
HAL Id: hal-00128513
https://hal.science/hal-00128513

Submitted on 1 Feb 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Deployments Contracts in Large Scale Clusters
& Desktop Grids

Françoise Baude, Denis Caromel, Alexandre Di Costanzo, Christian Delbe,
Mario Leyton

To cite this version:
Françoise Baude, Denis Caromel, Alexandre Di Costanzo, Christian Delbe, Mario Leyton. Towards
Deployments Contracts in Large Scale Clusters & Desktop Grids. Workshop on Large-Scale and
Volatile Desktop Grids (PCGrid 2007), Mar 2007, Long Beach, California, United States. �hal-
00128513�

https://hal.science/hal-00128513
https://hal.archives-ouvertes.fr

Towards Deployment Contracts in Large Scale Clusters & Desktop Grids

Françoise Baude, Denis Caromel, Alexandre di Costanzo, Christian Delbé, and Mario Leyton

INRIA Sophia - I3S - CNRS - Université de Nice Sophia Antipolis
INRIA, 2004 Route des Lucioles, BP 93
F-06902 Sophia Antipolis Cedex, France

First.Last@sophia.inria.fr

Abstract

While many dream and talk about Service Level Agree-

ment (SLA) and Quality of Service (QoS) for Service Ori-

ented Architectures (SOA), the practical reality of Grid

computing is still far from providing effective techniques en-

abling such contractual agreements.

Towards this goal, this paper provides an overview of

the techniques offered by ProActive to set and use contrac-

tual agreements. Based on the identification of roles, appli-

cation developer, infrastructure manager, application user,

the actors of a Grid environment can specify what is re-

quired or what is provided at various levels. The results are

both flexibility and adaptability, matching the application

constraints and the environment characteristics with vari-

ous techniques.

1 Introduction

Traditionally the programming and execution of a dis-

tributed application has been handled by a single individual.

The same individual programs the application, configures

the resources, and performs the execution of the application

on the resources. Nevertheless, the increasing sophistica-

tion and complexity of distributed applications and resource

infrastructures has led to the specialization of expert roles.

On one side we find the developers of distributed appli-

cations, and on the other side the infrastructure managers

who maintain resources such as Desktop machines, Servers,

Cluster and Grids. Between both of these expert roles we

can identify the users who take the applications and execute

them on a distributed infrastructure to solve their needs.

The separation of these roles raises the issue of how

programmers and infrastructure experts relate to solve the

1-4244-0910-1/07/$20.00 c©2007 IEEE.

needs of the users. The complexity of this issue is empha-

sized when considering that the programmers and infras-

tructure managers are unacquainted. That is to say, that a

user has to deploy and execute an unfamiliar application on

unfamiliar resources without knowing the requirements of

either.

In this paper we address the issue of reaching contractual

agreement between distributed applications and resource in-

frastructures during deployment. Throughout this paper we

propose the deployment time as the key moment to reach an

agreement between the infrastructure and the application.

Using the contracts, users are able to perform the deploy-

ment and execution of an unfamiliar application on unfa-

miliar resources effortlessly.

Section 2 presents the deployment principles and archi-

tecture of the ProActive middleware, including the deploy-

ment of applications on JVMs managed by the peer-to-peer

infrastructure. Section 3 introduces several ways to setup

contracts and agreements between the three major roles in

Grid computing: application developer, infrastructure man-

ager, and application users. Section 4 shows an example of

how a contract can be reached between a master-slave appli-

cation and an infrastructure. Section 5 discusses the related

work. Section 6 summarizes the concluding remarks and

presents the future work.

2 ProActive and Deployment

ProActive is a Grid programming middleware which

provides, among others, a Grid infrastructure abstraction

using deployment descriptors [3], and an active object

model using transparent futures [7].

Active objects are remotely accessible via method in-

vocations, automatically stored in a queue of pending re-

quests. Each active objects has its own thread of control

and is granted the ability to decide in which order incoming

method calls are served (FIFO by default). Method calls

on active objects are asynchronous with automatic synchro-

nization (including a rendezvous). This is achieved using

automatic future objects as a result of remote methods calls,

and synchronization is handled by a mechanism known as

wait-by-necessity [5].

2.1 Deployment Framework

The ProActive Deployment Framework completely ex-

tracts all infrastructure details from the source code [3].

