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ELECTRICAL IMPEDANCE TOMOGRAPHY BY ELASTIC DEFORMATION

This paper presents a new algorithm for conductivity imaging. Our idea is to extract more information about the conductivity distribution from data that have been enriched by coupling impedance electrical measurements to localized elastic perturbations. Using asymptotics of the elds in the presence of small volume inclusions, we relate the pointwise values of the energy density to the measured data, through a nonlinear PDE. Our algorithm is based on this PDE and takes full advantage of the enriched data. We give numerical examples that illustrate the performance and the accuracy of our approach.

Introduction

Electrical impedance tomography (EIT) technique has been an active research topic since the early 1980s. In EIT, one measures the boundary voltages due to multiple injection currents to reconstruct images of the conductivity distribution. However, these boundary voltages are insensitive to a local change of the conductivity distribution and the relation between them is highly nonlinear.

Medical imaging has been one of the important application areas of EIT. Indeed, biological tissues have dierent electrical properties that change with cell concentration, cellular structure, and molecular composition. Such changes of electrical properties are the manifestations of structural, functional, metabolic, and pathological conditions of tissues, and thus provide valuable diagnostic information.

For practitioners, the practicality of EIT is of great interest: It is a low cost and portable technology, which can be used for real time monitoring. However, it suers from poor spatial resolution and accuracy, a wellknown feature of inverse problems. This motivated us to look for a new way of incorporating more information in EIT data, without altering the cost and portability of the data acquisition, which would yet improve the resolution of the reconstructed images.

The classical image reconstruction algorithms view EIT as an optimization problem. An initial conductivity distribution is iteratively updated, so as to minimize the dierence between measured and computed boundary voltages. This kind of method was rst introduced in EIT by Yorkey, Webster, and Tompkins [START_REF] Yorkey | Comparing reconstruction algorithms for electrical impedance tomography[END_REF]. Numerous variations and improvements followed, which include utilization of a priori information, and various forms of regularization [START_REF] Woo | A robust image reconstruction algorithm and its parallel implementation in electrical impedance tomography[END_REF]. This approach is quite greedy in computational time, yet produces images with deceivingly poor accuracy and spatial resolution.

In the 1980's, Barber and Brown [START_REF] Barber | Applied potential tomography[END_REF] introduced a back-projection algorithm, that was the rst fast and ecient algorithm for EIT, although it provides images with very low resolution. Since this algorithm is inspired from computed tomography, it can be viewed as a generalized Radon transform method [START_REF] Santosa | A backprojection algorithm for electrical impedance imaging[END_REF].

A third technique is dynamical electrical impedance imaging, developed by the Rensselaer impedance tomography group [START_REF] Cheney | Electrical impedance tomography[END_REF], to produce images of changes in conductivity due to cardiac or respiratory functions. Its main idea consists in viewing the conductivity as the sum of a static term (the background conductivity of the human body) plus a perturbation (the change of conductivity caused by respiration or by heart beats). The mathematical problem here is to visualize the perturbation term by an EIT system. Although this algorithm provides accurate images if the initial guess of the background conductivity is good, its resolution does not completely satisfy practitioners especially when screening for breast cancer.

Recently, a commercial system called TransScan TS2000 (TransScan Medical, Ltd, Migdal Ha'Emek, Israel) has been released for adjunctive clinical uses with Xray mammography in the diagnostic of breast cancer. Interestingly, the TransScan system is similar to the frontal plane impedance camera that initiated EIT research early in 1978. The mathematical model of the TransScan can be viewed as a realistic or practical version of the general EIT system, so any theory developed for this model can be applied to other areas in EIT, especially to detection of anomalies. In the TransScan, a patient holds a metallic cylindrical reference electrode, through which a constant voltage of 1 to 2.5 V, with frequencies spanning 100 Hz-100 KHz, is applied. A scanning probe with a planar array of electrodes, kept at ground potential, is placed on the breast. The voltage dierence between the hand and the probe induces a current ow through the breast, from which information about the impedance distribution in the breast can be extracted.

Using a simplied dipole method, Assenheimer et Scholz gave a physical interpretation of the white spots in TransScan images.

