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SHAPE MINIMIZATION OF DENDRITIC ATTENUATION

ANTOINE HENROT AND YANNICK PRIVAT

ABSTRACT. What is the optimal shape of a dendrite? Of course, optiynadifers to
some particular criterion. In this paper, we look at the adseedendrite sealed at one end
and connected at the other end to a soma. The electricaltigbtierthe fiber follows the
classical cable equations as established by W. Rall. Wenggeested in the shape of the
dendrite which minimizes either the attenuation in timehaf potential or the attenuation
in space. In both cases, we prove that the cylindrical stepptimal.

1. INTRODUCTION

1.1. Motivation. Is Nature always looking for optimum for living organismsf par-
ticular, are the organs designed to optimize some crit@ri@omplete answers to these
guestions are likely never to be discovered. Neverthedsssjming that Nature proceeds
in the most efficient way, can lead to a better understandirigeomodeling of an organ
and the underlying physical or chemical phenomena. Thisissdea ofinverse modeling
that we had in mind when we began this work. Roughly spealirogn be described by
the following steps:

i Letus consider a given organ of a living body.
i Write a mathematical model which describes the behavidhis organ.
iii Imagine a (numerical) criterion that Nature would likee @ptimize for this organ.
iv Determine the optimal shape for this criterion and thisdelo
v Compare with the real shape(s).

If the optimal and the real shapes coincide, we can guesstianhodel and our criterion

are relevant. If they do not, we must admit that either outedn or our model (or

the initial guess that Nature looks for optimum) is probablpng. We believe that it

will often be the choice of the criterion which is not corred possible reason is the
complexity of Nature. This complexity indicates that, imgeal, there is not a unique
criterion to optimize but several ones (which could alsom@gonists). The mathematical
study (point 4 in the above procedure) becomes then much difficelt since one needs
to use tools of multi-criteria optimization.

In this paper, we want to follow the above procedure in the cds dendrite. We consider
a fiber which is sealed at its right end and connected to a sarta laft end. We use
the classical cable equation to describe the electricamnial along the fiber. What are
the criterions that we can consider here? Of course, we w@ntiéndrite to propagate
the best as possible the electrical signal. In other termesattenuation of the signal must
be as small as possible. We are going to consider the two kihgessible attenuation:
attenuation in time or in space and we are looking for the shape of a dendrite which
minimizes this attenuation. In both cases, the optimal shiagt we get is a cylinder. Since
itis very close to the real shape, at first sight, we can calecthat Nature is in accordance
with mathematics for this problem and solves a shape opitioiz problem! For a general
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2 ANTOINE HENROT AND YANNICK PRIVAT

reference in mathematical modeling in Neuroscience, wer rief the book of A. Scott,
[E]. For a more exhaustive view and an introduction to thaue of shapes (and, in
particular, optimal shapes) in Nature, we refer to the adasbooks of S. Hildebrandt and
A. Tromba, [§] and A. Bejan[]2].

1.2. The mathematical model. Let us consider a fiber with a cylindrical symmetry, of
length? and radius:(z) at pointz. We denote by(z, t) the difference from rest of the
membrane potential at pointand timet. The equation satisfied hy(x, ¢) is similar to
the classical cable equation as established by W. Rall gtinie sixties, cf [13],[[14],[}4]-
See also,|E6] as the best motivation of the current studycdvisider here the case of a
fiber which is sealed at its right end and connected to a sothsswiface ared ; at its left
end. Let us denote bR, the axial resistance {kcm), C,, is the membrane capacitance
(uFlc?), G, the fiber membrane conductance aRgthe soma membrane conductance
(mS/cnt). We assume that the fiber is initially at rest and that it kexsea transient current
stimulusi at the left. The parabolic equation satisfied:big then (see|]4]):

2}%@%(042%):@\/14’0/2 (Cm%+GmU) $€(076)7t>0
@ ] TRE20.0) = A (CnB0,1) + Go(0,1) — o) £50
%(€7t):0 t>0
v(z,0) =0 z € (0,0).

