

Nancy Research Centre of Automatic Control

SYSTEM APPROACH-BASED BAYESIAN NETWORK TO AID MAINTENANCE OF MANUFACTURING PROCESS

Dr Philippe WEBER, Dr Marie-Christine SUHNER, Dr Benoît IUNG

CRAN - CNRS UPRESA 7039 University of Nancy I (France) marie-christine.suhner@esstin.uhp-nancy.fr benoit.iung@cran.uhp-nancy.fr

IFAC - 6th Low Cost Automation 2001 BERLIN

CONTENT

- Motivations to develop aids for the maintenance of manufacturing process
- Bayesian Network: a solution to represent the models for maintenance aid
- From the complementary functioning-malfunctioning representation of the manufacturing process...
- ... to an unified Bayesian Network representation to aid maintenance
- **Application: aid for the maintenance of lathe machine**
- **Conclusion Prospects**

- Extended Enterprise challenge: to optimise the quality of service of the product
- Environment of the product manufacturing: not only technical but also social and economic
- Product manufacturing system more en more complex: use of Communication and Information Technologies
- Image: The unavailability cost of such manufacturing systems (indirect costs) is widely superior to the repairing costs (direct costs)

A challenge is to better master this cost / availability relation by decision-making aid successful in maintenance From a cost centre to a profit centre: integration of the maintenance as a Enterprise domain

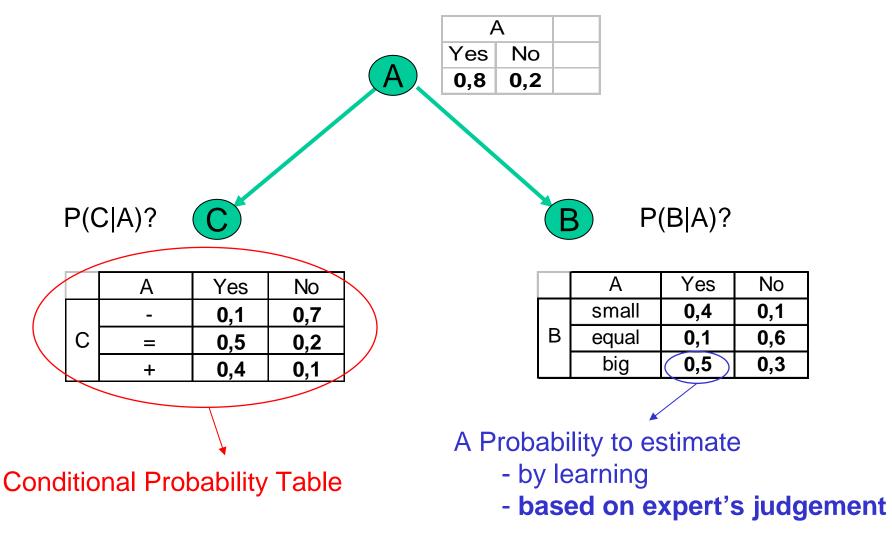
- ☑ To master the system by measures, evaluations, decision-makings either only in off-line but also on-line (as soon as possible, degradation more than failure)
- ☑ To assist the operator in his decision-making (diagnosis, prognosis...). To implement strategies integrating not only technical criteria but also economic, security, quality...
- ☑ To propose relevant models for aid and representing the required strategic knowledge

A challenge is to have models formalising this knowledge but allowing so easily to maintain it, to expand it, to reuse it... [Rao 98]