The first key principle is to fully eliminate from the

source code the following elements:

• Machine names

• Creation protocols

• Registry and lookup protocols

• Communication protocols

The goal of the deployment framework is to deploy any

application anywhere without having to modify the source

code. The resources acquired through the deployment pro-

cess are called nodes. Nodes are the containers of active

objects, and are created by starting the ProActive runtime

on the infrastructure resources.

The second key principle is the capability to abstractly

describe an application, or part of it, in terms of its concep-

tual activities.

To summarize, in order to abstract away the underly-

ing execution platform, and to allow a source-independent

deployment a framework has to provide the following ele-

ments:

• An abstract description of the distributed entities of a

parallel program or component.

• An external mapping of those entities to real machines,

using actual creation, registry, and lookup protocols.

To answer these principles, the ProActive deployment

framework relies on XML deployment descriptors to hold

the infrastructure configuration. Descriptors introduce the

notion of virtual-node:

• A virtual-node is identified as a name (a simple string).

• A virtual-node is used in a program source.

• A virtual-node, after deployment, is mapped to one or

to a set of actual ProActive Nodes, following the map-

ping defined in an XML descriptor file.

A virtual-node is a concept of a distributed program or

component, while a node is a deployment concept that hosts

active objects. There is a correspondence between virtual-

nodes and nodes which is the relation created in the deploy-

ment descriptor: the mapping. This mapping is specified

in the deployment descriptor. There is no direct mapping

between virtual-nodes and active objects: the active objects

are deployed by the application onto nodes related with a

virtual-node. By definition, the following operations can be

configured in the deployment descriptor:

• The mapping of virtual-nodes to nodes and to Java Vir-

tual Machines.

• The mechanism (protocol) to create or to acquire Java

Virtual Machines, such as: local, ssh, gsissh, rsh,

rlogin, lsf, pbs, sun grid engine, oar, prun, globus

(GT2, GT3 and GT4), unicore, glite, and nordugrid-

arc.

• The mechanism (protocol) to register or to lookup Java

Virtual Machines, such as: RMI, HTTP, RMI-ssh, Ibis,

and SOAP.

In the context of the ProActive middleware, nodes des-

ignate resources of an infrastructure. They can be created

or acquired. The deployment framework is responsible for

providing the nodes, mapped to the virtual-nodes, to the

application. Nodes may be created using remote connec-

tion and creation protocols. Nodes may also be acquired

through lookup protocols, which notably enable access to

the ProActive Peer-to-Peer infrastructure as explained in

Section 2.2.

2.2 Principles: Peer-to-Peer

We propose in [9] a P2P infrastructure of computational

nodes for distributed communicating applications. The pro-

posed P2P infrastructure is an unstructured P2P network,

such as Gnutella [14]. In contrast to others P2P approaches

for computing, which are usually hierarchical or master-

salve, our approach is original in the way that an unstruc-

tured P2P network commonly used for file sharing can be

also used for computing.

The P2P infrastructure has three main characteristics.

First, the infrastructure is decentralized and completely self-

organized. Second, it is flexible, thanks to parameters for

adapting the infrastructure to the location where it is de-

ployed. Finally, the infrastructure is portable since it is built

on top of Java Virtual Machines (JVMs). Thus, the infras-

tructure provides an overlay network for sharing JVMs.

The infrastructure allows applications to transparently

and easily obtain computational resources from grids com-

posed of both clusters and desktops. The application de-

ployment burden is eased by a seamless link between appli-

cations and the infrastructure. This link allows applications

to be communicating, and to manage the resources’ volatil-

ity. The infrastructure also provides large scale grids for

computations that would take months to achieve on clus-

ters.

The proposed P2P infrastructure is an unstructured P2P

network. Therefore, the infrastructure resource query

mechanism is similar to the Gnutella communication sys-

tem, which is based on the Breadth-First Search algorithm

(BFS). The system is message-based with application-level

routing. Messages are forwarded to each acquaintance, and

if the message has already been received (looped), then it is

dropped.

Applications use the P2P infrastructure as a pool of re-

sources. The main problem for applications to use those

resources is that resources are returned via a best-effort

mechanism; there are no guaranties of that the number re-

quested resources can be satisfied. Recently we have im-

proved the resource query mechanism by adding the pos-

sibility of filtering requested resources on three operating

system properties: the system name, version, and the sys-

tem architecture. Those properties are provided by the Java

system properties. The filtering mechanism is indeed done

by peers of the infrastructure; when a peer gets a resources

query, first checks if it is free and then checks OS property

constraints.

