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INTERPOLATION IN THE NEVANLINNA AND SMIRNOV CLASSES AND HARMONIC MAJORANTS
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We consider a free interpolation problem in Nevanlinna and Smirnov classes and find a characterization of the corresponding interpolating sequences in terms of the existence of harmonic majorants of certain functions. We also consider the related problem of characterizing positive functions in the disk having a harmonic majorant. An answer is given in terms of a dual relation which involves positive measures in the disk with bounded Poisson balayage. We deduce necessary and sufficient geometric conditions, both expressed in terms of certain maximal functions.

INTRODUCTION AND STATEMENT OF RESULTS

1.1. Interpolating sequences for the Nevanlinna Class. Let be a discrete sequence of points in the unit disk ¡ . For a space of holomorphic functions ¢ , the interpolation problem consists in describing the trace of ¢ on , i.e. the set of restrictions ¢ ¤£ , regarded as a sequence space. One approach is to fix a target space ¥ and look for conditions so that ¢ ¤£ §¦ ¥ . An alterna- tive approach, known as free interpolation, is to require that ¢ ¤£ be ideal, i.e. stable under multiplication by © . See [Nik02, Section C.3.1 (Volume 2)], in particular, Theorem C.3.1.4, for functional analytic motivations. This approach is natural for those spaces that are stable under multiplication by © , the space of bounded holomorphic functions on ¡ . For Hardy and Bergman spaces both definitions turn out to be equivalent, with the usual choice of ¥ as an space with an appropriate weight (see [ShHSh], [START_REF] Seip | Beurling type density theorems in the unit disk[END_REF]).

The situation changes for the non-Banach classes we have in mind, namely the Nevanlinna class ¦ ! #" %$ '& ¡ )( 10 $ 32 54 6 87 @9 BA C ED GF IH 'P Q $ 3" SR T £ U& WV YX acb ( d£ Ye gf ih qp sr and the related Smirnov class T ¦ t 0 $ 32 34 6 87 @9 A C ED F H 'P Q $ 3" SR T £ U& WV YX acb ( u£ Ee gf ¦ A C ED F H 'P Q $ 3" SR T £ U& vX acb ( d£ Ee gf wr yx

We briefly discuss the known results. Naftalevič [START_REF] Naftalevič | On interpolation by functions of bounded characteristic (Russian), Vilniaus Valst[END_REF] described the sequences for which the trace £ coincides with the sequence space ¥ Na ¦ § & W ( 0 y & A @ £ U£ ( $ 5" SR T £ £ h p (we state the precise result after Proposition 1.12). The choice of ¥ Na is motivated by the fact that y & A £ d £ d( $ 3" SR T £ U& ( d£ eh fp for , and this growth is attained. Unfortunately, the growth condition imposed in ¥ Na forces the sequences to be confined in a finite union of Stolz angles. Consequently a big class of Carleson sequences (i.e. sequences such that B© g£ f¦ ä© ), namely those containing a subsequence tending tangentially to the boundary, cannot be interpolating in the sense of Naftalevič. This does not seem natural, for h© is in the multiplier space of . In a sense, the target space ¥ Na is "too big". Further comments on Naftalevič's result can be found in [START_REF] Hartmann | Interpolating sequences for holomorphic functions of restricted growth[END_REF] and below, after Proposition 1.12.

For the Smirnov class, Yanagihara [START_REF] Yanagihara | Interpolation theorems for the class £ ¥¤[END_REF] proved that in order that T £ contains the space ¥ Ya ¦ & W g ( 0 ji & A k £ d l£ d( $ 3" SR T £ £ jh mp , it is sufficient that is a Carleson sequence. However there are Carleson sequences such that T £ does not embed into ¥ Ya [Ya74, Theorem 3] : the target space ¥ Ya is "too small".

We now turn to the definition of free interpolation.

Definition.

A sequence space ¥ is called ideal if d© j¥ )n ¥ , i.e. whenever & W o ( o p ¥ and & rq so ( o t ä© , then also & rq so S So ( o k ¥ . Definition. Let ¢ be a space of holomorphic functions in ¡ . A sequence n u¡ is called free interpolating for ¢ if ¢ v£ is ideal. We denote f tw yx z ¢ . Remark 1.1. For any function algebra ¢ containing the constants, ¢ v£ is ideal if and only if

¨© n v¢ ¤£ x

The inclusion is obviously necessary. In order to see that it is sufficient notice that, by assump- Our characterization of interpolating sequences for the Nevanlinna class is as follows. Note that the existence of a harmonic majorant occurs at two junctures: first, to decide which sequences of points are free interpolating, second, to identify the trace space that arises for those sequences which are indeed free interpolating.

Theorem 1.2. Let be a sequence in ¡ . The following statements are equivalent:

(a) is a free interpolating sequence for the Nevanlinna class . (b) The trace space is given by: £ ¦ ¥ FE v0 ¦ & W ( 0 HG I& ! 0) 21 T & ¡ ( such that & & ( P' $ 3" SR T £ £ , t gx (c) ! ¤ admits a harmonic majorant. (d) There exists Q SR % such that for any sequence of nonnegative numbers UT ,

V W¢ ¤ T ! ¤ & ( ¦ V £¢ ¤ T $ 3" SR £ ¦ e& ( d£ 9 PX Q s y Y ¢ ¥ba V £¢ ¥¤ T 4 e& 7 e( x
We recall that any positive harmonic function on the unit disk is the Poisson integral of a positive measure on the unit circle, Let e ¡ denotes the normalized Lebesgue measure in ¢ ¡ . Also, for a nonnegative function ! on the unit disk, let £ ! denote the associated non-tangential maximal function (see (1.1) below).

Theorem 1.3. Let be a sequence in ¡ . The following statements are equivalent:

(a) is a free interpolating sequence for the Smirnov class T .

(b)

The trace space is given by The classical Carleson condition characterizing interpolating sequences for bounded analytic functions in the unit disk is w a ! ¤ h p , hence statements (c) in both results above can be viewed as Carleson-type conditions.

T £ ¦ ¥ E ¥¤ 0 ¦ u & W g ( 0 HG I& t! 0) 21
In view of Theorems 1.2 and 1.3, it seems natural to ask whether the measure e such that ! ¤ X 4 dc De Cg can be obtained from in a canonical way. We do not have an answer to this question, but with Propositions 1.12 and 1.13 it is easy to construct examples that discard natural candidates, such as the (weighted) sum of Dirac masses Problem. Which functions ! 0 %¡ 8 @9 T admit a (quasi-bounded) harmonic majorant?

Answers to this problem lead to rather precise theorems about the permissible decrease of the modulus of bounded holomorphic functions, e.g. Corollary 1.5 below. See [Hay], [START_REF] Lyubarskii | A uniqueness theorem for bounded analytic functions[END_REF]; [EiEs] also provides a survey of such results. The existence of harmonic majorants is relevant as well to the study of zero-sequences for Bergman and related spaces of holomorphic functions [START_REF] Luecking | Zero sequences for Bergman spaces[END_REF].

An answer to the problem of positive harmonic majorants can be given in dual terms (see [BNT] for another characterization). This can be applied to study the decrease of a non-zero bounded analytic function in the disk along a given non-Blaschke sequence. , if and only if is the union of a Blaschke sequence and a sequence £ for which there exists a universal

constant Q ¦ Q & £ ( such that V ¤ ¢ ¦¥ T ¤ $ 3" SR §¡ 9 ¤ X Q s w Y ¢ ¥` a V ¤ ¢ ¦¥ T ¤ 4 ¤ & 7 ( for any sequence of nonnegative numbers & T ¤ ( ¤ ¢ ¦¥ .
In a similar way, Theorem 1.3 (d), (e) are obtained as an application of the following analogue of Theorem 1.4 for quasi-bounded harmonic functions (i.e. for the Smirnov class).

Theorem 1.6. Let ! be a nonnegative Borel function on the unit disk ¡ . The following statements are equivalent: For the problem of harmonic majorants it is desirable to obtain criteria which, although only necessary or sufficient, are more geometric and easier to check than the duality conditions of Theorems 1.4 and 1.6.

Recall that the Stolz angle with vertex 7 )¢ ¡ and aperture is defined by (a) If ! admits a harmonic majorant, then £ ! £ 9

£ ¢¡ & 7 e( 0 ¦ u ¡ u0 £ 7 £ X & A £ £ H ( gx
¤ & ©¢ ¡ )( . (b) If ! admits a positive quasi-bounded harmonic majorant, then £ ! £ 9

¤ §¥ Q & ©¢ ¡ )( . (c) If £ ! £ 9 & ©¢ ¡ ( , then the function ! admits 4 dc £ ! g 0 ¦ 4 dc £ ! e ¡ g as a quasi-bounded harmonic majorant.

As far as necessary conditions are concerned, there is a way to improve the previous result by using the Hardy-Littlewood maximal function. Given ' % , this is defined as

©& ( )0 ¦ w A & ( F 5
where the supremum is taken over all arcs containing .

For ! ' % define ! & 7 e( 0 ¦ w ¢ a ! & ( ¨ & 7 e( ¦ w ¢ a ! & ( w Y ¢ & "! # ( & ( 5
where %$ is the characteristic function of a set & and is the "Privalov shadow" interval

(1.2) 0 ¦ 7 ¢ ¡ u0 g £ & 7 ( gx Proposition 1.8. (a) If ! admits a harmonic majorant, then ! £ 9 ¤ & ¢ ¡ )( . (b) If ! admits a quasi-bounded harmonic majorant, then ! £ 9 ¤ §¥ Q & ¢ ¡ ( .
We will give some examples in Proposition 7.4 that show that this is indeed stronger than the necessary condition given in the first part of Proposition 1.7, but still falls short of giving a sufficient condition for the existence of a harmonic majorant. 1.3. Geometric criteria for interpolation. We would like to obtain some geometric implications of the analytic conditions given in Theorems 1.2 and 1.3. To begin with, we would like to state the maybe surprising result that separated Blaschke sequences (with respect to the hyperbolic distance) are interpolating for the Smirnov class (and hence the Nevanlinna class). Recall that a sequence is called

separated if 1 & W ( 0 ¦ 2 3x ¡ £¢ ¤ ¦¥ ¦ § & 5 ©¨( PR % , where § & 65 1( 0 ¦ £ © & j( u£ ¦ A 5
is the pseudo-hyperbolic distance.

