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Dynamics of Nonlocal Fisher concentration points:

a nonlinear analysis of Turing patterns

Benôıt Perthame∗ Stéphane Génieys †

January 27, 2007

Abstract

The so-called ’nonlocal Fisher’ model takes into account an influence neighborhood for inhibition
in classical Fisher ecological invasion. In this area, it has been introduced to represent front
propagation with redistributed resources. More recently it has also been proposed as the simpler
model exhibiting Turing instability and the biological interpretation refers to adaptive evolution.
One aspect of the present paper is to propose a nonlinear analysis of these Turing patterns.

More precisely, we introduce a rescaled equation in order to take into account rare mutations
(small diffusion). We analyze in which circumstances such a model exhibits stable patterns, among
them the Dirac concentrations (that are interpreted as morphs in adaptive dynamics) are remark-
able. We use a change of variables, similar to the phase in WKB method, that describes more
accurately the phenomenon and leads to a constrained Hamilton-Jacobi equation. It allows us to
interpret several features of the patterns, as the weights of the Dirac concentration points, the
asymmetry variable regulating their velocities and other relevant quantities.

Key-words Adaptive evolution, Redistributed resources, Turing instability, Nonlocal Fisher equation,
Dirac concentrations, Hamilton-Jacobi equation.

1 Model system; the Nonlocal Fisher equation

We consider the periodic solution nε to the Nonlocal Fisher equation






∂nε

∂t (t) = ε∆nε + 1
εnε (1 − Φ ∗ nε), 0 ≤ x ≤ 1,

nε(t, 0) = nε(t, 1), ∂nε(t,0)
∂x = ∂nε(t,1)

∂x ,

nε(t = 0, x) = n0
ε(x) ≥ 0,

(1)

with an initial data n0
ε exhibiting a Dirac mass behavior as we describe it later in more details. The

convolution kernel Φ, among other forthcoming properties, has bounded support,

Φ ≥ 0,

∫
Φ = 1, Φ(x) = 0, for x /∈ [−b, b] (b <

1

2
). (2)
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This is a rescaled version of the competition model introduced by Génieys, Volpert and Auger [14].
The authors interpret the variable x as a physiological trait, the diffusion term models mutations
along with usual genetic population laws (and the scaling means rare mutations with a long range
effect). The convolution term mimics competition for resources between individuals whose traits are
close enough. But the Nonlocal Fisher equation was also introduced as an ecological model; in the
correct range of parameters, it describes an invasion front for a sysytem with redistributed resources,
see [16] and the references therein.

The interpretation and the results in [14] make a direct link between evolution theory and Turing’s
instability. Indeed, this model exhibits both Turing’s instability (under specific properties on the
kernel Φ that we discuss in Section 5.1) and a phenomenon of evolutionary branching: a monomorphic
population (i.e. an initial data with a single Dirac mass) may become dimorphic in order to lower the
competition. It is an illustration of Darwin’s divergence principle, which is a mechanism of branching
due to the competition and can arise even in a constant homogeneous environment [8]. This principle
is illustrated numerically by using the cellular automata approach ([1] for instance) or differential
systems ([11, 15, 22]). It is mathematically investigated by using a probabilistic approach in [6] and
game theory in [17]. Its relevance in physiological contexts is discussed in [18].

The re-scaling we have introduced allows us to identify two length scales: ε for the activation and
b for the inhibition, typical of Turing’s instability [23, 20]. Even though the model is very simple
it allows us to recover a general principle in the topic. For long rang activation and short range
inhibition, i.e. b ≪ ε, we expect front propagation. As b → 0 we recover the classical fisher equation
which is well-known to exhibit a traveling wave (see [21, 4] for instance). For b small, traveling waves
in a nonlocal Fisher equation is studied in [16].

In the other regime short range activation and long range inhibition, we expect pattern formations.
This arises from an instability that occurs indeed for certain competition kernels Φ characterized by
the fact that their Fourier transform is ’negative enough’, as proved in [14] (see also Section 5.1). See
also the appendix of the present paper for an estimation of the leading wave length. Even though
Turing’s instability, and thus pattern formation, are more traditional for systems of parabolic PDEs,
notice that convolution models are also commonly used in this area, [19, 9].

