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WHAT IS THE OPTIMAL SHAPE OF AN AXON?

ANTOINE HENROT AND YANNICK PRIVAT

ABSTRACT. What is the optimal shape of an axon? Of course, optimadigrs to some
particular criterion. In this paper, we look at the case ohaaon tapered at one end and
connected at the other end to a soma. The electrical pdtémttae fiber follows the
classical cable equations as established by W. Rall. Wenggeested in the shape of the
axon which minimizes either the attenuation in time of théeptal or the attenuation in
space. In both cases, we prove that the cylindrical shapetimal.

1. INTRODUCTION

1.1. Motivation. Is Nature always looking for optimum for living organismsf par-
ticular, are the organs designed to optimize some crit@ri@Qomplete answers to these
guestions are likely never to be discovered. Neverthetessjming that Nature proceeds
in the most efficient way, can lead to a better understandinigeomodeling of an organ
and the underlying physical or chemical phenomena. Thisissdea ofinverse modeling
that we had in mind when we began this work. Roughly spealirogn be described by
the following steps:

i Letus consider a given organ of a living body.
il Write a mathematical model which describes the behavidhis organ.
iii Imagine a (hnumerical) criterion that Nature would like dptimize for this organ.
iv Determine the optimal shape for this criterion and thisielo
v Compare with the real shape(s).

If the optimal and the real shapes coincide, we can guesstianhodel and our criterion

are relevant. If they do not, we must admit that either outedn or our model (or

the initial guess that Nature looks for optimum) is probablpng. We believe that it

will often be the choice of the criterion which is not corre@& possible reason is the
complexity of Nature. This complexity indicates that, imgeal, there is not a unique
criterion to optimize but several ones (which could alsom@gonists). The mathematical
study (point 4 in the above procedure) becomes then much difficlt since one needs
to use tools of multi-criteria optimization.

In this paper, we want to follow the above procedure in the cdsan axon. We consider
a fiber which is tapered at its right end and connected to a stiitaleft end. We use the
classical cable equation to describe the electrical pialesiong the fiber. What are the
criterions that we can consider here? Of course, we wantxie @ propagate the best as
possible the electrical signal. In other terms, the attéonaf the signal must be as small
as possible. We are going to consider the two kinds of passitbénuationattenuation

in time or in space and we are looking for the shape of an axon which minimizes thi
attenuation. In both cases, the optimal shape that we getjigaer. Since it is very close
to the real shape, at first sight, we can conclude that Nasureaccordance with mathe-
matics for this problem and solves a shape optimizationlpmb For an introduction to
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2 ANTOINE HENROT AND YANNICK PRIVAT

the beauty of shapes (and, in particular, optimal shapdsatare, we refer to the classical
book of S. Hildebrandt and A. Trombd] [1].

1.2. The mathematical model. Let us consider a fiber with a cylindrical symmetry, of
length? and radius:(z) at pointz. We denote by(z, t) the difference from rest of the
membrane potential at pointand timet. The equation satisfied hy(x, ¢) is similar to
the classical cable equation as established by W. Rall gdiasixties, cf[[2], [B], [1]. We
consider here the case of a fiber which is tapered at its righ@d connected to a soma
with surface areal, at its left end. Let us denote by, the axial resistance {kcm), C,,

is the membrane capacitange~(cn?), G,,, the fiber membrane conductance afigthe
soma membrane conductance (mS/EnWe assume that the fiber is initially at rest and
that it receives a transient current stimulyst the left. The parabolic equation satisfied
by v is then (se€[]4]):

ot or (0°52) = V1407 (O} + Gv) z €(0,6),t>0
) 200 80(0,) = Ag (Con 2200, 1) + Gov(0,1)) — io(t) t>0
gt =0 t>0
v(z,0) =0 xz € (0,0).