For such sequences, the values $ 3" %R £ ¦ e& ( d£ 9 can always be majorized by the values at of the Poisson integral of an integrable function (see Proposition 4.1), thus the following corollary is immediate from Theorem 1.3.

Corollary 1.9. Let be a separated Blaschke sequence. Then f tw yx z T (hence q tw yx z

).

More precise conditions can be deduced from Propositions 1.7, 1.8 and (c) in Theorems 1.2 and 1.3. Corollary 1.10. Let be a sequence in ¡ .

(a) If f tw yx z (1.5) then q tw yx z T (and so f Gw yx gz as well).

then ! ¤ £ 9 ¤ & ©¢ ¡ j( . If f tw yx z T then ! ¤ £ 9 ¤ ¦¥ Q & ¢ ¡ ( . (b) If £ ! ¤ t
Condition (1.3) already appeared in [Ya74, Theorem 1] as a necessary condition for the sequence space ¥ Ya (as defined in the beginning of Section 1.1) to be included in the trace of T .

Condition (1.4) is discussed in Proposition 1.12 and the corollary thereafter.

In some situations the conditions above are indeed a characterization of interpolating sequences. For instance, the weak £ 9 -condition characterizes interpolating sequences lying on a radius, while for sequences approaching the unit circle very tangentially the characterization is given by the strong £ 9 -condition. This is collected in the next results. Proposition 1.12. Assume that n v¡ lies in a finite union of Stolz angles.

( has bounded balayage implies in particular that approaches the circle tangentially. In Section 8, we will see more concrete conditions of geometric separation which are sufficient to imply that e ¤ has bounded balayage (Proposition 8.2).

When e ¤

has bounded balayage, the trace space will embed into Yanagihara's target space. More precisely, the following result holds.

Proposition 1.14. The following are equivalent:

(a) £ n q¥ Ya , (b) T £ n q¥ Ya , (c) e ¤ has bounded balayage, i.e. w Y ¢ £ba i & A £ d l£ d( 4
& 7 e( h qp . Yanagihara considered the sequences such that T £ ¥ Ya . These are automatically in w yx z T , since for any Blachke sequence ¥ Ya ¨© . Conversely, Lemma 8.1 (see Section 8) implies that ¥ Ya n ¥ E ¥¤ , thus if w yx z T , then by Theorem 1.3(b) T £ ¡ ¥ Ya . Therefore Theorem 1.3 characterizes in particular the sequences studied by Yanagihara.

Altogether, free interpolation for the Nevanlinna and Smirnov classes can be described in terms of the intermediate target spaces ¥ E and ¥ E ¥¤ . Notice first that always T £ n ¥ E ¤ and £ n ¥ FE (this is proved at the beginning of Section 5). So, q w yx z T if and only if T £ ¥ E ¤ , and f tw yx z if and only if £ ¥ E . Observe also that ¥ Ya n q¥ E ¤ n q¥ FE vn q¥ Na .

The paper is organized as follows. The next section is devoted to collecting some basic results on functions in the Nevanlinna class. In Section 3 we prove the sufficiency for interpolation of the conditions (c) of Theorems 1.3 and 1.2. We essentially use a result by Garnett allowing interpolation by © functions on sequences which are denser than Carleson sequences, under some decrease assumptions on the interpolated values. In Section 4 we study the necessity of these conditions. We first observe that in the product ¦ & ( appearing in Theorem 1.2, only the fac- tors © & ¨( with ¨close to are relevant. Then we split the sequence into four pieces, thereby reducing the interpolation problem, in a way, to that on separated sequences. The trace space characterization will be discussed in Section 5. In Section 6 we consider measures with bounded balayage, show that they operate against positive harmonic functions and prove Theorems 1.4 and 1.6. In Section 7, we prove Proposition 1.8, and provide examples to show that the sufficient condition is not necessary, and the necessary condition not sufficient. Section 8 is devoted to the proofs of Corollary 1.11, Propositions 1.12, 1.14, and 1.13, as well as the deduction of Naftalevič's result from Theorem 1.2. Also, we give examples of measures with bounded balayage. In the final section, we exploit the reasoning of Section 3 to construct non-Carleson interpolating sequences for "big" Hardy-Orlicz classes.
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PRELIMINARIES

We next recall some standard facts about the structure of the Nevanlinna and Smirnov classes (general references are e.g. [START_REF] Garnett | Bounded analytic functions[END_REF], [START_REF] Nikolski | Operators, functions, and systems: an easy reading[END_REF] or [RosRov]). for some positive Borel measure e singular with respect to Lebesgue measure.

According to the Riesz-Smirnov factorization, any function t T is represented as ¦ ¦ 9 H 5 where 9 5 H are outer with 9 © 5 H © X A , is singular inner, ¦ is a Blaschke product and £ £ ¦ A . Similarly, functions t are represented as p¦ ¦ 9 9 H H 5 with `outer, ` © X A , `singular inner, ¦ is a Blaschke product and £ £ ¦ A .

In view of the Riesz-Smirnov factorization described above, the essential difference between Nevanlinna and Smirnov functions is the extra singular factor appearing in the denominator in the Nevanlinna case. This is reflected in the corresponding result for free interpolation in by the fact that ! ¤ is bounded by a harmonic function, not necessarily quasi-bounded.

FROM HARMONIC MAJORANTS TO INTERPOLATION

For a given Blaschke sequence n ¡ set 1 p¦ £ D¦ y& ( u£ . The key result to the proof of the sufficient condition is the following theorem by Garnett [START_REF] Garnett | Two remarks on interpolation by bounded analytic functions, Banach spaces of analytic functions[END_REF], that we cite for our purpose in a slightly weaker form (see also [START_REF] Nikolski | Operators, functions, and systems: an easy reading[END_REF] as a general source, in particular C.3.3.3(g) (Volume 2) for more results of this kind).

Theorem. Let ü0 c % 5 p f( 8 c % 5 p f( be a decreasing function such that ¡ © Q ¨& ( ( we ( h p . If a sequence ¦ & W g ( satisfies £ £ X 1 ¨& $ 3" SR X 1 ( 5 G 5
then there exists a function t © such that £ ¦ .

Observe that according to our former notation we have $ 5" SR & vX 1 ( ¦ A @ ! ¤ & ( .

As we have already noted in Remark 1.1, in order to have free interpolation in the Nevanlinna and Smirnov classes, it is sufficient that ü© n £ and © n T £ respectively. Our aim will be to accommodate the decrease given in Garnett's result by an appropriate function in or T . This is the crucial step in the proof given hereafter of the sufficiency of conditions (c) in both Theorems 1.3 and 1.2.

Proof of sufficiency of 1.3 (c) and 1.2 (c)

. The proof will be presented for the more difficult case 7 e e & 7 e( has positive real part in the disk. By Smirnov's theorem, ¡ is an outer function in some , ¢ h A , and therefore in T (see [START_REF] Nikolski | Operators, functions, and systems: an easy reading[END_REF], in particular A.4.2.3 (Volume 1)). Also ¡ ¢ & ¡ ( is in the Nevanlinna class. By assumption we have $ 3

" SR & A 1 ( X Re ¡ & ( , t
. Take now ¨& ( ( ¦ & A @ ( ( 8 H , which obviously satisfies the hypothesis of Garnett's theorem, and set ¦ & C @ ¡ ( H , which is still outer in T . We have the estimate

£ d & ( u£ ¦ £ C @ ¡ & ( d£ H ' & C @ Re ¡ & ( ( H ' & A @ $ 5" SR X 1 ( H ¦ A ¨& W$ 5" SR & WX 1 ( ( 5 hence the sequence & ¡ y ( defined by e 1¦ A & ( ¨& $ 3" SR & WX 1 ( ( 5 t 5 is bounded by A .
In order to interpolate an arbitrary q ¦ & rq U ( ¨© by a function in , split

q s j¦ £¢ q s ¤ e ¡ £¢ & ¡ & ( ( 1 1 ¨& W$ 3" %R X 1 ( ¦¥ ¨ § & ( ¡ £¢ & ¡ & ( ( x Since by hypothesis & q ¤ e ¡ £¢ & ¡ & ( ( 1 (
is bounded, we can apply Garnett's result to interpolate the sequence

j¦ q ¤ e ¡ £¢ & ¡ & ( ( 1 1 ¨& W$ 5" SR X 1 ( 5 t 5 by a function © . Now © ¦ ¡ £¢ & ¡ ( is a function in with © p£ ¦ qq .
The proof for the Smirnov case is obtained by observing that if the measure e is absolutely continuous, then ¡ ¢ & ¡ ( is in the Smirnov class and so is the interpolating function © .

FROM INTERPOLATION TO HARMONIC MAJORANTS

We first show that in order to construct the appropriate function estimating $ 3" SR £ ¦ e& ( d£ 9 we only need to consider the factors of ¦ given by points ¨ which are close to . This is in accordance with the results for some related spaces of functions [HaMa01, Theorem 1], and it obviously implies Corollary 1.9. In what follows we will argue on one sequence, say 9 . The arguments are the same for the other sequences.

Our first observation is that, by construction, for ¥ 5 £ ¥ 9

, ¥ ¦ £ , § & ¥ 5 £ ( )0 ¦ 2 5x ¢ ¥ ¤ ¢ § & 65 1( P' 1 R % 5
for some fixed 1 . In what follows, the letters , £ ... will stand for indices in

¡ H of the form & 5 ¥ W( 5 % X ¥ h C o
. The closed rectangles ¥ are compact in ¡ so that 9 ! ¥ can only contain a finite number of points (they contain at least one point, by assumption). Therefore % h ! " @0 ¦ 4 g2 5x $ 5" SR £ D¦ e& ( u£ . The proof for T goes along the same lines, except that singular inner factors do not occur in (4.3), and so will not appear in (4.5) either.

THE TRACE SPACES

In this short section we prove the trace space characterization of free interpolation given in Theorems 1.2 and 1.3.

In order to see that (b) in each theorem implies free interpolation it suffices to observe that ä© n q¥ E ¤ n q¥ FE and use Remark 1.1.

