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Abstract: Nowadays, the complex manufacturing processes have to be dynamically 
modelled and controlled to optimise the diagnosis and the maintenance strategies. The 
work reported here presents a methodology for developing Dynamic Bayesian Networks 
(DBN) to formalise such complex dynamic models. A small valve system then is used 
to compare the reliability estimations obtained by the proposed DBN model and by the 
classical Markov Chain.  
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1. INTRODUCTION 

 
One of the main challenges of the Extended Enterprise is to dynamically maintain and optimise the quality of the 
services delivered by industrial objects along their life cycle. The goal is thus to design decision-making aid 
systems for maintaining the system in operation. Nevertheless, most of current automated systems do not 
provide the means for intelligent interpretation of information copying with large process disturbances. 
Moreover, the state of the system may not be known exactly before making the decision. This imperfect 
perception argues in favour of using a probabilistic estimation of the system state. As described in (Boutillier, et 
al., 1999), tools issued from Artificial Intelligence can be used to bring decision-making aid for manufacturing 
systems. 
 
Works on system safety and Bayesian Networks (BNs) have recently been developed (Kang and Golay, 1999). 
Bobbio, et al., (2001), explain how the Fault Tree can be achieved using BNs. Moreover, Weber, et al., (2001), 
propose a model based decision allowing the fault diagnosis using the system functioning and dysfunctioning 
analyses. The solutions proposed in these last papers are based on a static probabilistic model of the system. To 
improve the decision making during the diagnosis, our goal is to define a dynamic model of the process 
behaviour. This model should allow computing state probability distributions by taking into account the 
component age and the last executed maintenance operations. 
 
The purpose of this paper is to introduce Dynamic Bayesian Networks (DBNs) as an equivalent model to the 
Markov Chains (MCs) (Gertsbakh, 2000; Padhraic, 1997). The problems considered are those involving systems 
whose dynamics can be modelled as stochastic processes and where the decision maker’s actions influence the 
system behaviour. The current system state and the applied action jointly determine the probability distribution 
over the next states. The proposed paper is a first study dedicated to the comparison of MCs and DBNs for the 



estimation of system reliability. Section 2 presents the MC model and the fast growing of its state cardinality 
with respect to the complexity of the modelled system. The methodology proposed in this paper is an original 
formalisation of a system reliability model (section 4) by means of DBNs (section 3). A simulation of a classical 
system is developed in section 5 to compare MC and DBN models. Finally, section 6 presents the conclusions 
and perspectives. 
 
 

2. PROBLEM STATEMENT 
 
In order to take the uncertainty into account, it is possible to consider the process state as a random variable that 
takes its values from a finite state space corresponding to the possible process states. A MC allows modelling the 
dynamics of sequences taken by these states (Boutillier, et al., 1999).  
 
 
2.1. The Markov Chain notations 
 
The notations concerning MC modelling are defined in this section. Let X  a discrete random variable modelling 
a process with a finite number of mutually exclusive states{ }Mss ,...1 . The vector x  then denotes a probability 

distribution over these states: 
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Assuming that the system evolves in states, where the occurrence of an event marks the transition of a state (k) to 
the next state (k+1), then the process produces the sequence ),,...,( 110 kk xxxx −  that can be modelled as a MC if:  
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The Markov property makes it possible to specify the statistical relationship among states as a transition 
probability matrix PMC. If the transition probabilities pij are time independent then the MC is said to be 
homogeneous.  
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2.2. Application to reliability 
 
The reliability of a system with a low complexity level can be modelled as MC. This method leads to a graphic 
representation (Gertsbakh, 2000, pp. 116). For instance, considering the reliability of a component (entity), it is 
modelled by a discrete random variable X  with states{ }fo ss , , os  (operational state) and fs  (failure state) 

indicating if the component is up or down. To model the reliability, the transition probability matrix between the 
states os  and fs  is defined as follows: 
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where λ  represents the failure rate (considered as constant). 
 