Our purpose is to study, in this situation when ε vanishes, wether one can expect the asymptotic
expansion

nε(t, x) ≈
I∑

i=1

ρi(t) δ(x − xi(t)). (3)

This is indeed the same asymptotic regime than the formalism for adaptive dynamics introduced in
[11] and also used in [3, 5] for various models arising in population biology. In this language ([15, 10]),
this asymptotic can be interpreted as polymorphism and I denotes the number of different traits
that can be represent. The interesting feature here is that this number I is not fixed in advance by
opposition to the chemostat problem in [11].

The main questions we wish to answer here are
• Is this expansion (3) always true when Turing’s instability occurs?
• Can one predict the densities ρi of each morph in terms of the competition kernel Φ?
• Can one predict the ’velocity’ of the concentration points xi(t) in terms of the asymmetry of the
competition kernel Φ?
• For steady states situations (with symmetric competition kernel Φ) can one predict the spacing
between the concentration points xi(t), and is it given by the wave length of the linearized equation?
• What is the shape of nε in this regime?
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This paper uses the Hamilton-Jacobi formalism that was introduced in [11] to predict quantita-
tively the answers to these questions and explain some apparent paradoxes: one of them is that very
’asymmetric’ competition kernels can lead to slower velocities of the points xi(t) than seemingly ’less
asymmetric’ kernels. Also, several rules have been derived, still validated on specific examples, for
Turing instabilities based on the linearized eigenvalues. Here we recover for instance the rule, already
explained, on relative ranges for activators and inhibitors related to waves or patterns. However the
linearized eigenvector do not necessarily give a good hint on the wave length of the patterns.

The outline is as follows. We first present the asymptotic theory based on Hamilton-Jacobi formal-
ism. Then we analyze the steady states and answer to most of the questions mentioned above. After
that, we give the main parameter that determines the dynamics of the Dirac concentration points.
We conclude with several mathematical proofs that we gather in a final section.

2 Asymptotic analysis

In this section, we recall the method introduced in [11] which allows to analyze the limit ε → 0 and
study the concentration effects. It is based on a classical idea which consists in introducing a ’phase’
along with the WKB method for oscillations. Here the parabolic aspect leads us to a real phase as in
’front propagation’ analysis introduced in [12, 2].

A simple example that motivates the forthcoming analysis is the ’zero temperature maxwellian’
nε = 1√

2πε
e−|x|2/(2ε). It converges to a Dirac mass at x = 0, but it is easier to pass to the limit in the

quantity

ε ln(nε) =
−|x|2

2
− ε

2
ln(2πε) −−−→

ε→0
− |x|2

2
≤ 0.

In the same way, one can handle several Dirac masses. We consider for example

nε =
1√
2πε

I∑

i=1

ρi

θi
e−|x−xi|2/(2εθi) −−−→

ε→0

I∑

i=1

ρi(t) δ(x − xi(t))

and

ε ln(nε) −−−→
ε→0

− min
i

|x − xi|2
2θi

≤ 0.

With this in mind, we set, following [11, 3, 5],

nε(t, x) = eϕε(t,x)/ε, n0
ε(x) = eϕ0

ε(x)/ε

with the property
ϕ0

ε(x) −−−→
ε→0

ϕ0(x) ≤ 0, max ϕ0 = 0.

Then the points where ϕ(t) vanishes are the Dirac concentrations but their weights are not known by
this construction.

Inserting this ansatz in equation (1), we find






∂ϕε

∂t (t) = ε∆ϕε + |∇ϕε|2 + (1 − Φ ∗ nε),

ϕε(t = 0, x) = ϕ0
ε(x),

(4)

From Theorem 5.3 (see the technical results in the last section), we know that, after extraction of a
subsequence if necessary, ϕε → ϕ (uniformly, locally in time).
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The mass control from below and from above, proved in Theorem 5.1 gives us a first property of
the limit ϕ. Namely

max
x

ϕ(t, x) = 0 ∀t ≥ 0. (5)

Indeed, would this max be negative, then nε would go extinct which is not true; would this max be
positive, then by continuity this would be true in an interval and nε would blow-up contradicting the
finite mass property.