For the proof of the converse, we will only consider the situation in the Nevanlinna class, since the case of the Smirnov class is again obtained by removing the singular part of the measure and the singular inner factors. 

w Y ¢ ¥ba V o ¥ ¢ T o ¥ ¢ 4 ¢¡ ¤£ & 7 ( X A 5 then (6.3) V o ¥ ¢ T o ¥ ¢ w ¡ ¥£ ! X £ ¨ x Furthermore, Q 9 £ dX £ ¨ X Q £ , where Q R A is an absolute constant. Proof of Lemma 6.3. Pick ö ¥ ¢ ¥ o ¥ ¢ such that ! & ö ¥ ¢ ( P' & y ¡ ¤£ ! ( C and define the measure e 0 ¦ i o ¥ ¢ T o ¥ ¢ 1 §¦ ¡ ¤£ . Then, if UT o ¥ ¢ satisfies (6.2), ¦ & e ( & 7 e( ¦ F a 4 & 7 e( we e & ( ¦ V o ¥ ¢ T o ¥ ¢ 4 ¦ ¡ ¤£ & 7 e( X V o ¥ ¢ T o ¥ ¢ 4 ¡ ¤£ & 7 e( X tx
So if ! satisfies (6.1),

V o ¥ ¢ T o ¥ ¢ w ¡ ¥£ ! X C V o ¥ ¢ T o ¥ ¢ ! & ö ¥ ¢ ( ¦ C F a ! e e X C £ x
The converse direction is easier, and left to the reader (it also follows from the proof of the theorem, below).

We now need a classical result in convex analysis. Recall that the convex hull of a subset ¨n 9 © is defined as

" Sx & ¨( )0 ¦ E V `¤ 9 ` `0 ` ¨5 `' % 5 V ` `¦ A r yx
If we write 9 T ¨0 ¦ u 0 e ' % 5 G ¨ , then the conical convex hull of ¨is defined as

" Sx ¡ & ¨( 0 ¦ " Sx & 9 T ¨( ¦ E V `¤ 9 ` `0 ` ¨5 `' % r x
When ¨is a finite set, the conical convex hull is equal to its closure:

" Sx ¡ & ¨( ¦ " Sx ¡ & ¨(
(for this and other facts, see [HULL]). The key fact for us will be the generalized form of the Minkowski-Farkas Lemma (see [ We will use the following special case. For a vector ¥ 9 © , the coordinates are denoted by ¥ `, A X X e . Also, 9 © T denotes the set of points of 9 © with nonnegative coordinates. Corollary 6.5. Given 9 © , A X X

, let ¢ T 0 ¦ 9 © T 0 ¡ 5 ¢ X A , and suppose that ¢ T ¦ ¦

. Then the following properties are equivalent for

¥ 9 © T : (a) For any t ¢ T , ¡ ¥ 5 ¢ X A . (b) There exist A' % 5 A X X
such that i E ¤ 9 ¦ A and for any ¦ A 5 ax x x ¥5 e , ¥ `X E V ¤ 9 ` x Proof. Let EX ` 9 ©¨`¨© be the canonical basis of 9 © and consider ¨0 ¦ & v W5 A ( 5 A X X ¡ & X `5 % ( 5 A X X e w gx Then ¢ T corresponds to the ¢ in Theorem 6.4, from what we see that (a) implies that there exist

0' % 5 `' % , A X X , A X X e , such that & ¥ 5 A ( ¦ E V ¤ 9 & W U5 A ( © V `¤ 9 `& vX `5 % ( x When applied to each coordinate, this yields A ¦ i E ¤ 9 and ¥ `¦ E V ¤ 9 ` `X E V ¤ 9 ` x
The converse implication is immediate.

Proof of Theorem 6.2. Suppose that ! satisfies (6.1). For each nonnegative integer , we define

#0 ¦ ¢ 4 ¡ ¤£ & ¡ £¢ & 4 § C C ED ( ( ¦¥ Q ¨o ¨ Q ¨¢ ¨H ¡ 9 for % X X C fA 5 e g0 ¦ i o ¤ Q C o and ¢ T 0 ¦ y UT o ¥ ¢ Q ¨o ¨ Q ¨¢ ¨H ¡ 9 9 © T 0 V Q ¨o ¨ Q ¨¢ ¨H ¡ 9 T o ¥ ¢ 4 ¡ ¤£ & ¡ £¢ & 4 § C C dD ( ( X A 5 for A X X C fA r x
Obviously, ¢ T is not empty: for instance T Q ¥ Q ¦ A and T o ¥ ¢ ¦ % for ' A gives a point in ¢ T . We claim that any UT o ¥ ¢ ¢ T will satisfy (6.2) up to a constant. Indeed, for any f c % 5 C ED ( , there is an index vh C so that § C C ED X f h & @ A ( § C C ED , therefore by Harnack's inequality, for any such that £ £

X A C , 4 & vX `b ( ¦ 4 ¡ £¢ ¥¤ ` §¦ H © H 'P b & ¡ £¢ & § C C ED ( ( X 4 & ¡ £¢ & § C C ED ( x Therefore 9 T o ¥ ¢ satisfies (6.
2), and by Lemma 6.3 and the hypothesis, ! satisfies (6.3) with constant £ ¨ . Corollary 6.5 then implies the existence of positive coefficients &

( H © 9 ¤ Q with sum equal to £ ¨ , such that w ¡ ¤£ ! X H © 9 V ¤ Q 4 ¡ ¥£ & ¡ £¢ & 4 § C C dD ( ( ¦ F ba 4 ¡ ¥£ e 07 5
where 7 is the discrete measure on the circle given by the following combination of Dirac masses:

7 ¦ H © 9 V ¤ Q 1 £¢ ¥¤ ` ¦ H © H 'P x
Since the mass of 7 is uniformly bounded by £ ¨ , we can take a weak* limit 7 of this sequence of measures, so that for any & 5 £ ( , w ¡ ¤£ ! X F ` a 4 ¡ ¤£ e 7 ¦ & & o ¥ ¢ ( 5 where & 0 ¦ 4 dc 7 g . Harnack's inequality now implies that there is an absolute constant Q 9 such that Q 9 & & S( ' ! & ( for any ¡ . This proves the theorem, with the inequality

2 5x & & % ( )0 & ! 0) 1 & ¡ )( 5 & ' ! X Q 9 £ ¨ X Q HQ 9 £ x
The constants Q , and Q 9 only depend on the discretization we have chosen. Picking a dis- cretization with smaller "squares", we may make all three constants as close to A as we wish. Now we can prove Corollary 1.5.

Proof of Corollary 1.5. Given a non-Blaschke sequence , arguing as in [NPT] We finish this section with the proof of Theorem 1.6. where & v o ( is an increasing sequence of positive numbers tending to infinity, to be determined later, and & © o ( is given recursively by © Q ¦ % and ¨o & @ A ( ¦ ¨o T 9 & @ A ( . Observe that each ¨o is defined on the whole real line (they give supporting hyperplanes for the polygonal convex graph of ¨). We shall also use ¥ T ¦ 4 d) ¢ & ¥ 5 % ( for ¥ 9 . We prove that ¨© ! admits a harmonic majorant using Theorem 1. 

V o # Q F a c ¨T o © ! o & ( ¨T o © ! o T 9 & ( g e e & ( ¦ F a ¨Q © ! & ( we e & S( @ V o # 9 F a c ¨T o © ! o w& ( ¨T o 9 © ! o & ( g e e & ( X q Q F a ! & S( we e & ( @ V o # 9 F a & v So So 9 ( & ! o & ( ( T e e & S( X q Q ¡ Q @ V o 6# 9 & v
£ & & % ( ¦ V o £ & o & % ( X Q & Q & % ( V o A % ¨o h vp 5
and defines therefore a quasi-bounded harmonic majorant of ! .

Proof of Lemma 6.6. Proof. It is well known and easy to see that there exists a constant T such that 4 ' T ¡ ¥£ for any ¥ o ¥ ¢ (the constant T depends on the aperture of the Stolz angle). Therefore, for any

Set £ 0 ¦ 4 d) ¢ & ! © 5 C & & % ( ( .
o ¥ ¢ n ¢ ¡ 0 ¦ ¡ ¦ go & such that e & o ¥ ¢ ( R £ & o ¥ ¢ ( x Note that & o cannot contain two contiguous intervals such that o ¥ ¢ ¡ o ¥ ¢ T 9 ¦ o 9 ¥ ¢ ¥ , because then o 9 ¥ ¢ ¥ n ¦ ¡ ¦ go & , a contradiction. Therefore, if o ¥ ¢ n & o , then e & o ¥ ¢ ( X e & o 9 ¥ ¢ ¥ ( X £ & o 9 ¥ ¢ ¥ ( ¦ C £ & o ¥ ¢ ( h C e &
¥ o ¥ ¢ 4 dc 7 g & ( ' T F ` a ¡ ¥£ & 7 e( e 7 & 7 e( ' T 7 & o ¥ ¢ ( & o ¥ ¢ ( ' T ! o ¥ ¢ ¦ T y ¡ ¥£ ! 5
which proves that

4 dc & A 2T ( 7 g
is the harmonic majorant we are looking for.

To see that the condition is not necessary, consider any In the same way as in Corollary 1. 

y V ¢ ¢ ¡¥ & A £ & ¥ ( d£ d( q w £¢ ¥¤ )% $ 3" SR £ D¦ e& ( d£ 9 r h fp 5
where the supremum is taken over all ¨¨n ¨such that & ¥ ( 5 ¥ ¨¨ is a disjoint family, then is interpolating for the Nevanlinna class.

We move next to the proof of the necessary condition in terms of the Hardy-Littlewood maximal function.

Proof of Proposition 1.8. (a) The problem can be localized, so we may work on the upper half plane, £ T 0 ¦ @ ¥¤ B0 ¦¤ R % , with ¨ § T © 0 ¦ & ¤ 5 @ ¤ y( , restricting ourselves to positive harmonic functions which are Poisson integrals of positive measures with finite mass. Here the Poisson kernel is given by

4 § T © & ( ¦ A D ¤ & ( H @ ¤ H
x For convenience we shall write here £ & t£ for the Lebesgue measure of a measurable set & n 9 . Also, we only need to look at boundary points in a fixed bounded interval, say A X X A .