Itis convenient to represent solution of ﬂ), in terms of eigenfunctions as did S. Cox and
J. Raol in [}]:

“+o0
(2) v(z,t) =Y Pn(t)dn(z) € (0,0),t>0
n=0
whereg,, is then-th eigenfunction associated to the eigenvalye
—(a*¢),)" = pn aV1+ a2y z € (0,0)
(3) 2 a?(0)¢4,(0) + (pn +7)6n(0) = 0
Pn(f) =0

wherey := 2R, (G,, — G;) is assumed to be non negative. We choose to normalize the
eigenfunctions by

14
@ 60112 := 4620 + [ alo)y/TF @016 (x)do = 1.
0
whereA = 2=, Of course the eigen-paiy,, ¢,) strongly depends on the tapefz)

so we will often denote it by, (a), ¢n(a)). The eigenvalue problerfi](3) is not classical
since the eigenvalue appears in the boundary conditioma&rﬂz for more precisions.

Inserting the decompositioﬁl (2) in the equatiﬂn (1) givesminary differential equation
satisfied by, (t). After resolution, we get:

+oo
(5) 0@, 1) = S G (0)n () g 5 €Mt
=1

27C,, -

pn+2R.G

where),, = o >0 (see Lemm@.l) anddenotes the convolution product of

distributions.

1.3. The optimization problems. We need now to give a precise statement to the opti-
mization problems presented in the introduction. In thappse, we have to choose the
functions we want to optimize and the class of functiafis) in competition. Let us begin
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with this last point. Since the fiber must not collapse, itatunal to assume a lower bound
for the functionsi(x), so we fix a positive constant and we impose:

(6) Ve e [0,0], a(x)>ap>0.

Now the minimal regularity needed faris clearly, according to systerfi (1) d] (3) that
the derivativer’ exists (at least almost everywhere) and is bounded, so wesetto work

in the class of Lipschitz continuous functions which is ofteenoted by *>°(0, ¢). At
last, we also need to put a constraint on the "cost” for Natarkuild a fiber. It seems
reasonable to consider that this cost is proportional testhiéace area of the fiber. This
surface area is clearly given by

0
(7) Surface area 277/ a(x)y/1+ a?(z)dx
0

SO we can assume a bound, sayon this surface area. To summarize, we consider the
class of functions(z) defined by:

8) Agys:= {a € Wh>(0,¢), a(z) > ao and /Z a(x)\/1+ a?(z)dx < S} .
0

Of course, we need to assurfie> a¢ in order that the clasd,,, s be non trivial.

As explained in the Introduction, an "ideal” dendrite sttbabnduct in the best possible
way the electrical information he is supposed to transnnitother terms, the attenuation
of the signal must be minimized. Since the potentidepends on the space and the time
variable, we can consider both criterions.

1.3.1. Attenuation in spaceLet us introduce the transfer functi@hdefined by :
J7% (0, t)dt
[P, tydt

T'(a) corresponds to the ratio of the mean values in time of thenpiades taken at points
x = 0 andx = /. This ratio is always greater than one, see Rer@k 3.1 ang®a
indicator of the attenuation of the signal between the twioesities of the dendrite. So,
it is realistic to look for a tapet(z) which yields a ratio as close to one as possible:

(10) Finda in the classA,, s which minimizesT'(a).

9) T(a) :=

1.3.2. Attenuation in time.According to expansion[kS), the potentialz,t) goes to 0
whent — +o0. More precisely, its asymptotic behavior is described by

1

o $1(0)¢1 (x) dg + e~

v(z,t) ~ 5

where); := %723:% > 0 andus(a) is the first eigenvalue 0ﬂ(3). Therefore, as it

is classical in such parabolic problems, it seems naturaldo for a functiona () which
minimizes the exponential rate of decay:

(11) Finda € A,, s which minimizesu, (a) (the first eigenvalue ofk3)).

The idea of minimizing eigenvalues of such Sturm-Liouvijgerators is a long story and
goes back at least to M. Krein iﬂlO], see alﬂo [7] for a reviewsuch problems.

1.3.3. The main result.We state in the following Theorem the main results of thisgvap

Theorem 1.1. i The unique minimizer of the eigenvaluga) in the classA4,, s is
the constant function = ag.
i The unique minimizer of the criteridA(a) in the classA4,, s is the constant func-
tiona = aop.
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In other terms, for both criterions, the optimal shape of adiite sealed at one end and
connected to a soma at the other end is the cylindrical one!

