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INTEGRAL REPRESENTATION OF THE LINEAR BOLTZMANN OPERATOR F OR
GRANULAR GAS DYNAMICS WITH APPLICATIONS

L. ARLOTTI & B. LODS

ABSTRACT. We investigate the properties of the collision oper@@ssociated to the linear Boltz-
mann equation fodissipativehard-spheres arising in granular gas dynamics. We estahlis, as

in the case of non—dissipative interactions, the gainsioli operator is an integral operator whose
kernel is made explicit. One deduces from this result a cetegdicture of the spectrum gfin an
Hilbert space setting, generalizing results from T. Cadari] to granular gases. In the same way,
we obtain from this integral representation@®f that the semigroup ih!(R® x R?, dx ® dv) asso-
ciated to the linear Boltzmann equation for dissipativedrgpheres isionestgeneralizing known
results from|[lL].

KEYWORDS. Granular gas dynamics, linear Boltzmann equation, detdilalance law, spectral
theory,Co-semigroup.

1. INTRODUCTION

We deal in this paper with the linear Boltzmann equatiordissipative interactionsnodeling
the evolution of a granular gas, undergoinglastic collisionswith its underlying medium. Ac-
tually, we shall see in the sequel that there is no contmaghe linear descriptionbetween the
kinetic theory of granular gases and that of clasqjekdstic)gases. This may seem quite surpris-
ing if one has in mind the fundamental differences that magrbphasized between thenlinear
kinetic theoryof granular gases and that of classical gases, as briefljegéa the next lines.

1.1. Granular gas dynamics: linear and nonlinear descriptions. Let us begin by recalling
the general features of the kinetic description of grangks dynamics that can be recovered
from the monograph_.[4] or the more mathematically orientedey [17]. If f(x, v,t) denotes the
distribution function of granular particles with positiare R and velocityo € R3 at timet > 0,
then the evolution of (x, v, t) is governed by the following generalization of Boltzmanni@tipn

dif(x,v,t) +v-Vif(x,v,t) = C(f)(x,v,t), 1.1)
with initial condition

f(x,0,0) = fo(x,v) € LY(R® x R®, dx ® dv)
where the right-hand sid&(f) models the collision phenomena and depends on the desaripti
we adopt.

In the nonlinear description, the collision operatoC(f) =: B[f, f] is a quadratic operator
modeling the collision phenomena between particles.hiaod—sphereinteractions, it reads

Blf, f1(v) = fR Ll [éf(x, 00, D (1,00, 8) — F(,0,8) f(x, 0, t)] duwdn,
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2 L. ARLOTTI & B. LODS

wheregq is the relative velocityg = v — w. The microscopic velocitiegv,, w,) are the pre—
collisional velocities of the so—called inverse collisiavhich results inv, w) as post-collisional
velocities. The main peculiarity of the kinetic descriptiof granular gas is the inelastic character
of the microscopic collision mechanism which induces thaitt of the total kinetic energy is
dissipated This energy dissipation might be due to the roughness oftirface or just to a
non-perfect restitution and is measured through a reistitutoefficient0 < ¢ < 1 (which we
assume here to be constant for simplicity). As a consequédheecollision phenomenon is a
non microreversible proces&enerally, we assume that the energy dissipation doedfaot the
conservation of momentum. Therefore, in the homogenedtiagéd.e. whenfy(x,v) = fo(v) is
independent of the position, the number density of the gasnstant while the bulk velocity is
conserved if initially zero. However, the temperature & ¢jas

() = % f]R 3 [ f(t, v)dv

continuously decreasdsooling of granular gas) As a consequence, the stationary state of the
inelastic collision operataB is a given Dirac mass. However, the homogeneous Boltzmaume-eq
tion for granular gases exhibits self—similar solutitmriogeneous cooling statfyl, [12]. Note

the important contrast with the classical kinetic theasy, Where = 1, for which it is well-known
that the steady state of the collision operator is a Maxaltlistribution.

Thelinear description of granular gases concerns dilute particles (test pastiglth negligible
mutual interactions) immersed in a fluid at thermal equillitor [10,[11/16]. The dilute suspension
dissipates its kinetic energy colliding with particles béthost fluid. In such a case, the collision
operatorC(f) = Q(f) is a linear operator given by

1
Q(f) = Blf, Mi1] = fs . g - n| [ejf(x, Ui, OMi(wy) — f(x, 0, t)/\/(l(w)] dwdn (1.2)
R3%S
where M; stands for the distribution function of the host fluid. Ndtattin such a description,
the microscopic masses of the dilute particieand that of the host particles; can be different.
We will assume throughout this paper that the distributioncfion of the host fluid is a given

normalized Maxwellian function:

3/2 PRV
Mi(v) = (2?;‘;1) exp {——ml(zslul) }, veR?,

whereu; € R3 is the given bulk velocity and; > 0 is the given effective temperature of the
host fluid. It can be shown in this case that the number deasitybulk velocity of the dilute gas
are still conserved. The temperature is still not consebiddt does not decrease anymore. This
strongly contrasts to the nonlinear description and suggést, in the linear setting, granular
gases behave like classical ones. The first mathematiaat reghis direction is the following
derived in [10] (see alsa_[11]) according to which, as in tlessical case, the steady statgDf
remains Gaussian:

Theorem 1.1. The Maxwellian velocity distribution:

3/2 _ 2
s

M(v) = (
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The existence and uniqueness of such an equilibrium statgsalo establish a linear version
of the famousH—Theorem. Precisely, for ampnvexC!—function® : R* — R, one can define
the associated entropy functional as

f(
Ho(fIM) = fM( (M())dv (1.3)

Theorem 1.2(H-Theorem([10, 14]) Let fo(v) be a space homogeneous distribution function with
unit mass and finite entropy, iélq;(folM) < o0. Then,

with 9% = 9 is the unique equilibrium state ¢J with unit mass.