For any

( R % , let & & 0 ¦ c A 5 A g 0 ! & ( R ( . For any & & , there exists ¦ & ( and ¦ & ( such that (7.2) ! & ( F R ( £ £ 5 i.e. ! & ( u£ £ R ( £ £ x
By Vitali's covering lemma, there exist an absolute constant T 9 f& % 5 A ( and a disjoint family of intervals

@0 ¦ & a( , A X X
, such that i £ S£ ' T 9 £ & & £ . Write 0 ¦ & ( ¦ 0 @ ¤ . Note that since the point is contained in the "tent" over ( (therefore in the tent over ) the points are separated in the hyperbolic metric. Now define new points in the following way : let ¤ 0 ¦ £ £ C ¦ ¤ S£ S£ £ ( £ ' ¤ and 0 ¦ @ ¤ . Note that £ ! ¥ ( £ ' £ £ C . We claim that & & ( P' ( , where & is a harmonic majorant of ! . Indeed,

writing & ¦ 4 c De Cg , & & ( ¦ A D ¤ F ¡ A A @ ¢ & § ( © ¥ ( ¥ H e e & ( ( ' A D ¤ F ¡ A A @ ¢ & § ( © ( ¥ H e e & ( ( ¦ ¤ ¤ & & ( 5 and, by (7.2), & & ( ' ! & ( PR ( £ £ £ ( £ ¦ ( ¤ ¤ . Therefore, since £ & £ 9 ¤ & 9 ( , T 9 C £ & & £ X A C V £ S£ X V £ ! ¥ ( £ X £ £ & R ( £ X Q £¢ ( x (b) Similarly. 
We now give two examples showing that the necessary condition of Proposition 1.8 is strictly stronger than that of Proposition 1.7 but still not sufficient.

Proposition 7.4.

(a) There are functions ! such that ! £ 9

¤ & ¢ ¡ ( , but that do not admit a harmonic majorant.

(b) There are functions

! such that £ ! £ 9 ¤ & ©¢ ¡ ( , but ! £ 9 ¤ & ©¢ ¡ )( .
Proof. The proof rests on the following family of examples. Note that it is easy to turn those examples into examples of sequences which are (or are not) interpolating for the Nevanlinna class.

Again we will work on £ T . Our functions ! will vanish everywhere on the upper half plane, except on the sequence ¢ 0 ¦ ¢ @ ¥¤ ¢ , where ¢ ¦ £ ¡ and ¤ ¢ ¦ £ ¤ . To ensure that ¤ ¢ X & ¢ T 9

¢ ( H we take ' C & @ A ( . With this choice, it can be deduced from Proposition 8.2 (or the remark before Lemma 8.4), that a necessary and sufficient condition for the existence of a harmonic majorant is that £ ! £ 9 , that is,

(7.3) V ¢ ! & ¢ ( ¤ ¢ h qp x
We note that

¨ ¨ & ( ¦ C A @ 4 ) ¢ & A 5 4 § § 4
© ( x Henceforth we only study data ! ¢ 0 ¦ ! & ¢ ( which are increasing sequences of positive numbers tending to infinity. We also assume that & ! ¢ ¤ ¢ @ ! ¢ T 9 ¤ ¢ T 9 ( w& ¢ ¢ T 9 ( ¢ forms an increasing sequence. Let £ Q & ( ( 0 ¦ 4 g2 5x £ 0 ( h ! ¢ . The necessary condition arising from the fact that £ ! £ 9

¤ & 9 ( reads (7.4)

V ¢ # ¢ ¦¥ & ¤ ¢ £ 9 ¤ Q & ( ( X Q ( 5 § ( R % x
This condition will be assumed for both examples. Now, for

£ ' £ Q & ( ( , define ¢ 0 ¦ 0 ! ¢ ¨¢ & ( 0R ( & ¢ ¤ ¢ ! ¢ ( 5 ¢ @ ¤ ¢ ! ¢ ( ( , and let £ 9 & ( ( )0 ¦ 4 I2 3x £ 0 ¢ ! ¢ T 9 ¦ ¦ . Then, ¢ # ¢ # & ¢ ¦ & % 5 ¢ # & @ ¤ ¢ # & ! ¢ # & ( ( ¦ & % 5 £ ¡ 9 & ( ( @ £ ¤ 9 & ( ( ! ¢ # & ( ( and 
(7.5) 0 ! & ( PR ( £ ¡ 9 & ( ( @ £ ¤ 9 & ( ( ! ¢ # & ( @ C ( ¢ # & 9 V ¢ ¤ ¢ ¥ & ! ¢ £ ¤ £ ¡ 9 & ( ( @ C ( ¢ # & V ¢ ¤ ¢ ¥ & ! ¢ £ ¤ x
In order to prove (a), choose ! ¢ 0 ¦ ¡ ¢ £ ¤ 9 . Since ( ¡ ¢ ¥ & £ Q & ( ( ¤ 9 , condition (7.4) becomes that & ¢¡ ¢ ( ¢ remains bounded above, while the necessary and sufficient condition (see (7.3)) is does not have bounded balayage, even though another measure associated with the sequence will (see the proof).

0 ! & ( PR ( A ( $ 3" SR ( @ C ( ¢ # & V ¢ ¤ ¢ ¥ & A £ $ 3" SR £ A ( $ 5" SR ( @ C ( $ 3" SR 9 $ 3" %R £ 9 & ( ( $ 3" %R £ Q & ( ( B X A ( $ 3" SR ( @ Q ( X Q
£ ¢¡ 1 R & & ¥ ( ( ¡ 1 R & & £ ( ( d£ R ¡ 9 & A £ & ¥ (
In order to prove Proposition 8.2 consider the "Carleson window" ¥ & vX `b 5 V ( centered at X cb , of side V On the other hand, we can see that for the above lemma to hold, we must have ¡ 9 & ( ( AR R ( . More precisely, take the sequence in the upper half-plane given by ¢ 0 ¦ X ¢ @ £ 9 3 H X ¢ x

: ¥ & vX cb 5 V ( 0 ¦ u ¡ s0 A £ d £ X qV 5 %£ ¢¡ 1 R & S( f £ X fV gx
Then, Re ¢ Re ¢ T 9 X ¢ , so the sequence ¢ ¢ verifies the separation condition in Lemma 8.4 with ¡ 9 & ( s& W$ 5" SR 9

§ ( 9 3 H , but V ¢ & Im ¢ ( 4 & % ( V ¢ 9 Re ¢ Im ¢ B H ¦ V ¢ A £ ¦ p x
Proof of Lemma 8.4. Let f c % 5 C ED ( . By hypothesis, there is at most one t such that if and only if the last sum converges. Furthermore, when this is the case, the function & can always be taken quasi-bounded (see Lemma 8.1), so that interpolation can actually be performed in the Smirnov class. 9. HARDY-ORLICZ CLASSES Let © t0 9 8 c % 5 p f( be a convex, nondecreasing function satisfying (i) $ 32 34 & 7 © © & ( ( ( ¦ p (ii) H -condition: © & ( @ C ( X £ © & ( ( h@ , ( ' ( Q for some constants £ 5 ' % and ( Q 9 . Such a function is called strongly convex (see [RosRov]), and one can associate with it the corresponding Hardy-Orlicz class ¦ Y t T 0 F ba © & $ 3" SR £ U& 7 e( u£ ( we ¡ & 7 e( lh qp 5 where U& 7 e( is the non-tangential boundary value of at 7 )¢ ¡ , which exists almost everywhere.

f 0 ¦ ¢ ¡ 1 R & ( A C ¡ 9 & A £ U£ ( 5 ¡ 1 R & ( @ A C ¡ 9 & A £ U£ ( ¥ x Let e 0 ¦ i ¦¥ ¢ ¤ & A £ d
In [START_REF] Hartmann | Free interpolation in Hardy-Orlicz spaces[END_REF], the following result was proved.

Theorem. Let © be a strongly convex function satisfying (i), (ii) and the H -condition:

where R % is a suitable constant and

( 9 9 . Then n ¡ is free interpolating for if and only if is a Carleson sequence, and in this case £ ¦ E ¦ & v ( 0 £ £ ¦ V £¢ ¤ & A £ U£ ( ! & W$ 5" SR £ g £ d( h fp gx The conditions on © imply that there exist ¢ 5 ¡ & % 5 p f( such that n n £¢ . In particular, the H -condition implies the inclusion n for some ¢ R % . This H -condition has a strong topological impact on the spaces. In fact, it guarantees that metric bounded sets are also bounded in the topology of the space (and so the usual functional analysis tools still apply in this situation; see [START_REF] Hartmann | Free interpolation in Hardy-Orlicz spaces[END_REF] for more on this and for further references). It was not clear whether this was only a technical problem or if there existed a critical growth for © (below exponential growth © & ( ( ¦ X & corresponding to spaces) giving a breakpoint in the behavior of interpolating sequences for .

We can now affirm that this behavior in fact changes between exponential and polynomial growth. Let © be a strongly convex function with associated Hardy-Orlicz space . Assume moreover that © satisfies . Since go 8 p the elements of the sequence ¦ Q ¡ 9 are arbitrarily close and cannot be a Carleson sequence. By construction, $ 3" %R £ ¦ e& ( d£ 9 X 4 c g & ( (as before, we may possibly have to multiply ¥ with some constant T to have that condition also in the points ¨o , but this operation conserves the integrability condition), and therefore q tw yx z .

© & v @ © ( X

Corollary 1. 5 .