Passing to the limit as ε vanishes in (4), we find the Hamilton-Jacobi equation (H.-J. eq. in short)






∂ϕ
∂t (t) = |∇ϕ|2 + r(t, x),

ϕ(t = 0, x) = ϕ0(x),

(6)

and
r(t, x) = lim

ε→0
1 − Φ ∗ nε, (7)

notice that when Φ ∈ C(R) this is a uniform limit and r(t, ·) ∈ C(0, 1) (continuous functions) for all
times. It is a standard point that the limiting solution ϕ is not smooth (it is only Lipschitz continuous)
and satisfies the H.-J. eq. in the viscosity sense of Crandall-Lions (see [7, 13]). There is a specific
difficulty here because the time dependency of r in time is just L∞ but this is handled also with
arguments which are standard by now and we refer the reader to [3, 22] for uniqueness and further
mathematical analysis of this problem.

Assuming nε converges to the sum of Dirac masses as expressed in (3), we find in (5) and (7):

ϕ(t, xi(t)) = 0, i = 1, ..., I, (8)

r(t, x) ≡ 1 −
I∑

i=1

ρi(t) Φ(x − xi(t)). (9)

We recall the interpretation that ϕ satisfies the constrained H.-J. eq. (5), (6). To fulfill the constraint
on the max imposes to introduce Lagrange multipliers, i.e., free parameters that adapts the right-hand
side to these constraints, and these are the weights ρi(t). Therefore the system (5), (6), (9) can be
seen as a coupled problem. As we know it from [11] there might be several solutions when the max
in (5) is attained at multiple points and one expects that an additional information has to be added
in this case (and it is an open question to find a convenient criteria). Only in the case where a single
maximum point is possible, one can prove uniqueness ([3]).

From the relations (8) and (5), we deduce that ∂
∂tϕ(t, xi(t)) = ∇ϕ(t, xi(t)) = 0. Therefore we find

the fundamental relation
r(t, xi(t)) = 0 1 ≤ i ≤ I. (10)

This formula is standard in the theory of adaptive dynamics; r is called the invasion exponent. The
quantity rx also appears (see the canonical equation (19) for instance) and is called the selection
gradient and the points where it vanishes are the so-called singular points.

3 Steady state

We begin with the simpler situation when the potential Φ is even. Then, the steady states solutions
to (1) are reached as it will be explained in Section 4 (but for ’asymmetric potentials’ we cannot hope
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Figure 1: Well-differentiated potential (14) with a = .015, b = .15, ε = 10−4. Initial conditions are: 4
peaks evenly spaced (left), 5 peaks evenly spaced (right).

for steady states). Then, we have the alternative to study the time asymptotic patterns that satisfy
equation 





−ε∆nε = 1
εnε (1 − Φ ∗ nε), 0 ≤ x ≤ 1,

nε(0) = nε(1), ∂nε(0)
∂x = ∂nε(1)

∂x .

(11)

Then, the limiting equation is simpler and reads

−|∇ϕ|2 = r(t, x) = 1 −
I∑

j=1

ρj Φ(x − xj) =






≤ 0 for x 6= xi,

= 0 for x = xi.
(12)

max
x

ϕ(x) = 0 = ϕ(xi), i = 1, ..., I. (13)

We analyze now the numerical results obtained with different even competition kernels in view of this
asymptotic equation. We have distinguished two cases, both satisfy the Turing instability criteria, but
have different behaviors in terms of pattern formation. We refer to them as well- or ill-differentiated.

3.1 Well-differentiated competition

The simplest situation is when we choose a competition kernel exhibiting stronger competition for
slightly different traits x (a behavior that is largely accepted and was observed already in [8]). More
precisely, we take for real numbers a > 0, b > 0,

Φ(x) = Φ(0) (1 + a
|x|
b

) 1{|x|≤b},
∫

Φ = 1. (14)

On this class of kernels, we have checked numerically that Dirac concentrations are always obtained,
and we can discuss the asymptotic prediction made in Section 2.

• (Location of the concentration points) Firstly, we observ that the patterns, even though they con-
centrate as Dirac masses for small ε, depend upon the initial data. Figure 1 exhibits four or five peaks
depending on the initial data.

