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Abstract. We investigate the asymptotic properties of the large deviation function

of the integrated particle current in systems, in or out of thermal equilibrium, whose

dynamics exhibits anomalous diffusion. The physical systems covered by our study

include mutually repelling particles with a drift, a driven lattice gas displaying a

continuous nonequilibrium phase transition, and particles diffusing in a anisotropic

random advective field. It is exemplified how renormalisation group techniques allow

for a systematic determination of power laws in the corresponding current large

deviation functions. We show that the latter are governed by known universal scaling

exponents, specifically, the anomalous dimension of the noise correlators.

PACS numbers: 05.40.-a, 05.10.Cc, 05.70.Ln, 05.60.-k

1. Introduction

1.1. Motivations

Recently an important concept for the analysis of systems driven out of thermal

equilibrium, namely that of large deviations in the associated probability distributions,

has again found considerable attention, both at the experimental and theoretical level.

Mathematically, large deviation functions have been defined and introduced long ago,

but only in the early seventies were they shown to play a central role in characterising

the properties of non-equilibrium steady state (NESS) measures, see [1] for a review. For

some time this idea remained mostly confined within the mathematical community until

it was exploited in physics at the theoretical level by Evans, Cohen, and Morriss who

showed numerically that the temporal large deviation function of a certain observable,

namely the shear stress, in the NESS of viscous gases under shear displayed a surprisingly

simple symmetry property [2]. This symmetry property, now known as the fluctuation

http://arxiv.org/abs/cond-mat/0611265v2
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relation, was then formalised into a theorem by Gallavotti and Cohen [3]. Over the past

years, a remarkable amount of research has been devoted to the investigation of the

fluctuation relation in detail, with the goal to explicitly determine the large deviation

function at the core of the theorem’s formulation [4, 5, 6, 7]. It must be emphasised

that at about the same period, experimentalists also started to employ, as a tool for

analysing their data, the concept of large deviations [8]. Their initial interest was

grounded in the belief that, much in the same way as the intensive free energy per

degree of freedom constitutes a central quantity if one wishes to relate two systems in

thermal equilibrium, large deviation functions might similarly allow for a comparison of

NESS dynamical properties, yet be applicable to systems both in and out of equilibrium.

Indeed, it has been a highly desirable, but as yet largely elusive goal of non-equilibrium

statistical mechanics to be able to classify dynamical systems (at least in a steady state)

according to a restricted number of (macro- or mesoscopic) criteria. In particular, it

was expected that large deviation functions of observables such as energy flow, particle

current (or more generally entropy flow) would display a sufficient degree of universality

to render this approach fruitful (see refs. [4] through [14]).

On the theoretical side, a series of recent results however lends support to such

aspirations. By studying systems of interacting and diffusing particles governed by some

Markovian dynamics, subjected to an external chemical potential gradient, Bodineau

and Derrida [9, 10, 11], as well as Bertini, De Sole, Gabrielli, Jona-Lasinio, and Landim

[12, 13, 14], found a general strategy to completely determine the large deviation of

the particle current flowing through the system. Note, however, that in this setting the

applied field (and the related particle current) become vanishingly small as the system

size is increased. Then the only two ingredients entering the final expression for the

large deviation function are the diffusion constant and the equilibrium compressibility,

which is an astonishingly simple result: The large deviations of the current are fully

characterised by properties of the system at equilibrium or in the linear response regime.

There are two restrictions, however, that apply to this series of recent advances.

Namely, first they all concern systems exhibiting normal diffusive dynamics. In physical

terms, this means that the continuum limit can be taken by scaling time according

to τ ∼ a2 proportional to a microscopic length scale a squared (often referred to as

the hydrodynamic limit). There are of course numerous situations in nature where

diffusion becomes anomalous, which means that the time and length scales appropriate

for taking the continuum limit are related by τ ∼ az with z 6= 2. The purpose of

the present work is to investigate the particle current large deviation functions in such

physical systems governed by anomalous diffusion; specifically, we shall address the

following models: (i) mutually excluding particles in a driving ‘electric’ field [15, 16]; here

z = 3/2 in one space dimension, which is equivalent to the scaling for the noisy Burgers

equation [17], in two dimensions one finds z‖ = 2 with logarithmic corrections along

the drive direction, while normal diffusive behaviour ensues transverse to it, z⊥ = 2;

(ii) critical driven diffusive systems (driven model B) [18, 19], for which one similarly

obtains z‖ = 12/(11 − d) in dimensions d < 5, with again logarithmic corrections
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at the upper critical dimension dc = 5, and z⊥ = 2; and (iii) particle diffusion in a

quenched random velocity field, where according to the type of disorder, both super-

and sub-diffusive behaviour may occur [20, 21]. Based on a field theory representation

of the non-linear Langevin-type stochastic differential equations representing the above

processes [22, 23, 24, 25], renormalisation group (RG) methods will prove instrumental

in extracting the appropriate asymptotic scaling variables in the long-time and large-

system limit, and will be shown to provide the relevant tool for taking the proper

continuum limit [26, 27].

The second restriction for most recent investigations is that these studies apply

only to systems that are weakly out of equilibrium, since, as already mentioned before,

the applied external field scales as the reciprocal of the system size. To the best of our

knowledge, it is only for the one-dimensional exclusion process with periodic boundary

conditions, with [28] or without a bias [7] in particle propagation, that the current

fluctuations have been accessed analytically to date. The efforts of the present paper

therefore bear on systems with anomalous diffusion in dimensions d ≥ 1, some of which

driven far away from thermal equilibrium.

In the course of this work we shall investigate the properties of the current

large deviation in three different systems, which we define succinctly in the following

subsection. In sections 2, 3, and 4 we present the RG analysis and our results for each

of these model systems. Section 2 itself will also expand on the field-theoretic methods

upon which we shall rely, whereas most of the technical details will be skipped in the

subsequent sections 3 and 4. Our conclusions are gathered in section 5.

