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ELECTRICAL IMPEDANCE TOMOGRAPHY BY ELASTIC
DEFORMATION

H. AMMARI , E. BONNETIER , Y. CAPDEBOSCQ , M. TANTER , AND M. FINK

Abstract. This paper presents a new algorithm for conductivity imaging.
Our idea is to extract more information about the conductivity distribution
from data that have been enriched by coupling impedance electrical measure-
ments to localized elastic perturbations. Using asymtotics of the �elds in the
presence of small volume inclusions, we relate the pointwise values of the en-
ergy density to the measured data, through a nonlinear PDE. Our algorithm
is based on this PDE and takes full advantage of the enriched data. We give
numerical examples that illustrate the performance and the accuracy of our
approach.

1. Introduction
Electrical impedance tomography (EIT) technique has been an active research

topic since the early 1980s. In EIT, one measures the boundary voltages due to
multiple injection currents to reconstruct images of the conductivity distribution.
However, these boundary voltages are insensitive to a local change of the conduc-
tivity distribution and the relation between them is highly nonlinear.

Medical imaging has been one of the important application areas of EIT. Indeed,
biological tissues have di�erent electrical properties that change with cell concen-
tration, cellular structure, and molecular composition. Such changes of electrical
properties are the manifestations of structural, functional, metabolic, and patho-
logical conditions of tissues, and thus provide valuable diagnostic information.

For practitioners, the practicality of EIT is of great interest: It is a low cost and
portable technology, which can be used for real time monitoring. However, it su�ers
from poor spatial resolution and accuracy, a well�known feature of inverse problems.
This motivated us to look for a new way of incorporating more information in EIT
data, without altering the cost and portability of the data acquisition, which would
yet improve the resolution of the reconstructed images.

The classical image reconstruction algorithms view EIT as an optimization prob-
lem. An initial conductivity distribution is iteratively updated, so as to minimize
the di�erence between measured and computed boundary voltages. This kind of
method was �rst introduced in EIT by Yorkey, Webster, and Tompkins [33]. Nu-
merous variations and improvements followed, which include utilization of a priori
information, and various forms of regularization [32]. This approach is quite greedy
in computational time, yet produces images with deceivingly poor accuracy and
spatial resolution.

In the 1980's, Barber and Brown [11] introduced a back-projection algorithm,
that was the �rst fast and e�cient algorithm for EIT, although it provides images
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with very low resolution. Since this algorithm is inspired from computed tomogra-
phy, it can be viewed as a generalized Radon transform method [30].

A third technique is dynamical electrical impedance imaging, developed by the
Rensselaer impedance tomography group [19], to produce images of changes in
conductivity due to cardiac or respiratory functions. Its main idea consists in
viewing the conductivity as the sum of a static term (the background conductivity
of the human body) plus a perturbation (the change of conductivity caused by
respiration or by heart beats). The mathematical problem here is to visualize the
perturbation term by an EIT system. Although this algorithm provides accurate
images if the initial guess of the background conductivity is good, its resolution does
not completely satisfy practitioners especially when screening for breast cancer.

Recently, a commercial system called TransScan TS2000 (TransScan Medical,
Ltd, Migdal Ha'Emek, Israel) has been released for adjunctive clinical uses with X-
ray mammography in the diagnostic of breast cancer. Interestingly, the TransScan
system is similar to the frontal plane impedance camera that initiated EIT research
early in 1978. The mathematical model of the TransScan can be viewed as a
realistic or practical version of the general EIT system, so any theory developed for
this model can be applied to other areas in EIT, especially to detection of anomalies.
In the TransScan, a patient holds a metallic cylindrical reference electrode, through
which a constant voltage of 1 to 2.5 V, with frequencies spanning 100 Hz-100 KHz,
is applied. A scanning probe with a planar array of electrodes, kept at ground
potential, is placed on the breast. The voltage di�erence between the hand and the
probe induces a current �ow through the breast, from which information about the
impedance distribution in the breast can be extracted.

Using a simpli�ed dipole method, Assenheimer et Scholz gave a physical inter-
pretation of the white spots in TransScan images.