More recently, taking advantage of the smallness of the anomalies to be detected, Ammari et al. [START_REF] Ammari | Anomaly detection in T-scan trans-admittance imaging system[END_REF] analyzed trans-admittance data, for the detection of breast cancer using the TransScan system. Their model assumes that breast tissues can be considered homogeneous, at least near the surface, where the planar array of electrodes is attached, and that the lesion to be detected is located near the surface. In [START_REF] Ammari | Anomaly detection in T-scan trans-admittance imaging system[END_REF], the authors developed better ways of interpreting TransScan images, which improve accuracy. They also derived a multi-frequency approach to handle the case where the background conductivity is inhomogeneous and not known a priori. This latter work relies on asymptotic expansions of the elds when the medium contains inclusions of small volume, a technique that has proven useful in many other contexts. Such asymptotics have been investigated in the case of the conduction equation [START_REF] Friedman | Identication of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence[END_REF][START_REF] Cedio-Fengya | Identication of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction[END_REF][START_REF] Beretta | Asymptotic formulas for steady state voltage potentials in the presence of thin inhomogeneities. A rigorous error analysis[END_REF][START_REF] Ammari | High-order terms in the asymptotic expansions of the steady-state voltage potentials in the presence of inhomogeneities of small diameter[END_REF][START_REF] Capdeboscq | A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction[END_REF], the operator of elasticity [START_REF] Alves | Boundary integral formulae for the reconstruction of imperfections of small diameter in an elastic medium[END_REF][START_REF] Ammari | Complete asymptotic expansions of solutions of the system of elastostatics in the presence of an inclusion of small diameter and detection of an inclusion[END_REF], the Helmholtz equation or the Maxwell system [START_REF] Vogelius | Asymptotic formulas for perturbations in the electromagnetic elds due to the presence of inhomogeneities[END_REF][START_REF] Ammari | Asymptotic formulas for perturbations in the electromagnetic elds due to the presence of inhomogeneities of small diameter II. The full Maxwell equations[END_REF][START_REF] Ammari | Boundary layer techniques for solving the Helmholtz equation in the presence of small inhomogeneities[END_REF]. See the book [START_REF] Ammari | Reconstruction of Small Inhomogeneities from Boundary Measurements[END_REF] and its list of references. The remarkable feature of this technique, is that it allows a stable and accurate reconstruction of the location and of the geometric features of the inclusions, even for moderately noisy data. Since all the present EIT technologies are only practically applicable in feature extraction of anomalies, improving EIT calls for innovative measurement techniques that incorporate structural information. A very promising direction of research is the recent magnetic resonance imaging technique, called current density imaging, which measures the internal current density distribution. See the breakthrough work by Seo and his group [START_REF] Kwon | A real-time algorithm for the location search of discontinuous conductivities with one measurement[END_REF][START_REF] Kwon | Magnetic resonance electrical impedance tomography (MREIT): simulation study of J -substitution algorithm[END_REF][START_REF] Kim | Uniqueness and convergence of conductivity image reconstruction in magnetic resonance electrical impedance tomography[END_REF]. However, this technique has a number of disadvantages, among which the lack of portability and a potentially long imaging time. Moreover, it uses an expensive magnetic resonance imaging scanner.

The aim of this paper is to propose another mathematical direction for future EIT research in view of biomedical applications, without eliminating the most important merits of EIT (real time imaging, low cost, portability). Our method is based on the simultaneous measurement of an electric current and of acoustic vibrations induced by ultrasound waves. Its intrinsic resolution depends on the size of the focal spot of the acoustic perturbation, and thus our method should provide high resolution images.

Let us now formulate our problem. We rst recall that, in mathematical terms, EIT consists in recovering the conductivity map of a 2D or 3D body Ω, from measuring the voltage response to one or several currents applied on the boundary. In practice, a set of electrodes is attached to the body. One or several currents φ i , 1 ≤ i ≤ I, are applied to one or several electrodes, and the corresponding voltage potentials f i , 1 ≤ i ≤ I, are recorded on the others. Denoting by γ(x) the unknown conductivity, the voltage potential u i solve the conduction problem

(1.1) ∇ x • (γ(x)∇ x u i ) = 0 in Ω γ(x) ∂u i ∂n = φ i on ∂Ω.
The problem of impedance tomography is the inverse problem of recovering the coecients γ of the elliptic conduction PDE, knowing one or more currentto-voltage pairs

