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Abstract

We consider a generalization of the Jarzynski relation to the case where the

system interacts with a bath for which the temperature is not kept constant

but can vary during the transformation. We suggest to use this relation as

a replacement to the thermodynamic perturbation method or the Bennett

method for the estimation of the order-order surface tension by Monte Carlo

simulations. To demonstrate the feasibility of the method, we present some

numerical data for the 3D Ising model.

1 Introduction

In the last decade, important progresses have been made in the context of far-
from-equilibrium statistical physics with the derivation of the so-called fluctuation
theorems. Among these theorems, the Jarzynski relation has certainly become the
most famous one and is now widely applied both in experimental and numerical
studies not only in physics but in chemistry or biophysics as well. Remarkably,
this relation relates thermodynamic equilibrium quantities to out-of-equilibrium
averages over all possible histories of the system when submitted to a well-defined
protocol. The system is initially prepared at thermal equilibrium and then driven
out-of-equilibrium by varying a control parameter h from say h1 to h2. The work
W is recorded for each experiment. The Jarzynski relation states that

e−β∆F = 〈e−βW 〉 (1)

where ∆F is the free-energy difference ∆F = F (h2)−F (h1) between the two equi-
librium states at values h1 and h2 of the control parameter. In his first paper on the
subject, Jarzynski gave a derivation of this relation in the case of a set of particles
evolving according to the laws of Newtonian mechanics [1]. The derivation depends
crucially on the assumption that the system is initially thermalized with a heat bath
at temperature T but then isolated from it while the work is exerted. No exchange
of heat with the environment is possible. A change of the temperature of the bath
has thus no consequence. In a second paper [2], Jarzynski showed that the relation
(1) may be established in the case of a Markovian dynamics too. In this case, the
interaction with the bath is encoded in the transition rates. The demonstration
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does not require anymore the insulation of the system from the bath while the work
is exerted. Exchange of heat with the environment is properly taken into account
during the whole process.

It is a simple exercise to generalize the Jarzynski relation to the case where the
temperature of the heat bath changes with time. In the special case where no work
is exerted on the system, one obtains (24):

e−∆(βF ) = 〈e−
∫

E(t)β̇dt〉 (2)

where E(t) is the total energy of the system at time t. The derivation can be found
in the appendix. As noted by Crooks in his dissertation [3] “it is possible to view
this change as an additional perturbation that exerts a sort of entropic work on the
system”. Like any other Jarzynski relation, Eq. (2) is also a special case of the
annealed importance sampling method [4]. As far as we know, the case of a varying
temperature has not attracted any attention. The aim of this paper is to show that
a Jarzynski relation generalized to a temperature change may also have some inter-
esting applications and deserves interest. As an example, we propose a new way to
estimate by Monte Carlo simulations the order-order surface tension. This method
is tested for the three-dimensional Ising model. The surface tension is related to the
remaining free energy of a system containing two phases in coexistence separated
by an interface when the contribution of these bulk phases has been removed. The
Jarzynski relation offers the possibility to calculate these free energies in a Monte
Carlo simulation.

The precise numerical determination of the surface tension has attracted a con-
tinuous interest for several decades. It is indeed an important quantity in nucleation
theory and may be used to distinguish between a first-order phase transition and a
continuous one. In the latter case, the surface tension is expected to vanish at the
critical point. In the context of lattice spin models, the interface tension permitted
to show for example the existence of a randomness-induced continuous transition
in the 2D eight-state Potts model [5] or that the phase transition of the 3D 3-state
Potts model is weakly first-order [6]. In chemistry, one is interested in the surface
tension in fluids or colloids and the 3D Ising model is commonly used as a toy model
for the description of the liquid-vapor phase transition [7, 8]. In the context of high-
energy physics, the confinement-deconfinement phase transition between hadronic
matter and quark-gluon plasma is a very active research field. Numerous Monte
Carlo simulations have been devoted to the estimation of the interface tension of
the pure SU(3) gauge model [9, 10, 11, 12, 13, 14]. The Ising model is also of in-
terest in this context since duality maps the 3D Z2 Yang-Mills gauge theory onto
the 3D Ising model [15]. Wilson loop and Polyakov loop correlators are then re-
lated to interfaces in the Ising model. In all theses situations where the surface
tension is of interest, numerical accuracy has been constantly improved not only by
the exponential growth of computer speed but mainly by progresses in algorithms
(multicanonical simulations [16], flat histogram methods [8],. . .) and in the protocol
set up to have access to the surface tension (thermodynamic integration, Binder’s
histogram method [17], snake algorithm [18, 19, 20, 21], . . .).

