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Abstract: The prospective work reported here exgdax new methodology to develop
Bayesian Network-based diagnosis and prognosis faidsnanufacturing processes.
This work is justified with the complex systems by need of controlling and
maintaining in dynamical way the global system perfances in order to optimise the
enterprise strategies. The added value of our rdetbgy is to formalise the
maintenance aid models from a priori knowledge hmththe system functioning and
malfunctioning by means of Bayesian Networks. Taavorks are built on adaptability
principles and integrate uncertainties on the im@tahips between causes and effects.
The feasibility of this methodology is tested inn@anufacturing context with the
maintenance aids on a lathe machine.

Keywords: maintenance, Bayesian Network, systemrcamh, diagnosis strategy,
prognosis strategy, FMECA.

1. INTRODUCTION

One of the main challenges of the Extended Entgps to maintain and optimise, in dynamics, thalityof
the services delivered by industrial objects alhgl their life cycle. These objects are increagirgimplex and
constrained today by societal, economical and t@oigical environments having more and more requims
During the object-manufacturing phase, the improseinof the global performances of the manufacturing
system is an issue to be solved to ensure the iggtion of the Enterprise needs. In that way, totrd the
direct and indirect costs of the system comparél e necessary availability, is a first challemgised.

The objective is thus to have maintenance processsnly in terms of decision-making aids in order t
guarantee maximum components availability keeplmgstystem in operation. These processes do notthave
aim to replace the operator but to assist himsrfiital decision-making to avoid consequences oémar in
judgement.

Today, most of current automated systems do natiggcthe means for intelligent interpretation doirmation
copying with large process disturbances (diagnasig) for predicting the consequences of a fututerac
(prognosis). However tools issued from Artificiatélligence (Khoogt al, 2000), (Hu.et al., 2000) are used
now to bring a first decision-making aid for maraitaing systems. In addition, recent works on syssafety
and Bayesian Networks (BNs) are developed (Kang @aldy, 1999). For example, Bouissat,al (1999)
propose, within the SERENE project, a hierarchi@tomposition of the decision-making model for eyst
safety analysis. As for them, Bobbat,al. (2001) explain how the Fault Tree can be achiesgig BNs.



In relation to these works, the proposed methodolws originality on formalising, by means of BN&¢tion

2), the diagnosis and prognosis aid models (se8fidrom a priori knowledge on the system.

So, issued from design, the networks are built:

- by inheriting the adaptability principles as advecaby the IMS (Intelligent Manufacturing Systems)
initiative; it is a first answer to knowledge sttuing and reusability as looked for in the expsstems,

- by incorporating uncertainties on the relationshipswveen causes and effects to be more consistént w
system reality.

To show the feasibility and the added value of firisspective methodology, an application is devetbm

section 4 on the case of maintenance aid for lathehine. Finally, in section 5, conclusions andspezts are

presented.

2. BAYESIAN NETWORK THEORY

The BNs are Directed Acyclic Graph (DAG) and usedeipresent uncertain knowledge in Artificial Ititggnce

(Jensen, 1996). A BN is defined as a pair: G=((6/eT), where (n,e) represents the DAG; “n” is acfetodes,

defined by different states; “e” is a set of diegttedges describing the probabilistic dependermédaeen
nodes. In this work, the nodes represent discratelam variables of the process. In pair G, eacheried
associated to a Conditional Probability Table (CRIjjuantify the dependencies between random Jagads

conditional probabilities. A node without parentaled a root node.

A probability is allowed to each state of the nodlbis probability is defined, a priori, for a ronbde and
computed by inference for the others. The comparta based on the probabilities of the parentestand the
CPT. For instance, two nodes A and B with eacthefit two states (Sand &) compose the BN in Fig. 1. The
a priori probabilities of the node A are defined as

A Sa1 P(A=S.)
Saz P(A=S\)

The probabilities of the states allowed to B armpoted using a CPT. This CPT is defined by the gdiy of
each B state knowing the state of A.