(φ i , f i := u i | ∂Ω ).
The core idea of our approach is to extract more information about the conductivity from data that has been enriched by coupling the electric measurements to localized elastic perturbations. More precisely, we propose to perturb the medium during the electric measurements, by focusing ultrasonic waves on regions of small diameter inside the body. Using a simple model for the mechanical eects of the ultrasound waves, we show that the dierence between the measurements in the unperturbed and perturbed congurations is asymptotically equal to the pointwise value of the energy density at the center of the perturbed zone. In practice, the ultrasounds impact a spherical or ellipsoidal zone, of a few millimeters in diameter. The perturbation should thus be sensitive to conductivity variations at the millimeter scale, which is the precision required for breast cancer diagnostic.

By scanning the interior of the body with ultrasound waves, given an applied current φ i , we obtain data from which we can compute S i (x) := γ(x)|∇u i (x)| 2 , in an interior subregion of Ω. The new inverse problem is now to reconstruct γ knowing S i for i = 1, . . . , I.

The goal of this work is threefold: Firstly, we show that taking measurements while perturbing the medium with ultrasound waves is asymptotically equivalent to measuring S i . To this end, we consider the zone ω deformed by the ultrasound wave as a small volume perturbation of the background potential γ. We then relate the dierence between the perturbed and unperturbed potentials on the boundary to the conductivity at the center of ω, asymptotically as |ω| → 0. This is our main idea: the ultrasound waves create localized perturbations that allow us, using the method of asymptotic expansions of small volume inclusions, to probe within the medium. Secondly, noting that the potential u i satises the following nonlinear PDE (the 0Laplacian)

(1.2)          ∇ x • S i (x) |∇u i | 2 ∇u i = 0 in Ω, S i (x) |∇u i | 2 ∂u i ∂n = φ i on ∂Ω,
we propose a numerical method to compute solutions ũi to (1.2) and then an ap- proximate conductivity γ = S i /|∇ũ i | 2 , using two currents (i.e., I = 2). Recall that an appropriate choice of φ i insures that ∇u i = 0 for all x ∈ Ω. See [START_REF] Alessandrini | Local uniqueness in the inverse conductivity problem with one measurement[END_REF][START_REF] Alessandrini | The index of isolated critical points and solutions of elliptic equations in the plane[END_REF][START_REF] Seo | A uniqueness result on inverse conductivity problem with two measurements[END_REF][START_REF] Fabes | Inverse conductivity problem with one measurement: Error estimates and approximate identication for perturbed disks[END_REF].

Thirdly, our algorithm, as the one originally developed in [START_REF] Kim | On a nonlinear partial dierential equation arising in magnetic resonance electrical impedance imaging[END_REF] for current density imaging, requires data measured with two boundary currents for which the ux densities (the gradient of the voltage potentials) are locally orthogonal (or try to be). We show numerically that this algorithm is able to capture details of the conductivity map up to the precision of the underlying nite element mesh, and thus proves very eective.

The paper is organized as follows. In the next section, we describe the physical model, and the collection of experimental data on the boundary. Section 3 explains how, given a current φ i , the values of S i (x) can be approximated using this data. In section 4, we describe the numerical method for reconstruction of γ using two applied currents. Numerical examples that illustrate the performance and the accuracy of this method are presented in that section. The paper ends with a short discussion.

2. Impedance tomography perturbed by ultrasound waves 2.1. Description of the experiment. The goal of the experiment is to obtain an impedance map inside a solid with millimetric precision.

An objet (a domain Ω) is electrically probed: One or several currents are imposed on the surface and the induced potentials are measured on the boundary (see g 2.1). At the same time, a spherical region of a few millimeters in the interior of Ω is mechanically excited by ultrasonic waves, which dilate this region.

The measurements are made as the focus of the ultrasounds scans the entire domain. Several sets of measurements can be obtained by varying the ultrasound waves amplitudes and the applied currents.

