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Abstract

For a layer with compactly supported inhomogeneity we give an appropriate definition of the scattering
amplitude. Then we recover the relation between the far field pattern and the scattering amplitude.

1 Introduction

The scattering amplitude is a wellknown way to solve some inverse scattering problem. In the litterature we
actually find the definition of the scattering amplitude in the whole homogeneous perturbed space [5],[3] or
half space [1]. For a stratified space, this definition is more complicated [2]. The situation in the layer, not yet
studied, introduces also difficulties. In this paper we are looking for a definition of the scattering amplitude
in the layer. Such wave guides can modelize problems of wave propagation in geophysic, underwater acoustic
and so on.

One consider the Schrodinger operator A = —A+V(X) in L?*(Q) which derives from A9 = —A in L?(),
where 0 = R" x (0,7), n > 1 and D(A) = D(Ag) = H}(Q) N H?(Q). We study the boundary value problem:

(—A+V(X))u(X) = u(X) in L*(Q), (1.1)
u(X)joq = 0. |

We define the scattering amplitude and the outgoing solutions of (1.1). A work in progress uses the scattering
amplitude to establish uniqueness theorem for the potential V (X).

The paper is organized as follow. In section 2, we carry out the generalized eigenfunctions of A and we define
the wave operators. We state results on the existence and completeness of these operators. This allows us
to prove that the system of generalized eigenfunctions of A is dense. In section 3, we define the scattering
operator, the scattering matrix and finally the scattering amplitude. In section 4, we give an asymptotic
development of the generalized eigenfunctions of A and we link it with the scattering amplitude.

2 Spectral Study of A

2.1 Generalized Eigenfunctions of Ag

By a standard Fourier technique, we obtain the generalized eigenfunctions 1/1? of Ag associated to the eigen-
values A;(|p|) in the following form

2 iz’ . . . .
w?(x',y,p)—(%)”\/;e Psin(jy), and X;j(]p|) = 5%+ [pl*, j>1,

with X = (a/,y), 2’ = (z1,...,2,) € R, y € (0,7) and p € R™.
This family of generalized eigenfunctions {1/);)}]'21 is dense in L2(Q2). Then to obtain a spectral representation
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of Ay, if f € L*(Q), we define the following limit in L?(2) and the spaces H,:

filp) = lim VU’ y,p) f(2,y)dx' dy,
i(p) YL 2 )f(Z',y)

H; = {u € L*(Q); Efj € L2(R"),u(2’,y) = /}Rn w?(x’,y,p)fj(p)dp}. (2.1)

The unitary map ® : f+— (fl(p), fQ(p)7 ...) from L?(Q) into Hy @& Ha @ ... is a spectral representation of Ag
in the following sense

®(Aof) = (Ao, Aofor ) = M(Ip) f1(p) Aa([p]) fa (D), --.)-

2.2 Generalized Eigenfunctions of A

We look for the generalized eigenfunctions of A in the form:

(@ y,p) =90y, p) + w2y, p), (2:2)

We denote
N\ =t{j>1; > <A} (2.3)

The function wji satisfies the eigenvalue equation

(—A+ V(@' y) = N(Ip)e; (¢, y,p) = 0. (2.4)
Then, taking into account the equations (2.2), (2.4) and the limiting absorption principle, we obtain

wi (@', y,p) = =R\ (Ip)) (V) (@', y, p), (2.5)
where R¥(z) is the resolvent of A. If we introduce the resolvent equation in (2.5), we obtain

wy (2, y,p) = =Ry A\ (Ip) (V) (@', y,p) + Ry (A (b)) VR (s (1pD) (V) (2, 1, p). (2.6)

2.3 Wave Operators

We first consider the wave operators

Wi =s5— lim etAe A0 (2.7)
t— oo

and the scattering operator S = W;W_. The wave operators actually exist. The proof is an adaptation
of the theorem XIII-31 of [6]. Then the limits (2.7) exist, moreover we obtain the completeness of the
wave operators Wy from HC.(Q) = L?(Q) (subspace of absolute continuity of Ag) into Ha.(Q2) (subspace
of absolute continuity of A), see [4]. To obtain a spectral representation of A, if f € L?(f2), we define the
following limit in L?(Q):

ot _ . IWE2WENRY ’ ’

filp) = Jlim ient Vi (2, y,p) f(2 y)dz'dy,
and H;t = W4 H;, where H; is defined by (2.1). The unitary map ®* : f (fNIjE (p), f?(p), ...) from L%(Q)
to HEf @ HE @ ... is a spectral representation of Ay,



3 The Scattering Amplitude in a Layer

We have defined in the previous section the scattering operator S = W} W_. Using the relations ®* = ¢W*
and @~ = ®W7, the scattering operator can be written

S =0*0 TP, (3.1)
In a first step we define the scattering matrix as follows
Suj(p) = (S (|p))u;)(w) with w e §™1 (3.2)

Note that S(A) € L((L2(S™1))NM). We obtain an N(A) x N(A)-matrix, where N()) was defined by (2.3).
So we have to determine Su;(p). Using (3.1) we obtain ®Su = ®u + (- — &) u where T = o+,
Then we have

Su;j(p) = d;(p) + lim (W7 (', y,p) — ¥F (¢, y, p))0 u(a’, y)da' dy.
M—=+00 J|z/| <M, ye(0,r)

After several technical transformations, we obtain:
Su](p) = @(p) + Zk2<j2+\p|2 7:71'(17]'_2