More recently, taking advantage of the smallness of the anomalies to be detected,
Ammari et al. [8] analyzed trans-admittance data, for the detection of breast can-
cer using the TransScan system. Their model assumes that breast tissues can be
considered homogeneous, at least near the surface, where the planar array of elec-
trodes is attached, and that the lesion to be detected is located near the surface.
In [8], the authors developed better ways of interpreting TransScan images, which
improve accuracy. They also derived a multi-frequency approach to handle the case
where the background conductivity is inhomogeneous and not known a priori.

This latter work relies on asymptotic expansions of the �elds when the medium
contains inclusions of small volume, a technique that has proven useful in many
other contexts. Such asymptotics have been investigated in the case of the con-
duction equation [18, 17, 13, 4, 15], the operator of elasticity [3, 7], the Helmholtz
equation or the Maxwell system [34, 9, 6]. See the book [5] and its list of references.
The remarkable feature of this technique, is that it allows a stable and accurate
reconstruction of the location and of the geometric features of the inclusions, even
for moderately noisy data.

Since all the present EIT technologies are only practically applicable in feature
extraction of anomalies, improving EIT calls for innovative measurement techniques
that incorporate structural information. A very promising direction of research is
the recent magnetic resonance imaging technique, called current density imaging,
which measures the internal current density distribution. See the breakthrough
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work by Seo and his group [27, 28, 24]. However, this technique has a number of
disadvantages, among which the lack of portability and a potentially long imaging
time. Moreover, it uses an expensive magnetic resonance imaging scanner.

The aim of this paper is to propose another mathematical direction for future EIT
research in view of biomedical applications, without eliminating the most important
merits of EIT (real time imaging, low cost, portability). Our method is based on the
simultaneous measurement of an electric current and of acoustic vibrations induced
by ultrasound waves. Its intrinsic resolution depends on the size of the focal spot
of the accoustic perturbation, and thus our method should provide high resolution
images.

Let us now formulate our problem. We �rst recall that, in mathematical terms,
EIT consists in recovering the conductivity map of a 2D or 3D body Ω, from
measuring the voltage response to one or several currents applied on the boundary.
In practice, a set of electrodes is attached to the body. One or several currents
φi, 1 ≤ i ≤ I, are applied to one or several electrodes, and the corresponding
voltage potentials fi, 1 ≤ i ≤ I, are recorded on the others. Denoting by γ(x) the
unknown conductivity, the voltage potential ui solve the conduction problem

(1.1)
{ ∇x · (γ(x)∇xui) = 0 in Ω

γ(x)
∂ui

∂n
= φi on ∂Ω.

The problem of impedance tomography is the inverse problem of recovering
the coe�cients γ of the elliptic conduction PDE, knowing one or more current-
to-voltage pairs (φi, fi := ui|∂Ω).

The core idea of our approach is to extract more information about the conduc-
tivity from data that has been enriched by coupling the electric measurements to
localized elastic perturbations. More precisely, we propose to perturb the medium
during the electric measurements, by focusing ultrasonic waves on regions of small
diameter inside the body. Using a simple model for the mechanical e�ects of the
ultrasound waves, we show that the di�erence between the measurements in the
unperturbed and perturbed con�gurations is asymptotically equal to the pointwise
value of the energy density at the center of the perturbed zone. In practice, the
ultrasounds impact a spherical or ellipsoidal zone, of a few millimeters in diame-
ter. The perturbation should thus be sensitive to conductivity variations at the
millimeter scale, which is the precision required for breast cancer diagnostic.

By scanning the interior of the body with ultrasound waves, given an applied
current φi, we obtain data from which we can compute Si(x) := γ(x)|∇ui(x)|2,
in an interior sub�region of Ω. The new inverse problem is now to reconstruct γ
knowing Si for i = 1, . . . , I.

The goal of this work is threefold: Firstly, we show that taking measurements
while perturbing the medium with ultrasound waves is asymptotically equivalent
to measuring Si. To this end, we consider the zone ω deformed by the ultrasound
wave as a small volume perturbation of the background potential γ. We then relate
the di�erence between the perturbed and unperturbed potentials on the boundary
to the conductivity at the center of ω, asymptotically as |ω| → 0. This is our main
idea: the ultrasound waves create localized perturbations that allow us, using the
method of asymptotic expansions of small volume inclusions, to probe within the
medium.
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Figure 2.1. The experimental setup.