2.2. Physical modelling of the eect of ultrasonic waves on the conductivity. Within each (small) spherical volume, the conductivity is assumed to be constant per volume unit. At a point x ∈ Ω, within a ball B of volume V B , the electric conductivity γ is dened in terms of a density ρ as

γ(x) = ρ(x)V B .
The ultrasonic waves induce a small elastic deformation of the sphere B. If this deformation is isotropic, the material points of B occupy a volume V p B in the perturbed conguration, which at rst order is equal to

V p B = V B (1 + 3 ∆r r ),
where r is the radius of the ball B and ∆r is the variation of the radius due to the elastic perturbation. As ∆r is proportional to the amplitude of the ultrasonic wave, we obtain a proportional change of the deformation. Using two dierent ultrasonic waves with dierent amplitudes but with the same spot, it is therefore easy to compute the ratio V p B /V B . As a consequence, the perturbed electrical conductivity γ p satises

∀ x ∈ Ω, γ p (x) = ρ(x)V p B = γ(x)ν(x), (2.1)
where ν(x) = V p B /V B is a known function. We make the following realistic assumptions:

(H1): the ultrasonic wave expands the zone it impacts, and changes its conductivity:

∀x ∈ Ω, ν(x) > 1.

(H2): The perturbation is not too small:

ν(x) -1 V B .
2.3. Mathematical modelling of the eect of ultrasonic waves on the conductivity. We denote by u the voltage potential induced by a current φ, in the absence of ultrasonic perturbations. It is given by

(2.2)    ∇ x • (γ(x)∇ x u) = 0 in Ω,
γ(x) ∂u ∂n = φ on ∂Ω, with the convention that ∂Ω u = 0. We assume that the conductivity γ is bounded above and below by positive constants

0 < c < γ(x) < C < +∞ a.e. x ∈ Ω.
Further, we suppose that the conductivity γ is known close to the boundary of the domain, so that ultrasonic probing is limited to interior points x such that dist(x, ∂Ω) ≥ d 0 , where d 0 is very large compared to the radius of the spot of the ultrasonic perturbation. We denote the corresponding open set Ω 1 . We denote by u ω (x), x ∈ Ω, the voltage potential induced by a current φ, in the presence of ultrasonic perturbations localized in a domain ω of volume |ω|. The voltage potential u ω is a solution to

(2.3)    ∇ x • (γ ω (x)∇ x u ω (x)) = 0 in Ω, γ(x) ∂u ω ∂n = φ on ∂Ω,
with the notation

γ ω (x) = γ(x) 1 + 1 ω (x) (ν(x) -1) ,
where 1 ω is the characteristic function of the domain ω. In the next section, we show how comparing u ω and u on ∂Ω provides information about the conductivity.

Asymptotic recovery of the conductivity

As the zone deformed by the ultrasound wave is small, we can view it as a small volume perturbation of the background conductivity γ, and seek an asymptotic expansion of the boundary values of u ω -u.

For each i = 1, . . . , I, let ζ i ω be the solution to

   ∇ x • γ ω (x)∇ x ζ i ω = ∇ x • (γ(x)∇ x x i ) in Ω, γ(x) ∂ζ i ω ∂n = γ(x) ∂x i ∂n on ∂Ω, with Ω ζ i ω = 0. Corresponding to ζ i ω , we dene ζ i = x i -c i where c i is a constant, in the unperturbed case.
The following proposition is a variant of a compactness result proved in [START_REF] Capdeboscq | A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction[END_REF] which we recall for completeness. In contrast to previous work, the proof we give here only requires boundedness of the conductivity γ ω . Proposition 3.1. Consider a sequence of sets ω ⊂⊂ Ω, such that 1 |ω| 1 ω converges in the sense of measures to a probability measure dµ as |ω| tends to zero. Then, the correctors 

i ω -ζ i satises ∇ x • γ ω (x)∇ x ζ i ω -ζ i = -∇ x • (1 ω (γ p -γ) ∇ x x i ) in Ω.
As for the existence of a limit (and its additional properties) we refer to [START_REF] Capdeboscq | A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction[END_REF].