In his thesis and in a foregoing paper, se¢ [11], [12], these@uthor studies the case of a
dendrite sealed at both ends. From a mathematical poineaf, i changes the boundary
conditions in (1) and[{3) which become homogeneous Neumanndary conditions at
both extremities. The result he obtains is the same for the ohattenuation in space, but
it is different for the attenuation in time. Actually, theieno existence of a minimizer
for p1(a) (as usual in the Neumann cagg(a) = 0 andu, (a) denotes the first non-zero
eigenvalue). Moreover, he is able to exhibit minimizingweences which would produce
very strange dendrites!

1.4. Notation. The set of notation used in this paper is summarized in titisose

Whee(0,¢) the set of Lipschitz continuous functions defined on therirat0, ¢].
the class of functions defined by

Aas,s {a. € W(0,0), a(x) > a0, f; ala)y/ T+ a@)ds < 5}.

norm defined on the space of bounded functibg0, £) by

[R[Es

1flloc = supiejo g 1/ (£)]-
. inner product defined for '[V\;O continuous functighandg by:
’ < f.9>a= Af(0)g(0) + [5 a(z)y/T+a”(x) f(2)g()dz.
Il norminduced by< .,. >,.
& completion of the space of continuous functi@iif, ¢]) for the norm||.||,.
L?(0,¢) the space of (classes of) functions which are square-iaidgon(0, ¢).
HY(0,0) the Sobolev space of functions ¥ (0, /) whose derivative (in the sense

of distributions) lies inL.2(0, £).

ateaux-derivative of a functiof at pointyy in directionk defined by:
» Gateaux-derivative of a functiohat pointu in directionh defined b
(& (), h) (92 (1), h) iy C0H)=I00)

2. MINIMIZATION OF THE FIRST EIGENVALUE

The eigenvalue problerﬂ(3) is not completely classical duia¢ presence of the eigen-
value y,, in the first boundary condition. As explained ﬂ [4], see dlse works of J.
Walter ] and J. Ercolano-M. SchechtEr [5], a good way todba with such case con-
sists in introducing the following inner product:

l
< .9 >a= Af(0)g(0) + /0 a(e)V/T T a2 (2) f(x)g ),

its associated norih ||, and the Hilbert spac&, defined as the completion of the space of
continuous functiong€ ([0, ¢]) for this norm. It is easy to see théf is a space satisfying
HY0,0) c & C L?(0,¢) (both inclusions are strict). Moreover, the map— ¢(0)
defines a linear continuous form &p. It is now classical spectral theory which allows to
prove existence of a sequence of eigenvajyeand eigenfunctions,, orthogonal for the
inner produck ... >,.

Let us now make an elementary observation on the sign @f):
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Lemma 2.1. Leta be in the classA,, s, then the first eigenvalye; (a) of (E) satisfies
—2R,Gp < —y < p1(a) < 0.

Proof. Leta € A,, s andv € H'(0,¢), non identically zero. We denote ¥[a; v], the
Rayleigh quotient:

¢
/ a’(x)u?(x)dz — Ayu?(0)
Rla;v] := Y

7 :
; a(x)y/1+ a2(z)u’(z)dz + Au®(0)

The classical Poincaré-Courant-Hilbert principle wsite

12 —  inf .
02) (@) = jaf, , Rlost)

Now, takingv = 1 in the above formula yields:

Ay
i (a) < — 7 <0.
/ a(x)\/1+ a?(x)dx + A
0
The lower bound is easy by observing thata) + v = R|a; ¢1(a)] + v > 0. O

Remark 2.1. Using the min-max formulae for the second eigenfunctiois,also possible
to prove that the second eigenvalue satis;fzj@(sz) > O The proof consists in studying the

problem of calculus of variationsin 2 fo x)dz on the clas$V, := {v €
H%a@.an¢0md<um<>af0}

We can now prove the first part of Theor¢m|1.1. The eigenfaneti (a) associated to
11 (a) realizes the minimum of the Rayleigh quotient. Hence, weehav

¥/
Af@WWV@%—M%@%D
pi(a) = :
/ \/1+a’2 ¢1 d$+A¢1( ) ( )

By Lemmg[2.]1, the numerator of this quotient is negative. ddwer, we have:

(m)/ (2)di — Ay (a)2(0 >%/¢1a)%—M%U()
(14) 1 1
3 aVT+ a%¢1(a)(z)da + Adi(a)? ﬁwwl )(z)dz + A¢ (a)*(0)

(with a strict inequality in @3),@4) it is not constant). Finally, writing that; (ag) =

Ii{nfo ) Rlag; v], we deduce from[(13)[(14) anfi [12) that(ao) < w1 (a) as soon as
veH (0,

a # ag.

