ξ n ) n ) ≤ C 2 α 2 E |g 1 | 2 σ 2 (τ E (x -y)) ,
where for all h > 0

σ 2 (h) = +∞ n=1 T -2/α n m(ξ n ) -2/α min M E h E t ξ n , 2 2 ψ(ξ) -2-2q/α ,
with M E given by [START_REF] Biermé | Operator scaling stable random fields[END_REF]. For the sake of clearness we postpone the proof of the control of σ 2 (h) in Appendix and state it in the following lemma.

Lemma 5.2. For any γ ∈ (0, 1) there exists a finite constant c > 0 such that 1) almost surely as soon as h ≤ 1 -γ.

E σ 2 (h) | (T n ) n ≤ c +∞ n=1 T -2/α n h 2 |log h| (1+η)(2/α-
Following [START_REF] Kôno | Hölder continuity of sample paths of some self-similar stable processes[END_REF] let us denote b(h) = h| log h| (1+η)/α . Then by Lemma 5.2,

E +∞ k=1 σ 2 (2 -k ) b 2 (2 -k ) (T n ) n < +∞.
Therefore by independence of (T n ) n and (ξ n ) n , almost surely

lim k→+∞ σ 2 (2 -k ) b 2 (2 -k ) = 0.
Up to change the Euclidean norm • by the equivalent norm • E t defined in Lemma 6.1.5 of [START_REF] Meerschaert | Limit distributions for sums of independent random vectors[END_REF] the map h → h E t ξ is increasing and so is σ 2 . Also, one can conclude, as in [START_REF] Kôno | Hölder continuity of sample paths of some self-similar stable processes[END_REF], that almost surely

lim h→0 σ 2 (h) b 2 (h) = 0.
Therefore, up to change k * one can assume that for every k ≥ k * (ω), for every x, y

∈ D k , ( 17 
) |Y α (x) -Y α (y)| ≤ 2dC ϕ τ E (x -y)|log τ E (x -y)| (1+η)/α+1/2 .
as soon as

τ E (x -y) ≤ δ k . Let Ω * = +∞ n=1 k≥n x,y∈D k τ E (x-y)≤δ k |X α (x) -X α (y)| ≤ 2dC ϕ τ E (x -y)|log τ E (x -y)| (1+η)/α+1/2
Since X α and Y α have the same finite dimensional margins P(Ω * ) = 1.

Step 4. Let ω ∈ Ω * . By Step 3 there exists k * (ω) ≥ 1 such that X α satisfies (17

) for k ≥ k * (ω), x, y ∈ D k and τ E (x -y) ≤ δ k .
Let us recall that by Lemma 2.2 of [START_REF] Biermé | Operator scaling stable random fields[END_REF], there exists K E ≥ 1 such that for all x, y ∈ R d

τ E (x + y) ≤ K E (τ E (x) + τ E (y)) .

Let us denote F (h) =

2dC ϕ h|log h| (1+η)/α+1/2 and choose k 0 ∈ N such that 2

k 0 δ k 0 +1 > 3K 2 E and F is increasing on (0, δ k 0 ]. Up to change k * (ω), we can assume that k * (ω) ≥ k 0 . Let x, y ∈ D with x = y such that 3K 2 E τ E (x -y) ≤ δ k * (ω)
. Then there exists a unique k ≥ k * (ω) such that δ k+1 < 3K 2 E τ E (x -y) ≤ δ k . Since x, y ∈ D, there exists n ≥ k + 1 such that x, y ∈ D n . Moreover, by Step 1, for j = k, . . . , n -1, we can choose x (j) , y (j) ∈ D j such that

τ E x -x (j) ≤ 2 -j and τ E y -y (j) ≤ 2 -j . By construction τ E x (k) -y (k) ≤ K 2 E τ E (x -y) + 22 -k . Let us point out that since k ≥ k 0 , 2 k δ k+1 ≥ 2 k 0 δ k 0 +1 > 3K 2
E . Therefore, one easily sees that

τ E x (k) -y (k) ≤ 3K 2 E τ E (x -y).
Since 3K 2 E τ E (x -y) ≤ δ k we obtain by Step 3 on the one hand that