—Hq> (fOIM) < (t>0), (1.4)
wheref(t) stands for the (unique) solution @)in L!(IR3, dv).

Here again, this linear version éf—Theorem contrasts very much with the situation in the
nonlinear setting where such a Lyapunov functional doegxist. As an important consequence,
it can be shown by suitable compactness arguments that &njoado the Boltzmann equation
(@) (with unit mass) converges towards the Maxwellianildaium M.

To summarize, the steady state of the linear collision dpefar dissipative interactions has
the same nature (a Maxwellian distribution) as the one spmeding to non—dissipative interac-
tions. Moreover, as in the classical case, by virtue ofHh@ heorem, such a steady state attracts
any solution to the space homogeneous Boltzmann equéiiin {his seems to indicate thiie
linear description of granular gases does not contrast tacinwith that of classical gase#t is
the main subject of this paper to make precise and confirmaudhdication and the key ingredi-
ent will be the derivation of an integral representationhaf gjain part of the collision operator.

1.2. Main results. The main concern of our paper is the derivation of a suitadpeasentation of
the gain part of the collision operat@ as an integral operator witikplicit kernel Precisely, the
linear collision operato@ can be split intd)(f) = Q*(f) — Q(f), where the gain part is

QO =€ [ g nife) M. dodn
R3x5?
while

QO = [ I nf Myt = o)1)

where the collision frequenay(v) is given byo(v) = f1R3xs2 g - n|My(w)dwdn. It is well-known
that, for non—dissipative interactions, i.e. when= 1, the gain partQ* can be written as an
integral operator with explicit kernell[5] 9] (see also [[8,fér similar results for thdinearized
Boltzmann equation). We prove that such a representatistilligalid in the dissipative case:

Theorem 1.3.1f f > 0 is such that(v) f(v) € LY(R3, dv), then

meikmwwwm'
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where the integral kernéd(v, v’) can be made explicit (s€g.2)).

Actually, most important is the fact that the integral kerki(@, v’) turns out to be very similar
to that obtained in the classical case (see for instard€])9the only changes standing in some
explicit numerical constants. Moreover, as we shall seskérnelk(v, v’) and the Maxwellian
distribution M satisfy the followingdetailed balance law

k(v, " YM(0") = k(v', ) M(v), 0,7 € R3,

that allows us to recover Theordmll.1 in a direct way. Rehalti tin [10], the Gaussian nature of
the steady state @ was obtained by replacing by its grazing collision limit.

We derive from these two results some important conseqsemtéhe linear Boltzmann equa-
tion (T.J) withC = Q. The applications are dealing with space dependent veddi@l) as well
as with space homogeneous version of it. The first one cosdbmspectral properties of the
Boltzmann collision operator in its natural Hilbert spaedisg.

1.3. Spectral properties of the Boltzmann operator inL2(M™1). Applying the abovéd—Theo-
rem[L2 with the quadratic convex functidr(x) = (x — 1)?, one sees that a natural function space
for the study of thehomogeneous linear Boltzmann equatisrthe weighted spacE*(M™).
Now, from TheorenfiLT13, it is possible to prove that the gailfiston operatorQ* is compactin
L2(M™1). This compactness result has important consequences atriiogure of the spectrum
of Q as an operator ik>(M™1). Precisely, from Weyl's Theorem, the spectrumin this space
is given by the (essential) range of the collision frequen¢y and of isolated eigenvalues with
finite algebraic multiplicities. Sincé = 0 is a simple eigenvalue @ (its associated null space is
spanned byM\), this leads to the existence of a positive spectral gapurirst one proves that any
solution to the space-homogoneous linear Boltzmann emufi]]l) converges at an exponential
rate towards the equilibrium. These spectral results atenteal generalizations of some of the
fundamental results of T. Carlemadn [5], but are new in theéedrof granular gas dynamics.