 5 Let be a separated non-Blaschke sequence and & ¢¡ g ( £¢ ¥¤ a sequence of positive values. Then there exists a non-zero function © & ¡ ( with £ U& ( d£ h ¡ Y , B

( a )

 a There exists a (positive) quasi-bounded harmonic function & such that ! & S( X & & ( for all ¡ . (b) There is a convex increasing function ¨0 c % 5 p f(

  A function is called outer if it can be written in the form e. on ¢ ¡ and $ 3" SR ©¥ g £ 9 & ©¢ ¡ j( . Such a function is the quotient ¦ 9 S H of two bounded outer functions 9 . In particular, the weight ¥ is given by the boundary values of £ 9 S H £ . Setting ¦ $ 3" %R ¥ , we have $ 5" SR £ & ( u£ ¦ 4 c g & S( ¦ F ` This formula allows us to freely switch between assertions about outer functions and the associated measures @e ¡ . Another important family in this context are inner functions:h© such that £ £

  of the Nevanlinna class. So, assume that & s! 3) 21 T & ¡ )( majorizes ! ¤ . Then & is the Poisson integral of a positive measure e on the circle and the function (3.1) ¡ & ( ¦ F ba 7 A@

  one can show that there exists a function © & ¡ ( in the unit disk with £ U& ( u£ h ¡ Y for any if and only if is the union of a Blaschke sequence and a sequence £ for which there exists a positive harmonic function & in the unit disk with & & ¡ ( PR $ 3" %R ¡ ¤ for all £ . Then the result follows from Theorem 1.4.

  4. Let ! o k¦ ! !# go and ¡ do 0 ¦ w ¢ & ¡ a ! o e e ( . If e % , then F a ¨© ! & ( we e & S( ¦ V o # Q F vo ¨ §¦ go T 9 ¨o © ! o w& ( e e & ( ¦

  t0 © ¡ . Then the intervals o ¥ d9 are all disjoint; however 4 ¡ ¤£ # & A ( ¡ C o & o ¥ d9 ( 9 , so that condition (7.1) will fail (the sum is comparable to ¢ ¨).

  & W$ 5" SR £ ( 8 9 , this condition fails, so that ! admits no harmonic majorant. However, £ Q & ( ( & ( $ 5" SR ( ( 9 ¡ ¢ # & w& ( £ 9 & ( ( ( , thus £ 9 & ( ( & ( ¡ ¢ # & ( 9 3 ¡ , and £ 9 & ( ( & ( $ 5" SR ( ( 9 3 ¡ . Therefore equation (7.5) becomes

£ 9

 9 ( 5 and this choice of ! does satisfy the necessary condition given in Proposition 1.8.To prove the second statement in the Lemma, choose ¡ ¢ 0 ¦ A . With similar but easier calcula- condition fails for ! , even though ! satisfies the necessary condition in Propo- sition 1.7.8. PROOFS OF THE GEOMETRIC CONDITIONSProof of Corollary 1.11. Since n 7 ¢ ¡ 0 0£ ! ¤ & 7 e( ' $ 5" SR £ D¦ e& ( u£ 9 r 5 t 5 to prove (a) and (b) it suffices to apply condition (a) of Corollary 1.10. Statement (c) follows from the next Lemma applied to ! ¤ . Lemma 8.1. Let ! 0 S¡ 8 @9 T satisfy i W¢ a & A w £ U£ ( ! & ( h fp . Then ! admits a quasi-bounded harmonic majorant. Proof. Let ¥ ¦ i ! & ( ¨. By assumption ¥ £ 9 & ©¢ ¡ j( and obviously £ ! X ¥ , hence the result follows from Corollary 1.10(b) and Theorem 1.3. Parts (b) and (c) also follow directly from Theorem 1.2(d), by a simple argument based on the

  tion, for any & rq ( I ä© there exists ¡ ¢ such that ¡ & ( ¦ uq U . Thus, if & v U& ( ( I ¢ v£ , the sequence of values & rq U E U& ( ( can be interpolated by ¡ ¢ . It is then clear that w yx gz T n w yx z . Free interpolation for these classes entails the existence of nonzero functions vanishing on all except a given Q . Hence the Blaschke condition i £¢ ¥¤ & A £ d l£ d( h fp is necessary and will be assumed throughout this paper. We say that a Borel measurable function ! defined on the unit disk admits a positive harmonic majorant if and only if there exists a positive harmonic function & on the unit disk such that & & ( (' ! & ( for any ¡ . Let ! 0) 21 a& ¡ ( denote the space of harmonic functions in ¡ and ! 3) 21 T & ¡ ( the subspace of its positive functions. Consider also the Poisson kernel in ¡ :

	¦	Given the Blaschke product ¦ ¤ v¦ ¨ § £¢ ¥¤ © ¤ © . Here © 1¦ & £ d l£ ( & ( & A ( 9 . Define then with zero-sequence , denote ¦ t¦ ! ¤ & ( )0 ¦ " # $ $ 3" SR £ ¦ e& ( d£ 9 if ¦ t	¦ ¤ ¦
		4 & 65 87 e( ¦ 4 & 7 e( ¦	Re 9 7 A@ 7 CB	¦ A £ d £ H £ D7 £ H x

% if G Definition.

  T & ¡ ( quasi-bounded 0 H& & ( P' $ 5" SR gT £ £ 5 U t gx

	(c) ! ¤ admits a quasi-bounded harmonic majorant. (d) $ 32 54 o 7 © y §¦ ©¨ ¢ ¤ V ! " $# go T ! ¤ & ( ¦ % , where % & W ( denotes the set of nonegative sequences UT such that w Y ¢ £ba i £¢ ¤ T 4 e& 7 e( X A . (e) (i) y & $' Q ( & y 7 )¢ ¡ 0 0£ ! ¤ & 7 e( ' ( Y( )h qp , and (ii) $ 32 54 o 7 © i £¢ ¤ T o ! ¤ & ( ¦ % for any sequence of sequences of nonnegative numbers UT o % & W ( such that $ 32 54 o 7 © i £¢ ¥¤ T o 4 & 7 e( ¦

% almost everywhere on ¢ ¡ .

  The Poisson balayage (or swept-out function) of a finite positive measure We will be interested in the class of measures having bounded balayage. Recall that Carleson measures are those finite positive measures whose balayage has bounded mean oscillation (see & e ( such that F a & & ( e e & ( X Q & & % ( for any positive harmonic function in the unit disk ¡ . Let ! be a nonnegative Borel function on the unit disk ¡ . The following statements

	Define	% q0 ¦ u e positive Borel measures on ¡ such that w Y ¢ ¥ba ¦ & e ( & 7 e( X	A gx
	Theorem 1.4. are equivalent: (a) There exists a (positive) harmonic function & such that ! & S( X (b) There exists a constant Q ¦ Q & ! ( such that w ¢ F a ! & ( we e & ( X Q x	& & S( for all ¡ .
		e in the closed unit disk is defined as ¦ & e ( & 7 e( ¦ F a 4 & 7 e( e e & S( 7 )¢ ¡ @x	

[Gar81, Theorem VI.1.6, p. 229]); this is also an easy consequence of the 9 -BMO duality (see

[START_REF] Garnett | Bounded analytic functions[END_REF] Theorem VI.4.4, p. 245]

). Hence positive measures with bounded balayage form a subclass of the usual Carleson measures. It is easy to see (cf. Section 6) that positive measures with bounded balayage are precisely those which operate against positive harmonic functions, that is, those measures e for which there exists a constant Q ¦ Q The necessity of condition (b) is obvious (e. g. Q ¦ & & % ( ), while the sufficiency follows from a convenient version of a classical result in Convex Analysis, known as Minkowski-Farkas Lemma. The characterization of interpolating sequences in the Nevanlinna class in dual terms given by condition (d) in Theorem 1.2 follows from this result.

  Condition (b) is inspired by a characterization of quasi-bounded harmonic functions given in Armitage and Gardiner's book [ArGa, Theorem 1.3.9, p. 10].

	(d) (i) y & $' Q ( & y (ii) $ 32 54 o 7 © F a ! e e o I¦ % for any sequence e o gn % such that $ 32 54 7 )¢ ¡ 0 0£ ! & 7 e( ' ( Y( h vp , and o 7 © ¦ & e o ( & everywhere on ¢ ¡ ,	7 e( ¦ % almost
	that © ! admits a harmonic majorant on ¡ ; (c) $ 32 54 o 7 © w ¢ F # go W ! e e ¦ % .	8 c % 5 p f( with $ 32 34 & 7 © ¨& ( ( ( ¦	@ p such

  £ 9 & ¢ ¡ ( then Gw yx gz T (and hence Gw yx gz

		).
	Notice that the necessary conditions obtained by replacing ! ¤ by £ ! ¤ in (a) also hold. This in an immediate consequence of the estimate ! ¤ ' £ ! ¤ .
	This result implies the following Carleson-type conditions. Corollary 1.11. (a) If q tw yx z T , then $ 52 34 4 4 7 @9 & (1.3) A £ d l£ d( $ 3" SR £ D¦ e& ( u£ 9 ¦ % x (b) If q tw yx z , then w W¢ ¤ & A £ d l£ d( $ 3" SR £ D¦ e& ( u£ 9 h qp x (1.4)
	(c) If is Blaschke and	V W¢ ¤ & A £ d l£ d( $ 3" SR £ D¦ e& ( u£ 9 h fp 5

  Observe that the hyperbolic diameter of each Whitney square ¥ o ¥ ¢ is bounded between two absolute constants.We split the sequence into four pieces: ¤¦ §¦ ©¨`¤ 9 `such that each piece `lies in a union of dyadic squares that are uniformly separated from each other. More precisely, set

	Proof of the necessity of 1.3 (c) and 1.2 (c). We will use a dyadic partition of the disk: for any in ¡ , let (4.1) o ¥ ¢ 0 ¦ s EX acb 0 gf c C ED ¤£ wC o o ( 5 % X £ h C o x 5 C ED & £ @ A ( C and the associated Whitney partition in "dyadic squares": (4.2) ¥ o ¥ ¢ 0 ¦ u dV YX cb 0 X cb o ¥ ¢ 5 A C o X fV h A C o 9 gx
	9 ¦ ! ¥ 9 5 o ¥ H is given by ¥ H where the family ¥ 9 ¢ o ¥ ¢ (for the remaining three sequences we respectively choose ¥ H o ¥ H ¢ T 9 o ¥ ¢ , ¥ H o T 9 ¥ H ¢ o ¥ ¢ and ¥ H o T 9 ¥ H ¢ T 9 o ¥ ¢ ). In order to avoid technical difficulties we count only those ¥ containing points of (in case ! ¥ is empty there is nothing to prove).
	bounded ¡ ( and ¡ is given by (3.1) with & & ( 5 ¡ 5 , £ 9 & ©¢ ¡ ( , such that positive harmonic function & ¦ 4 c g $ 3" %R ¥ $# £ © & ( u£ X and therefore an outer function T , where ¦ ¡ £¢ & e e ¦ 1e ¡ , such that ¥ $# £ © e& ( d£ ' £ & ( u£ 5 ¡ x
	Proof. We shall use the intervals	introduced in (1.2). In [NPT, p. 124, lines 3 to 17], it is
	proved that the function given by	& 7 e( ¦ T Q V £¢ ¥¤ ¨& 7 e( 5
	where	

Proposition 4.1. Let be a Blaschke sequence. For any 1 & % 5 A ( , there exists a quasi-T Q is an appropriate positive constant, is suitable. At this juncture, the separation hypoth- esis made in [NPT, Lemma 4] is no longer used.