1.2. Presentation of the model systems

We will first investigate the properties of particles (without source nor sink) subjected

to a driving force along one spatial direction (denoted ‘‖’ in the following), whose local

density ρ(x, t) evolves according to the continuity equation ∂tρ(x, t) = −∇ · j(x, t),

with a particle current j = −D∇ρ + ρu(ρ) + η constructed from phenomenological

considerations. The first term here is a Fickian diffusion current, the second contribution

originates from the driving force and describes a density-dependent velocity field u(ρ)

along the drive, and finally η represents Gaussian white noise which accounts for fast

degrees of freedom not taken into account explicitly in our mesoscopic description. The

former continuum Langevin description arises for instance from a discrete lattice gas

description, which we shall use in the following to determine the particular form of the

velocity field u(ρ). If we transform from a lattice occupation number representation

(ni = 0, 1) of the discretised system (with lattice sites labeled by the index i) to

Ising variables φi = ni − 1/2 = ∓1/2, particle-hole (Z2) symmetry dictates that to

lowest order in the coarse-grained local density field φ(x, t) = ρ(x, t) − ρ0 we have

u‖(φ) = ε(1 − φ2) + . . .. Denoting by j0 the average current, renaming ε = Dg/2, and

allowing for a different effective diffusivity λD along the drive direction, we thus arrive

at the following expressions for the transverse and longitudinal (component along the
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drive) currents

j⊥ − j⊥0 = −D∇⊥φ+ η⊥ , (1)

j‖ − j‖0 = − λD∇‖φ−
Dg

2
φ2 + η‖ . (2)

The parameter g accounts for the interaction of particles along the driving field. After

rescaling such that the transverse current sector is effectively in equilibrium, the noise

correlations read

〈η⊥i(x, t) η⊥j(y, t
′)〉 = 2D δijδ

(d)(x− y)δ(t− t′) , (3)

〈η‖(x, t) η‖(y, t
′)〉 = 2Dσ δ(d)(x− y) δ(t− t′) . (4)

Collecting everything into a single stochastic Langevin equation for the density field φ,

we at last arrive at

∂tφ = D
(
∇2

⊥ + λ∇2
‖

)
φ+

Dg

2
∇‖ φ

2 + ζ , (5)

〈ζ(x, t) ζ(y, t′)〉 = −2D
(
∇2

⊥ + σ∇2
‖

)
δ(d)(x− y) δ(t− t′) , (6)

where ζ = −∇ · η. Further motivations for this phenomenological approach, and a

detailed study of the scaling properties of this model can be found in [29, 15, 16, 18, 27].

We emphasise that in the presence of a drive, and with periodic boundary conditions,

(5) and (6) in general describe a non-equilibrium system. In one dimension, they reduce

to the noisy Burgers equation [17].

For our second example, we turn to the standard model of a driven diffusive

system that exhibits a continuous non-equilibrium phase transition in its stationary state

[18, 19]. In this case, the transverse current looks like the one for the time-dependent

Ginzburg–Landau model with conserved order parameter,

j⊥ − j⊥0 = −D∇⊥

(

r −∇2
⊥ +

u

6
φ2
)

φ+ η⊥ , (7)

while the current component along the drive direction is still given by (2), and the noise

correlations by (3) and (4). For the field φ, this yields the Langevin equation

∂tφ = D∇2
⊥

(

r −∇2
⊥ +

u

6
φ2
)

φ+ λD∇2
‖ φ+

Dg

2
∇‖ φ

2 + ζ , (8)

with the noise correlator (6). The system now has a critical point at r = 0 (within the

mean-field approximation), which in the absence of the drive g = 0 just describes the

second-order phase transition in the Ising model with Kawasaki dynamics (model B).

In the presence of the drive (g 6= 0), however, the universality class changes; in fact, u

becomes irrelevant for the critical properties of the driven model B, which are entirely

governed by the non-linear driving term [18].

Finally, we consider non-interacting particles diffusing in a random velocity field,

as defined by Honkonen [20]. At the mesoscopic level, the system is described over a

d-dimensional continuum by a local density fluctuation φ(x, t) subjected to a random

field ψ(x⊥) directed along e‖. One primary feature of the model is that the amplitude of

the field depends only on the transverse coordinates x⊥. The density field φ(x, t) evolves
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according to the Langevin equation ∂tφ +∇ · j = 0 with a current j that accounts for

the random field ψ(x⊥) solely in the parallel direction:

j⊥ = −D⊥∇⊥φ+ η⊥ , (9)

j‖ = −D‖ ∇‖φ− ψ φ+ η‖ . (10)

The thermal diffusion of particles is encoded by the white noise η which enters

the expression for the current. Its correlations ensure that both the transverse and

longitudinal sectors are in equilibrium,

〈η⊥,i(x, t) η⊥,j(x
′, t′)〉 = 2D⊥δijδ(x

′ − x)δ(t′ − t) , (11)

〈η‖(x, t) η‖(x
′, t′)〉 = 2D‖δ(x

′ − x)δ(t′ − t) . (12)

Depending on the spatial correlations of the random field ψ(x⊥) e‖, particles can behave

either sub- or superdiffusively [21, 20]. We restrict our analysis to the case of a spatially

uncorrelated random field with Gaussian distribution, whose correlations are described

by a constant amplitude λ:

〈ψ(x⊥, t)ψ(x
′
⊥, t

′)〉 = λ δ(x′
⊥ − x⊥)δ(t

′ − t) (13)

This has the consequence that particles behave superdiffusively in the longitudinal

direction, with a dynamical exponent z‖ = 4/(5− d) in dimensions d < dc = 3 [20]. In

contrast to the previous systems, the superdiffusion here stems from the anomalous, but

equilibrium wandering of particles in the quenched random velocity field, rather than

from interactions that drive the system out of equilibrium.

1.3. Large deviation functions

In each of these systems the goal will be to determine the probability distribution P (Q, t)

of the total integrated current in the longitudinal direction Q(t) =
∫ t

0
dt′
∫
ddx j‖(x, t

′)

up to time t, and the related large deviation function (LDF) π(q) defined by

π(q) = lim
t→∞

1

t
lnP (Q = q t, t) , (14)

and expressed in terms of the fluctuating time-averaged current q. For finite-size systems

π(q) is peaked around its maximum qst = limt→∞〈Q〉/t, which becomes sharper as the

system size increases (i.e., fluctuations decrease with system size). In most physical

systems, π(q) does not edgewise reduce to a parabolic form — in other words it describes

current fluctuations far beyond a Gaussian distribution, even in equilibrium. As such,

it appears as a promising tool to probe the distinctive features of NESS as compared to

equilibrium states.