1.4. Honest solutions for hard—spheres modellt is easily seen that, for any nonnegatifie

f Q" ()Mo = f o(@)f(0)do, (L5)
R3 R3

i.e. the collision operata@ is conservativeThen, formally, any nonnegative solutigitx, v, t) to
(@) (withC = Q) should satisfy the followingnass conservation equation

f f(x,v, t)dxdv = f f(x,v,0)dxdo, vVt > 0. (1.6)
R3xIR3 R3xIR3

It is the main concern of Sectidh 4 to prove that such a formegsconservation property holds
true for any nonnegative initial datuffifx, v,0) € L}(R® x R%). As well documented in the mono-
graph [3], this is strongly related to the honesty of @yesemigroup governing EqC(1.1). More
precisely, if we denote by, the streaming operator:

DTo)={feX,v0-Vof €X),  Tof =—v-Vsf,
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it is not difficult to see that there exists some extengianf T + Q that generates @,-semigroup
of contractiong V(t))»0 in X = LY(R3 x IR3). According to the so—called "sub-stochastic pertur-
bation” theory, developed in][L] B.119], it can be proved that

f V(t)f(x,v)dxdv = f f(x, v)dxdo, VfeX f>0
R3XIR3 R3XIR3

if and only if 2(G) = 2(Ty + Q). We show in Section 4 that the latter holds. To do so, we shall
use the integral representation (Theofem 1.3) in order plya@mme of the results of[1] (see also
[B, Chapter 10]) dealing with the classical linear Boltzmauguation.

1.5. Organization of the paper. We derive in Section 2 the integral representatioiQéf(The-
orem[Z1) as well as some of its immediate consequences roamgehe explicit expression of
the collision frequency. We also recover Theofem 1.1 thinaaugetailed balance law. Section 3 is
devoted to the study of the collision opera@in the narrow spack*(M™'(v)dv) and its spectral
consequences. In Section 4 we applied the results of Sezagrnwell as some known facts about
the classical linear Boltzmann equatian [[1, 3] to the hone$tthe solutions to the Boltzmann
equation for dissipative hard-spheres.

2. INTEGRAL REPRESENTATION OF THE GAIN OPERATOR

Let us consider the gain operator for dissipative hard-gshe

Q" () = f

R3x

. |q - | f (0 )My (wy )dwdn
S
and leto(v) be the corresponding collision frequency:

o(v) = f g - n| My (w)dwdn, veR3.
R3x$2

Recall thatM; is a Maxwellian distribution function with bulk velocity; and effective tem-
peratured;. We recall here the general microscopic description of tieecpllisional velocities
(v, wx) Which result in(v, w) after collision. For a constant restitution coeffici@rt € < 1, one
has [4[1¥]

—p
1_2ﬁ[61-n]n,

wy =w+2(1 - a)

Uy =0 -2

P .
1 _2ﬁ[q : n]n/

whereq = v — w, a is the mass ratio angldenotes the inelasticity parameter

m 1-¢€
o= ! , B= .
m + mq 2

We show in this section that, as it occurs for the classicdizB@ann equationQ* turns out
to be an integral operator with explicit kernel. Precisghg prove the following whose proof is
inspired by similar calculations inl[9].
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Theorem 2.1(Integral representation of Q). For any f € LY(IR® x R?, dx ® o (v)dv),

1 ’ 4 ’
Q" f(x,v) = 20,7 f]R S 0)k(o, v)dv, (2.1)
where
2
no (R my P il A 21
k(v'v)_(ZnSl) [v—7'|"" exp 89, 1+ wo-2+ E— (2.2)
2a0(1-B) -1 1-
Withy=M>Oandy=cx P

a(l-p)
Proof. The local (inx) nature ofQ* is obvious and we can restrict ourselves to prove the result
for a functionf € LY(IR?, o(v)dv) that does not depend an Sety = a% andy = (1 - a)%
so that

1-28°

U =0-2y[g-nln and w,=w+2y[q-nn.
The following formula, for smootkp:

f q-me((q-nn)dn = lqlf ( lqla) g,

applied to
P(x) = f (v = 2yx) My (w + 2yx)
yields
1 ’ 7’
Q' f() = 7 f g1 f (@ )My (w")dwdo,
2e* JR3xs?
where
{v, :v+y_(|q|0—q), 2.3)
w  =w=y(qlo-q).
Now, let us recall the following formula valid for sufficigptsmooth®:
1
> fs @(|glo — q)d =1 f (2x - g+ x*)D(x)dx. (2.4)

We have, according t6{2.3)=(2.4),
Q' f(v) =€ f 5(2x - g + %) f(v + yx) My (w — yx)dwdx.
R3xIR3

The change of variables— v" = v + yx leads to

Q' =2y [ oy o) g+y ! 0PI Mo - Lo~ ot
R3xIR3



INTEGRAL REPRESENTATION OF THE LINEAR BOLTZMANN OPERATOR®R GRANULAR GAS 7

Now, keepinge andv’ fixed, we perform the change of variables— w’ = w — %(U' — ), which

leads to

Q f(v) =2y f 1) (2)/_1(0' -0)-[v-—w — Z(v’ -0)]+y 2 v|2) X
R3XR3 Y
X fIM(w’)dw'dv’.

Writingw’ =v+ An+ Vo with Ay =(w’ —v)-nelR,n=@ —v)/[v —vlandV;, - n =0, we
get, noting thatlw’ = dV,dA4,

Qtf(v) =2y f f@"av' f dAq Mi(v+ Vi + Aqn)dVx
R3 R Vyn=0
X O ()/_2|U’ - - 27)/_2|U’ — o - 27/_1/\1|v’ - vl) .