Itis convenient to represent solution of ﬂ), in terms of eigenfunctions as did S. Cox and
J. Raol in [J:

+oo
(2) v(z,t) =Y Pn(t)pn(z) € (0,0),t>0
n=0
whereg,, is then-th eigenfunction associated to the eigenvalye
—(a*¢},) = pn aV1+ ¢y, z € (0,0)
(3) 2 a®(0)¢1,(0) + (n +7)¢n(0) =0
¢n(6) =0

wherey := 2R, (G,, — G;) is assumed to be non negative. We choose to normalize the
eigenfunctions by

L
(4) [6nll2 := A2 (0) +/O a(x)y/1 + a?(z)¢2 (z)dz = 1.

whereA = "24—;. Of course the eigen-palf.,, ¢, ) strongly depends on the functiax)
so we will often denote it byu,,(a), ¢, (a)). The eigenvalue problerf](3) is not classical
since the eigenvalue appears in the boundary conditiorsesﬂmlﬁ for more precisions.

Inserting the decompositioﬂ (2) in the equatiﬁn (1) givesminary differential equation
satisfied by, (¢). After resolution, we get:

+oo
1 . —Ant
(5) v(z,t) = I ; P (0)pn(x)do x ™",
where),, = £xf2leCn () (see Lemm4 2 1) anddenotes the convolution product of

distributions.

1.3. The optimization problems. We need now to give a precise statement to the opti-
mization problems presented in the introduction. In thappse, we have to choose the
functions we want to optimize and the class of functio(s) in competition. Let us begin
with this last point. Since the fiber must not collapse, itatunal to assume a lower bound
for the functionsi(x), so we fix a positive constant and we impose:

(6) Vo € 0,4, a(z)>ap>0.
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Now the minimal regularity needed faris clearly, according to systerfi (1) d] (3) that
the derivativer’ exists (at least almost everywhere) and is bounded, so wesetto work

in the class of Lipschitz continuous functions which is ofteenoted by *>°(0, ¢). At
last, we also need to put a constraint on the "cost” for Natarbuild a fiber. It seems
reasonable to consider that this cost is proportional testhiéace area of the fiber. This
surface area is clearly given by

Y
(7) Surface area 27r/ a(z)y/ 1+ a?(x)dx
0

SO we can assume a bound, sfyyon this surface area. To summarize, we consider the
class of functions(x) defined by:

0
8) Aus = {a e Wh>(0,0), a(z) > ag and/ a(x)\/1+ a?(x)de < S} .
0

Of course, we need to assurfie> a¢ in order that the clasd,,, s be non trivial.

As explained in the Introduction, an "ideal” axon should doat in the best possible way
the electrical information he is supposed to transmit. Imeoterms, the attenuation of
the signal must be minimized. Since the potenti@lepends on the space and the time
variable, we can consider both criterions.

1.3.1. Attenuation in spacelLet us introduce the transfer functidhdefined by :
J7%w(0, t)dt

[ (e, tydt

T'(a) corresponds to the ratio of the mean values in time of thenpiales taken at points
x = 0 andx = /. This ratio is always greater than one, see Rer@k 3.1 andgi®a

indicator of the attenuation of the signal between the twioegmities of the fiber. So, itis
realistic to look for a shape(z) which yields a ratio as close to one as possible:

(10) Finda in the classA,,, s which minimizesT (a).

(9) T(a) :=

1.3.2. Attenuation in time.According to expansion[kS), the potentialz, t) goes to 0
whent — +o0. More precisely, its asymptotic behavior is described by

! $1(0)¢1 (z) dg + e~

27C,
where); := ‘“(‘;)1;720&% > 0 andus(a) is the first eigenvalue 0ﬂ(3). Therefore, as it
is classical in such parabolic problems, it seems naturaldio for a functiona(z) which

minimizes the exponential rate of decay:

v(z,t) ~

(11) Finda € A,, s which minimizesu,(a) (the first eigenvalue ofk3)).

The idea of minimizing eigenvalues of such Sturm-Liouvijgerators is a long story and
goes back at least to M. Krein iﬁ| [5], see alﬁo [6] for a reviewsach problems.

1.3.3. The main result.We state in the following Theorem the main results of thisgrap

Theorem 1.1. i The unique minimizer of the eigenvaluga) in the classA4,, s is
the constant function = ag.
i The unique minimizer of the criteridA(a) in the classA4,, . s is the constant func-
tiona = aop.