Secondly, noting that the potential ui satis�es the following nonlinear PDE (the
0�Laplacian)

(1.2)



















∇x ·
(

Si(x)

|∇ui|2
∇ui

)

= 0 in Ω,

Si(x)

|∇ui|2
∂ui

∂n
= φi on ∂Ω,

we propose a numerical method to compute solutions ũi to (1.2) and then an ap-
proximate conductivity γ̃ = Si/|∇ũi|2, using two currents (i.e., I = 2). Recall that
an appropriate choice of φi insures that ∇ui 6= 0 for all x ∈ Ω. See [1, 2, 31, 21].

Thirdly, our algorithm, as the one originally developed in [25] for current density
imaging, requires data measured with two boundary currents for which the �ux
densities (the gradient of the voltage potentials) are locally orthogonal (or try to
be). We show numerically that this algorithm is able to capture details of the
conductivity map up to the precision of the underlying �nite element mesh, and
thus proves very e�ective.

The paper is organized as follows. In the next section, we describe the physical
model, and the collection of experimental data on the boundary. Section 3 explains
how, given a current φi, the values of Si(x) can be approximated using this data.
In section 4, we describe the numerical method for reconstruction of γ using two
applied currents. Numerical examples that illustrate the performance and the ac-
curacy of this method are presented in that section. The paper ends with a short
discussion.

2. Impedance tomography perturbed by ultrasound waves
2.1. Description of the experiment. The goal of the experiment is to obtain
an impedance map inside a solid with millimetric precision.

An objet (a domain Ω) is electrically probed: One or several currents are imposed
on the surface and the induced potentials are measured on the boundary (see �g 2.1).
At the same time, a spherical region of a few millimeters in the interior of Ω is
mechanically excited by ultrasonic waves, which dilate this region.

The measurements are made as the focus of the ultrasounds scans the entire
domain. Several sets of measurements can be obtained by varying the ultrasound
waves amplitudes and the applied currents.
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2.2. Physical modelling of the e�ect of ultrasonic waves on the conduc-
tivity. Within each (small) spherical volume, the conductivity is assumed to be
constant per volume unit. At a point x ∈ Ω, within a ball B of volume VB , the
electric conductivity γ is de�ned in terms of a density ρ as

γ(x) = ρ(x)VB .

The ultrasonic waves induce a small elastic deformation of the sphere B. If this
deformation is isotropic, the material points of B occupy a volume V p

B in the per-
turbed con�guration, which at �rst order is equal to

V p
B = VB(1 + 3

∆r

r
),

where r is the radius of the ball B and ∆r is the variation of the radius due to the
elastic perturbation. As ∆r is proportional to the amplitude of the ultrasonic wave,
we obtain a proportional change of the deformation. Using two di�erent ultrasonic
waves with di�erent amplitudes but with the same spot, it is therefore easy to
compute the ratio V p

B/VB . As a consequence, the perturbed electrical conductivity
γp satis�es

∀ x ∈ Ω, γp(x) = ρ(x)V p
B = γ(x)ν(x),(2.1)

where ν(x) = V p
B/VB is a known function. We make the following realistic assump-

tions:
(H1): the ultrasonic wave expands the zone it impacts, and changes its con-

ductivity:
∀x ∈ Ω, ν(x) > 1.

(H2): The perturbation is not too small:
ν(x) − 1 À VB .

2.3. Mathematical modelling of the e�ect of ultrasonic waves on the con-
ductivity. We denote by u the voltage potential induced by a current φ, in the
absence of ultrasonic perturbations. It is given by

(2.2)







∇x · (γ(x)∇xu) = 0 in Ω,

γ(x) ∂u
∂n = φ on ∂Ω,

with the convention that
∫

∂Ω
u = 0. We assume that the conductivity γ is bounded

above and below by positive constants
0 < c < γ(x) < C < +∞ a.e. x ∈ Ω.