Thanks to the change of variablés — 2y~![v’ — 9|11, one can evaluate the Dirac mass as

f 6 (y‘zlv’ — v =29y — o =2y Iy — vl) My (v + Vy + An)dAy
R

1-2y |,
Milvo+Vy+ (@ -0)
2y

C 2 -

where we used that = (v/ — v)/|v’ — v|. Consequently,

Q" f(o) = ﬁ fR Ko, ) )

where

! y(v’ - v)) dv,.

o —v"| Jy,.r-v)=0
It remains now to explicik(v, v’). We will use the approach dfl[9]. Let us assume’ to be fixed.
Let P be the hyperplan orthogonal (o — v). For anyV, € P, set

1-2y

k(”(), ’0’) = M1 (Z) + Vo +

y(v’—v)+V2—u1

z=0+
so that
N o_ 01 3/2 71—1 2
k(v,v") =|— v — | exp{—01z°}dV>.
7T V,eP

/ 1-2y
ro —ulandy:— Y

wherep; = 27%1 Denoting for simplicityu = g , one has
1

’

_ 2
22:(u+v 20 +%(v—v’)+V2)

1+pu
2 2 2
o~ 0P+~ (o~ P ~ [ )
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where we used the fact th&t is orthogonal tqv’ — v). Splittingu as
U=ug+u,
whereu is parallel tov — v" while u, is orthogonal taw — v’ (i.e. u, € P), we see that

2
2
[lo =P =l =]

lu+ Vol =gl +uy + Vo> and  |upf = ,
4lv — v'|?

so that

3/2
k(v,?') = v — 0| (%) fexp (_QlluJ_ + V2|2) dV
P

2
2
[lv — w1 = [0 — ] ]

v —v'|?

exp ‘% (1 + o =o' +2(1 + (o = m = [ — w1 ) +

Finally, sinceu, € P,

Tt
fexp (_Qllul + V2|2) dvy = f exp(—o1%)dx = —,
P R2 01
one obtains the desired expressionkfar, v’). O

The very important fact to be noticed out is that the expogssif k(v, v’) is very similar to
that one obtains in the elastic case [9], the only changeglibim expression of the constantIn
particular, in the elastic case= 1, we recover the expression of the kernel obtainedin [5] for
particles of same mass (i.e. = m7) and in [9] for particles with different masses.

Another fundamental property of the kerri€b, v’) is that it allows us to recover the steady
state ofQ through somenicroscopic detailed balance lawrecisely,

Theorem 2.2. With the notations of the Theordm12.1, the followitegailed balance law
kv, v') exp {—ﬂa F ) - ul)z} = k(v', ) exp {—ﬂa U)o — ul)z}, 2.5)
2\91 2\91

holds for anyo, v’ € IR3. As a consequence, the Maxwellian velocity distribution:

M(o) = ( m )3/2 exp {—M} veR3,

2m 9 29#

(I-a)(1-p)
1—a(l-p)

Proof. According to Eq.[[ZR), it is easily seen that

with 9% = 91 is the unique equilibrium state @} with unit mass.

k(v',v) = k(v,v") exp {Zm_Sll(l + 1) (Iv - - u1|2)}, v,v" € R®
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which is nothing butl{Z]5). Now, writiné”s—ll(l +u) = 2%, straightforward calculations lead to the

desired expression for the equilibrium temperatdfeThe fact thatM is an equilibrium solution
with unit mass follows then from the fact that

QM) = f]R . k(v, V" YM(0")dv" — o(v)M(v) = fﬂ; . [k(v, V" IM@") — k(v', 0) M(v)] dv’

and from the detailed balance lalx{2.5). To prove that thadstestate is unique, we adopt the
stategy ofl[15, Theorem 1]. Precisely, consider the equatio
0@ f@) =Q*f(v), VoeR® (2.6)

which admits at least the solutigh= M;. Sincec(v) does not vanish, any solutiohto {Z38) is
such that

f(o) = % Q" (H(@), Vo e IRP.

SinceQ™ is an integral operator withonnegativekernel, it is clear thaltf (v)| < ﬁQ*(l f1)(v) for
anyv € R3, i.e.
o) f (@) < Q™ (f)(v), Yo e R°.
Now, from the positivity of bothr andQ™", one sees that the conservation of masg (1.5) reads:
llofllx = llolflllx = 1QT (Nl

This shows that, actually,

Q" (M)l = a@)If (@)l = Q" (If)(v) Vo e R3.
Again, sinceQ™ is a positive operator, one obtains that
f==lfl

Now, assume thaf{2.6) admits two solutiofis f» with f]R3 fi)dv = f]R3 fo(v)dv = 1. Then,
f1 — f2 is again a solution td{2.6) so thafi, — f> = +|f1 — f2|. Thus,

if]Rs |f1(v) — fo(v)ldv = f]Rs fi(v)do — f]R3 fo(v)dv =0

and the uniqueness follows. |
The above result allows to derive the explicit expressiothefcollision frequency(v):

Corollary 2.3. The collision frequency(v) for dissipative hard—spheres interactions is given by

o(v) = 2n s {4—81ex (—ﬂlv—uIZ)
T+ \V2mdy Umy P\ T2g 0 M

281 2fo-tn] my 5
2l — _— ——tdty. (2.7
+( |U u1|+ mllv—ull)j(; exp( 8\91 ) ( )

Consequently, there exist positive constanis; such that

vo(l+ v —uql) < o(@) < vi(1 + v —uql), Yo e R%.
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my
TC 1.
change of variable = v — v,

2 - — 1 02\?
R3 8\9]

Proof. SetC =

Noting thato(v) = f]R3 k(v’,v)dv’ for anyv € IR, one has, with the

|z

= Cf exp {—ﬂ (2 + w)lzl + 2v — uq| cos (p)z} 2| tdz
R3 8\91

= 27'(Cf d@f oexp {—ﬂ (2+ w)o+2v —u|cos qo)z} sin @ dg.