In other terms, for both criterions, the optimal shape of monatapered at one end and
connected to a soma at the other end is the cylindrical one!

In his thesis and in a foregoing paper, sEe [, [8], the se@@rthor studies the case of
an axon tapered at both ends. From a mathematical pointwf itiehanges the boundary
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conditions in [Jl) and[[3) which become homogeneous Neumanndary conditions at

both extremities. The result he obtains is the same for the chattenuation in space, but
it is different for the attenuation in time. Actually, theieno existence of a minimizer
for pi1(a) (as usual in the Neumann cagg(a) = 0 andyu, (a) denotes the first non-zero
eigenvalue). Moreover, he is able to exhibit minimizingweences which would produce
very strange axons!

1.4. Notation. The set of notation used in this paper is summarized in titisose

Whee(0,¢) the set of Lipschitz continuous functions defined on therirat0, ¢].

the class of functions defined by

Ados Lae w1(0,0), a(x) > ao, [} a(x)y/TF P (@)dr < 5}
lloo norm (1efined on the space of bounded functibfg0, ¢) by
[1flloc = supieio,q 1/ (£)]-

- inner product defined for tv\zo continuous functighandg by:

T < fgza=AF(0)9(0) + [y a(@) 1+ a(@) f(x)g(x)da
IIla norminduced by .,. >,.
& completion of the space of continuous functi@iif, ¢]) for the norm||.||,.
L?(0,0) the space of (classes of) functions which are square-ialdgpn(0, ¢).
HY(0,0) the Sobolev space of functions ¥ (0, /) whose derivative (in the sense

of distributions) lies inL2(0, £).

Gi¢ Y2eaux-derivative of a functiohat pointy, in directionh defined by:

def .. v —J (v
<g—i(l/0),h> :e hmt\o 7‘“ 0+t};) J( U).

2. MINIMIZATION OF THE FIRST EIGENVALUE

The eigenvalue problerﬂ(3) is not completely classical dui¢ presence of the eigen-
value 1, in the first boundary condition. As explained {} [4], see alse works of J.
Walter ﬂ] and J. Ercolano-M. Schecht[lO], a good way todba with such case con-
sists in introducing the following inner product:

l
< .9 >a= Af(0)g(0) + /0 o) /T aP(2) f(x)g ),

its associated norih ||, and the Hilbert spac&, defined as the completion of the space of
continuous functiong€ ([0, ¢]) for this norm. It is easy to see théf is a space satisfying
HY0,0) c & < L?(0,¢) (both inclusions are strict). Moreover, the map— ¢(0)
defines a linear continuous form &p. It is now classical spectral theory which allows to
prove existence of a sequence of eigenvajyeand eigenfunctions,, orthogonal for the
inner produck ., . >,.

Let us now make an elementary observation on the sign @f):
Lemma2.1. Leta be in the classA,, s, then the first eigenvalye; (a) of (E) satisfies

—2R,Gpy < —y < p1(a) <O0.
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Proof. Leta € A,, s andv € H'(0,¢), non identically zero. We denote ¥[a; v], the
Rayleigh quotient:

¢
/ a’(x)u?(x)dz — Ayu?(0)
Rla;v] := ——2

; a(x)y/1+ a2 (z)u(z)dz + Au?(0)

The classical Poincaré-Courant-Hilbert principle wsite

(12) pala) = ;;}f()y Y Rla; v]
Now, takingv = 1 in the above formula yields:
A
pa(a) < —— i <0.
/ a(z)\/1+ a?(z)dz + A
0
The lower bound is easy by observing thata) + v = R[a; ¢1(a)] +~v > 0. O

Remark 2.1. Using the min-max formulae for the second eigenfunctiois,also possible
to prove that the second eigenvalue satis;fzj@(sz) > O The proof consists in studying the

problem of calculus of variationsin 2 fo x)dz on the clas$V, := {v €

HY(0,0) : v(0) # 0and < v, ¢1(a )>a7 0}

We can now prove the first part of Theor¢m]1.1. The eigenfaneti () associated to
11 (a) realizes the minimum of the Rayleigh quotient. Hence, weshav