One of the key elements of our method is the following representation formula. Proposition 3.2. Assume that u ∈ W 2,∞ (ω). Then,

∂Ω (u ω -u) φ dσ = |ω| Ω (γ ω (x) -γ(x)) M ω ∇u∇u dx + O(|ω| 1+κ ).
The exponent κ only depends on Ω 1 , sup Ω |γ ω | and inf Ω |γ ω |. The remainder term has the form

O(|ω| 1+κ ) ≤ C |ω| 1+κ ∇u L ∞ (ω) d ∇ 2 u L ∞ (ω) d×d ,
where C depends only on Ω 1 , sup Ω |γ ω |, and inf Ω |γ ω |. Finally, the matrix valued function M ω is given by

(M ω ) ij (x) = 1 |ω| 1 ω (x) ∂ ∂x j ζ i ω (x) a.e. x ∈ Ω 1 .
This is, globally, not a new result. This representation formula, and the proof presented here has been already obtained by Capdeboscq and Vogelius, it is Theorem 1 in [START_REF] Capdeboscq | A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction[END_REF]. The only dierence with Theorem 1 of [START_REF] Capdeboscq | A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction[END_REF] is that the regularity required on u is investigated more in depth. Note that gobally, u satises the minimal requirement u ∈ H 1 (Ω). Additional regularity on u is only required within ω (in particular, the quality of the representation formula is not aected). We also note that if ω is a disk in the two-dimensional case then (see for instance [START_REF] Cedio-Fengya | Identication of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction[END_REF])

M ω = 1 |ω| 1 ω (x) ν -1 ν + 1 I 2 ,
where I 2 is the unit matrix. The following corollary holds.

Corollary 3.3. Assume that the dimension d = 2, that the perturbed area ω is a disk centered at z, and that u ∈ W 2,∞ (ω). Then, we have

∂Ω (u ω -u)φ dσ = ω γ(x) (ν(x) -1) 2 ν(x) + 1 ∇u • ∇u dx + O(|ω| 1+κ ) = |∇u(z)| 2 ω γ(x) (ν(x) -1) 2 ν(x) + 1 dx + O(|ω| 1+κ ).
Therefore, if γ is C 0,α (ω), with 0 ≤ α ≤ κ, we have

γ(z) |∇u(z)| 2 = S(z) + O(|ω| α ) (or o(1) if α = 0), (3.1)
where the function S(z) is dened by

S(z) = ω (ν(x) -1) 2 ν(x) + 1 dx -1 ∂Ω (u ω -u)φ dσ. (3.2)
We emphasize that S(z) represents a known function, as the second term on the right-hand side of (3.2) is exactly the measured data. We also note that the formula (3.1) is only valid where |S(z)| |ω| κ .

Proof of Proposition 3.2. This proof follows the Proof of Lemma 2 in [START_REF] Capdeboscq | A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction[END_REF]. From (2.2) and (2.3), we obtain using Green's formula that, for all w ∈ H 1 (Ω), ∂Ω u ω φ dσ = Ω γ∇u ω ∇u dx, and

∂Ω uφ dσ = Ω γ ω ∇u ω ∇u dx. Consequently, ∂Ω (u ω -u) φ dσ = Ω (γ -γ ω ) ∇u ω ∇u dx. (3.3) = ω (γ -γ ω ) ∇u ω ∇u dx.
Notice that u ω -u satises a homogenous Neumann boundary condition, and veries

∇ • (γ ω ∇(u ω -u)) = -∇ • (1 ω (γ ω -γ)∇u) in Ω.
Since u ∈ W 1,∞ (ω), we can invoke again Lemma A.1 to obtain that

∇(u ω -u) L 2 (Ω) d ≤ C|ω| 1/2 ∇u L ∞ (ω) d , and u ω -u L 2 (Ω) ≤ C|ω| 1 2 +κ ∇u L ∞ (ω) d ,
where the constants C, κ depend only on

Ω 1 , sup Ω |γ ω | and inf Ω |γ ω |. For all φ ∈ W 1,∞ (Ω), we now compute Ω γ ω ∇(u ω -u) • ∇ζ i ω φ dx = Ω γ ω ∇ ((u ω -u)φ) • ∇ζ i ω dx - Ω γ ω (u ω -u)∇φ • ∇ζ i ω dx = Ω γ∇ ((u ω -u)φ) ∇ζ i dx + r 1 = Ω γ∇(u ω -u)∇ζ i φ dx + r 2 .
The remainder term is given by

r 2 = Ω γ(u ω -u)∇φ∇ζ i dx - Ω γ ω (u ω -u)∇φ∇ζ i ω dx = O(|ω| 1+κ ).
Here, by O(|ω| 1+κ ) we denote a quantity that is bounded by

C ∇u L ∞ (ω) d ∇φ L ∞ (Ω) d |ω| 1+κ
, where C depends only on Ω 1 , sup Ω |γ ω |, and inf Ω |γ ω |.