A Sa1 Saz
B Se1 | P(B=S1/A=Sa1) | P(B=%1|A=Sh,)
Se2 | P(B=S2|A=Sa1) | P(B=S5:lA=Sh,)

Thus to compute P(Bz3, the following eq. 1 is used:
P(B=S,)=P{B=S,/A=S,)PA=S,)
+ P(B = SBllA = SAZ)P(A = SAZ)

Fig. 1. Basic example of a BN.

1)

The added value of a BN is linked to the computatibthe probabilities allowed to a node state,vking the
state of one or several variables. If the knowledgehe process modelled by the BN is unavailahém tthe
computation is based on a priori probabilities. tdger if the knowledge is increasing, the compurtatakes it
into account and the results are adapted to theepsostate. It is then possible to estimate theadtspof a
random variable on the process.

3. MODELLING APPROACH
The proposed modelling approach consists, fromtfoning systemic analysis based on SADgraphical
representation, (a) in representing the abnormataijpn (malfunctioning) based on FME&Aand then (b) in
formalising and unifying these two results in aqu@ model by means of BNs.
3.1. From system complementary functioning-malfunctigmapresentation...

The functioning and malfunctioning of the systera dual and must be studied together to control egstem
variable (Légeret al.,1999). It leads, first, to focus on the system fioming in relation to its environment and

! Structured Analysis and Design Technique
2 Failure Mode, Effects and Criticality Analysis



its global internal and external resources. Thitoaccan be made by means ofuactioning modelling using
SADT graphical representation. This modelling isdzh on the principle adctivity and sub-activities until
elementary activities, supported by componentsearerging. Each activity (Fig. 2) fulfilsfenality, which is to
modify a “product” carried out by the manufacturisgstem. It produces or consumes flows such asiftdao
Do” (HD) materialising the Input/Output (I/O) firgl, “Knowing How to Do” (KHD) materialising the @
knowledge, “being Able to Do” (AD) representing |&Dergies, resources, activity support and findManting
to Do” (WD) materialising the I/O triggers.

WD having to KHD allowing to know

trigger activity how to do activity
AD having to be AD having to RWD Report on
used by activity be recycled the activity state
—— > in relation to WD
——p| Activity —"
HD having to ) —> Report in
be transformed HD transformed  (q|ation to KHD
by activity by activity

AD supporting the activity
Fig. 2. Flows and Activity Representation.

For example, the output flow WD is a report (RWDbatt represents the informational result of the tngD
product flow transformed by the activity.

From this functioning, the malfunctioning is inddc@._éger,et al, 1998) by considering that the relationship
between these two modes is directly linked to #lationship between the normal and abnormal stHtelse
system. The malfunctioning modelling can be madenlegns of FMEA study in order to identify the faé or
degradation modes of each activity, the elementktwhre at the failurerigin (causes) and the possible
consequences of these failures (effects).

For example, the RWD flow can take the value “fldfi or realised (R)” corresponding to the nomistate of

the activity or the values “No true to the nominalNot conform (NC)”; “Not fulfilled or Not Realigk (NR)”
requiring to identify the causes and the effedisted to these two abnormal states.

The failurecauses are either external with the activity (Infavs) or internal ones because linked to the AD
activity support flow (components). A whole of &taican be thus associated with each componente Bleges
correspond to: nominal operation (OK), breakdowrreakdown 2... In the same way, the consequences are
observable either on activity output flows or oe tinfluence of the componedegradation development on
itself (to go towards a breakdown state). To sumaufailure cause leads to a failure mode (e.gntbdification

of the function state reported in RWD), which hastect for the function not to produce nominalflHD any
more. This FMEA study is completed by a FMECA studlgere each failure mode is characterised by a
criticality (risk priority number) resulting fronhé product of the three criteria, which are theggemcy (F), the
Severity (S) and the No Detection (ND) (Suhmral.,1992).

3.2. ... to unified Bayesian Network representation

The BN is directly built from the dual functionimgéalfunctioning analysis presented above leading tmified
representation. This representation is structureda aBNs tree. Its root is a BN representing thehdst
abstraction level. The elementary activities repnéshe lowest functional levels modelled by BNs.

To keep the generic function concepts (Fig. 2)infits are modelled, in the BN, by input nodesrded the
random variables associated to the flows AD, HDK&hd WD.