¥/
/0 a*(z)¢1(a)?(z)dz — Ayp1(a)*(0)
pa(a) = ’
/ 2)V/1+ a2 (2)¢1(a) (x)dz + A (a)?(0)

By Lemmg2.]1, the numerator of this quotient is negative. ddwer, we have:

(13) / (@)dr — Ayéi(a)*(0) > o / 61(0)*(2)dz — Ay (a)*(0)
(14) 1 1
[T avi T @n(a) @)z + 461 (@)2(0)  Ji aota(@)(@)de 1 Agn(@P(0)

(with a strict inequality in [(3),[(34) it is not constant). Fmally, writing that; (ag) =

Ii{nfo ) Rlag; v], we deduce from[(313)[(14) anfi [12) that(ao) < p1(a) as soon as
veEH1(0,

a # ag.
3. MINIMIZATION OF T'(a)

3.1. Introduction. This last section is devoted to the proof of the second cldifrheo-
rem[L], i.e. that = ao minimizes the criterio’(a). We recall that the criterioff’(a)
describes the attenuation in space and that it is defined by

[ (0, t)dt
J e tydt

The proof here is much more complicated thanfigfa) and the more technical points
will be detailed in the Appendix. Let us now outline the diffat steps of the proof.

T(a):=

1st step: Using the Laplace Transformi(z,p) of v(z,t), we rewrite the criterion
T(a) as the quotient(0,0)/v(¢, 0).
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2nd step: We use the change of variable definedyoy= fo 2(t) to transform the
equation satisfied by into a simpler differential equation. This allows us to con-
sider a new unknowp(y) := a®(x)+/1 + a’(x)? instead ofa and a new criterion
T1(p). The functionp must lie in the set defined by:

£y
Rao,s = {p € L*>(0,47) : a(3) < p(y) and/ p(y)dy < S} .
0

3rd step: We solve the new optimization problemin 77 (p) first on the subclass of
functionsp € R, s Which satisfyp < M for some positive constant . \We prove
that the minimizer has to befaang-bandunction. It means that it can only takes
the values:3 and M. Then, studying carefully the optimality conditions, weype
that the only minimizer ip = a3.

4th step: We conclude.

3.2. Useof theL aplace Transform. The parabolic equation is not completely standard in
the sense that it contains a dynamical boundary conditian-at0. This kind of problem
has been studied by different people, see e@ [, [12]thedeferences therein. It
can be proved that the solutieiiz, t) belongs toL?(0, T, H(0,¢)). Moreover, using the
eigenvalue expansi0|ﬁ| (2), one can see that, in the case af@rsioni; = ¢ (a Dirac
measure at = 0), the mtegralsf |v(0,t)|dt andf |v(¢,t)|dt are well defined. Let
us introduce the Laplace Transfoitr, p) of the solution defined by

—+oo
v(z,p) == / e Ply(z, t)dt.
0
Thanks to the convergence of the integrals, the crit€fiom) can be rewritten as

J7% (0, t)at _ limy—09(0,p)
Fue,tdt limy o (4, p)
Io :

(15) T(a):=

Now, transforming equatiorﬂ(l), we see that the Laplacesfoam® is the solution of the
following o.d.e.:

(16)
st (a282) = aV1+ a2 (Coupl + G D) (x,p) € (0,£) x (0; +00)
O 95 (0,p) = A, [Crup9(0,p) + G55(0,p)] =1 p € (0, +00)
2(,p)=0 p € (0,400)

o(2,0) =0 z € (0,0).