  Again, 9 is a quotient of two bounded outer functions and we can suppose that 9 is outer in t© with 9 © and 9 is singular inner.Construct in a similar way functions ¡ `, `for the sequences `, ¦ C 5 ¤£ 65 ¦¥ , and define the products ¡ ¦ § ¨`¤ 9 ¡ `and ¦ § ¨`¤ 9 `. Of course ¡ is outer in © , and is singular inner. So, whenever ¨ t Therefore, the positive harmonic function & ¦ $ 3" %R £ ¡ 1£ satisfies & & ( P'

	Since & H 5 H does not vanish and is bounded above by 1, the function $ 3" SR £ f& H 5 H harmonic function. By Harnack's inequality, there exists an absolute constant T £ is a negative ' A such that A T £ $ 5" SR £ f& H & 9 ¢ ( 5 H & 9 ¢ ( u£ 3£ X £ $ 3" %R £ f& H & S( 5 H & ( d£ 5£ X T £ $ 5" SR £ f& H & 9 ¢ ( 5 & 9 ¢ ( u£ 3£ 5 ¥ ¢ 5 H hence £ D& H & 9 ¢ ( 5 H & 9 ¢ ( d£ ¦ X £ D& H & ( 5 H & ( d£ X £ f& H & 9 ¢ ( 5 & 9 ¢ ( u£ 9 3 ¦ 5 ¥ ¢ x H This yields £ & & H 5 H ( ¦ & ¨( u£ X £ & & H 5 H ( & 9 ¢ ( u£ X £ ¦ ¤ # ( 4( & 9 ¢ ( u£ (4.4) for every ¨ t 9 ! ¥ ¢ . Let us now exploit Proposition 4.1. By construction, the sequence 9 3 In 9 is separated. Therefore, there exists an outer function 9 in the Smirnov class such that £ ¦ # ( 4( # & 9 ¢ ( d£ ' £ 9 & 9 ¢ ( d£ 5 £ ¡ x
	associated with A . Also, we can use Harnack's inequality as above to get X £ 9 & 9 ¢ ( d£ ' £ ¦ 9 & ¨( u£ for every ¨ t 9 ¢¡ ¥ ¢ . This together with (4.4) and our definition of 9 ¢ give £ D¦ ¤ ¥ & ¨( u£ ' £ ¦ ¤ # & 9 ¢ ( d£ ¦ £ D¦ ¤ # ( 4( & 9 ¢ ( u£ § w£ D¦ # ( 4( # & 9 ¢ ( u£ ' £ & & H 5 H ( ¦ & ¨( d£ § w£ ¦ 9 & ¨( d£ for every ¨ ¥ ¢ and ¥ ¢ ¥ 9 . Set ¡ 9 ¦ & & H 9 ( ¦ and 9 ¦ 5 ¦ H ; by construction, ¡ 9 is outer with ¡ 9 © 10 ). Take 9 ¥ 2 such that " ¦ £ D¦ # ( & 9 ( d£ . Assume now that f tw yx z . Since © n £ , there exists a function 9 such that 9 & ( ¦ " 3 % if 9 3 dx # $ A if 9 , there exists £ A 5 C 5 ¤£ 65 ¦¥ such that ¨ G ¢ , and hence (4.5)
	By the Riesz-Smirnov factorization we have (4.3) 9 ¦ ¦ ¤ # ( 4( & 9 & H 5 where 5 H is singular inner, & 9 is some function in © and & H 5 H is outer in t© . Again, we can assume & ` © X A , ¦ A 5 C . Hence A ¦ £ 9 & 9 ¢ ( d£ X £ D¦ ¤ # ( 4( & 9 ¢ ( d£ § A £ D& H & 9 ¢ ( 5 & 9 ¢ ( d£ 5 H and £ ¦ ¤ # ( 4( & 9 ¢ ( d£ ' £ D& H & 9 ¢ ( 5 H & 9 ¢ ( d£ 5 £ ¡ x

£¢ ¤ $# &% ' )( £ D¦ & ( d£ (note that we consider the entire Blaschke product ¦ X A £ D¦ e& ( u£ ' £ ¡ ¢ & ( ¢ & ( d£ ' £ ¡ & ( & ( d£ x

  ¡ H@ he e ¢ which obviously satisfies 4 dc fe Cg & ( ' $ 3" %R T £ £ , t %R T £ £ . The Radon-Nikodym decomposition of e is given by e e ¦ e ¡ @ fe e £ , where £ 9 & ¢ ¡ ( is positive and e ¡ By definition, is outer inT and © ¦ . Clearly, $ 3" %R T £ £ X $ 3" SR £ © & ( u£ , thus £ £ X £ © & ( d£. Since £ is ideal by assumption, there exists Q interpolating & v g ( . 6. HARMONIC MAJORANTS AND MEASURES WITH BOUNDED BALAYAGE Let us start by proving that positive measures with bounded balayage are precisely those which operate against positive harmonic functions. Recall that % & e ( & The next result is a refined version of Theorem 1.4 stated in the introduction. Let ! be a nonnegative Borel function on the unit disk. Then there exists a harmonic function & such that & & ( P' ! & ( for any ¡ if and only if

	Assume that & W g ( £ and that written as ¦ 9 w& H H ( , where 9 t© , 9 © is such that & ( ¦ g X A , H is singular inner with associated , f . Since can be singular measure e ¡ , and H t© is an outer function with H © X A , we can define the positive finite measure e ¦ $ 5" SR & A £ H £ ( we . Conversely, suppose that & W e ( is such that there is a positive finite measure e with 4 c De Cg & ( ' Theorem 6.2. (6.1) £ 0 ¦ w ¢ F a ! e e h fp x $ 3" is a positive finite singular measure. Let be the singular inner function associated with e ¡ , and let Furthermore, £ i¦ 2 5x & & % ( )0 & ! 3) 21 u& ¡ )( 5 & ' ! x be the function defined by U& ( ¦ ¡ ¢ 9 F ` a 7 A@ 7 & 7 e( we ¡ & 7 e( B 5 ¡ x 7 e( ¦ ¡ a 4 & 7 ( e e & That (6.1) is necessary is clear from the above considerations. In order to prove that it is sufficient, we will reduce ourselves to a discrete version of it. We will use the dyadic squares introduced in (4.2). As in the previous section, choose a point o ¥ ¢ in each square, say & ¥ o ¥ ¢ ( ¦ o ¥ ¢ 0 ¦ & C o ( ¡ £¢ & C dD £ wC o ( x A Observe that by Harnack's inequality, there exists a universal constant such that : if 65 ¨lie in the same Whitney square ¥ o ¥ ¢ (as defined in (4.2)), then 9 4 ¥ & 7 ( X 4 & 7 ( X 4 ¥ & 7 e( , for any 7 )¢ ¡ . 7 e( and % q0 ¦ u e positive Borel measures on ¡ such that w Y ¢ ¥ba ¦ & e ( & 7 e( X Lemma 6.3. The function ! satisfies condition (6.1) if and only if there exists a constant £ ¨ such that for any sequence of nonnegative coefficients UT ao ¥ ¢ such that A gx (6.2)
	Proposition 6.1. Let balayage uniformly bounded by w Y ¢ £ba ¦ & e ( & 7 e( ¦ y T . Furthermore, the relevant constants are related: T R % such that ¤ F a & e e 0 & t! 0) 21 T & ¡ ( 5 8& & % ( ¦ A ¦¥ 5	e has
	and for any positive harmonic function & , & & % ( ¦ 4 ) ¢ ¢ F a & e e x Proof. Let & ¦ 4 dc 7 g , where 7 ' % is a measure on ¢ ¡ . If e F a & & ( e e & ( ¦ F ba F a 4 & 7 e( e e & ( e 07 & 7 ( X T 7 & ©¢ ¡ ( ¦ T has balayage bounded by & & % ( x Conversely, since ¨ § 8 4 & 7 e( is a harmonic function for any fixed 7 , ¡ a 4 & 7 e( we e & ( is pointwise T , defined. Pick a sequence 7 o such that $ 52 34 o 7 © F a 4 & 7 o ( we e & S( ¦ w Y ¢ £ba F a 4 & 7 e( we e & S( 5 where the supremum on the right hand side might a priori be infinite. Since the set & 0 ¦ & ! 0) 1 T & ¡ )( t0 & & % ( ¦ A is uniformly bounded on compact sets in ¡ , a normal family argument shows that y ¡ a & e e 0 6& & I h p . Observe that the mapping © § 8 4 & 7 o ( is in & for every 7 o , ¡ . Hence w o ¡ a 4 & 7 o ( e e & ( )h fp .
	This proves that	

e be a positive Borel measure on the disk. Then ¡ a & e e is finite for any positive harmonic function & on the disk if and only if there exists some e has bounded balayage, and the equalities between constants that we had announced.