3 Contracts and Agreements

The three roles that we have identified: programmers,

infrastructure managers, and users are related with the ap-

plications, descriptors, and deployment/execution respec-

tively. The programmer writes the application, the infras-

tructure manager writes the deployment descriptor, and the

user performs the deployment and execution of the applica-

tion on the infrastructure using the deployment descriptor.

To begin with, application and descriptor must agree on

the name of the virtual-node. Nevertheless, the virtual-node

name is not the only agreement problem that the application

and descriptor have. More importantly, the application and

descriptor must agree on the required and provided techni-

cal services such as: fault-tolerance, load-balancing, etc.

Modifying the application or the descriptor can be a

pain-full task, specially if we consider that the user may

not be the author of either. To complicate things further, the

application source may not even be available for inspecting

the requirements and performing modifications. Figure 1 il-

lustrates the issue. The user is not aware of the application

or descriptor requirements.

In the rest of this section we analyze different scenarios

where the roles of programmers, users and infrastructure

managers are combined or separated into different people,

and explain different approaches that are able to solve these

scenarios.

3.1 Infrastructure Technical Services

The concept of non-functional requirements, i.e. techni-

cal services, was first introduce in the field of component

models. Such models allows a clear separation between

the functional code written by the developer and the non-

functional services provided by the framework. In [16] a

technical service must be developed by an expert of the

field. For example, an expert in fault-tolerance must im-

plement the fault-tolerance service, because he can provide

a good quality-of-service for a large range of applications.

A technical service is a non-functional requirement that

may be dynamically fulfilled at runtime by adapting the

configuration of selected resources [6]. The infrastructure

manager is aware of the technical services that can be pro-

vided by the infrastructure, and can configure a deployment

descriptor to specify the available technical services.

For example, to configure fault-tolerance, a

services.FaultTolerance class is provided. This

class defines how the configuration is applied to all active

objects hosted on the specified node. The deployment

descriptor specifies the fault-tolerance in the following

way:

<technical-service id = "myService" class="services.

FaultTolerance">

<arg name="proto" value="cic"/>

<arg name="server" value="rmi://host/FTServer"/>

<arg name="port" value="6060"/>

</technical-service>

The configuration parameters of the service are specified

by arg tags in the deployment descriptor. Those parameters

are passed to the init method as a map associating the

name of a parameter as a key and its value. The apply

method takes as parameter the node on which the service

must be applied. This method is called after the creation or

acquisition of a node, and before the node is used by the

application.

Figure 2 summarizes the deployment framework pro-

vided by the ProActive middleware. Deployment descrip-

tors can be separated in three parts: mapping, infrastruc-

ture, and non-functional aspects. The virtual-node is the

shared abstraction between applications and descriptors.

The virtual-node is referenced from inside the application

code, and is also mapped to nodes in the deployment de-

scriptors.

The infrastructure manager knows the most adequate

fault-tolerance mechanism depending on the environment,

and can configure this mechanism as a technical service in

the deployment descriptor. However, the developer of the

application knows on which virtual-nodes to apply the ade-

quate technical service. Therefore, we introduce in the next

section the concept of virtual-node-descriptor.

Figure 1. Deployment roles and artifacts

Deployment Descriptor

Nodes

Connectors Acquisition

Creation Infrastructure

Mapping

Application Code

Non-functional aspects

Technical

Service

VN

Figure 2. Deployment descriptor model

3.2 Application Virtual Node Descriptor

Virtual-node-descriptor is a mechanism for specifying

the environmental requirements of the applications [8]. The

requirements of the application are specified by the pro-

grammer in a virtual-node-descriptor. The virtual-node-

descriptor is packaged with the application when distribut-

ing it to the users.

The virtual-node-descriptor is expressed in a dedicated

XML file packaged with the application such as:

<virtual-nodes>

<virtual-node name="VN-Slaves">

<technical-service type="services.FaultTolerance"/>

<nodes required="500" minimum="100" />

<processor architecture="x86"/>

<os name="linux" release="2.6.15"/>

</virtual-node>

<virtual-nodes>

Non-functional requirements are expressed in a simple

way. The tag technical-service specifies the techni-

cal service required by the application. Developer can also

expresses the total and/or the minimum number of nodes re-

quired by the application. Additionally, other requirements

can also be specified such as hardware or software.