For systems driven out of equilibrium by a field E, the fluctuation relation takes the

generic form π(−q) = π(q)−Eq. It connects the probabilities of observing longstanding

current deviations both close to and far from the steady average qst.

The fluctuations of the longitudinal current are also fully encoded in the moments

or the cumulants of Q. We first introduce the generating function

Z(s, t) =
〈
e−sQ(t)

〉
=

〈

exp

[

−s

∫ t

0

dt′
∫

ddx j‖(x, t
′)

]〉

; (15)
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moments of Q are then given by the derivatives of Z(s, t) at s = 0:

(−1)n
dnZ(s, t)

dsn

∣
∣
∣
s=0

= 〈Q(t)n〉 . (16)

After resorting to the standard Janssen-De Dominicis mapping to a field theory

[22, 23, 24, 25], we arrive for the systems presented above at the generic form

Z(s, t) =

∫

DφDφ̄ e−S[φ̄,φ,s;t] . (17)

The specific expressions for the actions S[φ̄, φ, s; t] will be our starting points in the

analysis of the systems presented above. We utilise in our work the action functional

field theory developed in [22, 23, 24], rather than the operator formalism of [30]. These

related but distinct methods lead to quite different techniques, as for instance recently

exemplified in [31].

A few remarks are in order before we proceed with evaluating the large deviation

function for specific systems. Note that the quantity Z(s, t) defined in (15), (17) does

play the role of a partition function, whereas the usual dynamic ‘partition function’

Z(s = 0, t) ≡ 1 (which expresses the conservation of probability) and carries no relevant

information. Moreover, since the action defined in (17) does not describe a Markov

process anymore, it is expected that Z(s, t) will grow exponentially with time. It is

therefore conventional to introduce a time intensive ‘dynamical free energy’

µ(s) = lim
t→∞

1

t
lnZ(s, t) , (18)

which is related to the current large deviation function π(q) as defined in (14) through

a Legendre transform,

π(q) = maxs{µ(s) + sq} . (19)

Formally, the dynamical free energy µ(s) is nothing but the generating function for the

cumulants of the integrated longitudinal current Q in the asymptotic long-time limit:

(−1)n
dnµ(s)

dsn

∣
∣
∣
s=0

= lim
t→∞

〈Q(t)n〉c
t

. (20)

1.4. Steady states with non-zero value of s

In analogy with standard thermodynamics, we observe that the quantity Z(s, t)

introduced in (15) facilitates the description of current fluctuations in a canonical way

(i.e., at fixed intensive parameter s) rather than microcanonically (at fixed value of the

time-extensive quantity Q).

Besides constituting a useful computational trick, introducing Z(s, t) also provides

us with a physical picture of the very configurations that give birth to large deviations.

Although at s 6= 0 the action defined in (17) does not correspond to a stochastic

process anymore, one can understand S[φ̄, φ, s; t] as describing not a single, but rather

an ensemble of systems evolving in parallel, with dynamical rules that favour histories

with non-zero longstanding deviation of the particle current [32]. The value of physical

observables such as correlation functions inferred from S[φ̄, φ, s; t] at s 6= 0 can thus be
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understood as the typical value of these observables in a modified steady state wherein

the mean current is enforced to take an average value q(s) that is different from the

average qst taken in the steady state. We see for instance from (15) that negative values

of s favour histories with an excess current in the direction of the field. Quantitatively,

the correspondence between q(s) and s is the same as in the Legendre transform (19).

The reader is referred to [32, 33] for further examples and for a numerical exploitation

of this picture.

2. Driven diffusive system with mutually exclusive particles and the noisy

Burgers equation

2.1. Field-theoretic formulation

We wish to determine the distribution function of the integrated longitudinal current.

As outlined in section 1.3, this amounts to determine the ‘dynamical free-energy’ Z(s, t)

defined in (15), rewritten as Z(s, t) =
∫
DφD φ̄ e−S[φ̄,φ,s;t]. Using periodic boundary

conditions we find that the dynamical action S[φ̄, φ, s; t] is given by

S[φ̄, φ, s; t] =

∫

ddx

∫ t

0

dt′
[

φ̄
(
∂t′ −D∇2

⊥ −Dλ∇2
‖

)
φ−D

(
∇⊥φ̄

)2
−Dσ

(
∇‖φ̄

)2

−
Dsg

2
φ2 +

Dg

2
(∇‖φ̄)φ

2
]

+ s j0 L
dt− s2DσLdt . (21)

(We use the Itô convention as regards time discretisation.) It mainly differs from the

stochastic action S[φ̄, φ, s = 0; t] through a new quadratic term in the field φ, aside from

the two deterministic contributions ∼ Ldt.

In the case of non-interacting particles, each of the cumulants 〈Qn〉c is extensive in

the system volume, which means that the corresponding free energy µindep(s) takes the

scaling form

µindep(s, L) = Ld µ̂indep(s) = Ld
(
B1s+B2s

2 + . . .
)
, (22)

where µ̂indep(s) has a well-defined power expansion around s = 0. It is known from

specific examples, in [35, 7] or out of equilibrium [28, 34], that interactions can lead to

an expansion of µ̂(s) ≡ L−dµ(s, L) involving non-integer powers of |s| (in the infinite

volume limit). Such non-analytic behaviour at s = 0 simply mirrors the existence of

an infinite cumulant of the current as L → ∞. For instance, the LDF for the totally

asymmetric exclusion process (TASEP) in the large system limit (with finite density ρ)

reads [28, 34]

µ̂TASEP(s) = −ρ(1 − ρ)s +
(3π)

2
3

5
[ρ(1 − ρ)]

4
3 |s|

5
3 + . . . for s < 0 , (23)

which means that the variance of the particle current grows faster than the system size,

whereas in the symmetric exclusion process (SEP) one has [35, 7]

µ̂SEP(s) =
1

2
ρ(1− ρ)s2 +

2
1
3 (2π)

2
3

5
[ρ(1− ρ)]

4
3 |s|

8
3 + . . . for s < 0 . (24)
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The anomalous scaling of the current LDF occurs here for a higher-order cumulant,

reflecting that the anomalous distribution of the current arises from sharper details

than in the TASEP. From a general point a view, we expect the exponents in (23) or

(24) to be universal (for other models within the same universality class), while the

prefactors should be model-dependent.