Further, we suppose that the conductivity γ is known close to the boundary of the
domain, so that ultrasonic probing is limited to interior points x such that

dist(x, ∂Ω) ≥ d0,

where d0 is very large compared to the radius of the spot of the ultrasonic pertur-
bation. We denote the corresponding open set Ω1 . We denote by uω(x), x ∈ Ω, the
voltage potential induced by a current φ, in the presence of ultrasonic perturbations
localized in a domain ω of volume |ω|. The voltage potential uω is a solution to

(2.3)







∇x · (γω(x)∇xuω(x)) = 0 in Ω,

γ(x)∂uω

∂n = φ on ∂Ω,
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with the notation

γω(x) = γ(x)

[

1 + 1ω(x) (ν(x) − 1)

]

,

where 1ω is the characteristic function of the domain ω. In the next section, we
show how comparing uω and u on ∂Ω provides information about the conductivity.

3. Asymptotic recovery of the conductivity
As the zone deformed by the ultrasound wave is small, we can view it as a small

volume perturbation of the background conductivity γ, and seek an asymptotic
expansion of the boundary values of uω − u.

For each i = 1, . . . , I, let ζi
ω be the solution to







∇x ·
(

γω(x)∇xζi
ω

)

= ∇x · (γ(x)∇xxi) in Ω,

γ(x)
∂ζi

ω

∂n = γ(x)∂xi

∂n on ∂Ω, with
∫

Ω
ζi
ω = 0.

Corresponding to ζi
ω, we de�ne ζi = xi−ci where ci is a constant, in the unperturbed

case.
The following proposition is a variant of a compactness result proved in [15]

which we recall for completeness. In contrast to previous work, the proof we give
here only requires boundedness of the conductivity γω.
Proposition 3.1. Consider a sequence of sets ω ⊂⊂ Ω, such that 1

|ω|1ω converges
in the sense of measures to a probability measure dµ as |ω| tends to zero. Then,
the correctors 1

|ω|1ω
∂ζi

ω

∂xj
converge in the sense of measures to Mijdµ, where Mij is

a matrix�valued function.
Furthermore, it satis�es

‖∇(ζi
ω − ζi)‖L2(Ω)d ≤ C|ω|1/2, and ‖ζi

ω − ζi‖L2(Ω) ≤ C|ω| 12+κ,

where the constants κ > 0 and C > 0 depend only on Ω1, supΩ |γω|, and infΩ |γω|.
Proof. The bounds on∇

(

ζi
ω − ζi

)

and
(

ζi
ω − ζi

)

are a direct consequence of Lemma A.1,
if we remark that, inside the domain Ω, ζi

ω − ζi satis�es
∇x ·

(

γω(x)∇x

(

ζi
ω − ζi

))

= −∇x · (1ω (γp − γ)∇xxi) in Ω.

As for the existence of a limit (and its additional properties) we refer to [15]. ¤

One of the key elements of our method is the following representation formula.
Proposition 3.2. Assume that u ∈ W 2,∞(ω). Then,

∫

∂Ω

(uω − u)φdσ = |ω|
∫

Ω

(γω(x) − γ(x))Mω∇u∇u dx + O(|ω|1+κ).

The exponent κ only depends on Ω1, supΩ |γω| and infΩ |γω|. The remainder term
has the form

∣

∣O(|ω|1+κ)
∣

∣ ≤ C |ω|1+κ‖∇u‖L∞(ω)d‖∇2u‖L∞(ω)d×d ,

where C depends only on Ω1, supΩ |γω|, and infΩ |γω|. Finally, the matrix valued
function Mω is given by

(Mω)ij (x) =
1

|ω|1ω(x)
∂

∂xj
ζi
ω(x) a.e. x ∈ Ω1.
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We note that additional regularity on u is only required within ω (in particular,
the quality of the representation formula is not a�ected). We also note that if ω is
a disk in the two-dimensional case then (see for instance [17])

Mω =
1

|ω|1ω(x)
ν − 1

ν + 1
I2,

where I2 is the unit matrix. The following corollary holds.