X α x (k) -X α y (k) ≤ F τ E x (k) -y (k) .
On the other hand we can write

X α (x) -X α x (k) = n-1 j=k X α x (j+1) -X α x (j)
with τ E x (j+1) -x (j) ≤ 3K 2 E 2 -(j+1) ≤ δ j+1 since j ≥ k 0 . Moreover, note that x (j) ∈ D j ⊂ D j+1 and then by Step 3

X α (x) -X α x (k) ≤ n-1 j=k F τ E x (j+1) -x (j) ≤ CF (δ k+1 ),
where C = +∞ j=0 (j + 1) (1+η)/α+1/2 δ j < +∞. Using similar computations for X α (y) -X α y (k) , we obtain that

|X α (x) -X α (y)| ≤ F τ E x (k) -y (k) + 2CF (δ k+1 ) ≤ (1 + 2C)F 3K 2 E τ E (x -y) .
Then one can find a constant C > 0 such that for 3K 2

E τ E (x -y) ≤ δ k * (ω) (18) |X α (x) -X α (y)| ≤ Cτ E (x -y)|log τ E (x -y)| (1+η)/α+1/2 .
We now give a modification of X α . For x ∈ D, we set

X * α (x)(ω) = X α (x)(ω). For x ∈ K let x (n) ∈ D such that lim n→+∞ x (n) = x.
In view of ( 18), X * α x (n) (ω) n is a Cauchy sequence and then converges. We set

X * α (x)(ω) = lim n→+∞ X * α x (n) (ω).
Remark that this limit does not depend on the choice of x (n) . Moreover, since X α is stochastically continuous, X * α is a modification of X α . By continuity of τ E , we easily see that

X * α (x)(ω) -X * α x (ω) ≤ Cτ E (x -y)|log τ E (x -y)| (1+η)/α+1/2
as soon as 3K 2 E τ E (x -y) < δ k * (ω) , which concludes the proof.

Following the same lines as the proof of Theorem 5.1 we obtain a similar result in the Gaussian case (α = 2) for more general fields. Let us remark that Y α is not defined for α = 2. However, in Step 2 of the proof, let us replace Y α by X a centered Gaussian random field and v 2 ((x, y)

| (T n , ξ n ) n ) by the variance of X(x) -X(y) v 2 ((x, y)) = E (X(x) -X(y)) 2 .

Furthermore let us replace

Step 3 by the assumption that for some β ∈ R and δ > 0 there exists a finite constant C > 0 such that for x, y

∈ K with τ E (x -y) ≤ δ (19) E (X(x) -X(y)) 2 ≤ Cτ E (x -y) 2 |log τ E (x -y)| β .
Then Step 1, Step 2 and Step 4 yields the following proposition.

Proposition 5.3. Let X be a centered Gaussian random field satisfying [START_REF] Mandelbrot | Fractional Brownian motion, fractionnal noises and applications[END_REF]. There exists a modification X * of X on K such that

(20) lim δ↓0 sup x,y∈K x-y ≤δ |X * (x) -X * (y)| τ E (x -y)|log τ E (x -y)| 1/2+β+ε = 0 a.s.
for any ε > 0.

Let us point out that if X 2 is an operator scaling Gaussian random field as defined in [START_REF] Biermé | Operator scaling stable random fields[END_REF], then

E (X 2 (x) -X 2 (y)) 2 = τ E (x -y) 2 E X 2 ( E (x -y)) 2 ,
and X 2 satisfies ( 19) with β = 0 by (5.2) of [START_REF] Biermé | Operator scaling stable random fields[END_REF]. Therefore this result is more precise than one could expect from the Theorem 5.1, replacing α by 2.