3.3. A change of variable. We are now going to use the following change of variable
classical in ordinary differential equations, see e.gfl:[13

:/oan—(tt)

The interval(0, ¢) becomeg0, /1) where

v
dt
(= —
! /oa2<t>’

the functionw is transformed into the function
w(y,p) :=0(x,p).
and we consider a new unknowrdefined by :

(17) ply) = a’(2)y/1+a'(2)?.
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Sincea belongs to the clasd,,, s defined in EB), the new functiombelongs to:

&
(18) Rao,s = {p € L>=(0,01) : al < p(y) and/ p(y)dy < S} .
0
Then, equation[(}6) becomes:
g2 5% = p (Coup + Gin) w (y,p) € (0, 1) x (0;+00)
(19) 7A-54(0,p) = As [Coup + G5 w(0,p) =1 p € (0, 400)
%_1;(@1,]?)20 p € (0,+00).

We letp going to 0 in the equatiorf (]L9) (see Appenfdjx A for a mathecahjustification)
to get a functionuy(y) := w(y, 0) which satisfies

1 d2’lJJ0 —

3Ry a2 = PGmWo y € (0,61)

(20) Riadgf—yn(O) = A,Gwp(0) — 1

& (f) =0

Moreover, from [[1) the criteriofi’(a) becomes

wo (0)
wo (£1)

The problemanin{7'(a), a € Aq, s} andmin{T(p), p € Rq,,s} are not completely
equivalent since € A,, s — p € Rq,,s IS NOt a one-to-one correspondance. Neverthe-
less, it is clear thaR,, s contains the whole image of,, s by this map. So, if we find a
minimizer of T in R,,,s which belongs to the image 4, s (this will be the case), we
will solve our problem.

(21) T(a) = Th(p) =

Remark 3.1. Let us have a look to equatioE[ZO). It is not possible thgtd) > 0 (oth-
erwisewy(0) would be positive, according to the first boundary conditiand thernw
would remain positive and convex which would contradictdheond boundary condition.
In the same wayy, (0) cannot be negative, otherwisg would remain negative and con-
cave and this is impossible with the second boundary camdgio finally, one can see that
w((0) < 0, we(0) > 0 andw, remains positive on the whole interv@l, £;). At last, since
wy(, is increasing andv|(¢1) = 0, we see thatv is decreasing (and positive), therefore
wp(€1) < wo(0) which proves thal'(a) = T1(p) < 1.

3.4. Study of a new optimization problem. Using the different transformations intro-
duced in the previous subsections, we see that we must new @ optimization prob-
lem: min T3 (p) with p in the classR,, s. Let us begin by solving this optimization prob-
lem in the subclass

01
Ris s = {p € L>(0,41) : af < ply) <M and/ p(y)dy < S}
0

where) is a fixed positive constanf{ > a3). We will let M — +cc later.

Theorem 3.1. The problemmin 7% (p), with p € R}’ o, has a solutiorp*. Moreover,
every solution is a bang-bang function, i.e. a function \Wwhsatisfiesp* = a3 or M
almost everywhere.

The fact that the optimizer is a bang-bang function ofteruos@ such control problems.
Existence of a minimizep* is easy, due to continuity of the criteridn (p) for the weak-*
convergence. Then, we write and analyze the optimality itimmd thanks to the introduc-
tion of two adjoint problems. We are able to prove that the{sgt< p* < M} has zero
measure. We refer to Appemﬂ( B for the complete proof.
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Now, we prove that among every bang-bang function, thisastimstant function? which
yields the minimum off7.

Lemma 3.1. The optimum of’; in the classR}’  is the constant functiop(y) = af.

0

Proof: see Appendix|C.

3.5. Conclusion. The proof of Theorerﬂ.l follows now easily. Singgis the unique
minimizer of the criterior?} in the classR}! ¢ and

M
Ra07s = U Rao,S'
M>a8
we get thaw3 is the (unique) minimizer of} in the classk,, s. Moreover, sincer} =

2
agr[1+ (dd%) , itis clear thatl’; (a3) = T(ap) and thengao minimizesT on the class

Ago.s-

APPENDIXA. LIMIT OF w, WHENp — 0

Let us now denote by, the functionw(., p) for a given positivep. The equatior@g) can
be rewritten:

1 dPw,

2R, dyz P (Coap + Gm) wy y € (0,¢1)
(22) 9 (0) = A, [Crup + G wy(0) — 1

dw,, o

dy (ﬂl) =0.