 
2.3. Problem to model complex process 
 
The MC method is well suited to calculate the reliability of low complexity entity/system. However, within the 
framework of complex systems, the combinatorial explosion of states makes MC unmanageable. To decrease 
the complexity of the Markov model, the hypothesis (a) that there is no simultaneous occurrence of failure is 
assumed. This hypothesis simplifies considerably the Markov graph but leads to an approximation of the system 
reliability. Even more hypotheses are assumed in practice to reduce the complexity, as for example, the 
hypothesis (b) that assumes events statistically independent. In that case, methods based on Faults Tree (FT) are 
used. Unfortunately, this hypothesis is not respected when commune causes are taking into account, or when 
there are several failure causes for the same component. In the following, a method coupling in a unique 
representation these two approaches (MC, FT) without the hypotheses (a, b) is presented. This method is based 
on Dynamic Bayesian Networks. 
 
 

3. BAYESIAN NETWORK THEORY 
 
BNs are probabilistic networks based on graph theory. Each node represents a variable and arcs indicate direct 
probabilistic relations between the connected nodes. Variables are defined over several states. The DBNs allow 
taking time into account by defining different nodes to model variables with respect to different time slices. 
 
 
3.1. The Bayesian Network notations 
 
BNs are directed acyclic graphs used to represent uncertain knowledge in Artificial Intelligence (Jensen, 1996). 
A BN is defined as a pair: G=((N, A),P), where (N,A) represents the graph; “N” is a set of nodes; “A” is a set of 
arcs; P represents the set of conditional probability distributions that quantify the probabilistic dependencies. 
A discrete random variable X  is represented by a node Nn∈  with a finite number of mutually exclusive states. 

States are defined on a state space { }n
M

n
n ss ,...: 1S . The vector [ ]M

n ppx ...1=  denotes a probability 

distribution over these states as eq. (1), where mp  is the a priori probability of n  being in staten
ms . In the graph 

depicted in figure 1, the nodes in  and jn  are linked by an arc. If the pair Ann ji ∈),(  and Ann ij ∉),(  

then in  is considered as a parent of jn . The parent set of a node jn  is defined as ij nnpa =)( . 
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Fig. 1. A basic BN. 
 
In this work, the set P is represented with Conditional Probability Tables (CPT). Then, each node has an 

associated CPT. For instance, in figure 1, the nodes in  and jn  are defined over the states { }ii
i
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n ss ,...: 1S . Then, the CPT of jn  is defined by the conditional probabilities )( ij nnp  over each jn  state 

knowing its parents states (in ). This CPT is defined as a matrix:  
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Concerning the root nodes, i.e. without parent, the CPT just contains a row describing the a priori probability of 
each state. 
 
Various inference algorithms can be used to compute marginal probabilities, the most classical one relying on 
the use of a junction tree (more explications can be found in (Jensen, 1996, pp. 76). Inference in BN allows 
taking into account any state variable observation (an event) for the updating of the probabilities of each 
variable. In other words, inference computes node probability distributions knowing the state of one or several 



variables. Without any event observation, the computation is based on a priori probabilities. As observations are 
made, the knowledge is incorporated in the network and the probabilities over the process states are updated. 
 
Knowledge is formalised as evidence. An hard evidence (instantiation) of the random variable X  is an evidence 

that the state of the node Nn∈  is one of the states { }n
M

n
n ss ,...: 1S . For instance X  is in state ns1 : 1)( 1 == nsnp  

and 0)( 1 == ≠
n
msnp . Nevertheless knowledge can be uncertain. Then soft evidence is introduced (Valtora, et al., 

2002). A soft evidence for a node n  is defined as any evidence that enables to update the prior probability 

values for the states of n . For instance X  is in state ns1  and n
Ms  with the same probability and not in the other 

states: 5.0)( 1 == nsnp , 5.0)( == n
Msnp  and ( ) 0)( ,1 == ≠

n
Mmsnp . 