In order to deploy, these requirements must be fulfilled

by the deployment framework for the indicated virtual-

node. Also, the technical service must fit, i.e. extends or im-

plements, the type specified in the virtual-node-descriptor.

Using virtual-node-descriptors, the user does not have

to be aware of the application’s design and implementation.

By simple inspection of the virtual-node-descriptor, the user

can know the requirements of the application.

By default there is no contract management module,

such as in [18], nor deployment planner such as in [17].

Indeed, virtual-node-descriptors are verified when retriev-

ing nodes from the physical infrastructure, resulting in run-

time errors if the requirements are are not satisfied. This en-

sures a simple framework in terms of specification and ver-

ification, eludes resource planning issues, and could still be

plugged to a resource allocator framework such as Globus’s

GARA [13].

Nevertheless, developers dont know on which infrastruc-

ture the applications will be deployed, and the infrastructure

may not support some specific requirement of the applica-

tion. Therefore, in Section 4 we propose to describe the in-

frastructure with a mechanism based on coupling contracts,

which is described in the next section.

3.3 Coupling Contracts

Coupling Contracts proposes capturing the properties of

how information agreement takes place between parties,

specifically between applications and descriptors [4]. To

achieve this, each party provides an interface holding a set

typed clauses. The clauses specify what information is re-

quired and provided by each party, and the type specifies

how an agreement on this information is reached. If the in-

terfaces are compatible, the coupling of the interfaces yields

a contract with the agreed values for the clauses.

3.3.1 Concepts: Contracts, Interfaces and Clauses

Typed Clauses correspond to the information that both

parties must agree on. A clause is defined by a type,

a name and a value. The clauses are typed with one

of the alternatives shown in Table 1. As an exam-

ple, the Application type specifies that the value of

the clause can only be set by the application. The de-

scriptor specifies a value as required, forcing the ap-

plication to provide a value. Another example corre-

sponds to the Descriptor-Priority type which specifies

that a default value can be provided by the application,

and that the value can be overridden by the descrip-

tor. Additionally, parties can enforce constraints on

the value of the clauses such as maximal and minimal

value, choices, etc. The default constraint corresponds

to non-emptiness.

Interfaces represent a grouping of clauses that are exposed

by each party. An interface is defined by a name and a

set of clauses.

Coupling Contracts are the results of coupling two inter-

face. The contract holds the clauses and their values.

The values of the clauses are resolved using the spe-

cific type for each clause. If there is a conflict of

types, or the value does not satisfy the constraints, then

the contract is invalid and the coupling is not allowed.

When a contract is valid, then both parties can query

the contract to get the value of the agreed clauses.

Typed clauses can also be used to perform advertisement

and matchmaking in the Condor style [19]. Both parties can

expose their interfaces (advertisements) to a matchmaker or

broker. To determine if the two parties are a suitable match,

the coupling contract can be generated and validated.

The clauses belonging to the interfaces will specify what

information is shared (provided or required) for the match-

making. And the type of the clauses will specify how the

information is shared for the coupling.

4 Deployment Contracts Example

In this section we show how the concepts introduced in

Section 3 can be merged and applied to provide full sepa-

ration of roles: developer, infrastructure manager and user.

Specifically, we aim at creating deployment contracts be-

tween the applications and the deployment descriptors us-

ing the Grid middleware ProActive. We will show how the

deployment framework can benefit from the use of: tech-

nical services, virtual-node-descriptors, and coupling con-

tracts to deploy unfamiliar applications with unfamiliar in-

frastructures.

The example presented in this section uses the fault-

tolerance mechanism provided by ProActive [2]. The

fault-tolerance is based on rollback recovery. Several

parametrized protocols can be used, regarding the applica-

tion’s requirements and the characteristics of the infrastruc-

ture.

The application specifies its provisions and requirements

in the virtual-node-descriptor. Figure 3 shows an exam-

ple for a master-slave application. Symmetrically, Figure

5 shows the provisions and requirements of the descriptor.

The coupling contract is composed of the clauses specified

in both, and the values of this contract will be used in the

virtual-node-descriptor (Figure 3), application (Figure 4),

and in the deployment descriptor (Figure 6).

VN MASTER & VN SLAVES are of Descriptor

type. These clauses will hold the required and

provided names of the virtual-nodes.

NUM NODES is of type Application-Priority.