Secondly, we can also check for the example a = 2 (but we have tested successfully other values
which are not shown here) that the Dirac locations corresponds to the points where ∇ϕ vanishes; see
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Figure 2: (Symmetric potential) Numerical solution of the problem (1) with the well differentiated
even potential (14) with b = .15, a = 2, this corresponds to the third line of Table 1. We represent the
density nε (left) and the phase ϕε (right). The numerics is performed with 3000 points, ε = 2.10−4.
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Figure 3: (Symmetric potential) Same as Figure 2. We depict the potential Φ∗nε (left) and a centered
evaluation of 1 + |∇ϕε|2(right).
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a 1/Φ(0) numerical weight

0 .3 .300

1 .45 .442

2 .6 .587

3 .75 .724

a 1/Φ(0) numerical weight

0 .3 .300

1 .45 .447

2 .6 .594

3 .75 .747

Table 1: Comparison between the predicted values of the weights of the Dirac mass and the weights
obtained by numerical simulations. We have taken the parameter b = .15 and left: ε = 2 10−4, 3000
discretization points, right: ε = 5 10−5, 10000 discretization points,.

nε and ϕε in Figure 2.

• (Validity of the H.-J. equation) Thirdly, we check the validity of the asymptotic limit (5), (6). The
Figure 3 depicts the potential Φ ∗nε compared to the computed value of 1+ |∇ϕε|2. The undershoots
are just computational effects when computing the numerical derivative of the solution ϕε.

• (Weights of the Dirac masses) Observe that, in the limiting expression Φ ∗ nε =
I∑

j=1

ρj(t) Φ(x −

xj(t))dis, some overlapping is necessary for b = .15 because the values Φ∗nε(x) = 0 are unstable. But
it occurs on a sufficiently small set in such a way that at the points xi there is no overlaping. But also,
from (12) at the points xi, we have ∇ϕ(xi) = 0 (maximum point of ϕ). Therefore, we predict that the
weights ρi should satisfy ρi Φ(0) = 1. The Table 1 shows the computed values ρi and compare them
to 1/Φ(0). A very good agreement is achieved (to the expense of a very fine grid).

3.2 Ill-differentiated competition

A very interesting case is that initially proposed in [14] where the competition kernel is given by

Φ(x) = Φ(0) 1{|x|≤b},
∫

Φ = 1. (15)

It is proved in [14] that it exhibits Turing’s instability (see also Section 5.1 for an explicit computation
in our framework).

It appears, from numerical simulations, that several stable steady states can be produced depending
upon the initial data and not all of them converge to Dirac masses as ε → 0. Here, we only focus on
patterns that remain smooth as ε vanishes. Figure 4 shows results indicating that, in place of (3), one
should rather expect

nε(t, x) ≈
I∑

i=1

u(x − xi),

where the profile u is a continuous even function with bounded support such that
∫

u = 1. Denoting
by c the length of this support, numerical simulations suggest that

c + b =
1

I
. (16)

This means that the number of patterns is maximizing space occupation with the property that the
potential terms Φ ∗ u(x − xi) do not overlap on the support of nε, i.e. there is a single i such that
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Figure 4: Ill-differentiated potential (15) with b = .15, ε = 10−4. Initial conditions are: 4 peaks evenly
spaced (left), 5 peaks evenly spaced (right).

Φ ∗ u(x − xi) 6= 0. In the case of Dirac concentrations, as mentioned earlier some overlapping, away
from the xi’s, is also necessary to avoid the state Φ ∗ u(x) = 0 but there is no free parameter c that
allows for such an equality since c = 0.

Our claim here is that such a steady state is possible only if c < b. Indeed similar to the case of

Dirac masses, for x ∈ [xi−c/2, xi +c/2], |∇ϕ|2 = r(t, x) = 1−
I∑

j=1

Φ∗u(x−xj) = 0 because nε remains

positive and thus ϕ vanishes. Since the terms Φ ∗u(x−xj) are non-overlapping on [xi − c/2, xi + c/2],
this means that

Φ ∗ u(x) ≡ 1, for x ∈ [−c/2, c/2]. (17)

But for x ∈ [−c/2, c/2], we can compute Φ ∗ u(x) =

∫ min(x+b,c/2)

max(x−b,−c/2)
u(y)dy.