On one hand, we have

Ω γ ω ∇(u ω -u) • ∇ζ i ω φdx = Ω γ ω ∇(u ω -u) • ∇ ζ i ω φ dx - Ω γ ω ∇(u ω -u) • ∇φ ζ i ω dx, = ω (γ -γ ω )∇u • ∇ ζ i ω φ dx - Ω γ ω ∇(u ω -u) • ∇φ ζ i dx + O |ω| 1+κ , = ω (γ -γ ω )∇u • ∇ζ i ω φ dx + Ω (γ∇u -γ ω ∇u ω ) • ∇φ ζ i dx + O |ω| 1+κ .
On the other hand, we have

Ω γ∇(u ω -u) • ∇ζ i φ dx = Ω γ∇(u ω -u) • ∇ ζ i φ dx - Ω γ∇(u ω -u) • ∇φ ζ i dx, = ω (γ -γ ω )∇u ω • ∇ζ i φ dx + Ω (γ∇u -γ ω ∇u ω ) • ∇φ ζ i dx.
We have obtained that, for all i = 1, . . . , d,

ω (γ -γ p ) ∂u ω ∂x i φ dx = d j=1 ω (γ -γ ω ) ∂u ∂x j • ∂ ∂x j ζ i ω φ dx + O(|ω| 1+κ ), (3.4) with O(|ω| 1+κ ) ≤ C |ω| 1+κ ∇u L ∞ (ω) d ∇φ L ∞ (Ω) d ,
where C is a constant that depends only on

Ω 1 , sup Ω |γ ω |, and inf Ω |γ ω |. Choose φ i = ∂ ∂x i u * η in ω = {x ∈ ω s.t. dist(x, ∂ω) > }
where η is the standard mollier, and let Φ be dened as

Φ = ( ∂ ∂x 1 u * η , . . . , ∂ ∂x d u * η ).
Summing (3.4) over i we obtain

ω (γ -γ p )∇u ω • ∇Φ dx = |ω| ω (γ -γ p )∇u • (M ω Φ ) dx + O(|ω| 1+κ ),
where

O(|ω| 1+κ ) ≤ C ∇u L ∞ (ω) d ∇Φ L ∞ (ω) d ≤ C ∇u L ∞ (ω) d ∇ 2 u L ∞ (ω) d .
By passing to the limit in and using (3.3), the proof of the proposition is complete.

Reconstruction using the 0-Laplacian formulation

In view of deriving an approximation for the conductivity γ inside Ω 1 , we introduce the following equation (4.1)

         ∇ • S(x) |∇u| 2 ∇u = 0 in Ω, S(x) |∇u| 2 ∂u ∂n = φ on ∂Ω.
We emphasize that S is a known function, constructed from the measured data (3.2). Consequently, all the parameters entering in equation (4.1) are known. Our approach uses measurements S 1 and S 2 obtained using two distinct currents, φ 1 and φ 2 . We choose this pair of current patterns to have ∇u 1 × ∇u 2 = 0 for all x ∈ Ω, where u i , i = 1, 2, is the solution to (1.1). See [START_REF] Seo | A uniqueness result on inverse conductivity problem with two measurements[END_REF][START_REF] Fabes | Inverse conductivity problem with one measurement: Error estimates and approximate identication for perturbed disks[END_REF] for an evidence of the possibility of such a choice.

We start from an initial guess for the conductivity γ, and solve the corresponding Dirichlet conductivity problem

∇ • (γ∇u 0 ) = 0 in Ω, u 0 = ψ on ∂Ω.
The data ψ is the Dirichlet data measured as a response to the current φ (say φ = φ 1 ) in absence of elastic deformation. The discrepancy between the data and our guessed solution is

(4.2) 0 := S(x) |∇u 0 | 2 -γ.
We then introduce a corrector, u c , computed as the solution to

∇ • (γ∇u c ) = -∇ • (ε 0 ∇u 0 ) in Ω, u c = 0 on ∂Ω,
and update the conductivity

γ := S(x) -2γ∇u c • ∇u 0 |∇u 0 | 2 .
We iteratively update the conductivity, alternating directions (i.e., with φ = φ 2 ).

