Scaling law in the Standard Map critical function. Interpolating hamiltonian and frequency map analysis - Archive ouverte HAL
Article Dans Une Revue Nonlinearity Année : 2004

Scaling law in the Standard Map critical function. Interpolating hamiltonian and frequency map analysis

Résumé

We study the behaviour of the Standard map critical function in a neighbourhood of a fixed resonance, that is the scaling law at the fixed resonance. We prove that for the fundamental resonance the scaling law is linear. We show numerical evidence that for the other resonances $p/q$, $q \geq 2$, $p \neq 0$ and $p$ and $q$ relatively prime, the scaling law follows a power--law with exponent $1/q$.

Dates et versions

hal-00128403 , version 1 (01-02-2007)

Identifiants

Citer

T. Carletti, Jacques Laskar. Scaling law in the Standard Map critical function. Interpolating hamiltonian and frequency map analysis. Nonlinearity, 2004, 13, pp.2033-2061. ⟨hal-00128403⟩
114 Consultations
0 Téléchargements

Altmetric

Partager

More