In our case, the continuum and large system size limits will be tackled in section

2.2 with the presentation of the – unavoidably technical – RG analysis of the driven

diffusive system we are considering. We then proceed to compute the dynamical free

energy µ(s) in subsection 2.3, before extracting its asymptotic behavior as a function of

s in 2.4.

2.2. Renormalisation

The presence of the additional quadratic vertex in S[φ̄, φ, s; t], in spite of allowing for new

one-loop diagrams contributing to the three-point vertex function Γ(1,2), does not alter

the remarkable property of this model that there are strictly no singular loop corrections

to Γ(1,2), i.e., all new contributions lead to singularities that cancel out precisely. One

can explicitly check that order by order in the perturbation expansion, or infer this

property from Galilean invariance, see (34) below. The same statements hold for Γ(0,2),

which receives no singular loop correction either. However, both Γ(1,1) and Γ(2,0) have

vertex corrections given by exactly the same diagrams as with s = 0, but with values

that are now s-dependent. As a consequence, no new renormalisation is required as

compared with the stochastic case s = 0. Note that for σ = λ the Einstein relation also

holds in the longitudinal sector. Then the symmetry

S[φ̄(t), φ(t)] = S[φ̄(−t)− φ(−t),−φ(−t)] , (25)

which for s = 0 arises from the existence of a free energy functional wherefrom the

Langevin equation derived, continues to hold for s 6= 0 – in spite of the action not

representing a stochastic process anymore – with the consequence that the vertex

functions Γ(1,2) and Γ(0,2) are given by their tree-level expressions.

In the remainder of this subsection, we recall for later use the main lines of the

renormalisation analysis, which is the same as in the original approach [15, 27]. Denoting

by κ an arbitrary momentum scale, the scaling dimensions of the various fields and

coupling constants are fixed by the requirement and convenient choice that the action

S as well as the diffusivities D and Dλ be dimensionless,

[x] = κ−1 , [t] = κ−2 , [q] = κ , [ω] = κ2 , [φ] = [φ̄] = κd/2 , (26)

[D] = [σ] = [λ] = κ0 , [g] = κ1−d/2 , [s] = κ1+d/2 . (27)

Of course, any other choice for the scaling dimensions of the field φ̄ and the diffusion

constant D would eventually lead to the same physical consequences. We infer from

the scaling dimension of the nonlinearity the upper critical dimension dc = 2, and also

[s g D] = κ2. Next we define renormalised fields and parameters via

φR = Z
1/2
φ φ , φ̄R = Z

1/2

φ̄
φ̄ , (28)
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q, ω

1
−iω+D(q2

⊥+λq2

‖
)

1
2
gD iq‖

q

noise vertex:

nonlinear vertex:

propagator:

2D(q2
⊥ + σq2

‖)

q

−q

Figure 1. Propagator, noise vertex, and nonlinear vertex used in the perturbation

expansion for the driven lattice gas.

DR = ZDD , σR = Zσ σ , λR = Zλ λ , gR = Zg g κ
−1+d/2 . (29)

In the transverse sector, i.e. on the q‖ = 0 momentum shell, the action is merely

Gaussian and we have to all orders in the perturbation expansion

Γ(1,1)(q⊥, q‖ = 0, ω) = iω +D q2
⊥ , (30)

Γ(2,0)(q⊥, q‖ = 0, ω) = −2D q2
⊥ . (31)

As a consequence, Z
1/2

φ̄
Z

1/2
φ = 1 and Zφ̄ = 1. Then, exploiting that the transverse

sector is in equilibrium, we obtain from the associated fluctuation–dissipation theorem

the relation ZD = Z
−1/2

φ̄
Z

1/2
φ . Thus we see that neither the fields nor D renormalise:

Zφ̄ = Zφ = ZD = 1 , (32)

and consequently infer the exact transverse Gaussian scaling exponents

η = 0 , z⊥ = 2 . (33)

The invariance of the action under Galilean transformations

φ′(x′
⊥, x

′
‖, t

′) = φ(x⊥, x‖ −Dgu t, t)− u (34)

shows that φ and u must transform in the same way under renormalisation (u is the

constant velocity of the Galilean transformation). Moreover, the product Dgu also

remains invariant under RG. Thus,

Zg = Z−1
D Z

−1/2
φ = 1 , (35)

and the coupling constant g is not renormalised either.

We now have to perform an explicit loop expansion using the propagator and

vertices depicted in Fig. 1. We use the dimensional regularisation scheme and perform

the expansion in powers of ε = dc − d = 2 − d. A straightforward explicit computation

of the two-point vertex functions yields

Zλ = 1 +
vR

16ε
(3 + wR) +O(v2

R
) , (36)

Zσ = 1 +
vR

32ε

(
3w−1

R
+ 2 + 3wR

)
+O(v2

R
) , (37)
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where we have defined renormalised effective couplings

wR =
σR

λR

, vR = Z
3/2
λ

g2

λ3/2
Cd κ

d−2 , with Cd =
Γ(2− d/2)

2d−1πd/2
, (38)

and Wilson’s flow functions

γλ = κ∂κ|0 ln
λR

λ
= −

vR

16
(3 + wR) , (39)

γσ = κ∂κ|0 ln
σR

σ
= −

vR

32

(
3w−1

R
+ 2 + 3wR

)
(40)

to first order in vR (the subscript ‘0’ here indicates that the derivatives are to be

performed in the unrenormalised theory). The RG beta functions follow

βw = κ∂κ|0wR = wR (γσ − γλ) = −
vR

32
(wR − 1) (wR − 3) , (41)

βv = κ∂κ|0 vR = vR

(

d− 2−
3

2
γλ

)

. (42)

RG fixed points are now determined by the zeros of these beta functions. At any non-

trivial fixed point 0 < v⋆ < ∞, w⋆ = 1 is stable and the system reaches effective

equilibrium (σ⋆ = λ⋆). To all orders in perturbation theory we then obtain from (42)

γ⋆λ = γ⋆σ =
2

3
(d− 2) , (43)

in dimensions d ≤ dc = 2.

The dynamical correlation function scales as

C(q, ω) = q
−z⊥−2+η
⊥ Ĉ

(
q‖

|q⊥|
1+∆

,
ω

|q⊥|
z

)

, (44)

where in d ≤ 2 dimensions exactly

∆ = −
γ⋆λ
2

=
2− d

3
. (45)

We thus obtain

z‖ =
z⊥

1 + ∆
=

6

5− d
, (46)

and as expected, z(‖) = 3/2 in one dimension. For d > 2 the system scales towards the

Gaussian fixed point v∗0 = 0, whence one arrives at the mean-field scaling exponents

∆ = 0, z‖ = z⊥ = 2.