We recall that we want to prove that, has a limitwy, whenp — 0 and thatwy is the
solution of {2P). We can suppose that (0, 1]. Let us write the variational formulation
of 9):

VZ € Hl(ngl)a ap(wpaz) = L(Z)a

with
I
(1:2) = 5= [ W) 0+ Cont Gon)o)u(w)2(0)ey + A(Cup+ G.)u(0)=(0)
and
L(z) = %

Let us make: = w, in the above formulation. Sinasg, is uniformly (with respect tg)
coercive:

. 1
(23) min <ﬁ,a80m) HwPHiIl(O,Zl) < ap(wp, wp) = L(wp)
and L is a linear continuous form, we get frorEkZS) that the seqeengcis bounded in
H'(0,¢,). Therefore, there exists* € H'(0, ¢,) such thatv, _— w* in H'(0,¢;) and
p—?

wp ——= w* in L?(0, ¢1) (up to a subsequence). It follows that
p*)

e w,(0) ;—(7 w*(0),

0y
'/ p(y)wp(y)Z(y)dy;;; ; p(y)w* (y)z(y)dy,

(=)

£y
./0 wy,(y)2(y)dy — [ w*(y)?' (y)dy.

p—0 0
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Thereforew* is the solution of the ordinary differential equation:

1 d?wg

2Ra dy? - mewO Yy S (0761)

(24) 7= %0(0) = A,Gywo(0) — 1

& (01) =0.

which means thav* = wg, the desired result.

APPENDIXB. PROOF OFTHEOREMPB.]

SinceR)! 5 is a bounded subset df>(0,¢,) it is compact for the weak-star conver-
gence . So, to prove existence of a minimizer, we just needaeepthat the criterioff}
is continuous for the weak-star convergence. (f),en be a sequence i?t%,s such

thatp,, — p and let us denote by, andw the associated solutions 24). From the
variational formulation of this problem
z(0)

2T

0 lq
@) 55 [ )0+ Gon [ ) )2+ 24G 0, (0):(0) =
for everyz € H(0,/;), we first see (taking = w,, in (E) that the sequence,, is
bounded inH'(0,¢1). So, it converges (up to a subsequence) weakly {0, /) and
strongly inL2(0, /1) to a functionw... Now, these convergence are sufficient to pass to
the limitin ), so we have proved that,, = w and all the sequence converges since

is the only accumulation point. Existence of a minimizg&in the classR%,S follows.

We want now to write the optimality conditions. Lete W1°°(0, ¢;) be an admissible
perturbation of the optimum. We will now denote fay the quantity:

Classical variational analysis shows thét is the solution of the ordinary differential
equation:

2, . .
kBt — G (pudg + wg) g € (0,61)

(26) Ao (0) = A,G i (0)
W (41) =0,
Differentiating the criteriorf? in the direction’ gives:
27) dn N\ wo(0>wo(€1); wo(0)wo(r)
d wi(6r)

Let us now introduce the two following adjoint problems. Wmnsider the functiony;
defined as the solution of the ordinary differential equatio

5% = Gup(a(y) —y) ye (0,0)
(28) 7 (0) = A,Gq1(0)
() =0

and the functiony, solution of :

-G8 = Gupl(ea(y) —1) ye(0,61)

%(0) = 4,G.02(0)

(€1)=0

o
Jay

(29)

§ &

Q.
<
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(existence and uniqueness @f, ¢» follows from Lax-Milgram Theorem). Multiplying
equation [2p) by, — 1, equation [[29) bys, and integrating both by parts yields:

£y
(30 i) = 5 [ hyun)at) 1) dy.