This paper is organized as follows: in the first section, we expose the method
used to estimate numerically the order-order surface tension. The derivation of
the Jarzynski relation is given in the appendix. Numerical results for the 3D Ising
model are presented in the second section. Conclusions and discussion follow.
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2 Numerical estimation of the surface tension

Consider the classical ferromagnetic Ising model defined by the usual Hamilto-
nian [22]

HIsing = −J
∑

(i,j)

σiσj , σi = ±1 (3)

where the sum extends over nearest neighbors only. In order to favor the appearance
of an interface in the system, we first impose anti-periodic boundary conditions in
one direction. The free energy F (T ) of the system at a temperature T < Tc may
be decomposed as

F (T ) = FFerro(T ) + Fs(T ) − kBT lnL (4)

where FFerro is the contribution of the two ferromagnetic phases on both sides of
the interface, Fs the free energy of the interface and kB lnL the entropy associated
to the degeneracy of the position of the interface. One can restrict the analysis to
the case where only one interface appears in the system. Indeed, the probability

for n interfaces behaving as e−βnσLd−1

, the contribution of spin configurations with
more than one interface can be neglected for sufficiently large lattice sizes L. The
order-order surface tension is defined as

σ(T ) = lim
L→+∞

Fs(T )

Ld−1
. (5)

To first calculate the free energy F (T ), we will estimate numerically the differ-

ence ∆(βF ) = F (T )
kBT − F (Ti)

kBTi
. The temperature Ti ≪ Tc is chosen such that the

thermal contribution to the free energy F (Ti) can be neglected, i.e. F (Ti) =
E0 − kBT ln 2 − kBT lnL where E0 = −J(dLd − 2Ld−1) is the energy of the spin
configuration with a flat interface, kB ln 2 the entropy associated to the degeneracy
of the ground state corresponding to σi → −σi and kB lnL the entropy associated
to the position of the interface.

The usual method to compute ∆(βF ) is based on the decomposition

e−∆(βF ) =
Zβ

Zβi

=
ZβN+1

ZβN

ZβN

ZβN−1

. . .
Zβ2

Zβ1

(6)

where {β1, . . . , βN+1} is a set of inverse temperatures interpolating between βi = β1

and β = βN+1. When βk and βk+1 are sufficiently close, the ratio Zβk+1
/Zβk

can
be estimated during a single Monte Carlo simulation at the inverse temperature βk

by thermodynamic perturbation:

Zβk+1

Zβk

= 〈e−(βk+1−βk)E〉βk
(7)

or by more elaborated procedures like the Bennett method [23]. The estimation of
∆(βF ) requires N Monte Carlo simulations at the inverse temperatures β1, . . . βN

with for each of them a sufficiently large number nexp. of Monte Carlo steps in order
to get accurate averages.

The Jarzynski relation (23) offers the possibility to estimate the quantities
Zβk+1

/Zβk
. The system is initially thermalized at the temperature Tk = 1/kBβk.

First the initial spin configuration is stored. Then niter. MCS are performed with

a temperature increasing from Tk to Tk+1. The quantity e
−

βk+1−βk
niter.

∑

niter.−1

t=0
E(t)

is calculated and accumulated. The initial spin configuration is restored and a
few additional MCS at temperature Tk are performed to generate a new initial

3



spin configuration uncorrelated with the previous one. The whole procedure is

repeated nexp. times. Finally the average 〈e
−

βk+1−βk
niter.

∑

niter.−1

t=0
E(t)

〉 gives e−∆(βF )

where ∆(βF ) = βk+1F (βk+1) − βkF (βk) according to the Jarzynski relation (23).

Both methods lead to a numerical estimate of F (T ). The last step is now to
calculate FFerro(T ), i.e. the contribution of the two ferromagnetic phases. To that
purpose, we make a second Monte Carlo simulation with periodic boundary con-
ditions. The method presented above is applied again to estimate the difference

∆(βFFerro) = FFerro(T )
kBT − FFerro(Ti)

kBTi
. The approximation FFerro(Ti) = E0 − kBT ln 2

where E0 = −JdLd gives finally FFerro(T ). We can now use (5) to estimate the
surface tension.