If one had c > b, for x large enough (say x ∈ [b−c/2, c/2]), we would also have Φ∗u(x) =

∫ c/2

x−b
u(y)dy

which depends on x and contradicts equation (17). Similarly, for x small enough (x ∈ [−c/2,−b+c/2]),

Φ ∗ u(x) =

∫ x+b

−c/2
u(y)dy which contradicts equation (17). On the other hand if c < b, Φ ∗ u(x) =

∫ c/2

−c/2
u(y)dy does not depend on x, which is compatible with equation (17).

Hence we have obtained 0 < c < b which combined with (16) yields

1

2b
< I <

1

b
. (18)

Since I ∈ N, only a finite number of solutions are possible. In the situation of figure 4, we still take
b = .15 and the numerics is in accordance with the conclusion that steady-states solutions may exist
with I = 4, 5 or 6. These three possibilities occur, still depending upon the initial data (as in Figure
1).

Notice that for the well-differentiated potentials already presented in Subsection (3.1) we have seen
that stable steady states are Dirac masses. Hence the free parameter c is not available to justify
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Figure 5: (Asymmetric potential) Dynamic of the concentration points with various asymmetric po-
tentials. In the upper left the value Φ′(0) is larger than in the upper right (a1 and a2 respectively).
The lower pictures are obtained with an asymmetric potential satisfying Φ′(0) = 0 (potential Φ3) with
3000 points on the left and 6000 points on the right. The abscissae are x and the ordinates are time.

equation (16). However the numerical simulations of Figure 1 suggest that the possible numbers of
peaks are still determined by equation (18).

4 Asymmetry and dynamic of concentration points

We now study the more general case of ’asymmetric’ potentials that allow for motion of the concen-
tration points. The question here is to determine which ’asymmetry’ criteria controls this motion. A
simple and somewhat natural direction would be to measure it by the ’oddness’ of the kernel Φ using
the quantity A[Φ] =

∫
xΦ(x)dx. Our purpose here is to show that the asymptotic theory of Section 2

gives the answer, and it turns out that this ’oddness’ quantity A[Φ] is not the correct one.

Following [11, 22], the H.-J. eq. (6)–(7) contains information on the dynamic of the concentration
points xi(t) defined in the asymptotic formula (3) because they satisfy

φ(t, xi(t)) = 0.

Namely, we recover the velocities with the formula

ẋi(t) =
(
− D2ϕ(t, xi(t))

)−1 ∂r

∂x
(t, xi(t)). (19)
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and we know from the definition (7), that

∂r

∂x
(t, x) = −

I∑

j=1

ρj(t) Φ′(x − xj(t)). (20)

As a consequence, the correct measure of asymmetry for the speed of the concentration points xi(t)
is given by the quantity Φ′(0). These points move only when Φ′(0) 6= 0 (and thus Φ is not even).

We check numerically that xi(t) moves according to the value of Φ′(0). We have used the three
following potentials

Φ1(x) = a1(x + .5b)+ 1{|x|≤b},
∫

Φ = 1,

Φ2(x) = a2(x + b)+ 1{|x|≤b},
∫

Φ = 1,

Φ3(x) = 1{−.5b≤x≤b},
∫

Φ = 1.

We have
Φ′

1(0) > Φ′
2(0) > Φ′

3(0) = 0,

and thus we can expect that the concentration points move faster for Φ1 than for Φ2 and that they
do not move with Φ3. This behavior is indeed obtained as depicted in Figure 5.

5 Mathematical proofs and numerical algorithms

In this section we gather several mathematical results that have been used throughout the paper.
They mostly concern a priori estimates. We also describe, for the sake of completeness, the numerical
algorithms that we have used.

5.1 Turing’s instability and estimation of the typical wave length

For the sake of completeness we reproduce here the computation for deriving the Turing instability
condition in model (1), following [14].

Linearizing the equation (1) around the steady state n = 1, we obtain





∂r
∂t (t) − ε∆r = −1

εΦ ∗ r, 0 ≤ x ≤ 1,

r(t, ·) 1-periodic.