  ( . Part (i) holds whenever ! admits a harmonic majorant, be it quasi-bounded or not (see Proposition 1.7), while (ii) follows from the dominated convergence theorem.Since e o t % , their Carleson norms are uniformly bounded by some Q Q R % . We apply the direct part of [Gar81, Lemma I.5.5, p. 32] to ! ; the lemma is stated for harmonic functions, but harmonicity plays no role in the proof of the direct part. We obtain

	Proof of Theorem 1.6. & a( ¡ &
	& d( ¢ & c( . We proceed by contradiction. Suppose that there exist 1 R % and a sequence of measures e o % o such that (6.4) F !# go W ! e e o ' 1 ux Let £ e o ¦ !# go e o . Then F ba ¦ & £ e o ( & 7 ( e ¡ & 7 e( ¦ £ e o y& ¡ ( ¦ e o & y ! ' Y( x
	£ e o w& ¡ ( ¦ e o & y ! ' Y( X T 9 Q Q & 8 £ ! ' s Y( X T 9 Q Q Q by (d) (i). Since the sequence & ¦ & £ e o ( ( o tends to % in £ 9 & ¢ ¡ )( , some subsequence must tend to % 5 almost everywhere, and applying (d) (ii) to that subsequence, we find a contradiction with (6.4). & c( ¤ & b( . We define a function ¨on 9 T by ¨& ( ( ¦ ¨o & ( ( ¦ So ( @ © o for ( c 5 @ A g 5

d

  Since $ 32 34 o ¡ Eo ¦ % , we can choose an increasing sequence & W eo ( such that $ 52 34 io l So ¤¦ p , but ¨o R % for ' A , Q ¦ % and & ¡ go ( o # 9 is an increasing sequence of positive numbers tending to infinity fast enough so that i o 6# 9 A % ¨o h fp . In order to prove (a) let & Q be a harmonic majorant of ¨© ! . Each ! o

	Define ! o 0 ¦ ! ¤ ¡ ¨ §¦ ¤ ¡ ¤	#	; thus £ ¨© ! ¦ i o £ ¨o ©	! o .
	The following Lemma is due to Alexander Borichev.
	Lemma 6.6. There exists an absolute constant Q SR % such that whenever ! ' % is bounded and ! X & for some & ! 0) 1 T & ¡ ( , then there exists £ & & ! 0) 21 T & ¡ ( quasi-bounded such that ! X £ and F ` a £ & & 7 e( e ¡ & 7 e( ¦ £ & & % ( X Q & & % ( x
	is then bounded and quasi-bounded such that majorized by & Q % ¨o , hence by applying the previous lemma we find £ & o ! o X £ & o and £ & o w& % ( X Q & Q & % ( % ¨o . The series £ & 0 ¦ i £ & o converges in & o ' % for £ 9 & ©¢ ¡ 1( , since £ all and
			So	So	9 ( ¡ Eo x
	i o 6# 9 & v So & b( ¨ & a( . First notice that ¨can be replaced by a function £ So 9 ( ¡ do h qp , and we are done. ¨X ¨with the same properties
	as ¨and the additional explicit description: £ ¨& ( ( ¦ £ ¨o & ( ( ¦ So ( @ © o	' ¨o ( for ( c go	5 eo T 9 g

where So '

  o ¥ ¢ ( x Any positive function ! such that ! o ¥ ¢ 0 ¦ w

	¡ ¥£ ! satisfies (7.1) admits a harmonic majorant. On the other hand, the positive harmonic function § 8 4 & A ( does not satisfy (7.1) for certain choices of
	For any interval	, let £
	. We write % is to be chosen. This measure is absolutely continuous with respect to arc length. e £ e 0 ¦ Q H £ £¢ $ e ¡ & 7 e( C@ ` a $ e e ¦ e £ e 9 @ e £ e 5 H where Q H R The function we are looking for is £ & 0 ¦ 4 dc £ e g . Indeed, let ¡ and suppose that there exist a dyadic interval n & , maximal among the dyadic intervals contained in & , such that (6.5) F ¢ 4 & 7 e( e & 7 e( ' A Q H x Then clearly £ & & S( ' £ ' ! & ( . We claim that if is such that (6.5) does not hold for any maximal dyadic interval n & , then £ & & S( ' & & S( , which will finish the proof.
	Under that assumption, since the level sets of the Poisson integral in (6.5) are arcs of circles connecting the extremities of £

be the interval of same center and triple length, and let £ & 0 ¦ ¡ £ , where the union is taken over all the dyadic intervals included in & 0 ¦ ¡ o & o , where they make a fixed angle with ¢ ¡ depending on Q H , we must have £ 7 £ h' T ¥¤ & ( for any 7 and any maximal dyadic subinterval of & , so that Corollary 7.2.

¨.

  11, Corollary 7.2 and Proposition 1.8 imply the following result. For ¥ ¦ ¥ o ¥ ¢ , write & ¥ ( ¦ o ¥ ¢ (the radial projection of the square to an arc of the circle). Assume that is contained in a union ¨of Whitney squares ¥ of center & ¥ (

	Corollary 7.3. and that

  ¨9 , ä© duality. %R £ ¦ e& ( d£ 9 behaves asymptotically like $ 5" SR £ D¦ ¤ ¢ & ( u£ 9 in £ Y ¡¢ (here `). Also, we can assume that the sequence is radial (this means that we replace the initial sequence by one which is in a uniform pseudo-hyperbolic neighborhood of the initial one; by Harnack's inequality such a perturbation does not change substantially the behavior of positive harmonic functions). This and Theorem 1.3 prove the assertion. The proof for the Nevanlinna class is even simpler. Set e e ¦¥ ¦ 1 9 , the Dirac mass on A ¢ ¡ . SR T £ © & ( d£ ¦ F a $ 5" SR T £ © & ( u£ e e ¤ & ( X F a & & ( we e ¤ & ( h qp x Finally, to prove that (b) implies (c), suppose that (c) doesn't hold, i.e. , there exists £ 9 & ¢ ¡ ( such that ¡ ba ¡ ¤ ¦ p . Taking an outer function © T with $ 3" SR £ © p£ ¦ 4 c g Proof of Naftalevič's theorem. Assume that is contained in a finite union of Stolz angles and (1.4) holds. By Proposition 1.12, w yx z , hence the trace £ is given by the majorization condition of Theorem 1.2(b). Taking as majorizing function the Poisson integral of the sum of the Dirac masses at the vertices, we see that £ ¥ Na . Conversely, if £ ¦ ¥ Na then the trace is ideal, so is free interpolating and by Corollary 1.11(b) (1.4) holds. According to Theorem 1.2(b) and the definition of ¥ Na , the function This prevents & from being the Poisson integral of a finite positive measure. Assume that n v¡ is contained in the union of a family ¨of Whitney squares such that

	Proof of Proposition 1.12. It is enough to consider the case where is contained in only one Stolz angle. Indeed, if ¦ ¦ o `¤ 9 `with n £ Y ¡ , ¥ ¦ A 5 x x x 5 , and 7 ` ¦ 7 , then $ 32 54 7 Y ¡¢ ¥ ¢ ¦¥ £ ¢ £ ¦ ¤ ( Y& ( u£ ¦ A 5 ¦ b5 harmonic function & so that $ 5" SR T £ © p£ X & . Thus, taking e as in (1.6), V £¢ ¤ & A £ d l£ d( $ 3" ¡ ¤ 0 ¦ i & A £ d l£ d( 4 is unbounded. Since ¡ ¤ is lower semi-continuous, this implies that ¡ ¤ £ © & ¢ ¡ )( . Since £ © is the dual of £ 9 we see that V £¢ ¤ & A £ d l£ d( $ 3" SR £ © & ( u£ ¦ V £¢ ¤ & A £ d l£ d( F ` a 4 E t¦ F ba ¡ ¤ g¦ p 5 so (b) doesn't hold. so that $ 3" According to Corollary 1.11 it is enough to prove the sufficiency of the conditions. Let us first show that condition (1.3) implies interpolation in T . In order to construct a function £ 9 & ¢ ¡ j( meeting the requirement of Theorem 1.3(c) assume that ¦ o o n c % 5 A ( is arranged in increasing order and set £ ¡ Yo f¦ & A £ d o £ ( $ 5" SR £ D¦ ¡ & o ( d£ 9 . Clearly there exists a decreasing sequence & ¢¡ Yo ( o with £ ¡ do X ¡ do , ¡ , and $ 32 54 o ¡ do v¦ % . Now, if o v¦ ¡ , set o ¦ o 0 o T 9 , o ¦ ¡ do ¡ do T 9 , and set & 7 e( ¦ V o o & o ( ¡ & 7 e( 5 7 )¢ ¡ ix Then £ 9 & ¢ ¡ 1( , and 4 dc g & o ( ' F ¡ 4 & o 5 87 e( V ¢ ¢ & o ( & 7 e( we ¡ & 7 e( ¤ V ¢ # go ¢ & o ( A & A £ o £ ( F e ¡ & 7 ( ¦ i ¢ # go ¢ A # £ d o £ ¦ ¡ do A £ o £ ' £ ¡ do ¦ $ 5" SR £ D¦ ¡ & o ( d£ 9 x ! & ( ¦ " # $ & A £ U£ ( 9 if ¦ t % if G admits a harmonic majorant & . Let & & ( ¦ 4 dc fe hg & ( and consider the intervals ¡ ¦ u 7 )¢ ¡ 0 S £ ¡ & 7 ( gx There exist constants and Q ¡ such that e & ¡ ( PR Q ¡ for any such that & & ( ' & A £ d £ ( 9 . If is not contained in a finite union of Stolz angles, then there is an accumulation point 7 ¢ ¡ of ¨n such that ¨ n £ ¤ & 7 e( for any . Pick R ; then for ¨ ¨, ¡ ¦¥ 7 and we can construct an infinite subsequence ¨¨n ¨such that the Privalov shadows ¡ ¥ ¦¥ ¢ ¥¤ ¥ ¥ are A £ d o £ disjoint. We now give an example of a concrete separation condition implying that e ¤ has bounded
	From (1.4) we get and we finish by applying Theorem 1.2. $ 3" SR £ ¦ ¡ & o ( d£ 9 £ balayage. Proposition 8.2.	A A £ d o £	£ 4 c De §¥ g & o ( 5
	Proof of Proposition 1.13. By Corollary 1.11(c), we already know that (1.5) is a sufficient condi-tion for to be interpolating for T . Conversely, suppose that is interpolating for , that is, ! ¤ admits a harmonic majorant. Since e ¤ has bounded balayage, then ¡ a ! ¤ e e ¤ h qp , which is exactly (1.5).
	Proof of Proposition 1.14. It is obvious that (a) implies (b). If we assume (c),	e ¤ will act against
	any positive harmonic function. Suppose © . As seen in Section 5, there exists a positive

  d£ d( , where & ¥ ( is the center of ¥ and ¡ is a positive function, with ¡ & (

	Note that this covers some cases where	e ¤
	for any ¥ 5 £ ¨, ¥ ¦ £ decreasing and Then q tw yx z if and only if f tw yx z T , and if and only if F Q ¡ & ( H h fp x V C¢ ¢ & A £ d & ¥ ( u£ ( v w £¢ ¥¤ % ' $ 3" SR £ ¦ e& ( d£ 9 h fp