Let us also mention that Marianne Clausel gives a different proof of a similar result for some Gaussian operator scaling random fields with stationary increments in [START_REF] Clausel | Gaussian fields with a group self-similarity[END_REF]. Now, as in [START_REF] Biermé | Operator scaling stable random fields[END_REF], we are looking for global and directional Hölder critical exponents of the harmonizable stable random field X α . These exponents have been introduced in [START_REF] Bonami | Anisotropic analysis of some Gaussian models[END_REF] in the Gaussian realm but can be defined for any random field. Following Definition 5.1 of [START_REF] Biermé | Operator scaling stable random fields[END_REF], H ∈ (0, 1) is said to be the Hölder critical exponent of a random field (X(x)) x∈R d if there exists a modification X * of X such that for any s ∈ (0, H), the sample paths of X * satisfy almost surely a uniform Hölder condition of order s on K, that is there exists a finite positive random variable A such that almost surely [START_REF] Mason | Sample path properties of operator-self-similar Gaussian random fields[END_REF] |X * (x) -X * (y)| ≤ A x -y s for all x, y ∈ K while for any s ∈ (H, 1), almost surely ( 21) fails. Note that the Hölder critical exponent, if exists, is well defined since any continuous modification of X and X * are indistinguishable. Moreover, according to Definition 5.3 of [START_REF] Biermé | Operator scaling stable random fields[END_REF] we say that X admits H(u) as directional regularity in direction u ∈ S d-1 , with S d-1 the Euclidean unit sphere, if the process (X(tu)) t∈R admits H(u) as Hölder critical exponent on K ∩ Ru.

For all j = 1, . . . , m we set

K j = K ∩ j k=1 W k . Let us remark that K m = K. Corollary 5.4. Let α ∈ (0, 2]. There exists a modification X * α of X α on K such that for all j = 1, . . . , m lim δ↓0 sup x,y∈K j x-y ≤δ |X * α (x) -X * α (y)| x -y H j |log x -y | H j (p j -1)+β+1/2+ε = 0 a.s.
for any ε > 0, where p j = max Proposition 5.6. The random field X α admits H m as Hölder critical exponent. Moreover, for any j = 1, . . . , m, for any direction u ∈ W j , the field X α admits H j as directional regularity in the direction u.

Proof. For Z a real SαS random variable we let

Z α = (-log (E(exp (iZ)))) 1/α . Then, for any x, y ∈ R d , X * α (x) -X * α (y) α = C α ( E (x -y))τ E (x -y) where for all θ ∈ S E C α (θ) = c α R d e i θ,ξ -1 α ψ(ξ) -α-q dξ 1/α and c α = 1 2π π 0 |cos(t)| α dt.
From Lebesgue's Theorem, the function C α is continuous on the compact set S E with positive values. Let us denote m α = min

θ∈S E C α (θ) > 0.
According to [START_REF] Hirsch | Differential equations, dynamical systems, and linear algebra[END_REF] in Corollary 3.4, for any j = 1, . . . , m and u a direction in W j ,

X * α (tu) -X * α (su) α ≥ m α c 1 |t -s| H j |log |t -s|| -(l j -1)H j .
Therefore, for any s > H j , it implies that X * α (tu)-X * α (su) |t-s| s is almost surely unbounded as |t -s| ↓ 0 so [START_REF] Mason | Sample path properties of operator-self-similar Gaussian random fields[END_REF] fails almost surely on K ∩ Ru. Moreover, Corollary 5.4 implies that (X * α (tu)) t∈R satisfies (21) on K ∩Ru for any s < H j and thus H j is the directional regularity of X α in the direction u. Moreover, one can find a direction u ∈ S d-1 in which almost surely (X * α (tu)) t∈R does not satisfy (21) on K ∩ Ru for any s > H m . Therefore, almost surely (X * α (x)) x∈R d can not satisfy (21) on K for any s > H m . Then, by Corollary 5.5 X α admits H m as Hölder critical exponent.

Remark 5.1. In the diagonalizable case (see Example 2.2), the W j are the eigenspaces associated with the eigenvalues of E. In particular, for θ j an eigenvector associated with the eigenvalue λ j = a j , the critical Hölder exponent in direction θ j is H j = 1/a j . Proposition 5.6 compared to Theorem 5.4 of [START_REF] Biermé | Operator scaling stable random fields[END_REF] shows that the operator scaling stable field, defined through an harmonizable representation share the same sample paths properties as the Gaussian ones. Therefore it is natural to have also the same result of Theorem 5.6 [START_REF] Biermé | Operator scaling stable random fields[END_REF] for the box-and the Hausdorffdimensions of their graphs on a compact set. We also refer to Falconer [START_REF] Falconer | Fractal geometry[END_REF] for the definitions and properties of box-and the Hausdorff-dimension and keep the notations of [START_REF] Biermé | Operator scaling stable random fields[END_REF]. More precisely, we fix a compact set K ⊂ R d and consider G(X * α )(ω) = {(x, X * α (x)(ω)); x ∈ K} the graph of a realization of the field X * α over the compact K. We denote dim H G(X * α ), resp dim B G(X * α ), the Hausdorff-dimension and the box-dimension of G(X * α ), respectively. Proposition 5.7. Almost surely