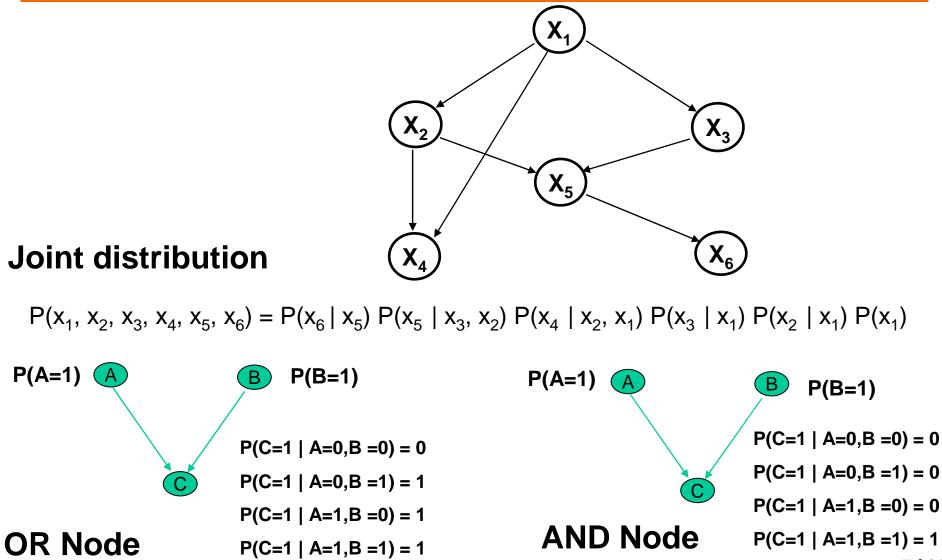
Bayesian Networks to support decisionmaking in Maintenance domain

Motivation

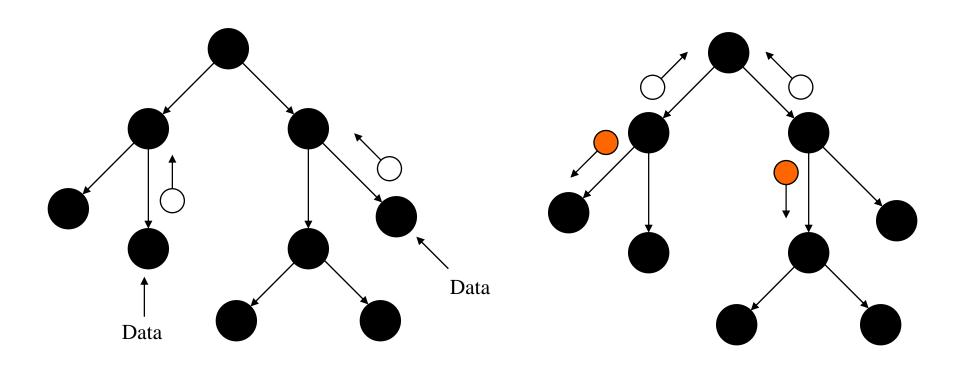
Bayesian network From... To... Application Conclusion


Why Bayesian Networks (BN) ?

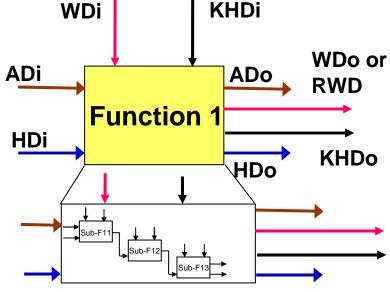
- In relation to knowledge-based systems tools, the uncertainty is handled in mathematically rigorous yet efficient and simple way
- In relation to probabilistic analysis tools, the network representation of problems use of Bayesian statistics, and the synergy between these
- Possibility to integrate some expert judgement, to extract knowledge from data...

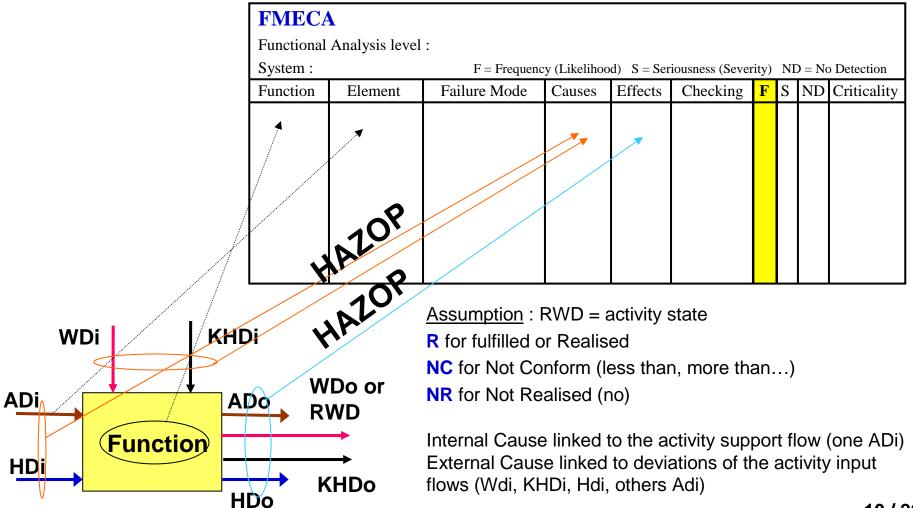

How BN are they built ?