3. MINIMIZATION OF T'(a)

3.1. Introduction. This last section is devoted to the proof of the second cldifrheo-
rem[L], i.e. that = ao minimizes the criterio’(a). We recall that the criterioff’(a)
describes the attenuation in space and that it is defined by

S w(0, t)dt

Tmy:ijm&ﬂm'
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The proof here is much more complicated thanefa). Let us now outline the different
steps of the proof.

1st step: Using the Laplace Transforii(x, p) of v(x,t), we rewrite the criterion
T(a) as the quotient(0,0)/v(¢, 0).

2nd step: We use the change of variable definedy= fo Q(t) to transform the
equation satisfied by into a simpler differential equation. This allows us to con-
sider a new unknowp(y) := a®(x)4/1 + a’(x)? instead ofa and a new criterion
Ty (p). The functionp must lie in the set defined by:

£y
Rag,s = {p € L(0,41) : aj < p(y) and/ py)dy < S} :
0

3rd step: We solve the new optimization problemin 77 (p) first on the subclass of
functionsp € R, s Which satisfyp < M for some positive constant . \We prove
that the minimizer has to befaang-bandunction. It means that it can only takes
the values:3 and M. Then, studying carefully the optimality conditions, weype
that the only minimizer ip = a3.

4th step: We conclude.

3.2. Useof theL aplace Transform. The parabolic equation is not completely standard in
the sense that it contains a dynamical boundary conditian-at0. This kind of problem
has been studied by different people, see e[b []3], [1] aadeaferences therein. It can
be proved that the solution(z, t) belongs toL?(0,7, H'(0,¢)). Moreover, using the
eigenvalue expansi0|ﬁ| (2), one can see that, in the case aff@rsioni, = § (a Dirac
measure at = 0), the mtegralsf [v(0,¢)|dt andf |v(¢,t)|dt are well defined. Let
us introduce the Laplace Transfoirtr, p) of the solution defined by

“+o0
v(z,p) == / e Ply(z, t)dt.
0
Thanks to the convergence of the integrals, the crit€fiom) can be rewritten as
Jo 00, 6)dt Tim, o (0, p)
[ u, tyde im0 (4 p) |

Now, transforming equatior[l(l), we see that the Laplacesfoam@ is the solution of the
following o.d.e.:

(15) T(a) :==

(16) .
=2 (a252) = aVT+ a2 (Conpd + GiD) (,p) € (0,£) x (0;+00)
a0 980, p) = A, [Crupd(0,p) + Gi3(0,p)] — 1 p € (0, +00)
P(t,p)=0 p € (0, +00)

o(2,0) =0 z € (0,0).

3.3. A change of variable. We are now going to use the following change of variable
classical in ordinary differential equations, see e[b [3]

B /I dt
~Jo a2(t)’
The interval(0, ¢) becomeg0, /1) where

Y
dt
b "/o 20

the functionw is transformed into the function

w(y, p) == v(z,p).
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and we consider a new unknowrdefined by :

(17) p(y) = a®(z)\/1+d/(x)?.

Sincea belongs to the clasd,,, s defined in KB), the new functiombelongs to:

£y
(18) Rao,s = {p € L>(0,41) : aj < ply) and/ p(y)dy < S} .
0
Then, equatior[(}6) becomes:
58 = 0 (Coup + G w (y.p) € (0,41) x (05 +00)
(19) 7= 32(0,p) = A [Crap + G5]w(0,p) =1 p € (0,+00)
?9—1;(51,17):0 p € (0,400).