From this step, simplifying assumptions are madeawy out our prospective study until a feasipilithase.
Therefore just the RWD flow is taken into accoustmaain output. This flow is an informational view the
function finality, so it is assumed to be the samehe added value on product flow representeldeirFtg. 2 by
the HD flow transformed by the activity. It is thtransferred as informational view of physical ftesorough
the input flow HD of another function. The gendtiaction represented in BN formalism is given ig.F3.

On this basis, the BNs are built in different wayecording to the abstraction level and the designept
advancement.

+ + il

Function X

b 9 ek

Fig. 3. Generic BN input and output nodes structure

The high functional level3.o model high functional levels, the BNs are congabsf generic sub-functions with



the structure defined in Fig. 3. The number of ostates is adapted and it is possible to duplesteral inputs
or outputs nodes (AD, HD...) if the function carrimst several missions. Moreover, itgessible to model sub-
functions in parallel or in series (Fig. 4).

In Fig. 4, as the generic sub-functions F1 and feZraseries, the report RWDL1 is transferred tahfaugh the
input flow HD. As the functions F2 and F3 are imglkel, a node OR is linked to RWD2 and RWD3 to porte
the RWD of the global function. In this level, ortlye connections between functions in paralleldefned as

¥ » R SR
Function 1 Function 3
RWD1 RWD3

£2

Function 2
RWD2 [———

Fig. 4. High level of the functional decomposition.

The CPT of a OR node, for two functions whose RVéb@ RWD3 are composed of three states (R, NC, NR cf
section 3.1), is defined as follows:

RWD2 R NC NR

RWD3| R | NC| NR| R | NC| NR| R| NC NR
R 1 1 1 1 0 0 1 0 0
NC 0 0 0 0 1 1 0 1 0
NR 0 0 0 0 0 0 0 0 1

The low functional level§ he last BN of a branch is based on the FMECA &gy he nodes constituting this
BN are:

« the component nodes (CMP) or a set of componemtssaccording to the model explanation,

< and elementary function nodes (EF).

The CMP are defined only in the low BN levels. Trag directly linked to the EF nodes representhrgjrt
functionality. The CMPs states are defined by taeses analysed by means of FMECA. The causesther ei
internal of the low BN level i.e. linked to CMP, ekternal i.e. linked to the input nodes. The comroauses
are defined in higher hierarchical levels and tifermation forwards by heritage between the lettisugh the
input and output nodes. There is thus duplicatitimee for the CMPs or for the external causes. ERenodes
are linked to the CMPs and the input nodes leatbingpmpute the RWD states probabilities (Fig. &alll the
EFs are realised then the RWD is realised.

Elementary
Function EF
Component

CMP

Fig. 5. Low level of the functional decomposition.

Evaluation of the probabilitiesThe FMECA analysis assigns a criterion F to theseauof failure. A probability
of occurrence is associated with F. For sake ofpkaity, only this criterion is presented. Nevertss
information such as the Severity (S) and the NoebBt&n (ND) can also be considered. On this bdhgs,
parameter F is used to determine the a priori foitibathat a CMP is in a state among a list of sas
(consideredas exhaustive). An example of F and causes is ibescbelow(with F = 2 when one failure
occurred / month, and 3 for one / week):

Failure Modes Causes Effects =
Elementary CMP failure P1 Effect 1 2
function in mode 1 CMP failure P2 Effect 2 3

The a priori probabilities associated to the CMestates in the BN are estimated for a given oippgréime
(T), for example T=2600 h / year:

P(CMP = P1) = 0.005h™ 2)
P(CMP = P2) = 0.020 h' ©)
The a priori probability of correct operation of ®\ks then deduced by:
P(CMP =0OK) =

1- (P(CMP =P1) + P(CMP =P2)) (4)

So, the a priori probabilities for each cause are:



e correct operation (OK): 0.975'h

« failure 1 (P1): 0.005h

« failure 2 (P2): 0.020h

The EF states are defined by the failure modesirfateince, the EF nodes in the BN take the follovgtates:

¢ Realised (R),

¢ Not Conform or partially realised (NC),

* Not Realised (NR).