The computation of this last integral leads to the desirqatassion foro(v). The estimates are
then straightforward [9]. O

3. APPLICATION TO THEBOLTZMANN OPERATOR INLZ(M™).
We investigate in this section the properties of the BoltzmaperatoK) in the weighted space
H = LA(R3; ML (v)dv)

We shall denote by, -)4; the inner product iH. The introduction of such an Hilbert space
setting is motivated by the application of theTheoren{_LR with the convex function

D(x) = (x — 1)
In this case, one sees thatfif> 0 is a space homogeneous initial distribution such that
[ Aedo=1, [ 1M o <<
R3 R3

then any solutiorf(t, v) to the space homogeneous equation

aif(t,0) = QN  f0,0) = folv) €H, 3.1)
satisfies the following estimate:
% ‘LI;S |f(t/ U) - M('U)|2 M(U)_ld’v < O, t>0.

In other words, the mapping— ||f(t, ) - M||(H is nonincreasing For these reasons, the study

of the properties of the collision operat@r in H is of particular relevance for the asymptotic
behavior of the solution

df(t,0) =Q(Htv),  f(0,0) eH. (3.2)

The material of this section borrows some techniques ajreatployed by T. Carlemanl[5] in the
study of non-dissipative gas dynamics (see also, [€.g. [[B] dor similar results in the context of
thelinearizedBoltzmann equation). Lef be the realization of the operat@rin H, i.e.

@<L>={few,- fR |f<v>|2a<v>M-1<v>dv<oo}.
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and, for anyf € 2(£), Lf(v) = Q(f)(v) is given by [I2). As previously, one can use the
following splitting of £ as a gain operator and a loss (multiplication) operafog £ — £~ with

L)) = jﬂ; k(v, o) f(0")dv’ and L7 (f) =0()f(v), fea(L).

We shall show, as in the classical case, thatis actually a bounded operator . Precisely, let
_# define the natural bijection operator frdiA(IR?, dv) to H:

7 AR dv) — H
{ fr—= 7 f©) = MP()f(v)
It is clear that # is a bounded bijective operator whose inverse is given by
I 7o) = MTV2(0)g(v) € LA(R®,dv),  VgeH.
Now, let us define
G(v,v") = M7Y2@)k(v, v )MY2 (@), 0,7 € R,
i.e.

1/2
G(v,v') = ( ;ﬂl ) v — o' exp {—é% ((1 + y)zlv -+
1

(jo = usf? =’ = U1|2)2)}
lv —v'f? '
(3.3)
From the detailed balance lali{P.5), one easily checksGt@t’) = G(v/, v) for anyv, v’ € R3.
Therefore, definingz as the integral operator i (IR?, dv) with kernelG(v, v'), i.e.

Gf(v) = fR G,
one can prove the following:

Proposition 3.1. G is a bounded symmetric operator if(R>,dv) and L* = _#G_# 1. Conse-
qguently,L* is a bounded symmetric operator .

Proof. It is clear thatG is symmetric sincés(v,v’) = G(v’,v). Now, to prove the boundedness
of G, one adopts a strategy already used in the non—dissipaae oy T. Carleman]|5, p. 75].
Precisely, from[(313), the use of spherical coordinateddea

Id/ ml 1/2 znd " . d
j}l;aG(v,v) v _(27181) f(; Ej(; sin pdpx

a m
xf gexp{—ﬁ((l+y)2@2+(g+2|v—u1|cos(p)2)}dg
0 1
<4 (m1 )1/2f00 y (_ﬂ(1+ )22)61 < 00
ST 219 0 oexp 89 Hrejae )

C:= supf G(v,0")dv" < oo.
IRS

veR3

Therefore,
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SinceG(:, -) is symmetric, one also hasip,, s fIRS G(v,v")dv = C < co. Denoting by(:, -) the
usual inner product df?(IR?, 4v), one deduces from Cauchy-Schwarz identity,

C 4 4
(Gf, & < > (f |f(v)|2dv + f lg(v )|2dv ), Vf, g€ LZ(]R?)/dv),
RR3 R3
which leads to the boundedness@f Now, sinceG(v,v’) = M™Y2(w)k(v, v )MY2(') for any
v, € R®, one gets easily thaf* = /g/—l and the conclusion follows. m]

In Propositior 311, we proved that the gain operafdris bounded inH, i.e. Lt € B(H).
Actually, we have much better and it is possible, as in the-dmsipative case, to prove that
is a compact operator k. Indeed, arguing as i[5, p. 70-75], one can prove the fatigw

Lemma 3.2. For any0 < p < 3 and anyg > 0, there exist<(p, q) > 0 such that

e < C(p,q)
A+ —uq|) h 1+v- ull)q“'

Proof. The proof is a technical generalization of a similar resul¢ do T. Carleman’[5] in the
classical case (i.e. whem = m; ande = 1). Let us fix0 < p <3andg > 0 and set

= flG 1+Iv’—ul)

Yo € R,

IG(v, v")P
R3

Then, one sees easily that

_(m p/2 on f»n ' foo " { myp 5 9 2}
I(U)_(Znsl) ; dé ; sin pde i o Pexp 89, ((1+y)@ +(0+2lv ullcosqo)) X

o*do
(1 + \/92 + o —uq|? + 200 — uq] COS(P)q

X

do.