 
 
3.2. Dynamic Bayesian Network 
 
A DBN is a BN including a temporal dimension. This new dimension is managed by time-indexed random 

variables. iX  is represented at time step k by a node Nn ki ∈),(  with a finite number of states { }ii
i

n
M

n
n ss ,...: 1S . 

in
kx  denotes the probability distribution over these states at time step k. Several time stages are represented by 

several sets of nodes 0N ,… kN . kN  includes all the random variables relative to the time slice k (Hung, et al., 

1999; Boutillier, et al., 1999, pp. 38-45). 
 
An arc linking two variables belonging to different time slices represents a temporal probabilistic dependence 
between these variables. Then DBN allow to model random variables and their impacts on the future distribution 
of other variables. Defining these impacts as transition-probabilities between the states of the variable at time 
step k and time step k+1, these transition-probabilities lead to define CPTs relative to inter-time slices, 
equivalent to CPT defined in the previous section (eq. (5)). With this model, the future (k+1) is conditionally 
independent of the past given the present (k), which means that the CPT ))(( 1,1, ++ kiki npanP  respects the 

Markov properties (Kjaerulff, 1995). Moreover, this CPT is equivalent to the Markovian model of the variable 

iX  described in the section 2.1 if kiki nnpa ,1, )( =+  and 
1,, +

=
kiki nn SS . 
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Starting from an observed situation at time step k=0, the probability distribution in
kx  over in  states is computed 

by the DBN inference. To compute in
Tkx + , several solutions are proposed in the literature. One of them consists 

in developing T time slices, obtaining then a network size growing proportionally to T (Kjaerulff, 1995). Another 
solution, which keeps a compact network form, is based on iterative inferences. This solution is used in the 
following. The notion of time is introduced through inference. Indeed, it is possible to compute the probability 
distribution of any variable iX  at time step k+1 based on the probabilities corresponding to time step k. The 

probability distributions at time step k+2… are computed using successive inferences. Then a network with only 
two time slices is defined. The first slice contains the nodes corresponding to the current time step (k), the second 
one those of the following time step (k+1). Observations, introduced as hard evidence or probability 
distributions, are only realised in the current time slice. The time increment is carried out by setting the 
computed marginal probabilities of the node at time step k+1 as observations for its corresponding node in the 
previous time slice. 
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Fig. 2. A DBN for the random variable Xi. 
 
 



4. DBN TO MODEL RELIABILITY 
 
 
4.1. Dynamic Bayesian Networks to model entities 
 
The reliability of low complexity component can be modelled as a DBN made of two nodes as presented in 
figure 2. An MC model of the reliability of a component iX  is easily translated into a DBN model. Thus 

independent components (entities) of the process are modelled using DBN equivalent to independent MC. For 
instance, as it is defined in section 2.2, a component is modelled by a discrete random variable X  with 
states{ }fo ss , . Then two nodes are defined to model the random variable at time slice (k) and (k+1): ),( kin  and 

)1,( +kin . These nodes, linked by an arc that represents the dependency of the component states at time step k+1 to 

the component states at the time step k, are both described by the states { }fo ss , .  

 

Equations (4) and (6) define the CPT )( ,1, kiki nn +P  linking the two time slices. The parameters are those defined 

to build the MC model of the component. To calculate )( 1,
11,

+=+
kin

ki snp  the probability that the variable iX  is 

in the state ns1  at (k+1), the following equation is used: 
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Equation (7) corresponds to the classical formula of the discrete model of the MC. 
 
 
4.2. BN to model dependant failure modes 
 
A Fault Tree (FT) allows describing the logic of the propagation of the failure throw the system. This method 
allows to model the reliability of the system assuming the hypothesis of independence of the events (failures) 
affecting the entities. The paper (Bobbio, et al., 2001) showed the equivalence between FTs and BNs. The CPT 
is then defined automatically by OR/AND gate. These CPTs are given a priori, and the parameters are for most 
of them equal to 0 or 1. However, it is possible to introduce uncertainty by setting parameters different to 0 or 1.  
 