2.3. Evaluation of the cumulant generating function µ(s)

Having recalled the main results of the RG analysis, we can now turn to the evaluation

of the dynamical free energy µ(s). The dynamical action (21) contains an extensive (in

time as well) deterministic contribution, Ldt (sj0 − s2Dσ), and a fluctuating one, for

which it will prove sufficient to extract the tree level approximation. Quite unfamiliarly

in dynamical field theory, the latter contribution arises from the normalisation of the
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path integral. The Gaussian contribution to the action S[φ̄, φ, s; t] takes the form
∫

1
2
(φ̄ φ) Γ0

(
φ̄

φ

)

with, conveniently written in Fourier space,

Γ0(q, ω) =




−2D

(

q2
⊥ + σq2‖

)

−iω +D
(

q2
⊥ + λq2‖

)

iω +D
(

q2
⊥ + λq2‖

)

−Dgs



 . (47)

We have

det Γ0 = −
[
ω2 + Ω2

s(q)
]
, (48)

Ω2
s(q) = D2

(
q2
⊥ + λq2‖

)2
− 2sgD2

(
q2
⊥ + σq2‖

)
, (49)

and integrating over the fields yields the following tree level contribution to µ(s):
∫

DφDφ̄ exp

[

−

∫
1

2
(φ̄ φ) Γ0

(
φ̄

φ

)]

(50)

= exp

[

−
1

2
Ldt

∫
ddq

(2π)d
dω

2π
ln

∣
∣
∣
∣
det

Γ0(q, ω)

Γ0(q, ω)|s=0

∣
∣
∣
∣

]

(51)

= exp

[

−
1

2
Ldt

∫
ddq

(2π)d
dω

2π
ln

(

1−
2sgD2(q2

⊥ + σq2‖)

ω2 +D2(q2
⊥ + λq2‖)

2

)]

(52)

= exp

(

−
1

2
LdtD

∫
ddq

(2π)d

[√
(

q2
⊥ + λq2‖

)2

− 2sg
(

q2
⊥ + σq2‖

)

−
(
q2
⊥ + λq2‖

)

])

. (53)

At the RG fixed point the values of λ and σ are not fixed, but become equal

(w⋆ = 1). Without loss of generality, one can thus start from equal bare coupling

constants σ = λ (as was for instance implicitly assumed in [29]). The last integral (53)

can now be carried out explicitly, and its infrared divergence is isolated by extracting

the first term of the small s expansion. This gives

L−d µ(s) = −j0s+ s2Dσ +
1

2
sgDΛd +

Dλ−1/2(−gs)1+d/2 Γ(d) Γ(−1− d/2)

2d(2π)d/2 [Γ(d/2)]2
. (54)

2.4. Scaling behaviour of µ(s)

To determine the expansion of µ(s) in powers of s in the continuum limit, and at the

stable RG fixed point w⋆ = 1 (λ = σ) we notice that making explicit the 1/ε pole in

(54),

L−d µ(s) = −j0s+ s2Dλ

[

1 +
Cdg

2

λ3/2
(−gs)−ε/2

4ε

]

, (55)

one recognises the expression for Zλ = 1+ vR
4ε

and finds (at the convenient normalisation

point κ = (−sg)
1
2 )

L−d µ(s) = −j0s+DλRs
2 . (56)

Finally, using that in the vicinity of the RG fixed point λR ∼ λκγ
⋆
λ , with the anomalous

scaling dimension γ⋆λ = γ⋆σ = −2
3
ε of the noise correlator, the asymptotic scaling of µ(s)

as a function of s reads (below the critical dimension dc = 2)

L−d µ(s) = −j0s+Ad s
2−ε/3 = −j0s+Ad s

(d+4)/3 . (57)
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The constant prefactor Ad is non-universal, contrary to the exponent 2−ε/3 = (d+4)/3,

which holds exactly to all orders in perturbation theory. In one dimension, we recover

the exponent 5/3 of the totally asymmetric exclusion process [28, 34], see (23). This

results expectedly corroborates that the TASEP and systems described by the Burgers

equation belong to the same (dynamical) universality class.

We emphasize that the scaling exponent in (57) merely follows from the noise

renormalisation and could thus have been obtained through straightforward dynamic

scaling. A simpler, though less explicit, way to arrive at that conclusion is to employ

the matching condition stemming from the Λd IR divergence in (54): The only factor

acquiring an anomalous dimension in the crucial second term in (54) is the parameter

σ; with γ⋆σ = 2
3
(d − 2) and the matching condition κ ∼ (−sg)1/2 that directly follows

from the scaling dimensions, we again arrive at L−d µ(s)+ j0s ∼ s2+(d−2)/3. Indeed, this

will be our method of choice in the following subsection as well as for the remaining two

systems.

2.5. Logarithmic corrections to µ(s) in two dimensions

Precisely at the upper critical dimension dc = 2, the RG flow equations provide access

to the logarithmic corrections to the mean-field critical power laws. In our context, they

also specify the logarithmic correction to the s2 term in µ(s). To determine how the

renormalised coupling constants vary under scale transformation κ 7→ ℓκ, let us recall

that running couplings λ̃(ℓ) and ṽ(ℓ) are defined through

ℓ
dλ̃(ℓ)

dℓ
= γλ(ℓ) λ̃(ℓ) , ℓ

dṽ(ℓ)

dℓ
= βv(ℓ) , (58)

with initial conditions λ̃(1) = λR, ṽ(1) = vR, and where γλ(ℓ) = γλ(ṽ(ℓ)), βv(ℓ) =

βv(ṽ(ℓ)). In dc = 2 dimensions, the flow equation for ṽ(ℓ) reads

ℓ
dṽ(ℓ)

dℓ
=

3

8
ṽ2(ℓ) +O(ṽ3(ℓ)) , (59)

which is solved by

ṽ(ℓ) =
vR

1− 3
8
vR ln ℓ

. (60)

Upon inserting this result in the flow equation for λ̃(ℓ), one obtains

λ̃(ℓ) ∼ λ̄ (ln ℓ)2/3 , (61)

which gives the precise form of (57) at dc = 2:

L−2 µ(s) = −j0s+A2 s
2(− ln |s|)2/3 . (62)

Of course, such logarithmic corrections are familiar within the framework of RG

calculations at the upper critical dimension. Yet we stress that this result constitutes the

first exact result for the LDF scaling of a two-dimensional system, where the methods

of integrable systems fail to apply.
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Figure 2. One-loop graphs which renormalise the correlation function in the s-state.