dim H G(X * α ) = dim B G(X * α ) = d + 1 -H m . Proof.
The proof is very similar to those of Theorem 5.6 [START_REF] Biermé | Operator scaling stable random fields[END_REF]. It also uses same kinds of arguments as in [START_REF] Benassi | Local self-similarity and the Hausdorff dimension[END_REF]. For sake of completeness we recall the main ideas. Corollary 5.5 allows as usual to state the

upper bound dim H G(X * α ) ≤ dim B G(X * α ) ≤ d + 1 -H m , a.
s. where dim B denotes the upper box-dimension. The lower bound will also follows from Frostman criterion (Theorem 4.13 (a) in [START_REF] Falconer | Fractal geometry[END_REF]). One has to prove that the integral I s

I s = K×K E (X * α (x) -X * α (y)) 2 + x -y 2 -s/2 dx dy,
is finite to get that almost surely dim H G(X * α ) ≥ s. In our case, the fundamental lemma of [START_REF] Ayache | A Fourier formulation of the Frostman criterion for random graphs and its applications to wavelet series[END_REF] allows us to write this integral using the characteristic function of the SαS field X * α . Actually, when one remarks that, using Fourier-inversion, (ξ 2 + 1) -s/2 = 1 2π R e iξt f s (t)dt, where f s ∈ L ∞ (R) ∩ L 1 (R), one gets

I s = K×K 1 2π x -y -s R e -|t| α X * α (x)-X * α (y) α α x-y α f s (t)dt dx dy.
By a change of variables, as f s ∈ L ∞ (R), one can find C > 0 such that

I s ≤ C K×K x -y 1-s X * α (x) -X * α (y) -1 α dx dy ≤ Cm -1 α K×K x -y 1-s τ E (x -y) -1 dx dy,
where m α = min

θ∈S E c α R d e i θ,ξ -1 α ψ(ξ) -α-q dξ 1/α
as introduced in the proof of Proposition 5.6.

Since K×K x -y 1-s τ E (x -y) -1 dx dy is proved to be finite as soon as s < d + 1 -H m in [START_REF] Biermé | Operator scaling stable random fields[END_REF],

dim B G(X * α ) ≥ dim H G(X * α ) ≥ d + 1 -H m a.
s. and the proof is complete.

Harmonizable operator scaling stable random fields share many properties with Gaussian operator random fields. In particular, they have locally Hölder sample paths and critical directional Hölder exponent depending on the directions. In the Gaussian case (α = 2), [START_REF] Biermé | Operator scaling stable random fields[END_REF] establishes such properties in the framework of harmonizable and moving average Gaussian operator scaling random field. However, for stable laws, harmonizable and moving average representations do not have the same behavior as we see in the next section.

Moving average representation

Let us recall the definition of moving average operator scaling stable random fields introduced in [START_REF] Biermé | Operator scaling stable random fields[END_REF]. Let 0 < α ≤ 2. We consider M α (dy) an independently scattered SαS random measure on R d with Lebesgue control measure, see [START_REF] Samorodnitsky | Stable non-Gaussian random processes[END_REF] for details on such random measures. Let us recall that, as before, q = trace(E). Let ϕ : R d → [0, ∞) be a continuous E-homogeneous function. We assume moreover that there exists β > 1 such that ϕ is (β, E)-admissible. According to Definition 2.7 of [START_REF] Biermé | Operator scaling stable random fields[END_REF] it means that ϕ(x) = 0 for x = 0 and that for any 0 < A < B there exists a constant C > 0 such that, for A ≤ y ≤ B, [START_REF] Meerschaert | Limit distributions for sums of independent random vectors[END_REF] |ϕ(x + y) -ϕ(y)| ≤ Cτ E (x) β holds for any τ E (x) ≤ 1.