No a priori probability is associated to theseestdiecause they are calculated according to thessté their
parents i.e. the internal causes (CMP node states}he external causes (input node states).

The CPT of the EF is defined thanks to the colunfrthe causes and the modes of the FMECA analysis.

AD R NC NR
CMP OK| P1 P2 OK| P1 PZ *
R 1 0.2 0 0 0 0 0
EF [INC| O 0.8 0 1 042 O 0
NR| O 0 1 0 08 1 1

The probabilities link the causes to the EF modiéscertheless the power of the BNs representatiadhas a
combination of causes (for instance AD=R and CMPBP=@dn lead to several failure modes with different
probabilities allowing then to model the uncertgint

A prognosis modellhe BN model defined above allows the analysidhefdegradation influences on the flows
produced by the activity. This analysis is basedhensimulation of a component failure, a commoumseaor an
unconformity of a sub-function. The objective isftmecast the impacts of failures on the functidhss then
possible to analyse the upstream and downstrearseqaences on the whole system. For example, if a
component failure is supposed, an evidence is e@fas for instance P(CMP=P1) = 1. Then the proitiakil
associated to sub-functions are updated after tis Biference. The RWD of each function relates fiiture
impacts on each functional level. Thus in a degipase, the BN model allows to aid the designerign h
decision-making by the estimation of the varioupaits of the solutions (Weber and Suhner, 2001).

3.3. Diagnosis

The diagnosis process tries to determine the onfithe degradations or the failures. Based onotheerved
situation, the causality represented as a reldiigtveen the activities leads to determingernal cause or
COMmMOon cause.

Principle. After an observation of a failure mode on the pss¢dhe evidences are defined in the BN. These
modes correspond in states R, NC or NR of the obdewariables. The BN's inference computes the
probabilities of the unobserved variables statesriter to determine the most probable causes. @abhsecwith

the most significant probability is suspected. Thause indicates the component, which is, a piaod
according to the knowledge, the origin of the obedrfailure mode. It is then necessary to checktdte. If the
component is at the origin of the failure, then di@gnosis is finished. Otherwise, the knowledgeaissidered

as not enough sufficient. In this case, the compbgtate is taken into account as new evidenceaaother
BN'’s inference determines a new cause.

Diagnosis aid with BN modelling.o facilitate the investigation into the most prbleacause, the diagnosis is
fulfilled using the hierarchical decomposition betBNs model. So, a solution consists in inserdiagnosis
nodes for each functional level to specify taase location as: internal, upstream or downstream from thelleve
The “Input Diagnosis” node is connected to the tnpades of the function and defines if they arefaoms to
carry out the mission. The “Internal Diagnosis” aadd connected to the RWD flows to evaluate ifrtigsion is
carried out (RWD) (Fig. 6). The states of thesgya@sis nodes are: R, NC and NR.

Input Diag Internal Dlag

Fig. 6. Diagnosis aid nodes.



“Input Diagnosis” node and “Internal Diagnosis” modre connected to the “Function Diagnosis” nodeltieg

in the cause location.

The rules allowing to define the CPT of the “FuantDiagnosis” node are the following:

e The cause location isiternal if the function is not correctly realised (Interiziagnosis=NC or NR) and
the input nodes are conform to carry out the misgioput Diagnosis=R).

* The cause location ispstream if the input nodes are not conform to carry oug tmission (Input
Diagnosis=NC or NR), independently to the intemtiagnostic.

* The cause location ownstream if the mission is carried out (Internal Diagno$®=and the input nodes
are conform to carry out the mission (Input DiagseR).