As usual one tries to find solutions with exponential growth, which means eigenvectors





λr(x) − ε∆r = −1
εΦ ∗ r, 0 ≤ x ≤ 1,

r(·) 1-periodic, λ > 0.
(21)

It is natural to decompose a possible solution r in Fourier series

r(x) =
∑

n∈Z

r̂(n)e2iπnx, r̂(n) =

∫ 1

0
r(x)e−2iπnxdx.

10



Then, equation (21) becomes

r̂(n)
[
λ + ε(2πn)2 +

1

ε
Φ̂(n)

]
= 0.

Consequently, the eigenvalues are given by

λ = −ε(2πn)2 − 1

ε
Φ̂(n). (22)

Turing instability occurs when some Fourier coefficient of Φ is negative and the leading positive
eigenvalue is given for ε small, by

λε ≈ −1

ε
min

n
Φ̂(n) = −1

ε
Φ̂(n0).

The corresponding eigenvector is e2iπn0x, which exhibits a wave length L0 = 1
|n0| .

We can specify the example Φ = 1
2b 1{|x|≤b}, with b < 1

2 and we find that

Φ̂(n) =

∫ b

−b
e−2iπnxdx =

1

2πnb
sin(2πnb).

The smallest frequency such that instability occurs, Φ̂(n0) = 0, is given here by n0 = E( 1
2b) + 1 and

thus L0 = 1/[E( 1
2b) + 1] (which is close to 2b when b is small). This is also the largest possible length

of patterns as expressed in (18) but in practice a different wave length is obtained (see Section 3).

5.2 Mass control for the Nonlocal Fisher Eq.

Theorem 5.1 Assume (2). Then the solution to the Nonlocal Fisher equation (1) has saturated
growth and non-extinction. More precisely the total mass Mε(t) =

∫
nε(t, x)dx satisfies

min
(
Mε(0),

1

‖Φ‖∞
)
≤ Mε(t) ≤ max

(
Mε(0),

1

Φmc2

)
,

where c and Φm are any numbers such that Φ ≥ Φm on (−2c, 2c). Moreover, as t → ∞

lim inf Mε(t) ≥
1

‖Φ‖∞
, lim supMε(t) ≤

1

Φmc2
.

Remark 5.2 In view of the numerical experiments, one expects that Lp norms are unbounded for
p > 1 and ε small in the case of a well-differentiated kernel Φ.

Proof. (i) Non-extinction. Integrating in x the equation (1), we obtain the relation

d

dt
Mε(t) =

1

ε2

(
Mε(t) −

∫
nε Φ ∗ nε

)
, (23)

and we have
Φ ∗ nε ≤ ‖Φ‖∞ Mε(t).
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Therefore, since nε ≥ 0, we arrive to the differential inequality

d

dt
Mε(t) ≥

Mε(t)

ε2
(1 − Mε(t)‖Φ‖∞) ,

which proves the lower bound.

(ii) Limited growth. Consider a value c > 0 as in the statement of Theorem 5.1, and an interval
I of length c where ∫

I
nεdx ≥ c Mε(t).

Then, still with the notations in the statement of Theorem 5.1, we have the lower bounds
∫

nε Φ ∗ nε ≥ Φm

∫
|x−y|≤2c nε(t, x) nε(t, y) dxdy

≥ Φm

∫
I×I nε(t, x) nε(t, y) dxdy

≥ Φmc2Mε(t).

Therefore, we obtain from (23)

d

dt
Mε(t) ≤

Mε(t)

ε2

(
1 − c2Mε(t)Φm

)
,

and again the upper bound follows directly.

5.3 Estimates for the H.-J. Eq.

Theorem 5.3 We assume (2), Φ ∈ W 1,∞(R) and Mε(0) = M0 < ∞, and that ϕ0
ε and ∇ϕ0

ε are
bounded. Then, for all time t > 0, the solution to equation (4) satisfies the a priori bounds

‖ϕε(t, ·)‖L∞(0,1) + ‖ ∂

∂x
ϕε(t, ·)‖L∞(0,1) ≤ C(t),

and, after extraction of a subsequence, ϕε → ϕ ∈ W 1,∞(
(0, T )× (0, 1)

)
(uniformly locally in time) and

(6) holds (in the viscosity sense).