- From a System Functioning Representation (using SADT graphical representation, system principles)
- To induce a System Malfunctioning Representation (FMECA and HAZOP study)
- By unifying functioning-malfunctioning approach in a representation in the terms of networks


What is a Bayesian Network ?

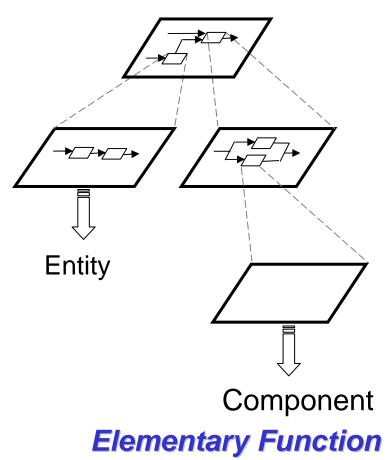
What is a Bayesian Network ?


Propagation algorithm objective

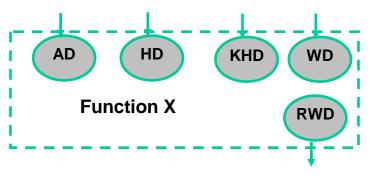

System Functioning Representation

- Duality between Functioning Malfunctioning (relation between normal and abnormal states, between functioning mode and degradation-failure)
- **Example 1** Functioning modelling (to produce):
 - finality
 - function and sub-function
 - flows
 - ⇒Having to Do (HD)
 - ⇒Knowing How to Do (KHD)
 - ⇒being Able to Do (AD)
 - ⇒Wanting to Do (WD)
 - objects
 - flow properties object properties

System Malfunctioning Representation



Bayesian Network Representation: Generic BN node structure


Motivation Bayesian network From... To...

Application Conclusion

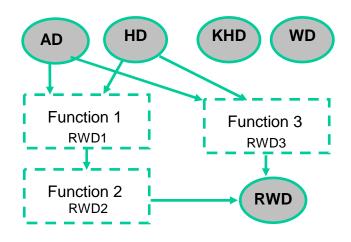
Main Function

Generic model of a function

Report on Want to Do (RWD): informational result of the Input WD transformed by the function

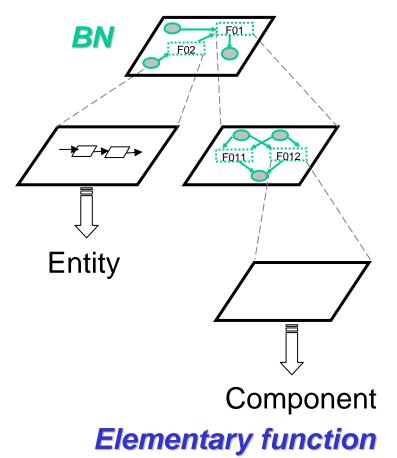
States: R NC NR

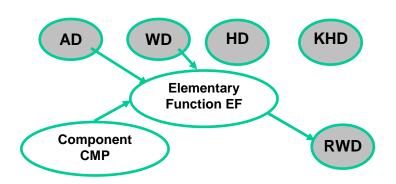
Bayesian Network Representation: Main functions


Motivation Bayesian network From... **To...** Application

Conclusion

Main Function


Higher level


Bayesian Network Representation: Elementary function

Motivation Bayesian network From... **To...** Application Conclusion

Main Function

Lower level (link with component)

Bayesian Network Representation: Component probabilities evaluation

Motivation Bayesian network From... **To...** Application

Conclusion

Node CMP

- CMP = P1 the component failure P1
- CMP = P2 the component failure P2
- CMP = OK the component working

Prior Probabilities

The computation is performed at a given mission time T Hypothesis: the component reliability is exponentially distributed

P (CMP = P1,T) = 1 - exp (- λ_{P1} T)