(fR"X(O,Tr) V()3 (@', y,p) [gn ¥R, y, aw’ )y (aw”)dw'da’ dy (3.3)
— Jonxom V@ 9@, y,p) [gur [RT(Ak(aw))VER(, - ow)](2', y, aw')uk (ow')dw' da’ dy,

with o = (\;(|p|) — k?)'/2. So taking into account (3.2) and (3.3) we obtain explicitely the scattering matrix
and the scattering amplitude A(w,w’, X;(|p|)) = [Ajr(w,w’, X;(|p])]1<jr<n(r) is defined as the kernel of
this operator

((S(Aj(lp\))—f)@)(w)Z/Snf Yo Aik(w,w’, A (Ip))ur(aw ). (3-4)

1
k2 <j2+Ipl?

Proposition 3.1 The scattering amplitude is a N(X) x N(\)-matriz
Alw,w', ) = [Aj k(w, ', A (IpD) 1<) v
-Aj,k(W, W', AJ(‘pD) = Bj7k(w7 W', /\J(‘pD) + Cj}k(w’ W', /\j(|p|))a (3.5)

B, — ima"? / V(e )92, p) / N gs o ik (aw)du da’' dy
R x(0,7) sn—1

n—1

Cik = _mo‘n_z/ V(x’,y)wg(x’,ym)/ [RF (Ar(aw)VYR(-, -, aw’)| (2, y, aw )y (aw’)dw' da’ dy.
R™x (0,7) S

Remark: It should be mentioned the matrix-form of the scattering amplitude which differs radically from
the classical one.

4 Asymptotic Behaviour of the Generalized
Eigenfunctions

The functions wji see (2.2) are defined by

wi (@, y,p) = =Ry (N(pD) (V) (e, y,p) + Ry (A (1)) VRE (N (Ip]) (V) (2, y, p)
6L (', y,p) + L2, ; (2, y, D).



We are looking for the asymptotic behaviour of each term of this sum. Let us consider the k** component
of the first term
1 —_~—

|p/‘2 F k2 — A; —i0 [V¢?(',p)](p/)dp/.

(sl = [ o)

Then L
[115(" g, )]k = (QW)_gn(g)S/QSi"(k?/)/ — Ay’
,J IR - - p/‘Z + k2 — )\J —10
with  fi1(p') = / et (p=p) sin(ky) sin(j§)V (¢, §)dz'dy.
R™ % (0,m)

Remark: To obtain an asymptotic development of [I1 ;(z',y,p|r, we use the lemma Al of [2]. For this we
have to replace f; € C*°(R"™) by a C§°(R"™) function.

Let pf, = aw’, (p}, verify [ph|* +k* = X;(|p|)), we define the C§°(R™) function x equal to 1 in a neighborough
of p; and 0 outside. Then

[115(2 y, p)]k = (QW)’2"(%)3/28in(ky)(J1(fr') + Ky (a"))

1 e Py (p')
no_ ’ /
) = G o PRI  8y =

N — : / eif’”/'Pl(l - X(p/)) / /
Kl(x ) - (27‘(’)” - |p/|2 ¥+ k2 — Aj — zOfl(p )dp .

Then, we apply the lemma A1 of [2] and we obtain

il |- pp|
e _
Ji(z') = Cpgwj(fl(pé)) +0(|]2'|1)
x| 2
n—3 3—n . n—3 n+1
where Cp; = (47)"'a"3 (2m)"2 e~ * . Moreover, we prove that K;(z') = O(|z/|~ * ). So the asymp-

totic behaviour of the first term of w;f, denoted [I (', y,p)]k, is given by

 ——— 5 . ' - 7/ ,
Tl = (2 snlkyoTeins 20
xT

X Jane (0. €077 sin(ky) sin(j§)V (a, §)da’ dy.

In the same way, we prove that the asymptotic behaviour of the second term of w;f

is given by

, denoted W:,y,p)]lw

P . ! !
n=3 ilz’'|-|pp|

_ 1—3n 4
L@y, o)k = B2 sin(ky)a" 3V (@, y)e ™5

n—1
/|2

X fRnX(O’ﬂ-) e—ia?“p{) Sln(k@/)R(/\Jﬂpl)(V(a )1/)9(’ ap))(lf://7 gap)d';ldg

In conclusion, we obtain the asymptotic behaviour of the k** component of w;-r:

[wi (@', y,p)]k = [L15(2", y, )]k + [L25 (2", y, p)]k- (4.1)

So we have to link the far field pattern with the scattering amplitude. For this, we compare (3.5) with (4.1).



Proposition 4.1 If we set

/ 2 -1 cnt1 onoa el

(G2, y, )]k =/ =(2m) "= sin(ky)a™2 e 2 —,

" o
with o = (\;(|p]) — k)2, we can write
NV
_ntl
UF (@ y,p) = 09 yp) + 0 Aip(w, A (D)IGE g, )]k + ofla!| 7).

k=1

This relation allows us to give a physical sense to the scattering amplitude.

Our goal is to prove that exists an injection between the scattering amplitude and the potential V(X). For
the layer (R? x (0,7)) [3] prove an uniqueness result but using the Dirichlet to Neumann map. In a strip
(R x (0,7)) does not exist any result. We think that the knowledge of the scattering amplitude at fixed
energy is not sufficient to determine the potential. We want to prove that a countable infinity of energies
will be sufficient.
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