2 o exp {__m1p ((1 + 1)?0* + (0 + 2Jv — 11| cos (p)z)}
_ mq P . 2—p 8\91
g sin pde 0 7
0 (1+ \/Qz+|v—u1|2+20|v—u1|c:05(p)
Note that, sincé < p < 3,

mp p/2f°° o { mp 2 2}
I(v) < 4 P -——1 d . 3.4
SSHE (0) ”(27191) ; o~ exp 881( +u)70%do < oo (3.4)

Performing the change of variabte= o/[v — u;| + 2cos ¢, y = o/|v — u4], one hagx, y) € Q
where

Q:{(x,y)ele;y>O, Ix —yl <2}
and

my \P/2 ~ mplo — uq|? dxd
100 = (g o™ [ e (-G ) ’

yr2 (1 + v —uq| /1 + xy)q'
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We splitQ into QO = Q; U Q, where(), is the half-ellipse
Qr={x,yeR>: y>0,1+u’y*+x><1/4)  whie  Q,=0Q\Q.

Note that, sincd + u > 1, one hag2; c Q. One define correspondingly(v) andl;(v) as the
above integral ove®); and(), respectively. One notes first that(if, y) € Q; thenxy > —
so that

my V2 mlo—uylP f myplo — uq|? s o oy dxdy
< o
I1(v) (2n81) o=l o, &P Ty (@ + w22 +22) =

wherea = /1 - 8(1+y)’ 0 <a<1. LettingR = (
R(1+p)lo—uqly, itis easy to check thatR[v—u4|/2 <

so that
P2 mRPA(L + ) ® expl(~(# + 1
219, [0 —ui|(1+alo—uw)? Jr = Jo

Thus, there exists a constati(p, 4) > 0 such that

Cl(p/ )
[o — u1|(1 + alo — us])7’

1
8(l+‘u)

and settingt = Rlo — uqlx, u =

)"
S
t < Rlv—uq|/2, while0 < u < Rjv—u4|/2,

Li(v) < Vo e R3. (3.5)

Let us now deal witl(v). Arguing as above,

_(om YR 3—pf _miplo - | 2.2, .2
L(v) = (27181) 7t|o — uq| o, exp 89, ((1 + )y +x )
dxdy

yl" 2(1+|v—u1|m)
_(m R R -y 2,2, .2
_(27'(81) Tt|o — uq] Qzexp > ((1+y) y +x) X
exp{ B Rloomt i ((1+y) y2+x2)}

Y2 (1 + v —uq|+/1+ xy)q

Clearly, sincg(1 + u)?y? + x> > 1/4 for any(x, y) € Qy, then

my \P/2 _aep _R2|v —uq? _R2|v —usf? ) dxdy
L(v) < (27_[91) Tt|o — uy| o, eXpl-—— |ePIT— 5 ((1 + )y + x

my \P/? 3 R?lv — uq? foo R?v — s 2 0| 4y fy+2
< _ p 2 —— (1 — a
(2n81) 1o — uq|”F exp 3 i exp > 1+ up)y - ) )2 X

Hence, there is some constar(p, g) such that

dxdy.

R%lv — uq?

L(v) < Ca(p, q) exp (— 3

), veR3. (3.6)
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Combining [36) and{316), one sees that

Cl (P/ ‘J)
“w<|v—um1+mU—umq

2 2
+C2(p,q)exp(——R lUS | ) v e RS,

According to[(3H)]im SUpy,_,, 10 [(v) < o0, from which one can conclude that there exists some
constantC(p, q) > 0 with

C(p,q)
1+ 1o — )7’
which ends the proof. |

I(v) < veR3

From the above Lemma, one has the following compactnesk:resu
Proposition 3.3. G is compact in.?(IR?, dv). Consequently/ is a compact operator ifH.

Proof. Applying arguments already used in [5], the above Lemmaigsphat the third iterate of
G is an Hilbert—Schmidt operator il?(R3, dv), i.e. the kernel o7 is square summable over
R3 x R3. The compactness @ follows then from standard arguments and thao deduced
from the identityL* = _#G_# ! (see Proposition3.1). o

The following, which generalizes a known result from claakkinetic theory, proves thef is
a negative symmetric operatorf:

Proposition 3.4. The operatol £, 2(L)) is a negative self—adjoint operator #f. Precisely,

2
(Lf, o = 1 fR - k(o, v')M(v')[M—l(v) f(o) - f(v')M—l(v')] dvdv’ <0

2
forany f € 2(L).