 λ_{P1} is the failure rate of component failure P1 $\lambda_{P1} = 1/MTBF_{P1}$

P (CMP = P2,T) = 1 - exp ($-\lambda_{P2}$ T)

 λ_{P2} is the failure rate of component failure P2

P(CMP = OK,T) = 1 - [P(CMP = P1,T) + P(CMP = P2,T)]

Bayesian Network Representation: Function probabilities evaluation

Motivation Bayesian network From... **To...** Application

Conclusion

Elementary function

AD		R			NC			NR
CMP		OK	P1	P2	OK	P1	P2	*
EF	R	1	0.2	0	0	0	0	0
	NC	0	0.8	0	1	0.2	0	0
	NR	0	0	1	0	0.8	1	1

- Image: The probabilistic dependence is included in the CPT
- Image: The dependence relations among variables in a BN are not restricted to be deterministic

Bayesian Network Representation: Prognosis strategy

Motivation Bayesian network From... **To...** Application Conclusion

Specification and design: *NO EVIDENCE*

Computation of the overall unreliability of the system:

this corresponds to computing the prior probability of the variable

P (RWD Main function=R, NR, NC)

Computation of the unreliability of each identified function:

this corresponds to computing the prior probability of the variable P (RWD Function=R, NR, NC)

Operation:

EVIDENCE: component or function NR

Propagation and estimation of posterior probabilities P(RWD Function=R, NR, NC | Evidence)

Bayesian Network Representation: Diagnostic strategy (1)

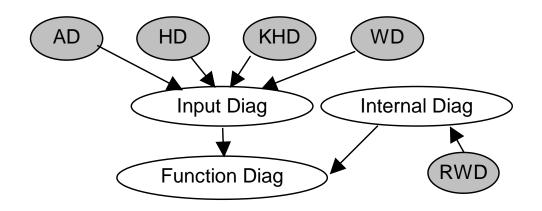
Motivation Bayesian network From... **To...** Application

Conclusion

Possibility of performing diagnostic problem-solving on the modeled system

Solution Classical diagnostic inference on a BN:

computation of the posterior marginal probability distribution on each component


Scenarios involving more variables:

- computation of the posterior joint probability distribution on subsets of components

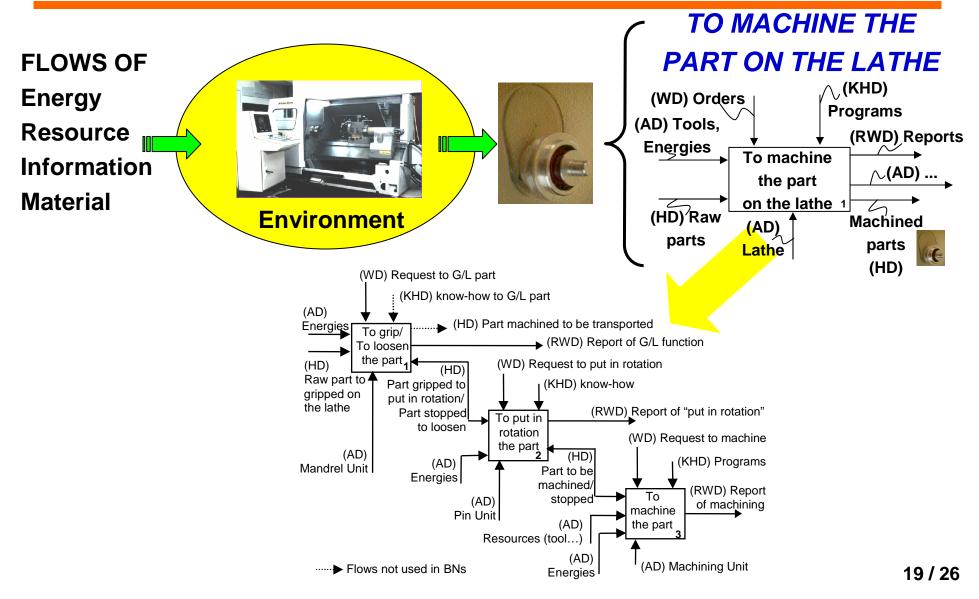
- computation of the posterior joint probability distribution on the set of all nodes, but the evidence ones

Bayesian Network Representation: Diagnostic strategy (2)