4. APPLICATION

The application chosen to test the feasibility lné approach is a lathe. Its functional analysisiiies and
flows) of which the level AO is presented in Figi§,composed of three main functions (to grip/tosien the
part, to put in rotation the part, to machine thetp

(WD) Request to G/L part

:(KHD) know-how to G/L part

(AD) v .
Energl;ri Togipl | » (HD) Part machined to be transported

To loosen f——————————»(RWD) Report of G/L function
(HD) the part (¢ o) (WD) Request to put in rotation
Raw Fe’g"f 0 ® part gripped to (KHD) know-how
gripped on put in rotation/| l
the lathe Part stopped - (RWD) Report of “put in rotation”
— To put in
to loosen .
rotation (WD) Request to machine
(AD) the part D)
Mandrel Unit B (A_D) Part to l l(KHD) Programs
nergies Hined)
machin (RWD) Report
(AD) stop To of machining
Pin Unit machine ———»
(AD) the part |- )
Resources (toal, ...) (HD) Turning
of Lo
-~ Flows not used in BNs Enelggiez (AD) Machining Unit

Fig. 7. Level 0 of the lathe function analysis.

Each function is broken down into one level at teabowing to make the link by a “physical support
mechanism” with the real components of the lath&tesy. For example, the function “to grip/to looses”
broken down into elementary generic functions sashpre-actuate”, “actuate”. The function “pre-asf is
supported by a distributor and the function “acldly a jack.

4.1. BN’'s Model

The software used to build BNs model is Serene:
(web link: http://www.hugin.dk/sereng/

Level O: Function “Lathe”(Fig. 8). The BN represents high level of the tioal decomposition of the lathe.
Input nodes are grey: AD (electric and pneumatiwgrd, WD (request to transform), KHD (programs)d &D
(the raw part).

Table 1. Part of FMECA analysis on the functionttmte” supported by a jack.

Function | Element Failure Modes Effects Causes F |S |ND
To Actuate | JACK |No functioning folJack shaft is not moving fdiNo energy to make'going i’ action|1 |4 | 2
Gripping / “going i” moving  |“going in’ (HD) (WD) or Jack is Blocked (AD)

Loosening No functioning folJack shaft is not moving fdiNo energy to maké going ouf action|1 |4 | 2
“going out moving |“going out (HD) (WD) or Jack is Blocked (AD)
“Going out action igJack shaft is moving 00 sloyNot enough energy fdfgoing out action|3 |2 | 2
too slow for " going out action (HD) (WD) or Jack shaft is Jammed (AD)
“Going i’ action igJack shaft is moving 00 sloyNot enough energy fotgoing in actiofi |3 |2 | 2
too slow for "going in action (HD) (WD) or Jack shaft is Jammed (AD)




WD

1D partto maching] { AD el Fower

To machmpan

HD Machining Froj

I

4§ . HD raw part ‘\7( . AD el Power ‘}(V—VD grlpfma:hmé 4 . AD pn Power W)\H —KHD ngrams‘)

HD raw partta grip, WD reguestto grip D rachining part i

AD partto putin ral AD el Power

SRy
o put the partin rotedon
\ X——*"'

RWD puting in rat

request to put i

RWD Macining

Input Diag

AD pn Power

AD el Power

D requestto lossg

To grip / to loosen the part

FWD griping FWD loogening

- m RwWD producing

Fig. 8. Level 0: High BN.

Function Diag

The sub-functions are represented as sub BN (franmetks), input nodes are linked to power, programs,
requests, raw part and the output represents thB R¥W of the sub-function. The function “to grip/toosen

the part” is considered as composed of two subtfoms. The inputs and the outputs of this functorrespond

to gripping or loosening according to the stat¢éhefpart. There is duplication of the input nodé€s &hd output
nodes RWD, nevertheless any cycle is made in thveonks thanks to the tree decomposition adopted.

Level 012: Function “Actuate(Fig. 9).The BN presents the low functional level given bg EMECA analysis
of the sub-function “actuate”. The Fig. 9 represdhe component “JACK” and its different EF: “goimj and

“going out”. These EF are linked to the “pneumattisver” and the “JACK”. The “Internal and Input diazsis
nodes” are linked to the “Function Diagnosis” node.

Internal Diag

Function Diag

Input Diag

Fig. 9. Level 012: Actuate BN.

First inference.The a priori probabilities associated to the statbEshe variables representing the parts are
calculated with an inference of the BN. The HD @avts and RWD of each sub-function are presentdabie

2. Thus according to the characteristics of reliigbiised for the components, and as output of ldtlse, 65.5%

of the parts are machined correctly, 22.7% of thespare machined but with no conformities, and%lare not
machined. This calculation is carried out accordmghe quality of the raw parts. Then the raw ganaichined

in conformity knowing the raw parts in state R efmachining, are 72.8%.

