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Abstract

For a layer with compactly supported inhomogeneity we give an appropriate definition of the scattering
amplitude. Then we recover the relation between the far field pattern and the scattering amplitude.

1 Introduction

The scattering amplitude is a wellknown way to solve some inverse scattering problem. In the litterature we
actually find the definition of the scattering amplitude in the whole homogeneous perturbed space [5],[3] or
half space [1]. For a stratified space, this definition is more complicated [2]. The situation in the layer, not yet
studied, introduces also difficulties. In this paper we are looking for a definition of the scattering amplitude
in the layer. Such wave guides can modelize problems of wave propagation in geophysic, underwater acoustic
and so on.
One consider the Schrödinger operator A = −∆+V (X) in L2(Ω) which derives from A0 = −∆ in L2(Ω),
where Ω = Rn× (0, π), n ≥ 1 and D(A) = D(A0) = H1

0 (Ω)∩H2(Ω). We study the boundary value problem:{
(−∆ + V (X))u(X) = λu(X) in L2(Ω),
u(X)|∂Ω = 0. (1.1)

We define the scattering amplitude and the outgoing solutions of (1.1). A work in progress uses the scattering
amplitude to establish uniqueness theorem for the potential V (X).
The paper is organized as follow. In section 2, we carry out the generalized eigenfunctions of A and we define
the wave operators. We state results on the existence and completeness of these operators. This allows us
to prove that the system of generalized eigenfunctions of A is dense. In section 3, we define the scattering
operator, the scattering matrix and finally the scattering amplitude. In section 4, we give an asymptotic
development of the generalized eigenfunctions of A and we link it with the scattering amplitude.

2 Spectral Study of A

2.1 Generalized Eigenfunctions of A0

By a standard Fourier technique, we obtain the generalized eigenfunctions ψ0
j of A0 associated to the eigen-

values λj(|p|) in the following form

ψ0
j (x′, y, p) = (2π)n

√
2
π
eix′·psin(jy), and λj(|p|) = j2 + |p|2, j ≥ 1,

with X = (x′, y), x′ = (x1, ..., xn) ∈ Rn, y ∈ (0, π) and p ∈ Rn.
This family of generalized eigenfunctions {ψ0

j }j≥1 is dense in L2(Ω). Then to obtain a spectral representation

∗Centre de Mathématiques et d’Informatique, Université de Provence, 39 rue Joliot Curie, 13453 Marseille cedex 13, France,
e-mail :cristo@cmi.univ-mrs.fr and gaitan@cmi.univ-mrs.fr

1



of A0, if f ∈ L2(Ω), we define the following limit in L2(Ω) and the spaces Hj :

f̃j(p) = lim
M→+∞

∫
|x′|<M

ψ0
j (x′, y, p)f(x′, y)dx′dy,

Hj = {u ∈ L2(Ω);∃f̃j ∈ L2(Rn), u(x′, y) =
∫

Rn

ψ0
j (x′, y, p)f̃j(p)dp}. (2.1)

The unitary map Φ : f 7→ (f̃1(p), f̃2(p), ...) from L2(Ω) into H1⊕H2⊕ ... is a spectral representation of A0

in the following sense

Φ(A0f) = (Ã0f1, Ã0f2, ...) = (λ1(|p|)f̃1(p), λ2(|p|)f̃2(p), ...).

2.2 Generalized Eigenfunctions of A

We look for the generalized eigenfunctions of A in the form:

ψ±j (x′, y, p) = ψ0
j (x′, y, p) + w±j (x′, y, p), (2.2)

We denote
N(λ) = ]{j > 1; 2 ≤ λ}. (2.3)

The function ψ±j satisfies the eigenvalue equation

(−∆ + V (x′, y)− λj(|p|))ψ±j (x′, y, p) = 0. (2.4)

Then, taking into account the equations (2.2), (2.4) and the limiting absorption principle, we obtain

w±j (x′, y, p) = −R±(λj(|p|))(V ψ0
j )(x′, y, p), (2.5)

where R±(z) is the resolvent of A. If we introduce the resolvent equation in (2.5), we obtain

w±j (x′, y, p) = −R±0 (λj(|p|))(V ψ0
j )(x′, y, p) +R±0 (λj(|p|))V R±(λj(|p|))(V ψ0

j )(x′, y, p). (2.6)

2.3 Wave Operators

We first consider the wave operators

W± = s− lim
t→±∞

eitAe−itA0 , (2.7)

and the scattering operator S = W ∗
+W−. The wave operators actually exist. The proof is an adaptation

of the theorem XIII-31 of [6]. Then the limits (2.7) exist, moreover we obtain the completeness of the
wave operators W± from H0

ac(Ω) = L2(Ω) (subspace of absolute continuity of A0) into Hac(Ω) (subspace
of absolute continuity of A), see [4]. To obtain a spectral representation of A, if f ∈ L2(Ω), we define the
following limit in L2(Ω):

f̃±j (p) = lim
M→+∞

∫
|x′|<M

ψ±j (x′, y, p)f(x′, y)dx′dy,

and H±
j = W±Hj , where Hj is defined by (2.1). The unitary map Φ± : f 7→ (f̃±1 (p), f̃±2 (p), ...) from L2(Ω)

to H±
1 ⊕H±

2 ⊕ ... is a spectral representation of A|Hac
.
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3 The Scattering Amplitude in a Layer