Corollary 3.3. Assume that the dimension d = 2, that the perturbed area ω is a
disk centered at z, and that u ∈ W 2,∞(ω). Then, we have

∫

∂Ω

(uω − u)φdσ =

∫

ω

γ(x)
(ν(x) − 1)

2

ν(x) + 1
∇u · ∇u dx + O(|ω|1+κ)

= |∇u(z)|2
∫

ω

γ(x)
(ν(x) − 1)

2

ν(x) + 1
dx + O(|ω|1+κ).

Therefore, if γ is C0,α(ω), with 0 ≤ α ≤ κ, we have

γ(z) |∇u(z)|2 = S(z) + O(|ω|α) (or o(1) if α = 0),(3.1)

where the function S(z) is de�ned by

S(z) =

(

∫

ω

(ν(x) − 1)
2

ν(x) + 1
dx

)−1
∫

∂Ω

(uω − u)φ dσ.(3.2)

We emphasize that S(z) represents a known function, as the second term on
the right-hand side of (3.2) is exactly the measured data. We also note that the
formula (3.1) is only valid where |S(z)| À |ω|κ.

Proof of Proposition 3.2. From (2.2) and (2.3), we obtain using Green's formula
that, for all w ∈ H1(Ω),

∫

∂Ω

uωφdσ =

∫

Ω

γ∇uω∇u dx, and
∫

∂Ω

uφ dσ =

∫

Ω

γω∇uω∇u dx.

Consequently,
∫

∂Ω

(uω − u)φdσ =

∫

Ω

(γ − γω)∇uω∇u dx.(3.3)

=

∫

ω

(γ − γω)∇uω∇u dx.

Notice that uω−u satis�es a homogenous Neumann boundary condition, and veri�es

∇ · (γω∇(uω − u)) = −∇ · (1ω(γω − γ)∇u) in Ω.

Since u ∈ W 1,∞(ω), we can invoke again Lemma A.1 to obtain that

‖∇(uω−u)‖L2(Ω)d ≤ C|ω|1/2‖∇u‖L∞(ω)d , and ‖uω−u‖L2(Ω) ≤ C|ω| 12+κ‖∇u‖L∞(ω)d ,
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where the constants C, κ depend only on Ω1, supΩ |γω| and infΩ |γω|. For all φ ∈
W 1,∞(Ω), we now compute

∫

Ω

γω∇(uω − u) · ∇ζi
ω φdx =

∫

Ω

γω∇ ((uω − u)φ) · ∇ζi
ω dx

−
∫

Ω

γω(uω − u)∇φ · ∇ζi
ω dx

=

∫

Ω

γ∇ ((uω − u)φ)∇ζi dx + r1

=

∫

Ω

γ∇(uω − u)∇ζi φdx + r2.

The remainder term is given by

r2 =

∫

Ω

γ(uω − u)∇φ∇ζi dx −
∫

Ω

γω(uω − u)∇φ∇ζi
ω dx

= O(|ω|1+κ).

Here, by O(|ω|1+κ) we denote a quantity that is bounded by C‖∇u‖L∞(ω)d‖∇φ‖L∞(Ω)d |ω|1+κ,
where C depends only on Ω1, supΩ |γω|, and infΩ |γω|.

On one hand, we have
∫

Ω

γω∇(uω − u) · ∇ζi
ω φdx =

∫

Ω

γω∇(uω − u) · ∇
(

ζi
ωφ

)

dx

−
∫

Ω

γω∇(uω − u) · ∇φ ζi
ω dx,

=

∫

ω

(γ − γω)∇u · ∇
(

ζi
ωφ

)

dx

−
∫

Ω

γω∇(uω − u) · ∇φ ζi dx + O
(

|ω|1+κ
)

,

=

∫

ω

(γ − γω)∇u · ∇ζi
ω φdx

+

∫

Ω

(γ∇u − γω∇uω) · ∇φ ζi dx + O
(

|ω|1+κ
)

.

On the other hand, we have
∫

Ω

γ∇(uω − u) · ∇ζi φdx =

∫

Ω

γ∇(uω − u) · ∇
(

ζiφ
)

dx

−
∫

Ω

γ∇(uω − u) · ∇φ ζi dx,

=

∫

ω

(γ − γω)∇uω · ∇ζi φdx

+

∫

Ω

(γ∇u − γω∇uω) · ∇φ ζi dx.