Moreover, thanks to the CPTs, BNs can model the propagation on a system that has several failure modes. It is 
then possible to synthetically represent, with a factorised representation, a system composed by entities with 
several failure modes. The hypothesis of independence of events (failures) made for FT is not necessary. Indeed, 
BNs allow calculating exact repercussion of dependant variables to the system reliability.  
 
 

5. APPLICATION 
 
The method is applied to a classical example of reliability analysis. This example easily allows comparing the 
proposed method based on DBNs to the one using MCs. 
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Fig. 3. Valve system. 
 
 
 
 
 
 



Figure 3 describes the system. Three valves are used to distribute or not a fluid. Every valve has two failure 
modes: remains closed (RC) or remains opened (RO) while it is controlled. The failure rates are the following:  
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Fig. 4. MC model of the system. 
 

 
 

Fig. 5. (a) DBN model – (b) CPT for V1(k+1) – (c) Deterministic CPT for Fluid Distribution – (d) System reliability  
 



Figure 4 depicts graphically the MC model of this system. As it is shown by the figure, 25 states 1s … 25s  are 

necessary to model this system: states 1s  to 11s  are states for which the system is available in spite of the 

degradation due to some failures; states 12s  to 25s  correspond to states where the system is unavailable due to 

the combination of failures. The transition matrix PMC defined the probability related to the different states 

1s … 25s . An equivalent model of this MC is realised by means of the DBN depicted in Figure 5.a. The state 

probabilities of the components Vi (k) (current time step) can be extracted without any difficulty by a simple 
shaping of values. These variables have three states: Available (OK), Remains Open (RO) or Remains Closed 
(RC). The system can then evolve according to the probability of every state and to the component failure rate 
values. The result of this degradation is modelled by the variable Vi (k+1) representing the state of the 
components at time step k+1. A CPT used to estimate the dynamic behaviour of the component reliability is 
illustrated in Figure 5.b.  
 
The propagation through the Bayesian model allows taking into account the dependency between the failure 
modes for the computation of the system reliability. Inferences are realised thanks to the BayesiaLab software 
that uses an iterative procedure (http://www.bayesia.com). BayesiaLab is used to simulate the reliability 
behaviour of the system over 2000 time steps with the DBN depicted in figure 5.d. 
 
The MC model is managed thanks to the Supercab+ software (http://www.cabinnovation.fr). The system 
reliability has to be computed as:  
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Even if the results obtained by means of DBN are very close to those obtained with the MC model, they are in 
fact more precise. Indeed, the differences are due to the approximation made in the Markov model that assumes 
that simultaneous failures can not occurred, this hypothesis being not assumed in the DBN model. 
 
 

6. CONCLUSION AND FURTHER WORK 
 
The proposed method, based on the Dynamic Bayesian Networks theory, easily allows constructing DBN 
structures for the modelling of the temporal evolution of complex systems. The correspondence between Markov 
Chain, Fault Tree and DBN is presented and applied to the estimation of the system reliability. 
 
The proposed method seems to be a solution to model the reliability of complex systems. Indeed, the number of 
states needed to model a complex system with MC increases in an exponential fashion (a state for each 
combination of elementary states). As the DBNs representation is based on the modelling of process entities, the 
obtained model is far more compact and readable than MC (compare for example the two models illustrated in 
Figure 4 and 5 that correspond to the small valve system). Furthermore, the dependency between several failure 
modes of a component and common modes are easily modelled by DBN. This paper shows then that DBNs 
constitute a very powerful tool for decision-making aid in maintenance. 
 
In a future works, in order to achieve to perform this modelling technique we have to define how the learning 
algorithms of BN can contribute to model the dynamics of the system reliability and how the parameters 
behaviour can be then modelled. 
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