The algorithm based on the Jarzynski relation depends on three parameters: N
the number of temperature intervals in which [βi; β] is divided, niter. the number
of MCS bringing the temperature from Tk to Tk+1 and nexp. the number of mea-

surements of e−∆β
∑

E performed. The thermodynamic perturbation method (7)
corresponds to the special case niter. = 1. The use of the Jarzynski relation may
improve the convergence and save computer time by an optimal choice of the set
(N, niter., nexp.) of parameters. Increasing niter. allows to decrease N and to some
extend nexp.. However, we have no recipe to determine these optimal parameters
and moreover, they probably depend a lot on the model and on the Monte Carlo
dynamics chosen.

3 Application to the 3D Ising model

The method presented above is applied to the 3D Ising model. We considered
the “extreme” case N = 1, i.e. the temperature is not increased step by step in
different Monte Carlo simulations but in a single simulation from Ti to T . This
choice is certainly not the optimal one but it demonstrates that the Jarzynski re-
lation can be applied even when the temperature is changed by a very large amount.

In one of the three directions, the boundary conditions are first anti-periodic
and then periodic. In the two other directions, we are free to choose any bound-
ary conditions. We considered both periodic (PBC) and free boundary conditions
(FBC). This choice is motivated by the fact that only periodic boundary conditions
are usually considered in the literature but in the 2D Ising model, one can easily
check that finite-size corrections to the surface tension are smaller with FBC. This
can be understood by considering the equivalent one-dimensional Solid-on-Solid.
With FBC, the steps made by the interface are independent and the free-energy
may be written as the sum:

Fs = −kBTL ln
[

+∞
∑

n=−∞

e−2βJ(1+|n|)
]

= 2JL + kBTL ln tanhβJ (8)

which leads to Onsager’s exact result σ = 2J +kBT ln tanhβJ for any lattice width
L. When the lattice size perpendicular to the interface is finite, corrections arise
because the sum of (8) becomes bounded. PBC impose a non-local condition that
results into additional finite-size corrections.

We considered cubic lattices with sizes L = 4, 6, 8, 12, 16, 24, 32, 48. The initial
inverse temperature is βi = 2, to be compared with the critical inverse tempera-
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ture βc ≃ 0.22165 . . . [24]. The spins are initialized in the state σi = +1 if they
lie in the upper half of the system and in the state σi = −1 otherwise, i.e. we
start with a flat interface separating two ferromagnetic phases at saturation. We
made 500 × L MCS to equilibrate the system at this temperature. This choice
is a very safe bet since in practise very few spin flips occur during these itera-
tions 1. The inverse temperature β is then decreased up to the final value in the
range [0.24; 0.80]. The final temperature is reached after niter. = 250 × L MCS.
The experiment is repeated nexp. = 1000 times. Before each experiment, the spin
configuration is stored. After the experiment, it is restored and 25 × L additional
MCS are performed to generate a new non-correlated spin configuration for the next

experiment. The statistical error on the average 〈e−
∑

t
E(t)∆tβ〉 is estimated as the

standard deviation as expected from the central limit theorem. However systematic
deviations may occur due to the fact that the average is dominated by rare events.
This effect is important when the variation of the temperature is fast, i.e. when
the transformation is strongly irreversible. Moreover, the bias induced is difficult
to quantify. As shown by Gore et al. [25, 26], “the number of realizations for con-

vergence grows exponentially in the average dissipated work”. To overcome this
difficulty, we took advantage of the fact that the detailed balance condition (16) is
the only assumption made on the transition rates in the derivation of the Jarzynski
relation. Any Monte Carlo algorithm satisfying this condition can thus be used.
To make the transformation as reversible as possible, we used cluster algorithms:
the Hasenbush-Meyer algorithm [27] for anti-periodic boundary conditions and the
Swendsen-Wang algorithm [28] for periodic boundary conditions.