4.2. BN inference Diagnosis
The diagnosis starts when the “RWD producing” i imo conformity or not realised. Let us develop the

diagnosis whose scenario is the following: on el 0 of the general function, the RWD producisgot in
conformity NC.



Initially, input flows (power electric, pneumatiand raw parts) are checked. The checking lead®nsider
these flows as all in conformity (state R).
The Function Diagnosis nodes of each sub-functfdhelevel 0 are examined after the BN inference:

Diagnosis To grip/ | To putin To

To loosen rotation machine
Internal 0.6438 0 0.7122
Upstream 0.3562 0 0
Downstream 0 1 0.2878

The function suspected is a priori “To machine plagts” because the probability of “Internal diagebss the
strongest. Thus the low level of this function isecked. The states of the variables representiagltments
implied are observed and taken the following states

LATHE TOOL
OK 1 OK 0.2878
HS 0 Wear 0.7122
Broken 0

It is a priori “TOOL” abnormal wear which is thewse of the no conformity of the parts. The diagndsi
coherent; the LATHE is not incremented becausdlaréaof the LATHE leads to parts in the state NIt us
suppose that the checking of the tool shows thatQK. Then the evidence is added to the knowledge

TOOL
OK 1
Weal 0
Broken 0

The states of BN are updated and a new inferermgopes a new diagnosis taking account the newnaton.
The procedure thus consists in going at the hibieat level higher (i.e. the level 0). In this cadiee failure
mode is caused only from the sub-function “To grgploosen”:

Diagnosis To grip/ To put in To
To loosen rotation machine
Internal 1 0 0
Upstream 0 1 1
Downstream 0 0 0

On the level “To grip/To loosen”, the diagnosis asaf sub-functions indicate that the failure ig doi the sub-
function “To actuate”. Within this sub-function gtftomponent “JACK” is the cause:

JACK
OK 0
Jammed 1
Blocked 0
Table 2. First inference.
HD RWD
Raw Pai Grippinc Putting in rotatio| Machininc Loosenint Producint
R 0.90( 0.85¢ 0.84% 0.74¢ 0.65¢ 0.65¢
NC 0.07¢ 0.05¢ 0.06( 0.142 0.227 0.227
NR 0.02¢ 0.C88 0.09: 0.111 0.117 0.117

5. CONCLUSION AND FURTHER WORK

The proposed model based on the functioning andunmaloning studies carried out when design makes i
possible to build easily the structure of the BMisTstructure is based on several levels of aligtracarried out
from a generic formalism.

The phase of quantification of the BN is based lu& dccurrence probability criterion of the FMECAher
translation of the FMECA criterion F makes it pbésito obtain prior probabilities. This assessmwlithave to
be updated by the data of operating feedback ¢etleduring the exploitation of the system, for epsarby
using Bayesian approach (Suhnet, al., 1997). Thus, the operating feedback will enablergtine the
probabilities contained in the CPT by learning.

It is also necessary to associate with all proltaslan uncertainty in order to undertake studiesensitivity.



The use of the network in order to simulate thedotf a failure on the total performance of thstem is easy.
The networks can also be used in design to valittseeffectiveness of the corrective actions sugges
following the FMECA analysis.

During the exploitation of the system, it is effeetto use BN for the diagnosis. The strategy desdrhere is
only based on the probabilities of occurrences lhécessary to improve it by taking account otleeameters:
aptitude of detection, costs of the components...

The taking into account of the economic aspectlss® possible in the BN formalism while adding tee th
network, nodes of costs (e.g. costs related tad#tection of a failure) and nodes of decision (sttategy of
maintenance).

BNs constitute a powerful tool for decision-maki@ig in maintenance. The model combines a priorr@ggh
in design and a posteriori approach in operation.

It remains to improve the automatic generation bfsBstarting from model SADT and FMECA analysisislt
also necessary to validate the model by applyitg & real system in order to show industrial fieiisy and to
confirm its added value compared to the traditiamahputerised decision-making systems.
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