We letp going to 0 in the equatior (]L9) (see Appenfdix A for a mathecahjisstification)
to get a functionuy(y) := w(y, 0) which satisfies

1 d2’lJJ0

IR a2 = PGmto y€(0,4)
(20) 7 %(0) = AGawg(0) — 1
& (f) =0
Moreover, from [[1p) the criteriofi'(a) becomes
wo(0)
21 T(a) =T, =
(21) (a) = Th(p) wollr)

The problemanin{T'(a), a € Aq, s} andmin{T}(p), p € Rq,.s} are not completely
equivalent since € A,, s — p € Rq,,s iS NOt a one-to-one correspondance. Neverthe-
less, it is clear thaR,,, s contains the whole image of,, s by this map. So, if we find a
minimizer of 7} in R, s which belongs to the image of,, s (this will be the case), we
will solve our problem.

Remark 3.1. Let us have a look to equatiop [20). It is not possible ) > 0 (oth-
erwisew(0) would be positive, according to the first boundary conditiand thenw
would remain positive and convex which would contradictsheond boundary condition.
In the same way (0) cannot be negative, otherwisg would remain negative and con-
cave and this is impossible with the second boundary camdfio finally, one can see that
w((0) < 0, we(0) > 0andwy remains positive on the whole intenv@l, /). At last, since
wy, is increasing andv(¢1) = 0, we see thatu, is decreasing (and positive), therefore
wp(€1) < wo(0) which proves thal'(a) = T1(p) < 1.

3.4. Study of a new optimization problem. Using the different transformations intro-
duced in the previous subsections, we see that we must new @ optimization prob-
lem: min T (p) with p in the classR,, s. Let us begin by solving this optimization prob-
lem in the subclass

01
Raq.s = {P € LX(0,61) : ag < ply) <M and/ py)dy < S}
0

where) is a fixed positive constanf{ > a3). We will let M — +cc later.

Theorem 3.1. The problemmin 73 (p), with p € R)! ¢, has a solutiorp*. Moreover,
every solution is a bang-bang function, i.e. a function Wwtsatisfiesp* = a3 or M
almost everywhere.

Proof. The fact that the optimizer is a bang-bang function oftenueg@n such control
problems. Existence of a minimizet is easy, due to continuity of the criterid@i (p) for
the weak-* convergence. Then, we write and analyze the @fityrconditions thanks to
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the introduction of two adjoint problems. We are able to prthat the sefad < p* < M}
has zero measure. Let us now give the details.

SinceR}! s is a bounded subset df>(0,/,) it is compact for the weak-star conver-
gence . So, to prove existence of a minimizer, we just needaeethat the criteriof’y

is continuous for the weak-star convergence. (}),cn be a sequence iﬂfl‘fﬁs such

thatp,, — p and let us denote by, andw the associated solutions 40). From the
variational formulation of this problem

01 a1 z
@ g [ b G [ a0 )20+ 24G 0, 0)2(0) =

for everyz € H(0,/;), we first see (taking = w,, in (@) that the sequence,, is
bounded inH'(0,¢1). So, it converges (up to a subsequence) weakly {0, /) and
strongly inL2(0, /1) to a functionw... Now, these convergence are sufficient to pass to
the limit in (22), so we have proved that,, = w and all the sequence converges since

is the only accumulation point. Existence of a minimizg&in the classR%,S follows.

We want now to write the optimality conditions. Lete W1°°(0, ¢;) be an admissible
perturbation of the optimum. We will now denote fay the quantity:

Classical variational analysis shows thét is the solution of the ordinary differential
equation:

2, . .
kBt — G, (pudg + wg) g € (0,61)

(23) 7= %9(0) = A,Guio(0)

& (61) = 0.
Differentiating the criteriorf; in the directiomh gives:
(24) <@,h> _ wO(O)wO(fl)Q— wo(0)wo(f1)
dp wg (€1)
Let us now introduce the two following adjoint problems. Wmnsider the functiony;
defined as the solution of the ordinary differential equatio

st G = Gnp(0i(y) —y) y€(0,6)
(@3) £52(0) = 4,Goa1(0)

H(h) =0
and the functiony, solution of :
2
5% = Grp(aa(y) = 1) y € (0,0)

(26) 7 %2(0) = AsGlga(0)

%2(51):0

(existence and uniqueness @f, ¢ follows from Lax-Milgram Theorem). Multiplying
equation [2B) by — 1, equation [36) byi, and integrating both by parts yields:

£y
@) i) = 5 [ hyun)at) 1) dy.