We have obtained that, for all i = 1, . . . , d,
∫

ω

(γ − γp)
∂uω

∂xi
φdx =

∑d
j=1

∫

ω

(γ − γω)
∂u

∂xj
· ∂

∂xj
ζi
ω φdx + O(|ω|1+κ),(3.4)

with
∣

∣O(|ω|1+κ)
∣

∣ ≤ C |ω|1+κ‖∇u‖L∞(ω)d‖∇φ‖L∞(Ω)d ,
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where C is a constant that depends only on Ω1, supΩ |γω|, and infΩ |γω|. Choose
φi = ∂

∂xi
u∗ηε in ωε = {x ∈ ω s.t. dist(x, ∂ω) > ε} where η is the standard molli�er,

and let Φε be de�ned as

Φε = (
∂

∂x1
u ∗ ηε, . . . ,

∂

∂xd
u ∗ ηε).

Summing (3.4) over i we obtain
∫

ω

(γ − γp)∇uω · ∇Φε dx = |ω|
∫

ω

(γ − γp)∇u · (MωΦε) dx + O(|ω|1+κ),

where
O(|ω|1+κ) ≤ C‖∇u‖L∞(ω)d‖∇Φε‖L∞(ω)d ≤ C‖∇u‖L∞(ω)d‖∇2u‖L∞(ω)d .

By passing to the limit in ε and using (3.3), the proof of the proposition is complete.
¤

4. Reconstruction using the 0-Laplacian formulation.
In view of deriving an approximation for the conductivity γ inside Ω1, we intro-

duce the following equation

(4.1)



















∇ ·
(

S(x)

|∇u|2
∇u

)

= 0 in Ω,

S(x)

|∇u|2
∂u

∂n
= φ on ∂Ω.

We emphasize that S is a known function, constructed from the measured data
(3.2). Consequently, all the parameters entering in equation (4.1) are known.

Our approach uses measurements S1 and S2 obtained using two distinct currents,
φ1 and φ2. We choose this pair of current patterns to have ∇u1 ×∇u2 6= 0 for all
x ∈ Ω, where ui, i = 1, 2, is the solution to (1.1). See [31, 21] for an evidence of the
possibility of such a choice.

We start from an initial guess for the conductivity γ, and solve the corresponding
Dirichlet conductivity problem

{

∇ · (γ∇u0) = 0 in Ω,
u0 = ψ on ∂Ω.

The data ψ is the Dirichlet data measured as a response to the current φ (say
φ = φ1) in absence of elastic deformation.

The discrepancy between the data and our guessed solution is

(4.2) ε0 :=
S(x)

|∇u0|2
− γ.

We then introduce a corrector, uc, computed as the solution to
{

∇ · (γ∇uc) = −∇ · (ε0∇u0) in Ω,
uc = 0 on ∂Ω,

and update the conductivity

γ :=
S(x) − 2γ∇uc · ∇u0

|∇u0|2
.

We iteratively update the conductivity, alternating directions (i.e., with φ = φ2).
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To study the e�ciency of this approach, we have tested this method on various
problems and domains, using the partial di�erential equation solver FreeFem++ [22].
We present here one such test. The domain Ω is a disk of radius 8 centered at the
origin, which contains three inclusions, an ellipse, an L-shaped domain and a tri-
angle, so as to image a convex object, a non-convex object, and an object with a
smooth boundary.

Figure 4.1. Conductivity distribution.

The background conductivity is equal to 0.5, the conductivity takes the values 2
in the triangle, 0.75 in the ellipse and 2.55 in the L�shaped domain. We purposedly
chose values corresponding to small and large contrast with the background. Note
that our approach is perturbative, thus the smaller the contrast the easier the
detection: The choice of a signi�cant contrast was not made to highlight the objects,
but rather to make the reconstruction more challenging.