1 10 100
n

iter

0

0.5

1

1.5

2

σ

β=0.24
β=0.40
β=0.56

Figure 1: Surface tension σ versus the number of iterations niter. for three different
temperatures: β = 0.24, β = 0.40 and β = 0.56 from bottom to top. The lattice
size is L = 16. Error bars on the data correspond to statistical errors.

The surface tension is calculated according to the method presented in section 2.
Estimates of the surface tension for an increasing number of iterations niter. are plot-
ted on figure 1. The number of experiments is kept fixed to the value nexp. = 1000

1The probability that a spin be flipped during a Monte Carlo step is e−4dβiJ where d is the

dimension of the lattice. At the inverse temperature βiJ = 2 and dimension d = 3, this probability

is as small as 10−14.
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which means that rare events with a probability smaller than 1/nexp. = 10−3 are
not correctly sampled. The figure shows two regimes. When the number of itera-
tions is large nniter > nopt.

iter , the estimates display a plateau. The amplitude of the
fluctuations around the value of this plateau is of the same order of magnitude than
the error bars. In contradistinction, the estimates display a systematic deviation
when the number of iterations is small nniter < nopt.

iter . The data indicate a deviation
proportional to ln 1

nniter
. The contribution of the rare events are larger than the

statistical errors and cannot be neglected. The cross-over between the two regimes
depends on the temperature. Surprisingly, it does not depend much on the lattice
size.

We have also tried to estimate the surface tension using the width σ2
WS

= 〈W 2
S〉−

〈WS〉
2 of the probability distribution of the entropic work. These distributions are

indeed close to Gaussian distributions so the Jarzynski relation reads

〈e−WS 〉 =
1

√

2πσ2
WS

∫

e−WS−(WS−〈WS〉)2/2σ2
WS dWS ⇔ ∆(βF ) = 〈WS〉−

σ2
WS

2
(9)

The estimates of the surface tension are compatible with those obtained using the
Jarzynski relation (2) but the error bars are larger. As a consequence, we will not
consider this estimate in the following.

Our numerical data of the surface tension are presented on figures 2 (PBC) and 3
(FBC). The few points with large error bars on figure 3 correspond to small systems
at temperatures higher than the finite-size “critical” temperature Tc(L). The system
is thus already in the paramagnetic phase and the interface disappears. No order-
order surface tension can then be given. In contradistinction to the two-dimensional
case, the surface tension displays larger finite-size corrections with FBC. The data
have been extrapolated to the thermodynamic limit using the ansatz:

σ(L) = σ(∞) +
c1

L2
+

c2

L4
(10)

for PBC and

σ(L) = σ(∞) +
d1

L
+

d2

L2
(11)

for FBC. The error bars on the value σ(∞) take into account both the errors on
the data and due to the fit. The figure 4 gives an example of this extrapolation
for three different temperatures. While the whole range of lattice sizes L are well
reproduced by the ansatz (10) for PBC, the two smallest lattice sizes (L = 4 and
L = 6) cannot be taken into account by (11) for FBC and have been discarded.
The extrapolated value σ(∞) of the surface tension can be compared in figures (2)
and (3) to the 17th-order low-temperature expansion (see [29] for the coefficients)
and to large-scale Monte Carlo simulations [29]. Our data are perfectly compatible
to the latter apart from a small disagreement for FBC at temperatures close to the
critical point. The too simple ansatz (11) may be responsible for this disagreement.
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Figure 2: Numerical estimates of the surface tension of the 3D Ising model with
respect to the inverse temperature β for periodic boundary conditions.
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Figure 3: Numerical estimates of the surface tension of the 3D Ising model with
respect to the inverse temperature β for free boundary conditions.

4 Discussion and conclusions

We have discussed a Jarzynski relation generalized to temperature changes. Its
derivation is limited to Markovian dynamics since the interaction with the bath is
properly taken into account only in this case. We have then presented a modified
version of the usual algorithm allowing for the computation of the surface tension by
Monte Carlo simulations where the Jarzynski relation replaces thermodynamic per-
turbation. The approach has been tested in the case of the 3D Ising model. Despite
the common belief that rare events prevent the application of Jarzynski relation,
the method is efficient because the transformation does not bring the system far
from equilibrium. This is possible because the method uses initial and final states
not very different. Basically, the final state display thermal fluctuations while the
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Figure 4: Extrapolation of the surface tension for three different temperatures. The
solid curves correspond to periodic boundary conditions and the dashed ones to free
boundary conditions.