2.6. Correlation functions

In this subsection, we aim at determining how the correlation function are modified

for small (negative) values of s. As announced in section 1.4, states with s < 0

are characteristic of histories with excess current in the direction of the driving field.

Let G(m,n) = 〈φ̄mφn〉 denote the m-φ̄ and n-φ correlation function. For the complete

quadratic part of the action, we find that

G(1,1)(q, t, t′) =

causal part
︷ ︸︸ ︷

Θ(t′ − t)
Ω0 + Ωs
2Ωs

e−Ωs(t′−t)+

non causal part
︷ ︸︸ ︷

Θ(t− t′)
Ω0 − Ωs
2Ωs

e−Ωs(t−t′) ,

G(0,2)(q, t, t′) =
D(q2

⊥ + σq2‖)

Ωs
e−Ωs|t′−t| , (63)

G(2,0)(q, t, t′) =
Dsg

2Ωs
e−Ωs|t′−t| ,

with the abbreviation (49), and with the convention that the step function satisfies

Θ(0) = 0. (Note that the above calculations hold only for s < 0). The diagrammatic

expansion contains no causality constraint on the loops anymore. The long-range spatial

correlations in the s-state are obtained from an expansion in q at minimal order. To

one loop, the correlation function is renormalised through the graphs shown in Fig. 2.

To lowest order in q, we find that all contributions cancel except for the single loop

diagram depicted in Fig. 3, which yields

C(q, t, t)− C(q, t, t)|s=0 = (−2gs)−1/2
(
q2
⊥ + λq2‖

)1/2

×

[

1 + g2λ−1/2 (−gs)−ε/2
1

16πε

q2‖
q2
⊥ + λq2‖

]

. (64)

Averaging along the equilibrium directions, i.e., at q⊥ = 0, one recognises

C(q‖, 0, t, t)− C(q‖, 0, t, t)|s=0 = (−2gs)−1/2 λ
1/2
R q‖ , (65)

and finally obtains the exponent of s in the s-correlation function:

C(q‖, 0, t, t)− C(q‖, 0, t, t)|s=0 ∝ (−s)−1/2−ε/6 . (66)
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G(1,1)

G(0,2)

G(1,1)

G(0,2)

Figure 3. Single diagram contributing to C(q, t, t) in the s-state, at minimal order

with respect to the external momentum q. The expressions for the propagators are

given in (63).

In one dimension, this gives the power law (−s)−2/3, which, to our knowledge, has not

been obtained through exact approaches for systems in the Burgers/KPZ universality

class.

3. A driven diffusive system with a continuous phase transition

3.1. Renormalisation

The previous considerations and calculations can readily be generalised to the critical

driven diffusive system described by the nonlinear Langevin equation (8) with noise

correlator (6). Since only the transverse sector in momentum space is rendered

critical, we merely need to replace the propagator in Fig. 1 with the expression

1/[−iω+Dq2
⊥(r+q2

⊥) +Dλ q2‖]. Dimensional analysis yields [r] = κ2, and at criticality

(r = 0) [q‖] = [q⊥]
2 = κ2, and hence [ω] = κ4. This yields for the scaling dimension of

the nonlinear coupling [g] = κ(5−d)/2, wherefrom we infer the upper critical dimension

dc = 5.

Renormalising this model proceeds in much the same way as described above in

section 2.2 (see [18, 27]). Since again the nonlinear vertex is proportional to iq‖, the

transverse sector is Gaussian with

Γ(1,1)(q⊥, q‖ = 0, ω) = iω +Dq2
⊥(r + q2

⊥) , (67)

Γ(2,0)(q⊥, q‖ = 0, ω) = −2Dq2
⊥ . (68)

Consequently (32) holds here as well, implying that

η = 0 , ν =
1

2
, z⊥ = 4 (69)

exactly. The system is of course still invariant with respect to Galilean transformations,

whence (35) is valid. The RG beta function for the effective nonlinearity v = g2/λ3/2

now reads

βv = vR

(

d− 5−
3

2
γλ

)

, (70)

and thus again to all orders in the perturbation expansion

γ⋆λ =
2

3
(d− 5) , (71)
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and consequently

∆ = 1−
γ⋆λ
2

=
8− d

3
, z‖ =

z⊥
1 + ∆

=
12

11− d
. (72)

3.2. Evaluation and scaling behaviour of µ(s)

The Gaussian contribution to the action S[φ̄, φ, s; t] now becomes

exp

[

−
1

2
Ldt

∫
ddq

(2π)d
dω

2π
ln

(

1−
2sgD2(q2

⊥ + σq2‖)

ω2 +D2[q2
⊥(r + q2

⊥) + λq2‖ ]
2

)]

. (73)

Thus we observe that we require the scaling dimension of the noise strength σ, which

is an irrelevant parameter, in the RG sense, for this model. A straightforward one-loop

calculation gives

γλ = −vR , γσ = 2−
vR

3
, (74)

so for ǫ = 5− d > 0,

γ⋆σ = 2−
2ǫ

9
+O(ǫ2) . (75)

However time now scales according to [t] = κ−4, and the appropriate matching condition

becomes κ ∼ (−sg)1/4. Thus we finally arrive at

L−d µ(s) = −j0s+ Bd s
2−ǫ/18 , (76)

with a non-universal amplitude Bd. Note that this result holds only to first order in the

dimensional expansion for d = 5− ǫ < 5.