In the same way, multiplying equatioh | 26) by— v, equation[(28) by, and integrating
both by parts yields:

£y
(31) wo(€1) = wo(0) + 2RaGm/0 h(y)wo(y)(a1(y) —y) dy .
Therefore, [(37) together with (30) ar[d](31) gives
(32)
a7, _ 2R,G., [" wo (£1) — wo(0)
<d—p,h> = W)’ /O h(y)wo(y) (% (g2(y) — 1) — wo(0) (q1(y) — y)> dy

whereA = 2AG,R,. Let us denote by, the function of one variable defined by:
f : [0, 61] — R
y o 2 [mllwlO) (4, 1) ug(0) (g (y) ~ y)]

<‘jjlp h> -/ " M) )

We want now to prove that the optimupt is a bang-bang function. It is a classical
approach, see e.d. |14]. For that purpose, let us introdhectotiowing sets:

So, finally:

+oo +o0
. 1 1
We write Z, (p*) = c(0,01):ag+—-<p"(y)y<M-—~=% = T, . (p*). We
(") k|:|1 {y (0,61) 2 a0 + - < p*(y) k} kl’fll k(")

want to prove that, ;(p*) has zero measure, for all integer# 0. We Elrgue by contra-
diction. Let us suppose thif, . (p*)| # 0. Letyy € T, x(p*). We denote bYGy, ,, )n>0,
the sequence of subsetsqfy, :

1
Grn =B <y0, E) NZek(p") C Liw(p").

“+o0
Let us notice thatﬂ Grkn = {yo}, and let us choosé = x¢, .. Then, fort small

n=0
enough, perturbations’ + th etp* — th are admissible. Then:

I Ty (p* + th) — Ti(p*)
t\.0 t

¢
- /0 B0y =0 = [ w)fdy > .

In the same way:
.y Lilp” —th) = Th(p")

li
t\.0 t

¢
- / B >0 = [ w) sy <o

We can deduce th¥ wo(y) f(y)dy = 0. We divide by|G_,,| and we make: tending
Gion

to +oo. The Lebesgue density theorem shows th@k, ) f (yo) = 0, a.e. foryy € Z, 1 (p*).

This is clearly a contradiction, sinee, and f are respectively solutions of the differential

equationsy;— d;;’;“ = p*Gnwo andﬁﬂ%ﬁ = p*G,,f. This proves thaiZ, ,(p*)| =
0 and thenZ,(p*) has also zero measure, what implies thatequalsaj or M almost

everywhere.
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APPENDIXC. PROOF OFLEMMA B.1

Using notation of the proof of TheoreEB.l, the optimalityditions writes

e On the sefZy(p*), we havef(y) > 0 andh(y) > 0;
e Onthe sefZ,,(p*), we havef(y) < 0 andh(y) < 0.

According to the differential equatioﬂzg) and maximummpiple, the functionys — 1 is
negative orf0, ¢1]. Let us writef like below:

2R,Gm wo(f1) — wo(0) )
= Zedm — 1) 2 (0 ,
f() NTAE (g2(y) — 1) ( i wo(0)g(y)
whereg(y) := %. The functiong is two times derivable 010, ¢), and, using
y) —
equations@S)EéQ) e have:
d’g di[q2 —1](y) dg
33 Vy € (0,41), —5(y) = 24— —=(y).
Therefore, on every interval Wheﬁ% keeps his sign, we have:
dg C .
—(y) = ———5, withC € R.
dy W [q2(y) — 1]
Now, d—z is continuous orf0, /1], then the only possibility is:
dg q2(l) —1
34 Yy € (0,01), =2(y) = ———2— > (.

It follows thatg is an increasing function df, ¢;]. Sincegs — 1 is negative anav, (0) > 0,
we see that:f(y) > 0 < g(y) > %’(5(0). Then, according to the optimality
conditions the functiop*, local optimum for the criteriofi, is necessarily as follows:

* _ M if y < 51
(35) P (y)_{ a(3) ify>§1
with a transition point; which is possibly 0 o¢;. Now, it remains to look for the better
p* among all functions defined by (35). The only unknown is fipdtie transition point
£1. We can use the explicit expression of the solutigrof equation|(2}4) for such a simple
p*. We writewg

(36) woly) = oM cosh(wary) + o sinh(wpy)  on|0,&]
0= ad cosh(woy) + o sinh(woy) on |y, ]

wherea}?, a3, o3f anda}! are four constants ang := \/2R,Gnat, wy = V2R.Gm M.
Thanks to boundary conditions, we get

ASGSa{W

(37) wo(y) = o cosh(wary) + TM_l sinh(wpry)  on|0,&]
a3’ (cosh(woy) — tanﬁ(woﬁl) sinh(woy)) on[&r, 4]

Therefore, the criterioffy is given by

M
wo(0) = 04_1M cosh(woly).