The virtual-node-descriptor specifies that the applica-

tion requires 16 nodes. The descriptor-interface speci-

fies that this value must be grater than zero, and smaller

than the maximum number of allowed nodes.

FT PROTOCOL is of type Descriptor-Priority.

The virtual-node-descriptor specifies that the applica-

tion requires the fault-tolerance protocol to be either

cic or oml, suggesting cic as the default value. On

the other hand, the descriptor-interface specifies that

the protocol must be one of: pml, cic, oml, and over-

rides the virtual-node-descriptor by choosing oml.

ARCH is of type Application-Priority. The

virtual-node-descriptor specifies that the architecture

Table 1. Types
Type Name — Provides Value — Requires Value — Set constraints — Priority

Application App Desc Desc App

Descriptor Desc App App Desc

Application-Priority App,Desc Desc App,Desc App,Desc

Descriptor-Priority Desc,App App Desc,App Desc,App

Environment Env Desc,App Desc,App Env

must be configured to x86 because it provides spe-

cific binary code for this architecture. The descriptor-

interface provides the following architectures: x86,

sparc, ppc, and any.

OS is of type Application-Priority. The virtual-

node-descriptor specifies that the operating system

must be configured to Linux because it provides

specific binary code for this operating system. The

descriptor-interface provides the following operating

systems: Linux, MacOS, Solaris, and any.

In the virutal-node-descriptor, the developer activates the

fault-tolerance technical service for the master virutal-node,

since it represents a single point of failure in the applica-

tion. The protocol used for fault-tolerance will correspond

to the agreed value of the coupling contract, which in the

example corresponds to oml. The developer also speci-

fies the required number of nodes, which is validated using

the virtual-node-descriptor against the allowed minimum.

On the other hand, the infrastructure manager specifies in

the descriptor the optimistic maximum number of nodes

that the infrastructure can provide, and validates the appli-

cation’s required number of nodes using the clause’s con-

straints.

The architectures and operating systems that are sup-

ported by the infrastructure are specified in the descriptor

using typed clauses. The application’s requirements are also

specified as clauses, but in the virtual-node-descriptor. this

is useful for applications that have binary code which runs

only on a specific operating system with a specific infras-

tructure. When the coupling contract is generated, both de-

scriptor and application have reached an agreement on the

characteristic of the resources. In the example the agree-

ment corresponds to: Linux, x86.

5 Related Work

The problem of finding suitable resources for a given ap-

plication have already been addressed by techniques such

as matchmaking in Condor [19, 20], collections in Le-

gion [10], or using resource management architectures like

Globus[11].

<virtual-nodes>

<clauses>

<interface name="application-master-slave-interface">

<Descriptor name="VN_MASTER" />

<Descriptor name="VN_SLAVES" />

<ApplicationPri name="NUM_NODES" value="16"/>

<DescriptorPri name="${FT_PROTOCOL}" value="cic">

<or>

<equals>cic</equals>

<equals>oml</equals>

</or>

</DescriptorPri>

<ApplicationPri name="ARCH" value="x86"/>

<ApplicationPri name="OS" value="Linux"/>

</interface>

</clauses>

<virtual-node name="${VN_MASTER}">

<technical-service type="service.FaultTolerance"/>

</virtual-node>

<virtual-node name="${VN_SLAVES}">

<processor architecture="${ARCH}"/>

<os name="${OS}"/>

<nodes required="${NUM_NODES}" minimum="10"/>

</virtual-node>

</virtual-nodes>

Figure 3. Application: VN Descriptor

//If the application and descriptor can not be coupled

an exception will be thrown

ProActiveDescriptor pad = ProActive.

getProactiveDescriptor("descriptor.xml", "vn-

descriptor.xml");

//Retrieving Clauses from the Contract

CouplingContract cc = pad.getCouplingContract();

String vnMasterName = cc.getValue("VN_MASTER");

String vnSlavesName = cc.getValue("VN_SLAVES");

VirtualNode vnMaster=pad.getVirtualNode(vnMasterName);

VirtualNode vnSlaves=pad.getVirtualNode(vnSlavesName);

...