Figure 4.2 shows the result of the reconstruction when perfect measures (with
`in�nite' precision) are available. We use two di�erent boundary potentials, ψ =
x/|x| and ψ = y/|y|. The initial guess is depicted on the left: it is equal to 1 inside
the disk of radius 6 centered at the origin, and equal to the supposedly known
conductivity γ = 0.5 near the boundary (outside the disk of radius 6). The two
central pictures represent the collected data, S(x) for ψ = x/|x| on the left and
S(x) for ψ = y/|y| on the right. Given the values of the contrast, we remark
that although one can `see' the triangle and the L�shape inclusions on these plots,
the circle is hardly noticeable. On the far right, the reconstructed conductivity is
represented: it perfectly matches the target.

Figure 4.2. Reconstruction test. From left to right, the initial
guess, the collected data S (x/|x| and y/|y|) and the reconstructed
conductivity.
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In Figure 4.3, the error is represented as a function of the number of iterations.
The dotted curve is a plot of the (intrinsic) error estimator maxx∈Ω εn(x), given
by (4.2). The curve with diamond symbols depicts the L1-norm a1(n) of the true
error between the reconstructed conductivity γ̃ and the original one:

a1(n) :=

∫

Ω

|γ̃ − γ| dx.

Note that the abcissa is represented in logarithmic scale, thus the convergence seems
exponential.

0 50 100 150 200 250

1e-05

1e-06

1e-04

0,01

1 Estd err., 2 dir.
True err, 2 dir.
Estd err., 4 dir.
True err., 4 dir.

Figure 4.3. Convergence results. The curve labeled "Estd err., 2
dir." (resp. "True err., 2 dir.") corresponds to the estimated error
(resp. true error) when two directions are used. The curves "Estd
err., 4 dir." and "True err., 4 dir." are the errors computed when
4 directions are used.

The other two curves correspond to the same computations, but four directions
are used instead of two: x/|x|,y/|y|, (x + y)/|x + y|,(x − y)/|x − y|. Note that
this does not require more measurements because of the linear dependence on the
boundary condition: it is merely a change in the algorithm. The same level of error
for εn is reached in 45 iterations, instead of 222. The same experiment, with a
contrast 5 time smaller, converges in less than ten iterations.

We also considered imperfect data. In Figure 4.4 we follow the same procedure
but now assume that the data was measured at the nodes of a regular mesh on the
disk, with 50, 100, 200 and 400 boundary points. To give an idea of the scale of
the mesh compared to the objects, the projections of the conductivity that we wish
to recover are represented in the left column. The two central columns depict the
collected data. The column on the far right shows the obtained reconstructions.
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Figure 4.4. Reconstruction tests. From top to bottom, using a
regular mesh with 50,100,200, and 400 boundary points. From left
to right, the initial guess, the collected data S (for x/|x| and y/|y|)
and the reconstructed conductivity.

To accelerate the computations, we used the four direction variant of the algo-
rithm. The error as a function of the iterations is represented in Figure 4.5. The
curves with symbols represent the L1 norm of the true error, whereas the dashed
line is the L2 norm of the estimated error ε, for the most precise mesh. Although
the estimated error does not decrease noticeably, the true error does. The re-
constructed image is obtained after ten iterations and does not change noticeably
henceforth. This calls for further re�nements of the algorithm, such as adapted
stepsizes and adapted meshes. Improvements are indeed possible, and will be the
subject of a future publication. As it stands, the algorithm already provides recon-
structions comparable in accuracy to those of projected conductivity. Naturally, the
sharp corners are easily localized, but the smooth elliptic shape is also accurately
reconstructed, even at the coarsest scale.
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0 50 100 150 200 250
0,001

0,01

0,1

1

True L1 err., 50 el.
True L1 err., 100 el.
True L1 err., 200 el.
True L1 err., 400 el.
Estd L2 err., 400 el.

Figure 4.5. Convergence results. The curves labeled "True L1
err." correspond to the L1 norm of the discrepancy between the
real and reconstructed conductivity. The curve labeled "Estd L2
err., 400 el." represents the estimated error for the regular mesh
designed with 400 boundary points.