Ti(p*) = W) ~ al

Finally, using the fact thaty is C', we get, thanks to continuity af and”ld—lju/0 aty = &
w . .

—7 = cosh(woéy)cosh(warér) — =0 sinh(wps& ) sinh(woéy)
W

(38) — tanh(wpfy ) |sinh(woér ) cosh(warér) — ;"—; sinh(wpr&1 ) cosh(wot: )
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FIGURE 1. Possible profile of the optimum
and then
Ti(p*) = cosh(wolr) {cosh(wofl) cosh(warér) — w”—;[ sinh(wyr&:) sinh(wofl)}
(39) — sinh(wols ) [Sinh(wofl)cosh(wal) - sinh(wMgl)cosh(wogl)]
WM
Computing the derivative of the criterion with respect te thariablet;, we have
T * 2 2
(40) M = (M) sinh(was&1) coshwo (61 — &1)] > 0.
déy WM

It follows that¢; has to be equal to 0, that means that the constant funefioninimize
the criterion?} on R%,S.

REFERENCES

[1] S. HILDEBRANDT, A. TROMBA The parsimonious universghape and form in the natural worl&pringer-
Verlag, New York, 1996.
[2] W. RALL Theory of physiological properties of dendritésn, NY Acad Science86 (1962) 1071.
[3] W. RALL, H. AGMON-SNIR Cable theory for dendritic neuron€. Koch, I. Segev (Eds) Methods in Neu-
ronal Modeling second edition, MIT, Cambridge, MA, 1998.
[4] S.J. @x, J.H. RaoL, Recovering the passive properties of tapered dendrites fiogle and dual potential
recordings Math. Biosci.190 (2004), no. 1, 9-37.
[5] M.G. KREIN, On certain problems on the maximum and minimum of charatiervalues and on the
Lyapunov zones of stabilippAmer. Math. Soc. Transl. (2) 1 (1955), 163-187.
[6] A. HENROTExtremum problems for eigenvalues of elliptic operat@ir®ntiers in Mathematics, Birkhauser
(2006).
[7]1 Y PRiVAT, phD thesis of the University of Nancy.
[8] Y PRIVAT, The optimal shape of an axon tapered at both ends. to appear
[9] J WALTER, Regular eigenvalue problem with eigenvalue parameterérbibundary conditionMath. Z. 133
(1973), 301-312.
[10] J. ERCOLANO, M. SCHECHTER Spectral theory for operators generated by elliptic bourydaroblems
with eigenvalue parameter in boundary conditip@®mm. Pure Appl. Math. 18 (1965), 83-105.
[11] J. EscHERQuasilinear parabolic systems with dynamical boundaryditons Comm. Partial Diff. Equa-
tions 18 (1993), 1309-1364.



WHAT IS THE OPTIMAL SHAPE OF AN AXON? 13

[12] C. BANDLE, J. VON BELOW, W. ReICHEL, Parabolic problems with dynamical boundary conditions:
eigenvalue expansions and blow;end. Lincei Mat. Appl. 17 (2006), 35-67.

[13] S.J. @X, R. LIPTON, Extremal eigenvalue problems for two-phase condugtrsh. Rational Mech. Anal.
136 (1996), 101-117.

[14] A. HENROT, H. MAILLOT Optimization of the shape and the location of the actuatown internal control
problem Boll. Unione Mat. Ital. Sez. B Artic. Ric. MaB 4 (2001), no. 3, 737-757.

INSTITUTELIE CARTAN DE NANCY, UMR 7502 NaNCY-UNIVERSITE- CNRS - INRIA, B.P. 239 , ¥NDEUVRE-
LES-NANCY CEDEX FRANCE