Proof. Differentiating equation (4), we obtain the equation for w = ∇ϕε,

∂w

∂t
(t) = ε∆w + 2∇ϕε · ∇w −∇Φ ∗ nε. (24)

Here, we can upper bound
|∇Φ ∗ nε(t)| ≤ ‖∇Φ‖∞M̄(t),

where M̄(t) is an upper bound of the total mass M(s) for times 0 ≤ s ≤ t which is controlled thanks
to Theorem 5.1. Therefore, by the maximum principle, we have

|w(t, x)| ≤ max
x∈(0,1)

|w(t = 0, x)| + ‖∇Φ‖∞M̄(t)t.

This uniform estimate on the gradient gives a uniform estimate on ϕε in L∞(
(0, T ) × (0, 1)

)
when

coming back to the equation (4) because it boils down to heat equation with a bounded right-hand
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side. And thus, the L∞ bounds on ϕε and ∂
∂tϕε, as stated in Theorem 5.3, are proved.

Then we can obtain a local uniform L2 estimate on ∂ϕε

∂t . To do that, we multiply for instance the

equation (4) by ∂ϕε

∂t , and integrate. We obtain, denoting by C an absolute bound for |∇ϕε|2+1−Φ∗nε

∫ 1
0 |∂ϕε(t)

∂t |2dx ≤ ε
∫ 1
0

∂ϕε(t)
∂t ∆ϕε(t) + C

∫ 1
0 |∂ϕε(t)

∂t |dx

≤ − ε
2

d
dt

∫ 1
0 |∇ϕε(t)|2dx + C

∫ 1
0 |∂ϕε(t)

∂t |dx.

Therefore, when integrating in time and using Cauchy-Schwarz inequality for the second term on the
right, we find

∫ T

0

∫ 1

0
|∂ϕε(t)

∂t
|2dx ≤ ε

2

∫ 1

0
|∇ϕε(t = 0)|2dx + C

√
T

(∫ T

0

∫ 1

0
|∂ϕε(t)

∂t
|2dx

)1/2

.

This proves a uniform bound on the quantity
∫ T
0

∫ 1
0 |∂ϕε(t)

∂t |2dx. Together with the bound on the x
derivative, this proves the compactness of ϕε for the uniform topology.

Passing to the limit in viscosity sense and almost everywhere is standard then. The constraint
max ϕ(t, ·) = 0 follows from the mass constraint (see [11, 3, 22]).

5.4 Numerical methods

We have used two different numerical schemes that we describe now. Both of them are very simple
and based on finite differences.

In the first scheme, the discretization of equation (1) is based on a time splitting of the reaction
term n(1 − Φ ∗ n) and the differential term. Considering a number N of points in x, we approximate
the solution by a discrete vector nk

i for i = 1, ..., N and k the label for discrete time. We set ∆x = 1/N
the space stepping and ∆t the time stepping.

In order to avoid strong limitations on the time step, we use an exact resolution of the reaction term

n
k+1/2
i = nk

i exp
(∆t

ε
(1 − Φ ∗ nk)

)
,

where the convolution Φ ∗ n is computed according to

Φ ∗ n ≈
JM∑

j=−JM

Φjni−j ,

where JM = b ∗ N . We use a three point implicit (or explicit when ε is small enough) scheme for the
differential term

nk+1
i = n

k+1/2
i +

ε ∆t

2∆x2
[nk+1

i+1 + nk+1
i−1 − 2nk+1

i ].

In the second scheme, we use an explicit scheme for the reaction as well as for the diffusion. The
convolution is computed by using the trapeze formula:

Φ ∗ n ≈
JM−1∑

j=0

(Φjni−j + Φj+1ni−j−1)/2 + (Φ−jni+j + Φ−j−1ni+j+1)/2.

13



This gives a better accuracy and allows to check that the number of discretization points is enough to
resolve the singularities.

Finally, notice that for accuracy reasons it is necessary to ensure some kind of CFL condition

∆t

ε
≪ 1. (25)

This is imposed in order to ensure that the reaction term is well resolved. In practice we can choose
∆t
ε = .1. As a consequence, when ε is small, the CFL condition for the diffusion term, namely

ε ∆t

2∆x2
≤ 1,

can be achieved. Then the explicit scheme for the diffusion is stable.
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