Definition 6.1. Since β > 1, the α-stable random field

(23) Z α (x) = R d ϕ(x -y) 1-q/α -ϕ(-y) 1-q/α M α (dy) , x ∈ R d .
is well defined and called moving average operator scaling stable random field.

From Theorem 3.1 and Corollary 3.2 of [START_REF] Biermé | Operator scaling stable random fields[END_REF], it is stochastically continuous, has stationary increments and satisfies the following operator scaling property

∀c > 0, Z α (c E x); x ∈ R d (f dd) = cZ α (x); x ∈ R d ,
as the harmonizable field X α .

In the Gaussian case (α = 2), the variogramme of Z 2 is similar to the one of the harmonizable field X 2 . Then, [START_REF] Biermé | Operator scaling stable random fields[END_REF] proves that Z 2 and X 2 admit the same critical Hölder sample paths properties. However, when α ∈ (0, 2), let us recall that moving average self-similar α-stable random motions does not have in general continuous sample paths (see [START_REF] Samorodnitsky | Stable non-Gaussian random processes[END_REF]). The next proposition states the same property for Z α . 

* = U ∩ Q d is dense in U , for any y ∈ U f * (U * , y) = sup x∈U * ϕ(x -y) 1-q/α -ϕ(-y) 1-q/α = +∞.
Then R d f * (U * , y) α dy = +∞ and the necessary condition for sample boundedness (10.2.14) of Theorem 10.2.3 p.450 of [START_REF] Samorodnitsky | Stable non-Gaussian random processes[END_REF] fails. We conclude the proof by Corollary 10.2.4 of [START_REF] Samorodnitsky | Stable non-Gaussian random processes[END_REF].

Appendix

Proof of lemma 3.2. The lower bound is straightforward. Actually, for any t > 0, t λ is an eigenvalue of the matrix t J and therefore t a = t λ ≤ t J .

Let us prove the upper bound. First, let us assume that J is a Jordan cell matrix of size l. In this case λ = a ∈ R and

t J = t a       1 0 . . . 0 log t 1 0 . . . . . . . . . . . . 0 (log t) l-1 (l-1)! . . . log t 1       .
Let us recall that the norm defined for a matrix A = (a ij ) 1≤i,j,≤d by A ∞ = max

1≤i≤d d j=1 |a ij | is the subordinated norm of the infinite norm x ∞ = max 1≤i≤d |x i | for x ∈ R d . By definition, we can deduce that t J ∞ = t a l-1 j=0 |log t| j j! . Then, t J ≤ √ l t J ∞ ≤ √ lt a |log (t)| l-1 l-1 j=0 1 j!
for any t ∈ (0, e -1 ] ∪ [e, +∞). Therefore, for any t ∈ (0, e -1 ] ∪ [e, +∞), we have

t J ≤ √ l e t a |log t| l-1 .
In the second case, let us assume that J is a block of the form (7) of size 2l associated with the eigenvalue λ = a + ib for b = 0. Then t J = t a R(t)N (t) where

R(t) =      R b (t) 0 . . . 0 0 R b (t) 0 . . . . . . . . . . . . 0 0 . . . 0 R b (t)      with R b (t) = cos(b log t) -sin(b log t) sin(b log t) cos(b log t) , and 
N (t) =      I 2 0 . . . 0 N 1 (t) I 2 0 . . . . . . . . . . . . 0 N l-1 (t) . . . N 1 (t) I 2      with N j (t) = |log t| j j! 0 0 |log t| j j! . Hence, t J ≤ t α R(t) N (t) .
Since R(t) is an orthogonal matrix, R(t) = 1. Furthermore, N (t) is a (2l) × (2l) matrix and

N (t) ≤ √ 2l N (t) ∞ = √ 2l l-1 j=0 |log t| j j!
Therefore, we also obtain that t

J ≤ √ 2l et a |log t| l-1
for any t ∈ (0, e -1 ] ∪ [e, +∞).