In the same way, multiplying equatioh ]23) by— v, equation[(25) by, and integrating
both by parts yields:

41
(28) wo(01) = wo(0) + 2R Gy, /0 h(y)wo(y)(q1(y) —y) dy .
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Therefore, [(24) together wit (27) arld](28) gives
(29)

d7, _ 2R,G., [T wo (£1) — wo(0)
<d—p,h> = wo(0)? /O h(y)wo(y) (% (g2(y) — 1) — wo(0) (q1(y) — y)> dy

whereA = 24G, R, Let us denote by, the function of one variable defined by:
f : [Oaﬂl] I R
y o 2 [l (go(y) - 1)~ wo(0) (0(4) -~ v)]

<0('jlp h> -/ " hwuol) 1)

We want now to prove that the optimupt is a bang-bang function. It is a classical
approach, see e.d] [8]. For that purpose, let us introdwetiowing sets:

So, finally:

o Zoy(p*) :={y € (0,41) : p*(y) = ao};
. IM( ) i={y € (0,41) : p*(y) = M}
Z(p*) == ({y € (0,41) : ag < p*(y) < M}.
+o0 1
wewrie.(5") = (J {ye 0.0 a0+ f < < 20— 1} = Uz*k
k=1

want to prove thaf, ;(p*) has zero measure, for all integer# 0. We argue by contra-
diction. Let us suppose thif, 1 (p*)| # 0. Letyy € Z, 1 (p*). We denote byGy, . )n>0,
the sequence of subsetsqfy, :
1 * *
Gk,n =B (?JO; E) QI*,k(p ) C I*,k(p )

“+o0
Let us notice thatﬂ Grkn = {yo}, and let us choosé = x¢, .. Then, fort small

n=0
enough, perturbations’ + th etp* — th are admissible. Then:
Ty (p* +th) — Ty (p")

£
lim t = [ zo = [ im0
In the same way:
T (p* — th) — T (p* ¢
fi 2O — () st 20 [ wowsidy <0

We can deduce th¥ wo(y) f(y)dy = 0. We divide by|G}_,,| and we make: tending
G

k,n

to +occ. The Lebesgue density theorem shows th@l) f (yo) = 0, a.e. foryg € Z, k(p*).
This is clearly a contradiction, sineey andf are respectively solutions of the differential
equations—“| W — p*Gwo and s Lif - p*Gy, f. This proves thalZ, . (p*)| =

2R, dy? 2R, dy?
0 and thenZ, (p*) has also zero measure, what implies thatequalsaj or M almost
everywhere. O

Now, we prove that among every bang-bang function, thisastimstant function? which
yields the minimum off7.

Lemma 3.1. The optimum of’; in the classR}’  is the constant functiop(y) = af.

Proof. Using notation of the proof of Theor.l, the optimalityditions writes

e On the seff(p*), we havef(y) > 0 andh(y) > 0;
e On the sefZ,;(p*), we havef(y) < 0 andh(y) < 0.
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According to the differential equatiof (26) and maximurmpiple, the functiony, — 1 is
negative o0, ¢1]. Let us writef like below:
2RaGm wo(ﬁl) — ’w()(O) )
= -1). | ————————= —wo(0 ,
2L () - - o (0)g(1)

A
w. The functiong is two times derivable 010, ¢), and, using

fy)

whereg(y) := ) =
equations@5)]ﬁ6) we have:

d’g 9 %[‘D —1J(y) dg

(30) Yy € (0, £1), @(y) = - W-d—y(?ﬂ-

Therefore, on every interval Whegg keeps his sign, we have:

dg c

= —— - withC eR.
dy ) [q2(y) — 1]
Now, d—z is continuous orf0, /1], then the only possibility is:
dg () —1
31 Yy € (0,01), =2(y) = ———2— > (.