initial state is almost the ground state. But in both cases, two ferromagnetic phases
are separated by an interface. In contradistinction to other algorithms, the inter-
face is not created during the transformation. Moreover, we use cluster algorithms.
Their relaxation times are much smaller than the usual Metropolis algorithm and
allows the final state to be close to equilibrium. The systematic deviation due to
an insufficient sampling of the rare events that dominates the average 〈e−WS 〉 has
been shown to be negligible compared to statistical errors for a reasonable number
of iterations. Our aim was only to prove the usefulness of the Jarzynski relation
despite the fact that rare events play an important role and not to add a 6th or 7th
new digit to the estimates of the surface tension that can be found in the literature.
The computational effort we devoted to the calculation is much smaller (around
100 times) than that of ref. [29] for instance. For β = 0.45 and L = 32, our esti-
mate of the surface tension is 1.8316(4) while Hasenbusch et al. obtained a much
accurate estimate: 1.831368(5). However, they only calculated numerically the dif-
ference F (β = 0.45)−F (βi = 0.515) and then used the 17th-order low-temperature
expansion estimate of F (β = 0.515) to obtain the surface tension. We calculated
numerically the difference F (β = 0.45) − F (βi = 2) and estimated F (βi = 2) as
the T = 0 ground-state free energy. By starting with a much temperature, we do
not need the 17th-order low-temperature expansion to calculate the surface tension.

The main drawback of our approach is that the convergence of estimates of the
free energy obtained by the Jarzynski relation is not well understood yet. We can-
not give any recipe to adjust the three parameters N, niter., nexp. to obtain the best
convergence. Research efforts in this direction are highly desirable.

One can imagine other protocols based on the Jarzynski relation to estimate the
surface tension. One can start first with a strong homogeneous magnetic field on
the up and down boundaries to force the system in the ferromagnetic state. Then
one of these magnetic fields is reversed to favor the appearance of the interface. By
recording the work while the magnetic field is reversed, the free energy could be
estimated using the more usual Jarzynski relation (1). However, the convergence

8



may not be as good because an interface has to be created during the magnetic field
reversal. In the approach based on variation of the temperature, this interface is
already present in the initial state.

The relation (22) may be useful even in the case of the measurement of the
difference of the free energies of two equilibrium states at the same temperature.
If these two states are separated by a free energy barrier, the relation (22) allows
first to increase the temperature so that the system can pass the barrier and then
to decrease the temperature down to its initial value.
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Appendix: derivation of the Jarzynski relation

We shall derive the Jarzynski relation along the lines of the derivation given in the
appendix of [2]. Let us denote ~σ the microscopic states of the system, i.e. the spin
configurations in the case of the Ising model. We shall assume that the dynamics
of the system is Markovian and is governed by the master equation

℘(~σ, t + 1) =
∑

~σ′

℘(~σ′, t)Wβ(t),h(t)(~σ
′ → ~σ) (12)

where ℘(~σ, t) is the probability to find the system in the state ~σ at time t and
Wβ(t),h(t)(~σ → ~σ′) is the transition rate per time step from the state ~σ to the state
~σ′. The transition rates take into account the interaction of the system with an
heat bath in an effective manner. They depend on the temperature T = 1/kBβ
of the bath and on an external parameter h, for instance the magnetic field. The
master equation is equivalent to the Bayes relation which means that the transition
rates are conditional probabilities: Wβ(t),h(t)(~σ → ~σ′) = ℘(~σ′, t + 1|~σ, t). As a
consequence, the transition rates satisfy the condition

∑

~σ′

Wβ,h(~σ → ~σ′) = 1 (13)

When β and h are kept constant, the system is expected to evolve towards the
Boltzmann equilibrium distribution

πβ,h(~σ) =
1

Zβ,h
e−β(E(~σ)−hM(~σ)) (14)

where M is the extensive quantity associated to the control parameter h (for in-
stance the magnetization when h is the magnetic field). The equilibrium distribution
satisfies the stationarity condition

πβ,h(~σ) =
∑

~σ′

πβ,h(~σ′)Wβ,h(~σ′ → ~σ) (15)

For convenience one imposes the more restrictive condition of detailed balance

πβ,h(~σ)Wβ,h(~σ → ~σ′) = πβ,h(~σ′)Wβ,h(~σ′ → ~σ) (16)

9



that leads to (15) when using the condition (13).