To study the eciency of this approach, we have tested this method on various problems and domains, using the partial dierential equation solver FreeFem++ [START_REF] Hecht | FreeFem++[END_REF]. We present here one such test. The domain Ω is a disk of radius 8 centered at the origin, which contains three inclusions, an ellipse, an L-shaped domain and a triangle, so as to image a convex object, a non-convex object, and an object with a smooth boundary. The background conductivity is equal to 0.5, the conductivity takes the values 2 in the triangle, 0.75 in the ellipse and 2.55 in the Lshaped domain. We purposedly chose values corresponding to small and large contrast with the background. Note that our approach is perturbative, thus the smaller the contrast the easier the detection: The choice of a signicant contrast was not made to highlight the objects, but rather to make the reconstruction more challenging.

Figure 4.2 shows the result of the reconstruction when perfect measures (with `innite' precision) are available. We use two dierent boundary potentials, ψ = x/|x| and ψ = y/|y|. The initial guess is depicted on the left: it is equal to 1 inside the disk of radius 6 centered at the origin, and equal to the supposedly known conductivity γ = 0.5 near the boundary (outside the disk of radius 6). The two central pictures represent the collected data, S(x) for ψ = x/|x| on the left and S(x) for ψ = y/|y| on the right. Given the values of the contrast, we remark that although one can `see' the triangle and the Lshape inclusions on these plots, the circle is hardly noticeable. On the far right, the reconstructed conductivity is represented: it perfectly matches the target. In Figure 4.3, the error is represented as a function of the number of iterations. The dotted curve is a plot of the (intrinsic) error estimator max x∈Ω n (x), given by (4.2). The curve with diamond symbols depicts the L 1 -norm a 1 (n) of the true error between the reconstructed conductivity γ and the original one:

a 1 (n) := Ω |γ -γ| dx.
Note that the abcissa is represented in logarithmic scale, thus the convergence seems exponential. The other two curves correspond to the same computations, but four directions are used instead of two: x/|x|,y/|y|, (x + y)/|x + y|,(x -y)/|x -y|. Note that this does not require more measurements because of the linear dependence on the boundary condition: it is merely a change in the algorithm. The same level of error for n is reached in 45 iterations, instead of 222. The same experiment, with a contrast 5 time smaller, converges in less than ten iterations.

We also considered imperfect data. In Figure 4.4 we follow the same procedure but now assume that the data was measured at the nodes of a regular mesh on the disk, with 50, 100, 200 and 400 boundary points. To give an idea of the scale of the mesh compared to the objects, the projections of the conductivity that we wish to recover are represented in the left column. The two central columns depict the collected data. The column on the far right shows the obtained reconstructions. To accelerate the computations, we used the four direction variant of the algorithm. The error as a function of the iterations is represented in Figure 4.5. The curves with symbols represent the L 1 norm of the true error, whereas the dashed line is the L 2 norm of the estimated error , for the most precise mesh. Although the estimated error does not decrease noticeably, the true error does. The reconstructed image is obtained after ten iterations and does not change noticeably henceforth. This calls for further renements of the algorithm, such as adapted stepsizes and adapted meshes. Improvements are indeed possible, and will be the subject of a future publication. As it stands, the algorithm already provides reconstructions comparable in accuracy to those of projected conductivity. Naturally, the sharp corners are easily localized, but the smooth elliptic shape is also accurately reconstructed, even at the coarsest scale. 

Concluding remarks

We have proposed a new technique for conductivity imaging, which consists in perturbing the medium during the electric measurements, by focusing ultrasonic waves on regions of small diameter inside the body. We derived an approximation of the conductivity using small volume asymptotics and obtained a non linear PDE for the potential, in terms of the measured data. Based on this PDE, we proposed a new algorithm for the reconstruction of the conductivity distribution, which proves remarkably accurate.

Motivated by the practical limitations of EIT, we intend to pursue the present investigation in the following directions:

(i) Study the reconstruction capabilities of this method when only partial data, measured on a small portion Γ of the boundary, is available. (ii) Study the dependence of the algorithm on the global geometry of Ω. (iii) Study the sensitivity of the method to limitations on the intensities of the applied voltages, as electrical safety regulations limit the amount of the total current that patients can sustain.

Moreover, we also intend to address some of the mathematical questions raised by this imaging approach, among which the uniqueness for solutions to the PDE (1.2), the uniqueness of the inverse problem of recovering the conductivity distribution with two measurements, and the convergence analysis of the reconstruction algorithm.