At the critical dimension dc = 5,

ṽ(ℓ) =
vR

1− 3
2
vR ln ℓ

, σ̃(ℓ) ∼ σ̄ ℓ2 (ln ℓ)2/9 , (77)

wherefrom we obtain the logarithmic correction

L−5 µ(s) = −j0s+ B5 s
2(− ln |s|)2/9 . (78)

4. Superdiffusion in a random velocity field

4.1. Mesoscopic formulation

Before embarking on the determination of µ(s) for the case of (super-)diffusive particles

subject to a random velocity field, we have to establish how the random field ψ intervenes

in the definition of the LDF of interest. The physical features of the current fluctuations

are contained in the disorder-averaged cumulants 〈Q(t)n〉c. Here and below the averaging

over thermal disorder will be noted by 〈. . .〉, while the average over the random field will

be indicated with an overbar, . . . . We are thus ultimately interested in determining

the LDF

µ(s) = lim
t→∞

1

t
lnZψ(s, t) . (79)
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The disorder-dependent partition function Zψ(s, t) reads

Zψ(s, t) =
〈

exp [− s

∫ t

0

dt′ ddx j‖(x, t
′)]
〉

, (80)

and as in the previous models, a field-theoretic reformulation of (9)–(11) and (80) enables

us to rewrite the partition function as

Zψ(s, t) =

∫

Dφ̄Dφ e−Sψ[φ̄,φ,s;t] , (81)

where the quenched and s-dependent action is given by

Sψ[φ̄, φ, s; t] = − s2D‖L
dt+

∫

ddx

∫ t

0

dt′
[

φ̄
(
∂t′ −D⊥∇

2
⊥ −D‖∇

2
‖ − ψ∇‖

)
φ

−D⊥(∇⊥φ̄)
2 −D‖(∇‖φ̄)

2 − sψφ
]

. (82)

The form of this action is related to Honkonen’s original (s = 0) action [20] through

the canonical transformation

φ̄ = ρ̄ , φ = ρ+ ρ̄ , (83)

whereupon Sψ takes the form

Sψ[ρ̄, ρ, s; t] = −s2D‖L
dt

+

∫

ddx

∫ t

0

dt′
[

ρ̄
(
∂t′ −D⊥∇

2
⊥ −D‖∇

2
‖ − ψ∇‖

)
ρ + s(ρ̄+ ρ)ψ

]

. (84)

For s = 0 this is precisely the action that was studied by Honkonen [20].

In a microscopic lattice gas formulation (independent particles diffusing in a random

field), Zψ(s, t) can also be obtained from the standard Doi-Peliti approach [36]. Up to

irrelevant terms, one arrives again at the action (82), with the field φ being related to the

original operators through a Cole–Hopf transformation. This illustrates that, either in

the Janssen-De Dominicis or in the Doi-Peliti manner, the well-tried functional methods

of statistical physics can be readily extended to tackle large deviation functions and the

associated s-modified states, as previously proposed in [37].

4.2. Renormalisation

The theory has two superficially divergent graphs which lead to the same renormalisation

of D‖. As can be seen from direct inspection of possible diagrams, the additional sψφ

term in the action does not lead to further renormalisation, as compared to the s = 0

case. We define as in [20] renormalised couplings through D‖ = ZD‖,R, λ = λRκ
ǫ. The

perturbative expansion is organised in powers of a single dimensionless parameter uR

that we fix to

uR =
λR

2πD‖,RD⊥
. (85)

Examination of the one-loop contribution to Γ(1,1) leads to

Z = 1−
uR

ǫ
, βu = uR(uR − ǫ) . (86)
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Below the critical dimension dc = 3, the RG flow has a single non-trivial fixed point

u⋆
R
= ǫ, at which the system exhibits superdiffusion [20], namely

〈x2‖〉 ∼ t1+ǫ/2 ; (87)

in other words, the dynamical exponent in the longitudinal direction is

z‖ =
4

2 + ǫ
. (88)

4.3. Determination of µ(s)

From a dynamical point of view, the study of disordered systems does not pose any

particular problem since conservation of probability ensures that the dynamical partition

function remains equal to 1 as time evolves. This has the well-known consequence that

quenched disorder can be treated without resorting to the replica trick. However, in the

present case, our interest aims precisely at the nonzero and s-dependent dynamical

partition function Zψ(s, t), which grows exponentially with time, with a disorder-

dependent rate. The dynamical free energy we pursue, denoted by µ(s), is obtained

as the average of this rate, see (79). The replica trick represents one convenient means

to achieve this disorder averaging and to determine µ(s) via

µ(s) = lim
t→∞

1

t

∂

∂n

∣
∣
∣
∣
n=0

[Zψ(s, t)]n . (89)

In contrast with previous work [38] using replicas to probe dynamical aspects

of disordered systems, our approach leads to non-trivial couplings between replicas.

Integration over ψ yields

[Zψ(s, t)]n =

∫

Dφ̄aDφa e
−Sn[φ̄,φ,s;t] , (90)

with an effective action Sn[φ̄a, φa, s; t] whose quadratic part reads

Sn[φ̄a, φa, s; t] = − nLdtD‖s
2 − s2

λ

2

∑

a,b

∫
dd−1q⊥

(2π)d−1
φa(q⊥, 0, 0)φb(−q⊥, 0, 0)

+
∑

a

∫
ddq

(2π)d
dω

(2π)

[

φ̄a(−iω +D · q2)φa − (D · q2)φ̄2
a

]

, (91)

where we have set D ·q2 = D⊥(q⊥)
2+D‖(q‖)

2 for clarity. Integration over the noise has

given birth to a uniform coupling between replicas of the field φ, in the ω = 0, q⊥ = 0

sector. However, no new renormalisation is needed, as can be directly checked.

The free energy µ(s) is obtained as the ratio of the determinant of the action at

s 6= 0 and s = 0. In our case, the effective action (91) is diagonal in Fourier space, and

the only modes which depend on s are those with q‖ = 0 and ω = 0. We thus require

the matrix determinant

∆n(q⊥) = det

(

−2D⊥q
2
⊥ In D⊥ (q2

⊥ +m2) In
D⊥ (q2

⊥ +m2) In −λs2 Jn

)

, (92)



Current distribution in systems with anomalous diffusion: RG approach 18

where In denotes the n× n identity matrix, and Jn represents the matrix whose entries

are all 1. For later convenience, we have also added a mass m to the φ̄φ term. Using

standard results about block determinants, we find

∆n(q⊥) = (−1)n
(
D⊥q

2
⊥

)2n
[

D2
⊥

(
q2
⊥ +m2

)2
− 2nλs2D⊥q

2
⊥

]

. (93)

The corresponding (tree-level) contribution to µ(s) is then given by

−
1

2
Ld

∂

∂n

∣
∣
∣
∣
0

∫
dd−1q⊥

(2π)d−1
ln

∆n(q⊥)