Figure 4. Application Code

<clauses>

<interface name="descriptor-master-slave-interface">

<Descriptor name="VN_MASTER" value="vn-master"/>

<Descriptor name="VN_SLAVES" value="vn-slaves"/>

<Descriptor name="MAX_NODES" value="100"/>

<ApplicationPri name="NUM_NODES" value="1">

<and>

<biggerThan>0</biggerThan>

<smallerThan>${MAX_NODES}</smallerThan>

</and>

</ApplicationPri>

<DescriptorPri name="${FT_PROTOCOL}" value="oml">

<or>

<equals>pml</equals>

<equals>cic</equals>

<equals>oml</equals>

</or>

</DescriptorPri>

<ApplicationPri name="ARCH" value="any">

<or>

<equals>x86</equals>

<equals>ppc</equals>

<equals>sparc</equals>

<equals>any</equals>

</or>

</ApplicationPri>

<ApplicationPri name="OS" value="any">

<or>

<equals>Linux</equals>

<equals>MacOS</equals>

<equals>Sun</equals>

<equals>any</equals>

</or>

</ApplicationPri>

</interface>

</clauses>

...

Figure 5. Deployment Descriptor Interface

...

<virtualNodesDefinition>

<virtualNode name="${VN_MASTER}" serviceId="ft-serv"/>

<virtualNode name="${VN_SLAVES}"/>

</virtualNodesDefinition>

...

<technicalServiceDefintions>

<service id="ft-serv" class="services.FaultTolerance">

<arg name="proto" value="${FT_PROTOCOL}"/>

<arg name="server" value="rmi://host/FTServer"/>

<arg name="TTC" value="60"/>

</service>

</technicalServiceDefinitions>

...

Figure 6. Deployment Descriptor

However, the approaches presented in this work not only

focus on acquiring resources, but also on generating con-

tractual agreements during the deployment process.

Therefore, our approach pertains more to Service Level

Agreement, and more specifically, how to manage the ne-

gotiation, in order to end up with an agreement between

what is usually called customers and providers: e.g. with

the help of software agents to coordinate the negotiation,

as in [15], or orchestrated along a specific algorithm in the

MetaSchedulingService described in [21].

Another related approach corresponds to the Web Ser-

vices Agreement (WS-Agreement) Specification[1], which

is about to become a draft recommendation of the Global

Grid Forum[12]. The WS-Agreement is a two layer model:

Agreement Layer and Service Layer. Many of the con-

cepts introduced in our work find their reflection in the

Agreement Layer. According to the specification “an agree-

ment defines a dynamically-established and dynamically-

managed relationship between parties”, much like the pro-

posed coupling contracts. Also, the proposed coupling

interfaces can be seen as agreement templates in WS-

Agreement, since they are both used to perform advertise-

ment. Additionally, in the same way that interfaces and con-

tracts are composed of clauses, in WS-Agreement templates

and agreements are composed of terms. Finally, the concept

of constraints is present in both approaches.

The similarity of our proposed approach and WS-

Agreement Specification is encouraging when we consider

that both were conceived independently. On the other hand,

the main difference in the approaches is that the definition

of a protocol for negotiating agreements is outside of the

WS-Agreement Specification scope.

From the WS-Agreement perspective, typed clauses can

be seen as an automated negotiation approach because they

provide an automated mechanism for accepting or rejecting

an agreement.

6 Conclusions and Future Work

In this paper we have addressed the separation of roles:

application developer, infrastructure manager, and user. We

have identified that agreements must be made between these

different roles in order to execute the application on a dis-

tributed infrastructure: Desktop Machines, Clusters and

Grids.

We have argued that the key moment to perform an

agreement corresponds to the deployment time. During the

deployment, the application and infrastructure must reach a

contractual agreement. The contract will allow the execu-

tion of the application on distributed resources by specify-

ing, among others, the technical services.

To generate the deployment contract we have described

the application’s provisions and requirements using virtual-

node-descriptors, and symmetrically, we have specified the

infrastructure’s provisions and requirements in deployment

descriptor interfaces.

In the future we would like to simplify the coupling con-

tracts to allow negotiation with typeless clauses, using con-

straint satisfaction instead. We would also like to investigate

dynamic renegotiation of contracts after the deployment.

References

[1] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Lud-

wig, T. Nakata, J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu.

Web services agreement specification (ws-agreement). Draft

Version 2005/09. http://forge.gridforum.org/projects/graap-

wg.

[2] F. Baude, D. Caromel, C. Delbé, and L. Henrio. An hy-

brid message logging-cic protocol for constrained check-

pointability. In Proceedings of Europar 2005. Springer-

Verlag, 2005.