At time t = ti the system is thermalized with a bath at the temperature
1/kBβ(ti) and external parameter h(ti), i.e. ℘(~σ, ti) = πβ(ti),h(ti)(~σ). The tem-
perature and the external parameter are then varied and the quantity

〈X(ti, tf )〉 = 〈e
−

∑

tf −1

t=ti
(∆tβE(~σ(t))−∆t(βh)M(~σ(t)))

〉 (17)

is measured. The brackets 〈. . .〉 denotes an average over all possible histories of the
system between ti and tf . We have introduced the notations ∆tβ = β(t + 1)− β(t)
and ∆t(βh) = β(t + 1)h(t + 1) − β(t)h(t). Following Jarzynski [2], each time
step consists into two substeps. First the temperature and the external param-
eter are changed by an amount ∆tβ and ∆th. The latter induces a work W =
−∆thM . In the second substep, the master equation is iterated once so that the
system makes a transition to a new state ~σ(t + 1) with the conditional probability
Wβ(t+1),h(t+1)(~σ(t) → ~σ(t + 1)). The energy change E(~σ(t + 1)) − E(~σ(t)) corre-
sponds to the heat exchanged with the heat bath. Rewriting X(ti, tf ) using the
equilibrium probability (14) as

X(ti, tf ) =

tf−1
∏

t=ti

Zβ(t+1),h(t+1)πβ(t+1),h(t+1)(~σ(t))

Zβ(t),h(t)πβ(t),h(t)(~σ(t))
, (18)

the average (17) reads

〈X(ti, tf )〉 =
∑

{~σ(t)}

πβ(ti),h(ti)(~σ(ti))

tf−1
∏

t=ti

[Zβ(t+1),h(t+1)πβ(t+1),h(t+1)(~σ(t))

Zβ(t),h(t)πβ(t),h(t)(~σ(t))

× Wβ(t+1),h(t+1)(~σ(t) → ~σ(t + 1))
]

(19)

All but two partition functions cancel. Using the detailed balance condition (16),
one obtains

〈X(ti, tf )〉 =
Zβ(tf ),h(tf )

Zβ(ti),h(ti)

∑

{~σ(t)}

πβ(ti),h(ti)(~σ(ti))

tf−1
∏

t=ti

[πβ(t+1),h(t+1)(~σ(t + 1))

πβ(t),h(t)(~σ(t))
(20)

× Wβ(t+1),h(t+1)(~σ(t + 1) → ~σ(t))
]

Now all but one equilibrium probabilities cancel and one gets

〈X(ti, tf )〉 =
Zβ(tf ),h(tf )

Zβ(ti),h(ti)

∑

{~σ(t)}

πβ(tf ),h(tf )(~σ(tf ))

tf−1
∏

t=ti

Wβ(t+1),h(t+1)(~σ(t+1) → ~σ(t))

(21)
Finally, the sum over histories of the system is easily shown to be equal to 1 using
equation (15). Introducing the definition of the free-energy F (β, h) = −β−1 lnZβ,h,
one obtains the Jarzynski relation

〈e
−

∑

tf −1

t=ti
(∆tβE(~σ(t))−∆t(βh)M(~σ(t)))

〉 = e−[β(tf)F (β(tf ),h(tf ))−β(ti)F (β(ti),h(ti))] (22)

In this paper, we restrict ourselves to the case h = 0, i.e.

〈e
−

∑

tf−1

t=ti
∆tβE(~σ(t))

〉 = e−[β(tf )F (β(tf ))−β(ti)F (β(ti))] (23)
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The relation (22) is appropriate for Monte Carlo simulations since the time is
discrete. The demonstration given by Jarzynski in the case of a Markovian process
in continuous time can also be extended to a varying temperature [2]. It leads to

〈e
−

∫

tf

ti

[β̇U(~σ(t))−βḣM(~σ(t))]dt
〉 = e−[β(t)F (β(t),h(t))]

tf
ti (24)

where U(~σ(t)) = E(~σ(t)) − h(t)M(~σ(t)) is the total energy of the system in the
state ~σ(t).
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