It follows thatg is an increasing function df, ¢1]. Sincegs — 1 is negative ana, (0) > 0,

we see that:f(y) > 0 < g(y) > %’(5(0). Then, according to the optimality

conditions the functiop™*, local optimum for the criteriofi’;, is necessarily as follows:

(32) Pry) = { 2% :; ! N 2

with a transition point; which is possibly 0 of;. Now, it remains to look for the better

p(y)

FIGURE 1. Possible profile of the optimum

p* among all functions defined bﬂ32). The only unknown is finditle transition point
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£€1. We can use the explicit expression of the solutigrof equation[(40) for such a simple
p*. We writewg

M

[ oM cosh(wmy) + o sinh(wpry)  0onl0,&]
(33) wo<y>—{ ol conbony 4 b smb(ong), only. b

wherea{?, ad?, a4" anda;}! are four constants ang) := /2R,G a3, war = V2R, G, M.

Thanks to boundary conditions, we get

(30)  woly) =4 @1 coshlwrry) + % sinh(wyry)  on[0,&]
ozéw (cosh(woy) — tanh(wefy) sinh(wey)) on [y, ¢4]

Therefore, the criterioffy is given by

wo(0) _ aff
wo (61 ) Oééw

T (p*) = cosh(woly).

Finally, using the fact thaty is C', we get, thanks to continuity af and”ld—lju/0 aty = &

M

a wo . .
}u = cosh(wp&) cosh(wpréy) — X0 sinh(wps&; ) sinh(woéy)
Oé3 Wapr

(35) — tanh(woly) {sinh(wofl) cosh(waré) — —2 sinh(waé;) cosh(wogl)}
Wn

and then
wo . .

Ti(p*) = cosh(wply) {cosh(wofl) cosh(wpr&) — w—](:[ sinh(wps&) sinh(woé; )}
(36) — sinh(wols) [sinh(wogl) cosh(warér) — —2 sinh(waré;) cosh(wofl)]
Wap
Computing the derivative of the criterion with respect te thariablet;, we have
T * 2 2
(37) d 1(p ) = (M) sinh(wal)cosh[wo(fl — 61)] Z 0
déy Wi
It follows that¢; has to be equal to 0, that means that the constant funegioninimize
the criterionT; onR}! . O

3.5. Conclusion. The proof of Theorerh 1.1 follows now easily. Singgis the unique
minimizer of the criterior?} in the classR}! ¢ and

11075_ U Rao;

J\4>a0
we get thaw3 is the (unique) minimizer of} in the classk,, s. Moreover, sincei =

1+ (dao) , itis clear thatl’; (a3) = T(ap) and thengao minimizesT on the class
Aao,S'
APPENDIXA. LIMIT OF w, WHENp — 0

Let us now denote by, the functionw(., p) for a given positivep. The equation(J9) can
be rewritten:

i G = (Cop + Gon) wy y e (0,61)
P dwp
(38) 7 (0) = Ay [Coup + G] wy (0) — 1

dw,, _
s (1) = 0.
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We recall that we want to prove that, has a limitw, whenp — 0 and thatwy is the
solution of {2P). We can suppose that (0,1]. Let us write the variational formulation
of (B9):

Vz € HY(0,0), ap(wy,z) = L(2),

with
01
ap(u, 2) = % [ 0)2/(0) + (Co+ Gon) ) ) 2)y + A(Crp+ G )ul0)2(0)
and 0
L(z) = %ﬂ)

Let us make: = w, in the above formulation. Sinasg, is uniformly (with respect tg)
coercive:

. 1
(39) min <ﬁaa(3)Gm) prnill(o,él) < ap(wp, wp) = L(wy)

and L is a linear continuous form, we get frofn [39) that the seqeengcis bounded in
H'(0,¢,). Therefore, there exists* € H'(0, ¢;) such thatv, _— w* in H'(0,¢;) and
p—>

wp —— w* in L2(0, ¢1) (up to a subsequence). It follows that
p%

e w,(0) — w*(0),

p—0
o [ o [ s w:wa,
. /Oél w, () =(y)dy —» Oél w* ()2 (y)dy.
Thereforew* is the solution of the ordinary differential equation:
T djy“éo = pGmwo y € (0,61)
(40) 7 %2(0) = AGauwo(0) — 1
%o (01)=0.

which means thav* = wq, the desired result.
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