  The next result is a Carleson-type condition which implies boundedness of the balayage. , let & & f S( 0 ¦ ¡ 0 4 & vX cb ( I' ( . This is a disk, tangent to the unit circle at the point X `b , of radius A y& ( @ A ( . Therefore & & f S( n ¥ & vX `b 5 8Q ( ( for ( ' A , say, withWe will now compare measures satisfying the condition in Lemma 8.3, measures with bounded balayage and Carleson measures. Each set is included in the next, and the examples will show that both inclusions are strict. In particular, if we take ¢ ¦ £ ¤ , with A h X C , e Suppose that ¡ is a positive valued function such that ¡ & ( Let ¡ 9 stand for the inverse function of ¡ . Then, if we have a sequence n v¡ such that

	Lemma 8.3. Suppose that with Then One can check that e is a Carleson measure if and only if there exists a constant such that e & ¥ & vX cb 5 V ( ( X ¡ & WV ( , where ¡ is a nondecreasing function on c % 5 C ( F Q ¡ & ( H e h qp x F 9 & ( e X )1 5 § 1 R % 9 and e is a measure with bounded balayage if and only if it satisfies the condition in Lemma 8.3, which happens if and only if F 9 & ( e h fp x A is a measure with bounded balayage but it does not satisfy the condition in Lemma 8.3; if we take & ( ¦ is a Carleson A , e measure, but it does not have bounded balayage. e is a measure with bounded balayage. A discrete version of this condition is V o C o w b ¢ ¡ e & ¥ & WX cb 5 C o ( ( h vp 5 as can be checked by writing a Riemann sum. Proof. For any ( R In view of Proposition 1.13, among other things, it is interesting to understand for which separated sequences the corresponding measure e ¤ has bounded balayage. It is easy to see that this is the case when £ £ U£ ¨ £ ©Ẅ£ 3£ ' & H , ©¨ ¦ , but more is true. A £ d l£ d( 9 3 Lemma 8.4. is increasing and F Q ¡ & ( H e h qp x % Q SR % an absolute constant. Using the distribution function F a 4 & vX `b ( e e & ( ¦ F © Q e & & & f S( ( e ( X Q 9 @ F © 9 e & & & f %( ( e ( X Q 9 @ F © 9 e & ¥ & WX cb 5 8Q ( ( ( e ( X Q 9 @ F © 9 ¡ & Q ( ( e ( X Q 9 @ Q F 9 Q ¡ & ( H e h fp x £ d l£ £ ¨£ ' ¡ 9 & A £ U£ ( 5 § ¨ ¦ 5 the measure e ¤ has bounded balayage. Examples of such functions ¡ are given by s& W$ 5" SR 9 § ( 8 9 ¡ , with ¡ R % . In that case, ¡ 9 & ( ( ( & W$ 5" SR 9 & ( 9 T .
	Example 1. Let concentrated on the circles centered at the origin of radius A ¦ o be a sequence of nonnegative reals. Let e ¢¡ o C given in dual terms by be the measure F a U& S( e e ¡ & ( 0 ¦ V o 6# 9 o A C ED F IH 'P Q & & C o ( X cb ( e gf ex A One can check that e ¡ is a Carleson measure if and only if it has bounded balayage and this happens if and only if i o o h sp . Also e ¡ satisfies the condition in Lemma 8.3 if and only if i o i ¢ # go ¢ h fp . Example 2. Let be a nonnegative-valued function on the interval be the c % 5 A ( . Let e measure concentrated on the ray from the origin to A given by F a & ( e e & ( )0 ¦ F 9 Q U& ( & ( e x

e & & & f %( ( and the fact that the measure e is bounded, we get the following estimate for the balayée of e :

  v£ ( 1 ¦¥ By the proof of Lemma 8.3 for this specific value of f , we see that it will be enough to check that for some absolute constants Q 9 5 Q H Consider 6 0 ¦ s ¨ ¦ t0 e ¨ ¥ & vX cb 5 V ( . For any ¨ 6 we have& ¦¥ ( ¦ ¡ 9 & A £ d ¨£ ( X C £ f ¡ 1 R & ¨( d£ X C V f £ V 5 f @ £ V g . Sincethey are disjoint, i ¦¥ ¢ ¢¡ ¤£ & ¦¥ ( X ¦¥ %V Proof of Proposition 8.2. For each Whitney square ¥ in ¨, let & ¥ ( be the point in ! ¥ such that $ 5" SR £ D¦ & & ¥ ( ( d£ 9 ¦ q4 ) ¢ d$ 5" SR £ D¦ e& ( u£ 9 0 e t ! ¥ gx Let be the sequence formed by & ¥ ( 10 ¥ ¨ . By Lemma 8.4 the corresponding measure e ¡ has bounded balayage. Therefore, there exists a positive harmonic function & with & & & ¥ ( ( P' $ 3" %R £ ¦ & & ¥ ( ( u£ 9 if and only if V & A £ & ¥ ( d£ d( $ 3" SR £ ¦ & & ¥ ( ( u£ 9 h qp x According to condition (c) in Theorem 1.2 one deduces that f w yx z

					5
	so the intervals Using that ¡ & ( ¥ are all contained in is increasing we have w ¥ ¢ §¡ ¨£ A £ ¨£ & ¦¥ ( X	¡ ¢ w ¦¥ ¢ ¢¡ £ & ¥ ( ¥ w ¦¥ ¢ ¢¡ £ & ¥ (	X ¡ & C V ( C V x	.
	Finally,	e ¨& ¥ & vX cb	5 V ( ( ¦ V ¥ ¢ §¡ ¤£ A £ d ¨£ X w ¥ ¢ ¢¡ ¤£ A £ ©¨£ & ¦¥ (	V ¥ ¢ ¢¡ ¤£ & ¦¥ ( X ¡ & C V ( C V ¥ %V ¦ ¥ ¡ & C V ( x
	F a 4 & vX `b ( e e ¤ & ( ¦ &	. Then A £ U£ ( 4 e& vX cb ( @ F a 4 & WX cb ( e e ¨& ( X	Q @ F a 4 & vX cb ( e e ¨& ( x
			e ¨& ¥ & vX cb	, one has 5 V ( ( X Q 9 ¡ &	Q H	V ( 5 for % h V h C x

c

  Q . The standard example in this setting is © & ( ( ¦ ( for ¢ R A . We have the following result. Let © t0 9 8 c % 5 p f( be a strongly convex function such that (9.1) holds. If there exists a positive weight £ 9 & ©¢ ¡ ( such that © © £ 9 & ¢ ¡ ( and ! ¤ X 4 c g , then Gw yx gz The reasoning carried out in Section 3 leads to an interpolating function of the form ¡ £¢ & ¡ ( , with © , and ¦ & C @ ¡ ( H outer in for all ¢ h A (note that the measure e defining ¡ here is absolutely continuous, in fact e ¦ e ¡ ). Also, n SR £ ¡ £¢ ¡ £ ( ¦ ¡ © © h p so that ¡ ¢ & ¡ ( We give an example of an interpolating sequence for which is not Carleson, thus justifying our claim that there is a breakpoint between Hardy-Orlicz spaces verifying the H -condition and those that do not. Consider the functions © and let Q ¦ u o o n v¡ be a Carleson sequence verifying o ©! ¢ ¦ , where ao are the arcs defined in (1.2). Since i o & A £ o £ d( hh p , there exists a strictly increasing sequence of positive numbers & ¡ yo ( o ( go h p and £ 9 & ¢ ¡ j( since ¢ R A . Associate with Q a second Carleson sequence 9 ¦ ¨o o such that the pseudo-hyperbolic distance between 30 A. HARTMANN, X. MASSANEDA, A. NICOLAU, P. THOMAS corresponding points satisfies £ © ¥ ¡ & o ( d£ ¦ X

	# ¡
	T %& Theorem 9.1. ¡ & ( ¦ F ba 7 A@ (9.1) for some fixed constant T ' A and for all 7 & © & v ( @ © & © ( ( 5 5 © ' 7 ( e ¡ & 7 e( x on © . By construction, algebra, we deduce that ¡ £¢ & ¡ ( such that i o & for any ¢ R % by our conditions . Since is an A k £ o £ d( go h p and $ 32 54 o 7 © go ¦ p . Setting ¦ V o 9 3 o ¡ 5 we obtain ¡ © © ¦ i o & A £ o £ d¤ ¢ ¡

( . Proof. Note first that (9.1) implies that is an algebra contained in T , hence it is sufficient to interpolate bounded sequences (see Remark 1.1). As in Section 3, we set ¡ © & W$ 5" . Example 9.2. ¦ , ¦ £

& & ( ¦ 4 dc fe hg & ( ¦ F ba 4 & 7 ( we e & 7 e( x

We will say that a harmonic function is quasi-bounded if and only if it admits an absolutely continuous boundary measure (for the reasons for this terminology, see [He69,). The analogous result for the Smirnov class will, as can be expected, involve quasi-bounded harmonic functions.
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WEAKER CONDITIONS FOR THE EXISTENCE OF HARMONIC MAJORANTS

In this section we state first a sufficient condition implied by a result of Borichev on a similar problem. On the other hand, we also prove the necessary condition of Proposition 1.8 and show that it is not sufficient.

Theorem 7.1 (BNT). Given a collection of nonnegative data ! o ¥ ¢ In 9 T , there exists a finite positive measure 7 on

if and only if

This is an analogue of the discretized version of Theorem 1.2(d), (as in Lemma 6.3) obtained by considering only measures of type A £ U£ ( ? Theorem 7.1 together with the estimate £ 4 provide a sufficient (but not necessary) con- dition for domination by true harmonic functions, which is clearly less restrictive than requiring that £ ! £ 9 & ©¢ ¡ ( , but easier to check in concrete examples than the characterizing condition of Theorem 1.4.