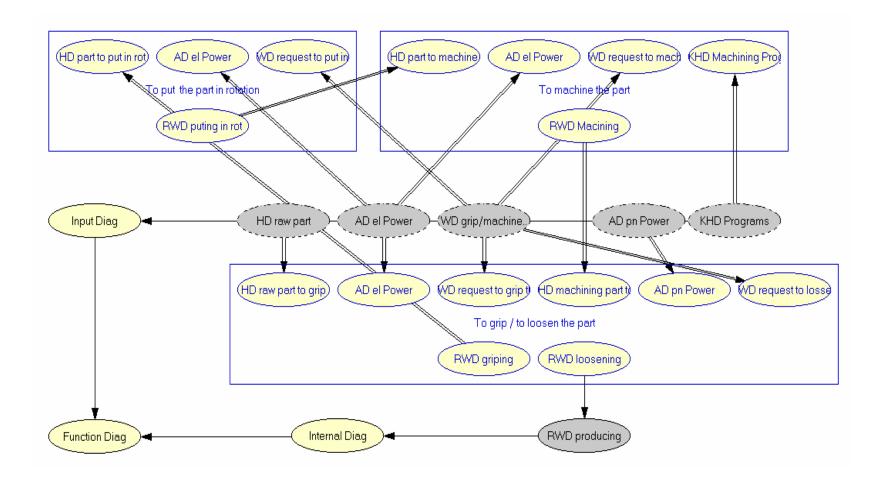
Motivation Bayesian network From... **To...** Application Conclusion

Rules to define the CPT of the node « Function Diagnosis »:

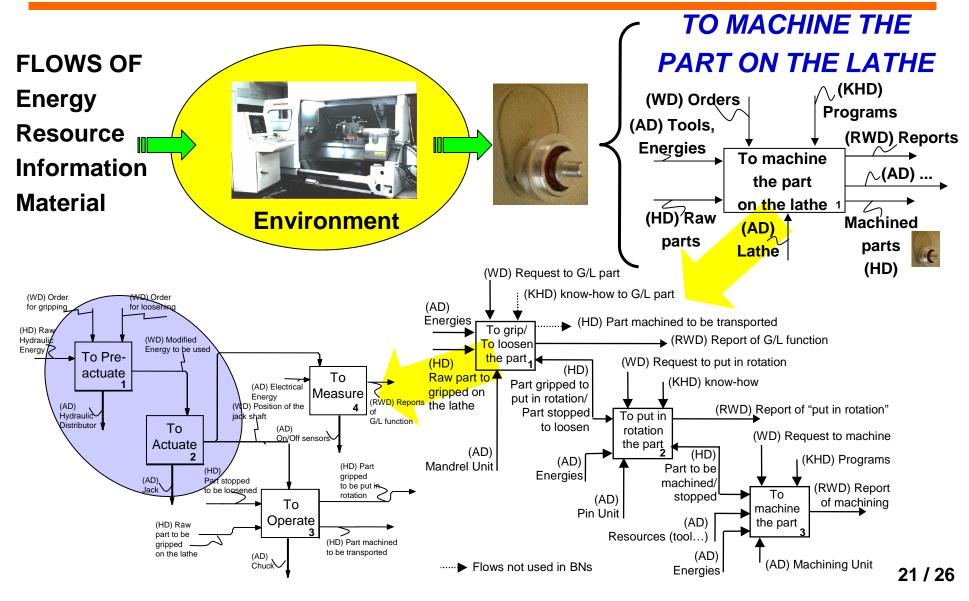
Function Diagnosis = Internal


Function Diagnosis = Upstream

Function Diagnosis = Downstream

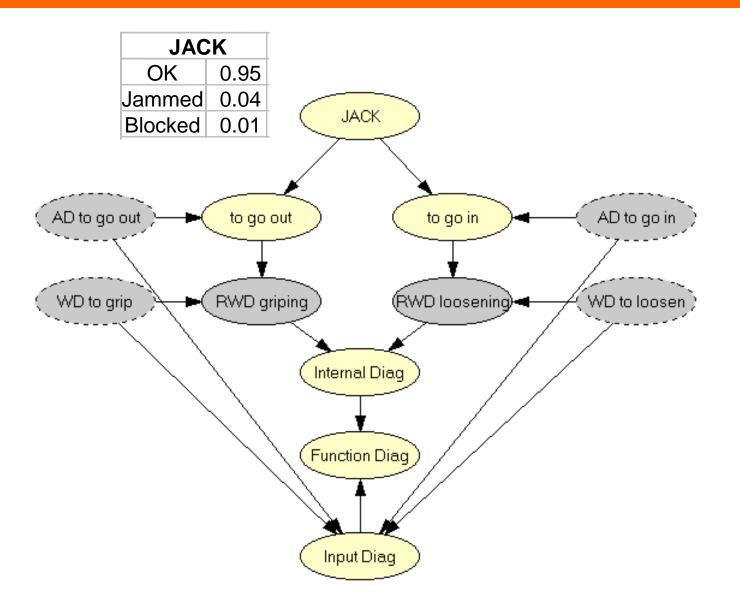

if Internal Diagnosis = NC or NR and Input Diagnosis = R if Internal Diagnosis = NC or NR and Input Diagnosis = R, NC or NR if Internal Diagnosis = R and Input Diagnosis = R

Functioning/Malfunctioning representation of the Lathe



BN of the Lathe

Functioning/Malfunctioning representation of the Lathe



Functioning/Malfunctioning representation of the Lathe

Function	Element	Failure Mode	Effects	Causes	F	S	ND
To pre-actuate	Distributor	No functioning	No modified energy (HD)	No order (WD) No input energy (HD) Distributor failed (AD)	3	2	3
To actuate	Jack	No functioning for "going in" moving	Jack shaft is not moving (HD)	Norinput energy (WD) stack blocked failed (AD)	1	4	2
utitutio		No functioning for "going out" moving	Jack shaft is not moving (HD)	No input energy (WD) Jack blocked failed (AD)	1	4	2
		Going out action is too slow	Jack shaft is moving too slow (HD)	No enough energy (WD) Jack shaft is jammed (AD)	3	2	2
		Going in action is too slow	Jack shaft is moving too slow (HD)	No enough energy (WD) Jack shaft is jammed (AD)	3	2	2
To operate	Chuck	Chuck does not grip enough	Part fell (HD)	Jack shaft is moving too slow (WD) Raw Part not conform Chuck is bad regulated (AD)	2	4	3
To measure	On/Off sensors						
Modified y to be used To Actuate (AD) Jack	(HD) Position of the jack shaft	HAZOP Study: no flo	ow, less flow than, t	oo much flow than	-		22 / 2

BN of the Lathe (elementary activity)

Motivation Bayesian network From... To... Application Conclusion

23 / 26

BN inference diagnosis of the Lathe Example

Motivation Bayesian network From... To... Application Conclusion

P (RWD Main function=NR) = 1**EVIDENCE INFERENCE To check Function Diagnosis:** P (Function Diagnosis=Internal, Upstream, Downstream) **To check Input Flows:** P (Input Flows=OK) = 1 EVIDENCE INFERENCE To check Function Diagnosis of each function: P (Function Diagnosis To grip/to loosen=Internal) = 0.6 To check Function Diagnosis of each sub-function: P (Function Diagnosis To Actuate=Internal) = 0.8 To check the state of the components of the sub-function selected: If P (Jack=Jammed) = 1 END If P (Jack=OK) = 1 EVIDENCE **INFERENCE**

To check another component, sub-function or function...

Conclusion

- BN formalises the knowledge issued both from system functioning and malfunctioning to propose a decisionmaking aid
- BN is easier to design from the generic mechanisms used in analysis phase (less the intuitive one; more explicit)
- IS BN is initialised, from the design phase, with estimated values which can be adapted in operation phase (integration of the operating experience)
- In the approach feasibility has been made on a part of the lathe tool

- It To extend the feasibility of this approach on the whole of the case study
- I To use algorithms of diagnosis dedicated to the BN
- It To implement the BN on site to be used by the operator in terms of decision-making assistance in the diagnosis field (to show its added value)
- ☑ To integrate within the BN other knowledge such as aptitudes for detection, the components costs
- It To formalise this new knowledge within the BN (network with N dimensions, N strategies) in terms of new nodes (cost nodes, decision nodes...)