Proof. The fact tha{ £, 2(X£)) is self-adjoint is a direct consequence of Proposifiah Bdes/~
is clearly symmetric. Now, it is a classical feature, frora ttetailed balance lal{2.5), that

<£ﬁfh{=JAH@ﬂwAFth@ﬂﬂf@3—k@wa@ﬂmﬂ#

R3x
= f]l;3 . k(U, U’)M(U’)[M_l (U’)f(U') _ f(U)M_l (U)]f(U)M_l (U)dvdl),.

Exchangingw andv” and using again the detailed balance IBwl(2.5), one sees that

(L, Pon= [ OME[M @) = FM )| M @ o

R3XIR
:f kmwwwhﬁ@mwﬂwMﬂwthﬂwmw
R3XIR3
so that, taking the mean of the two quantities,
1

2
(Lf, o = -3 jﬁ;sxw k(v, v’)M(v’)[M'l(v)f(v) - f(v’)M'l(v’)] dodv’ <0

which ends the proof. |
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Remark 3.5. From the above result, the spectruafL) of L liesinIR_, i.e. S(L) C (-0, 0]. It
is clear thatAd = 0 lies in S(£). Precisely0 is a simple eigenvalue of since M is the unique (up
to a multiplication factor) steady state 4.

Combining the above results with Proposition 3.1 leads tieaipe description of the spectrum
of L:

Theorem 3.6. The spectrum af (as an operator irfH) consists of the spectrum &f and of, at
most, eigenvalues of finite multiplicities. Preciselytisgtvy = inf, s o(v) > 0,

SL) ={AeR; A<=} U{A,; nel}

wherel ¢ IN and (4,), is a decreasing sequence of real eigenvalueg afith finite algebraic
multiplicities: Ag =0 > A1 > A>... > A, > ..., whose unique possible cluster pointis,.

Proof. From Propositioh_313/ is nothing but a compact perturbation of the loss operat6r.
Henceforth, Weyl's Theorem asserts tiE&tL) \ S(—L7) consists of, at most, eigenvalues of finite
algebraic multiplicities whose unique cluster poinsigp{A, A € S(—L")}. In particular, up to a
rearrangement, one can wrilE{ L) \ S(-L7) ={A, neJwithAg > A1 > Ar...> A, > .. ..
We already saw thaty, = 0 since M is a steady state d and M € H. Now, since—L~

is a multiplication operator by the collision frequeney(-), its spectrumS(—L") is given by
the essential rangR.ss(—o(-)) of the collision frequency. From Corollafy 2.7, one seeshauuit
difficulty that

Ress(—0(+)) = (=00, —v0]
wherevg = inf,cgs 0(v) = limy,_;;, |0 0(v) = ﬁ A /% is positive. O

The above result provides a complete picture of the spectofu@ as an operator ifH and
shows, in particular, the existence of a positive spectagl|d:| of £. Note that such a result,
combined with Proposition-3.4, has important consequendaeentropy production, since it can
be shown in an easy way that theTheorem reads as

2 156 - MIE, = L5, FOD

Consequently, th®irichlet form B(f) = —(Lf, f)41 plays the role of entropy-dissipation func-
tional and the existence of a spectral ¢g&f is equivalent to the following coercivity estimate for
B(f):

B(f) = -l lIf1I5, Vf L span(M).
One deduces easily the following corollary on the expométiend towards equilibrium:

Corollary 3.7. Let fy(v) € H and let f(t,v) be the unique solution to the linear homogeneous
Boltzmann equatio3.2). Then, there is some constant> 0 such that

Ift,) = M||,, < Cexp(=lAile)||fo - M]|,,,  forany t>0,
where0 < |A1]| < vy is provided by Theoren3.6.

We refer the reader t@ [13] for details on the matter, and niqadar, for anexplicit estimate
of the spectral gapl4|.



16 L. ARLOTTI & B. LODS

4. APPLICATION TO THE HONEST SOLUTIONS OF THIBOLTZMANN EQUATION

4.1. Conservative solutions.We are interested in this section in applying the result efpitevi-
ous section to prove the existence of honest solutions tbrtbar Boltzmann equation for dissi-
pative hard—spheres

dif(x,v,t) +v-Vif(x,v,t) = Q(f)(x, 0, 1), 4.1
with initial condition
f(x,0,0) = folx,v) € LY(R® x R®, dx ® dv),

where the collision operatd is given by Eq. [TR2). Recall that the streaming operdtpis
defined by

D(To) ={f eX,v-Vif €KX}, Tof =-v-Vif
whereX = L1(R3 x R3, dx ® dv). One can define then the multiplication operaidny
2X)={feX,0f X}, Lf(x,v) = —0(v) f(x,v)

where, as in the previous Secti@ry) is the collision frequency correspondingdissipative hard
spheresnteractions and given by EQ_{2.7). The following genenmatiesult is well-known[[3]

Theorem 4.1. The operatofTy generates &y-semigroup of isometrigdi(t)):>o of X given by:
Ut)f(x,v) = f(x —to,v), t>0.

The operatotA = Ty + £ with domainZ(A) = 2(Ty) N Z(X) is the generator of a contractions
Co-semigroup(V (t)):=0 given by

V(t)f(x,0) = exp(=o(0)t) f(x — tv, D), t>0.