Proof of Proposition 3.4. Let r ∈ (0, 1). One can find r E ∈ (0, r) such that for any x ≤ r E we have τ

E (x) ≤ e -1 . Let x ∈ j k=j 0 W k with x ≤ r E . Then x = τ E (x) E E (x) and l E (x) ∈ j k=j 0 W k .
We first establish the lower bound of Proposition 3.4. Let us write l E (x) = m k=1 l k (x) where each l k (x) ∈ W k . Let L k be the coordinates of l k (x) in the basis f k-1 i=1 li +1 , . . . , f k i=1 li of W k . Hence, by definition of P ,

P -1 l E (x) =    L 1 . . . L m    and x = τ E (x) E l E (x) = P    τ E (x) J 1 L 1 . . . τ E (x) Jm L m    . Since l E (x) ∈ j k=j 0 W k , L k = 0 for k / ∈ {j 0 , . . . , j}, x ≤ P   j k=j 0 τ E (x) J k L k 2   1/2 ≤ P   j k=j 0 τ E (x) J k 2 L k 2   1/2 By Lemma 3.2, x ≤ √ 2e P   j k=j 0 l k τ E (x) 2a k |log τ E (x)| 2(l k -1) L k 2   1/2
since τ E (x) ≤ 1/e. Hence, since τ E (x) ≤ 1, |log τ E (x)| ≥ 1, a k ≥ a j 0 and l k ≤ p j 0 ,j = max

j 0 ≤i≤j l i ≤ d,
x ≤ √ 2de P τ E (x) a j 0 |log τ E (x)| (pj 0 ,j -1)

j k=j 0 L k 2 1/2
≤ √ 2de P τ E (x) a j 0 |log τ E (x)| (pj 0 ,j -1) P -1 l E (x)

Then, [START_REF] Rosiński | On path properties of certain infinitely divisible processes[END_REF] x ≤ √ 2deM E P P -1 τ E (x) a j 0 |log τ E (x)| (pj 0 ,j -1) where M E is defined by [START_REF] Biermé | Operator scaling stable random fields[END_REF]. Let us take the logarithm of this equation. Choosing r 0 < min(1, r E ) small enough, one can find C > 0 such that [START_REF] Rosiński | On series representations of infinitely divisible random vectors[END_REF] | log τ E (x)| ≤ C| log x | for x < r 0 .

Using in [START_REF] Rosiński | On path properties of certain infinitely divisible processes[END_REF], we obtain that there exists C > 0 such that for x ≤ r 0

x H j 0 |log x | -H j 0 (pj 0 ,j -1) ≤ Cτ E (x).

By continuity of the map,

x → x H j 0 |log x | -H j 0 (pj 0 ,j -1) τ E (x) -1 on x ∈ R d / 0 < x < 1 , up to change C, the previous inequality holds for x ≤ r, which gives the lower bound in [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF].

Let us now establish the upper bound in [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF]. We write x = m k=1 x k with each x k ∈ W k . We then denote by X k the coordinates of x k in the basis f k-1 i=1 li +1 , . . . , f k i=1 li of W k . Since x ∈ j k=j 0 W k , X k = 0 for every k / ∈ {j 0 , . . . , j}. Hence, by definition of P , since τ E (x) -1 ≥ e. Hence, since τ E (x) -1 ≥ e > 1, a k ≤ a j and l k ≤ p j 0 ,j , 0 < m E ≤ √ 2de P P -1 τ E (x) -a j |log τ E (x)| p j 0 ,j -1 j k=j 0 X k 2 ≤ √ 2de P P -1 τ E (x) -a j |log τ E (x)| p j 0 ,j -1 P -1 x .

P -1 x =    X 1 . . .
Then, using (25) and P -1 x ≤ P -1 x , there exists a constant C > 0 such that τ E (x) < C x H j |log x | H j (pj 0 ,j -1) for x ≤ r 0 . By continuity of the map

x → τ E (x)
x H j |log x | H j (pj 0 ,j -1) on x ∈ R d / 0 < x < 1 , up to change C, the previous inequality holds for x ≤ r, which gives the upper bound in [START_REF] Karatzas | Brownian Motion and Stochastic Calculus[END_REF] and concludes the proof.