1 ω F • ∇φ dx.

Thus, using Cauchy-Schwarz inequality, we get (A.2). Dene ψ ∈ H 1 (Ω) as the unique solution to -∇ • (a∇ψ) = φ in Ω, ψ = 0 on ∂Ω.

Choose f ∈ C ∞ 0 (Ω) to be a cut-o function such that f ≡ 1 on Ω , and 0 ≤ f ≤ 1. According to Meyers' Theorem [START_REF] Meyers | An L p -estimate for the gradient of solutions of second order elliptic divergence equations[END_REF] (see also [12, p. 3545]), there exists a η > 0 depending only on Ω, c 0 , C 0 , and f such that ψ ∈ W 1,2+η (Ω ), and we have

∇ (ψf ) L 2+η (Ω) ≤ C φ L 2+η (Ω) .
Using Gagliardo-Nirenberg inequality,

φ L 2+η (Ω) ≤ C φ α L 2 (Ω) ∇φ 1-α L 2 (Ω) d with α = η 2 + η ≤ C φ α L 2 (Ω) |ω| 1 2+η .
We then compute

Ω φ 2 dx = a∇ψ∇φ = 1 ω F ∇ψ ≤ F L ∞ (Ω) |ω| 1+η 2+η ∇ (f ψ) L 2+η (Ω) ≤ C F L ∞ (Ω) |ω| φ α L 2 (Ω) .
Consequently,

φ L 2 (Ω) ≤ C F L ∞ (Ω) |ω| 1 2 + η 2(4+η)
and therefore, choosing κ = η 2(4+η) concludes the proof.
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 42 Figure 4.2. Reconstruction test. From left to right, the initial guess, the collected data S (x/|x| and y/|y|) and the reconstructed conductivity.
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 43 Figure 4.3. Convergence results. The curve labeled "Estd err., 2 dir." (resp. "True err., 2 dir.") corresponds to the estimated error (resp. true error) when two directions are used. The curves "Estd err., 4 dir." and "True err., 4 dir." are the errors computed when 4 directions are used.
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 44 Figure 4.4. Reconstruction tests. From top to bottom, using a regular mesh with 50,100,200, and 400 boundary points. From left to right, the initial guess, the collected data S (for x/|x| and y/|y|) and the reconstructed conductivity.
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 45 Figure 4.5. Convergence results. The curves labeled "True L1 err." correspond to the L 1 norm of the discrepancy between the real and reconstructed conductivity. The curve labeled "Estd L2 err., 400 el." represents the estimated error for the regular mesh designed with 400 boundary points.

  where the constants κ > 0 and C > 0 depend only on Ω 1 , sup Ω |γ ω |, and inf Ω |γ ω |.

	1 |ω| 1 ω	∂ζ i

ω ∂xj converge in the sense of measures to M ij dµ, where M ij is a matrixvalued function.

Furthermore, it satises

∇(ζ i ω -ζ i ) L 2 (Ω) d ≤ C|ω| 1/

2 , and ζ i ω -ζ i L 2 (Ω) ≤ C|ω| 1 2 +κ , Proof. The bounds on ∇ ζ i ω -ζ i and ζ i ω -ζ i are a direct consequence of Lemma A.1, if we remark that, inside the domain Ω, ζ

Appendix A Lemma A.1. Let a ∈ L ∞ (Ω) be a positive function, satisfying C 0 > a > c 0 > 0,

Suppose that Ω contains a subset of Ω ⊂ Ω of class C 2 , such that dist(Ω , ∂Ω) > d 0 > 0, and such that ω ⊂ Ω , or alternatively that Ω is a cube and that φ is periodic on that cube. Then,

Furthermore, there exists κ > 0 and C > 0, two positive constants depending only on Ω , d 0 , c 0 , and C 0 , such that

At this point, let us emphasize the fact that the background is not required to be smooth. The proof uses Meyers' Theorem [START_REF] Meyers | An L p -estimate for the gradient of solutions of second order elliptic divergence equations[END_REF].

Proof. We shall now prove Lemma A.1 for V = H 1 (Ω) or V = H 1 0 (Ω). Integrating (A.1) against φ, we obtain Ω a∇φ • ∇φ dx = Ω