∆n(q⊥)|s=0

= Ld
λs2

D⊥

∫
dd−1q⊥

(2π)d−1

q2⊥
(q2⊥ +m2)

2

= Ld
λs2(2− ǫ)m−ǫ

4(2π)2−ǫ
Γ
( ǫ

2

)

Γ
(

1−
ǫ

2

)

. (94)

Combining this result with the deterministic contribution to µ(s) we recognise

µ(s) = LdD‖ s
2
(

1 +
uR

ǫ

)

= LdD‖,R s
2 . (95)

4.4. Scaling behaviour of µ(s)

As in the previous examples, we infer from (95) that the continuum limit in µ(s) is

determined by the renormalisation of the noise coupling constant. Using γ⋆D‖
= −ǫ, one

gets

L−dµ(s) ∼ s2κ−ǫ , (96)

but from the explicit expression (92), the normalisation point depends on s only through

λs2. Since [λs2] = κ5, we obtain the scaling behaviour, valid below the critical dimension

dc = 3,

L−dµ(s) ∼ s2−2ǫ/5 . (97)

We note that although this system is in equilibrium, the expansion (97) implies that

that in a finite-size system the variance of the current grows with the linear size L as

L3 for d < 3, in contrast to the Ld behaviour observed in normally diffusive systems.

Again, this anomalous behaviour is exemplified here for the first time.

At the critical dimension dc = 3, the running coupling

D̃‖(ℓ) ∼ DR ln ℓ , (98)

which gives the logarithmic correction

µ(s) ∼ s2(− ln |s|) . (99)

At the upper critical dimension too, the RG analysis leads to an asymptotically exact

result.
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4.5. Correlation function

As well as allowing access to free energies, the replica trick can also be used to determine

the correlation functions, averaged over thermal fluctuations and the random field. This

is achieved by noting that

〈φ(q⊥, 0, 0)φ(−q⊥, 0, 0)〉c = 〈φa(q⊥, 0, 0)φa(−q⊥, 0, 0)〉c|n→0 . (100)

Thus we obtain at the tree level the correlation function in the s-state as

〈φ(q⊥, 0, 0)φ(−q⊥, 0, 0)〉c =
2

D⊥q
2
⊥

(

1− λs2
2

D⊥q
2
⊥

)

. (101)

The spatio-temporal correlation function reads

C(x, t) = C(x, t)|s=0 −
2λs2

D⊥

∫
dd−1

(2π)d−1

1

q2
⊥

eix⊥q⊥ , (102)

i.e., the supplementary correlations in the s-steady state are still uniform in time and

along the longitudinal direction, which means that states conveying a (slightly) atypical

value of the current do not break theses symmetries of the steady state. Including loop

corrections to the correlation function does not alter this result, but affects the power

s2 in (102), as a consequence of superdiffusivity.

5. Conclusions

In the previous sections, we have shown that the implementation of dynamical RG

techniques to the already well-studied (see refs [2] through [14]) dynamical free energy

µ(s) associated with the particle current provides new insights into the singular

dynamical macroscopic limit of large systems. As is the case for the static free energies

in thermal equilibrium setups, µ(s) exhibits singularities only in the infinite volume

limit. In the systems presented in this work, µ(s) becomes non-analytic at s = 0, where

s is the parameter canonically conjugated to the particle current:

L−dµ(s) + j0s ∼ sa , with 1 < a ≤ 2 . (103)

In finite-size systems, the variance of the integrated current grows with the system size

faster than linearly. We have shown for the systems under consideration here that the

exponents a were simply related to the respective dynamical exponents z through the

anomalous exponent for the noise strengths. In our examples, the divergence of the

variance (a < 2) emerges as a direct consequence of superdiffusion (z < 2).

Our second system provides an example for a current LDF in presence of twofold,

namely static and dynamic criticality. Our final model system constitutes the first

example of an equilibrium system for which the fluctuations of the particle current were

shown to produce anomalous scaling with system size.

In previous works, which remained confined to a specific one-dimensional system,

namely the asymmetric exclusion process, an exponent related to a was determined

using the Bethe ansatz [28, 34, 33]. Of course, some of these existing results can

be recovered through our field-theoretic methods employed here (such as the scaling
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exponent in d = 1), but we have obtained additional asymptotically exact results in

higher dimensions. As well as opening the path to a wide range of applications, our

method also connects to other multi-purpose instruments of statistical physics (such

as replicas and supersymmetry for disordered systems) that can be deftly adapted to

describe the s-dependent states. As illustrated in sections 2.6 and 4.5, our method

also gives access to the correlation functions in the s-state, which to our knowledge

cannot be obtained from Bethe ansatz computations, but still provides valuable physical

information about the critical behaviour in the vicinity of s = 0.

Finally we remark that for the driven systems investigated here we have not been

able to access the s > 0 states which probe realisations of the process with a current

opposite to the average current. This is likely because instead of remaining homogeneous

in time and space, the typical trajectories develop heterogeneities in this situation. We

may speculate that, as discussed by Bodineau and Derrida [10, 11], non-stationary

profiles, perhaps with shock-like spatial structures, will play an important role. This

issue would certainly be worthwhile further detailed investigations.
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J. Stat. Mech. P02008 (2005)

[38] Bouchaud J P, Comtet A, Georges A, and Le Doussal P, J. Phys. (Paris) 48 1445 (1987); J. Phys.

(Paris) 49 369 (1988)

http://arxiv.org/abs/math/0512394
http://arxiv.org/abs/cond-mat/0511743
http://arxiv.org/abs/cond-mat/0606211

	Introduction
	Motivations
	Presentation of the model systems
	Large deviation functions
	Steady states with non-zero value of s

	Driven diffusive system with mutually exclusive particles and the noisy Burgers equation
	Field-theoretic formulation
	Renormalisation
	Evaluation of the cumulant generating function (s)
	Scaling behaviour of (s)
	Logarithmic corrections to (s) in two dimensions
	Correlation functions

	A driven diffusive system with a continuous phase transition
	Renormalisation
	Evaluation and scaling behaviour of (s)

	Superdiffusion in a random velocity field
	Mesoscopic formulation
	Renormalisation
	Determination of (s) 
	Scaling behaviour of (s)
	Correlation function

	Conclusions