Proof of Lemma 5.2. It is sufficient to consider

I(h) = E m(ξ n ) -2/α min M E h E t ξ n , 2 2 ψ(ξ n ) -2-2q/α
By definition,

I(h) = R d m(ξ) 1-2/α ψ(ξ) -2-2q/α min M E h E t ξ , 2 2 dξ. 
Using the formula of integration in polar coordinates with respect to E t , see Proposition 3.1,

I(h) = S E t +∞ 0 m r E t θ 1-2/α ψ r E t θ -2-2q/α
min M E (hr) E t θ , 2 2 r q-1 drσ E t (dθ).

Since ψ is E t -homogeneous, By the change of variable ρ = hr, I(h) is equal to

I(h) = S E t
c 1-2/α η h 2 S E t +∞ 0 ψ(θ) -2-2q/α min M E ρ E t θ , 2 2 ρ -3 log ρ h (1+η)(2/α-1)
drσ E t (dθ).

For any γ ∈ (0, 1), there exists A γ such that for every ρ > 0 and every h ≤ 1 -γ, 

I 2 = M 2 E M 2 E t S E t ψ(θ) -2-2q/α σ E t (dθ) 1 0 ρ E t 2 ρ -3 ||log (ρ)| + 1| (1+η)(2/α-1) dρ,
where M E and M E t are defined by [START_REF] Biermé | Operator scaling stable random fields[END_REF]. Since ψ is continuous with positive value on the compact set S E t , S E t ψ(θ) -2-2q/α σ(dθ) < +∞.

Hence I 1 < +∞. It follows from Proposition 3.4 that for any δ ∈ (0, 1), there exists a constant c δ > 0 such that

ρ E t ≤ Cρ a 1 |log |ρ|| l-1
for all ρ ≤ δ . Hence, since a 1 > 1, 1 0 ρ E t 2 ρ -3 ||log (ρ)| + 1| (1+η)(2/α-1) dρ < +∞ and I 2 < +∞, which concludes the proof.

Corollary 5 . 5 .

 55 1≤k≤j l k , β = 1/α if α = 2 and β = 0 if α = 2. Proof. It follows from Theorem 5.1 and Corollary 3.3, since a j ≤ a d for any j = 1 . . . d. Let α ∈ (0, 2]. The random field X * α has locally H-Hölder sample paths on R d for every H ∈ (0, H m ). Now let us give the directional and global Hölder critical exponents of X α .

Proposition 6 . 1 .

 61 Assume α ∈ (0, 2) and d ≥ 2. Then, the random field Z α is almost surely unbounded on every open ball. Proof. Let us remark that ϕ(0) = 0 by continuity and E-homogeneity and q = d j=1 a j > d > α, as soon as d ≥ 2. Then, for any U open set, since U

l

  l E (x) = τ E (x) -E x = P    τ E (x) -J 1 X 1 . . . τ E (x) -Jm X m   . Then, l E (x) ≤ P   j k=j 0 τ E (x) -J k X k k τ E (x) -2a k |log τ E (x)| 2(l k -1) 

2 r 2 r

 22 ) -2-2q/α min M E (hr) E t θ , 2 -2+q-1-2q/α drσ E t (dθ) ) -2-2q/α min M E (hr) E t θ , 2 -3 |log(r)| (1+η)(2/α-1) drσ E t (dθ).

1 ρ

 1 (ρ) -log (h)| ≤ A γ ||log(ρ)| + 1||log (h)|. Since 2/α > 1, I(h) ≤ A 2/α-1 γ c 1-2/α η h 2 |log (h)| (1+η)(2/α-1) (I 1 + I 2 )withI 1 = 4 S E t ψ(θ) -2-2q/α σ E t (dθ) +∞ -3 ||log (ρ)| + 1| (1+η)(2/α-1) dρ and

  which is a necessary and sufficient condition for X α to be defined.

	Now, let us give some examples of such random fields.
	Example 2.1. Let I d be the identity matrix of size d × d, E = I d /H (with 0 < H < 1) and ψ(x) = x H with • the Euclidean norm. Then the random field defined by (

  n ≥ 1, are i.i.d. isotropic complex random variables. By Lemma 4.1 in [15], Y h converges almost surely and ∀z ∈ C, E exp i zY h = exp (-σ α |z| α ) with
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