Let us define nowK as the gain operat@* endowed with the domain of:

2(K) = 2(A), Kf(x,v) = Q*(f)(x,v) = €2 jﬂ; . g - n|f(x, v )My (wy)dwdn.

It is clear from [I.b) that, for any € 2(K),

f (Af + Kf)dxdo = 0, (4.2)
R3XIR3

while Kf > 0 for any f € Z(K), f > 0. Then, the following generation result is a direct conse-
guence ofl[iL,_T9]:

Theorem 4.2. There exists a positive contractions semigrodfy)):»o in X whose generatog is
an extension afl + K. Moreover,(Z(t))s0 is minimal, i.e. if(T(t)):so is a positiveCy-semigroup
generated by an extension 4f+ K, thenT(t) > Z(t) for anyt > 0.

The natural question is now to determine whether the "fotmmalss conservation identiti/{1.6)
can be made rigorous. Namely, one aims to prove that, for angegativef € X, the following
holds:

Nz fAr=1f,  ve>0.
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The important point to be noticed is the following.Gf= A + K, then any functiorp € Z(G) can
be approximated by a sequer(@g,), ¢ Z(A + K) = Z(A) such thatp, — ¢ and(A + K)p, —
G asn — oo. In particular, [£R) implies that

f Godxdv = lim (A + K)ppdxdv =0, Yo € 2(G).
R3xIR3

n—-oo ]RSX]RS

Now, for any given initial datunfy € 2(G), fo > 0, the solutionf(t) = Z(t) fo of (1) is such that

d d
Sl = fR o - fR  Gftsdo =0,
ie.
lfl=1lfll,  vt=o0.

This means that, iz = A + K, then the solutions to the linear Boltzmann equationl (4r&) a
conservative. On the other handdfis a larger extension & + K thanA + K, then there may be

a loss of particles in the evolution (seéé [3] for the mattewali as [2] for examples of transport
equation for which such a loss of particles occurs becausewfidary conditions). Precisely, if
G # A + K then there existg € X, fy > 0 such that

IZ(t) foll < Il foll for somet > 0.

This shows that the determination of the dom&i¢G) of G is of primary importance in the study
of the Boltzmann equation. This is the main concern of thealbed substochastic perturbation
theory ofCy-semigroups3].

To prove the honesty of th€y-semigroup(Z(t)):-0, we will adopt the strategy developed first
in [I] and systematized ifn[3]. More precisely, we will shdwat the gain operatdk fullfils the
assumption offJ1]:

Proposition 4.3. There exist& > 0 such that, for any fixed > 0,

esssup f k(@' ,v)dv" < C.
[0/ —uq]>0

[o—uq1<0

Proof. Since the kernet(v, v’) differs from the corresponding one for classical gas, exfrem
numerical constants, one can appiytatis mutandighe technical calculations dfl[1, Section 4.1]
(see alsol]i3, p. 329-330]) to get the desired estimate. |

As a consequence, one deduces immediately from [1], the resirdt of this section:
Theorem 4.4. The domainZ(G) of G is given by
2(G) = 2(A+K).

In particular, theCy-semigroup(Z(t)):so is honest and

f Z(t) f(x, v)dxdv = f f(x,v)dxdv forany f € X and anyt > 0.
R3XR3 R3XIR3
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4.2. Consequence on the entropy production.The above result (Theoreln#.4) allows to give
a rigorous proof of the lineal-Theorem of[[1D]. In order to stay in the formalism bf][10], we
shall restrict ourselves to the space-homogenous casesélyeletY denote the set of functions
depending only on the velocity and integrable with respeeiocities:

Y = LY(R3, dv),

equipped with its natural norih ||y. For any nonnegativ¢ andg in Y, we define thenformation
of f with respect tgz by

I(flg) = fR (@ @) - f@) In g0 o

with the convention®In0 = 0 andxIn0 = —oo for anyx > 0. This means that the information
is nothing but the entropy function&le for the particular choice ab(s) = sIns. One recalls the
main result of [18]:

Theorem 4.5. LetU be a stochastic operator of, i.e. U is a positive operator such thfit! f|ly =
Iflly forany f € Y, f > 0. Then,

I(ufug) < I(f1g)
for any nonnegative, g in Y. In particular, if ¢ € Y is a nonnegative fixed point of then,

I(Uflg) < I(flg),  VfeY, f>0.

According to the results of the previous section, it is ndfialilt to see that the restriction of
(Z(t)=0 to Y is aCy-semigroup of stochastic operatorsaf Since the unique equilibrium state
M e Y is space independent, one sees tliat+ K)AM = 0 and, in particular,

Zy(OM = M, Vit > 0.

Combining this with Theorefa 4.5, one obtains a rigorous pobthe H—Theorem[[1D, Theorem
5.1]:

Theorem 4.6. Let fy € Y be a given nonnegative (space homogeneous) distributiostifun with
unit mass, i.e||folly = 1. Assume thaf (fo| M) < oo, then

Srfom<o (>0
wheref(t) = Zy(t) fo = Z(t) fo is the unique solution t@.1) with £(0) = fo.
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