5. Concluding remarks
We have proposed a new technique for conductivity imaging, which consists in

perturbing the medium during the electric measurements, by focusing ultrasonic
waves on regions of small diameter inside the body. We derived an approximation
of the conductivity using small volume asymptotics and obtained a non linear PDE
for the potential, in terms of the measured data. Based on this PDE, we proposed a
new algorithm for the reconstruction of the conductivity distribution, which proves
remarkably accurate.

Motivated by the practical limitations of EIT, we intend to pursue the present
investigation in the following directions:

(i) Study the reconstruction capabilities of this method when only partial data,
measured on a small portion Γ of the boundary, is available.

(ii) Study the dependence of the algorithm on the global geometry of Ω.
(iii) Study the sensitivity of the method to limitations on the intensities of the

applied voltages, as electrical safety regulations limit the amount of the
total current that patients can sustain.

Moreover, we also intend to address some of the mathematical questions raised by
this imaging approach, among which the uniqueness for solutions to the PDE (1.2),
the uniqueness of the inverse problem of recovering the conductivity distribution
with two measurements, and the convergence analysis of the reconstruction algo-
rithm.
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Appendix A
Lemma A.1. Let a ∈ L∞(Ω) be a positive function, satisfying C0 > a > c0 > 0,
and let F ∈ L∞(Ω)d. Let V be a closed subset of H1(Ω) such that

H1
0 (Ω) ⊂ V ⊂ H1(Ω)

Assume that φ ∈ V is such that
(A.1) ∇ · (a∇φ) = ∇ · (1ω(x)F ) in Ω.

Suppose that Ω contains a subset of Ω′ ⊂ Ω of class C2, such that dist(Ω′, ∂Ω) >
d0 > 0, and such that ω ⊂ Ω′, or alternatively that Ω is a cube and that φ is periodic
on that cube. Then,

(A.2) ‖∇φ‖L2(Ω)d ≤ 1√
c0

|ω|1/2‖F‖L∞(Ω)d .

Furthermore, there exists κ > 0 and C > 0, two positive constants depending only
on Ω′, d0, c0, and C0, such that
(A.3) ‖φ‖L2(Ω) ≤ C|ω| 12+κ‖F‖L∞(Ω)d .

At this point, let us emphasize the fact that the background is not required to
be smooth. The proof uses Meyers' Theorem [29].

Proof. We shall now prove Lemma A.1 for V = H1(Ω) or V = H1
0 (Ω). Integrating

(A.1) against φ, we obtain
∫

Ω

a∇φ · ∇φdx =

∫

Ω

1ωF · ∇φdx.

Thus, using Cauchy-Schwarz inequality, we get (A.2). De�ne ψ ∈ H1(Ω) as the
unique solution to

−∇ · (a∇ψ) = φ in Ω,

ψ = 0 on ∂Ω.

Choose f ∈ C∞
0 (Ω) to be a cut-o� function such that f ≡ 1 on Ω′, and 0 ≤ f ≤ 1.

According to Meyers' Theorem [29] (see also [12, p. 35�45]), there exists a η > 0
depending only on Ω, c0, C0, and f such that ψ ∈ W 1,2+η(Ω′), and we have

‖∇ (ψf)‖L2+η(Ω) ≤ C ‖φ‖L2+η(Ω) .

Using Gagliardo-Nirenberg inequality,

‖φ‖L2+η(Ω) ≤ C ‖φ‖α
L2(Ω) ‖∇φ‖1−α

L2(Ω)d with α =
η

2 + η

≤ C ‖φ‖α
L2(Ω) |ω|

1
2+η .

We then compute
∫

Ω

φ2dx =

∫

a∇ψ∇φ

=

∫

1ωF∇ψ

≤ ‖F‖L∞(Ω) |ω|
1+η
2+η ‖∇ (fψ)‖L2+η(Ω)

≤ C ‖F‖L∞(Ω) |ω| ‖φ‖
α
L2(Ω) .



ELECTRICAL IMPEDANCE TOMOGRAPHY BY ELASTIC DEFORMATION 15

Consequently,
‖φ‖L2(Ω) ≤ C ‖F‖L∞(Ω) |ω|

1
2+ η

2(4+η)

and therefore, choosing κ = η
2(4+η) concludes the proof. ¤
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