[3] F. Baude, D. Caromel, L. Mestre, F. Huet, and J. Vayssière.

Interactive and descriptor-based deployment of object-

oriented grid applications. In Proceedings of the 11th IEEE

International Symposium on High Performance Distributed

Computing, pages 93–102, Edinburgh, Scotland, July 2002.

IEEE Computer Society.

[4] J. Bustos-Jimenez, D. Caromel, M. Leyton, and J. M. Pi-

quer. Coupling contracts for deployment on alien grids. In

Proceedings of the International Euro-Par Workshops, Lec-

ture Notes in Computer Science, Dresden, Germany, August

2006. Springer-Verlag. To appear.

[5] D. Caromel. Towards a Method of Object-Oriented Concur-

rent Programming. Communications of the ACM, 36(9):90–

102, September 1993.

[6] D. Caromel, C. Delbe, and A. di Costanzo. Peer-to-peer

and fault-tolerance: Towards deployment based technical

services. January 2006.

[7] D. Caromel, C. Delbe, A. di Costanzo, and M. Leyton.

Proactive: an integrated platform for programming and run-

ning applications on grids and p2p systems. Computational

Methods in Science and Technology, 12, 2006.

[8] D. Caromel, A. di Costanzo, C. Delbé, and M. Morel.

Dynamically-fulfilled application constraints through tech-

nical services - towards flexible component deployments. In

Proceedings of CompFrame 2006, Component and Frame-

work Technology in High-Performance and Scientific Com-

puting, Paris, France, June 2006. IEEE.

[9] D. Caromel, A. di Costanzo, and C. Mathieu. Peer-to-peer

for computational grids: Mixing clusters and desktop ma-

chines. Parallel Computing Journal on Large Scale Grid,

2007. To appear.

[10] S. Chapin, D. Katramatos, J. Karpovich, and A. Grimshaw.

Resource management in legion. Legion Winter Workshop,

1997.

[11] K. Czajkowski, I. T. Foster, N. T. Karonis, C. Kesselman,

S. Martin, W. Smith, and S. Tuecke. A resource man-

agement architecture for metacomputing systems. In IPP-

S/SPDP ’98: Proceedings of the Workshop on Job Schedul-

ing Strategies for Parallel Processing, volume 1459 of Lec-

ture Notes in Computer Science, pages 62–82, London, UK,

1998. Springer-Verlag.
[12] G. G. Forum. http://www.gridforum.org.
[13] I. Foster, A. Roy, and V. Sander. A quality of service archi-

tecture that combines resource reservation and application

adaptation. In Proceedings of the Eight International Work-

shop on Quality of Service (IWQOS 2000), pages 181–188,

June 2000.
[14] Gnutella. http://www.gnutella.com.
[15] D. Greenwood, G. Vitaglione, L. Keller, and M. Calisti.

Service Level Agreement Management with Adaptive Co-

ordination. In Int. conference on Networking and Services

(ICNS’06), 2006.
[16] J. Kienzle and R. Guerraoui. Aop: Does it make sense? the

case of concurrency and failures. In ECOOP, pages 37–61,

2002.
[17] S. Lacour, C. Pérez, and T. Priol. Generic application de-

scription model: Toward automatic deployment of applica-

tions on computational grids. In 6th IEEE/ACM Interna-

tional Workshop on Grid Computing (Grid2005), Seattle,

WA, USA. Springer-Verlag, november 2005.
[18] O. Loques and A. Sztajnberg. Customizing component-

based architectures by contract. In Second International

Working Conference on Component Deployment (CD 2004),

volume 3083 of Lecture Notes in Computer Science, pages

18–34, Edinburgh, UK, May 2004. Springer-Verlag.
[19] R. Raman, M. Livny, and M. Solomon. Matchmaking: Dis-

tributed resource management for high throughput comput-

ing. In In Proceedings of the Seventh IEEE International

Symposium on High Performance Distributed Computing,

1998.
[20] R. Raman, M. Livny, and M. Solomon. Policy driven het-

erogeneous resource co-allocation with gangmatching. In

Proc. of the 12th IEEE Int’l Symp. on High Performance

Distributed Computing (HPDC-12), 2003.
[21] P. Wieder, R. Yahyapour, O. Wäldrich, and W. Ziegler.

Improving workflow execution through sla-based advance

reservation. Technical Report CoreGRID TR-053, Core-

GRID Network of Excellence, 2006.