We have defined in the previous section the scattering operator S = W ∗
+W−. Using the relations Φ+ = ΦW ∗

−
and Φ− = ΦW ∗

+, the scattering operator can be written

S = Φ∗Φ−Φ+∗Φ. (3.1)

In a first step we define the scattering matrix as follows

S̃uj(p) = (S̃(λj(|p|))uj)(ω) with ω ∈ Sn−1. (3.2)

Note that S̃(λ) ∈ L((L2(Sn−1))N(λ)). We obtain an N(λ)×N(λ)-matrix, where N(λ) was defined by (2.3).
So we have to determine S̃uj(p). Using (3.1) we obtain ΦSu = Φu + (Φ− − Φ+)θ+u where θ+ = Φ+∗Φ.
Then we have

S̃uj(p) = ũj(p) + lim
M→+∞

∫
|x′|<M, y∈(0,π)

[ψ−j (x′, y, p)− ψ+
j (x′, y, p)]θ+u(x′, y)dx′dy.

After several technical transformations, we obtain:

S̃uj(p) = ũj(p) +
∑

k2<j2+|p|2 iπα
n−2(∫

Rn×(0,π)
V (x′, y)ψ0

j (x′, y, p)
∫

Sn−1 ψ
0
k(x′, y, αω′)ũk(αω′)dω′dx′dy

−
∫

Rn×(0,π)
V (x′, y)ψ0

j (x′, y, p)
∫

Sn−1 [R+(λk(αω′))V ψ0
k(·, ·, αω′)](x′, y, αω′)ũk(αω′)dω′dx′dy,

(3.3)

with α = (λj(|p|)−k2)1/2. So taking into account (3.2) and (3.3) we obtain explicitely the scattering matrix
and the scattering amplitude A(ω, ω′, λj(|p|)) = [Aj,k(ω, ω′, λj(|p|))]1≤j,k≤N(λ) is defined as the kernel of
this operator

( ˜(S(λj(|p|))− I)ũj)(ω) =
∫

Sn−1

∑
k2<j2+|p|2

Aj,k(ω, ω′, λj(|p|))ũk(αω′)dω′. (3.4)

Proposition 3.1 The scattering amplitude is a N(λ)×N(λ)-matrix

A(ω, ω′, λ) = [Aj,k(ω, ω′, λj(|p|))]1≤j,k≤N(λ)

Aj,k(ω, ω′, λj(|p|)) = Bj,k(ω, ω′, λj(|p|)) + Cj,k(ω, ω′, λj(|p|)), (3.5)

Bj,k = iπαn−2

∫
Rn×(0,π)

V (x′, y)ψ0
j (x′, y, p)

∫
Sn−1

ψ0
k(x′, y, αω′)ũk(αω′)dω′dx′dy

Cj,k = −iπαn−2

∫
Rn×(0,π)

V (x′, y)ψ0
j (x′, y, p)

∫
Sn−1

[R+(λk(αω′))V ψ0
k(·, ·, αω′)](x′, y, αω′)ũk(αω′)dω′dx′dy.

Remark: It should be mentioned the matrix-form of the scattering amplitude which differs radically from
the classical one.

4 Asymptotic Behaviour of the Generalized
Eigenfunctions

The functions w±j see (2.2) are defined by

w±j (x′, y, p) = −R±0 (λj(|p|))(V ψ0
j )(x′, y, p) +R±0 (λj(|p|))V R±(λj(|p|))(V ψ0

j )(x′, y, p)
= I1,j(x′, y, p) + I2,j(x′, y, p).

3



We are looking for the asymptotic behaviour of each term of this sum. Let us consider the kth component
of the first term

[I1,j(x′, y, p)]k =
∫

Rn

ψ0
k(x′, y, p)

1
|p′|2 + k2 − λj − i0

˜[V ψ0
j (·, p)](p′)dp′.

Then

[I1,j(x′, y, p)]k = (2π)−3n(
2
π

)3/2sin(ky)
∫

Rn

eix′·p′

|p′|2 + k2 − λj − i0
f1(p′)dp′

with f1(p′) =
∫

Rn×(0,π)

eix̃′·(p−p′) sin(kỹ) sin(jỹ)V (x̃′, ỹ)dx̃′dỹ.

Remark: To obtain an asymptotic development of [I1,j(x′, y, p]k, we use the lemma A1 of [2]. For this we
have to replace f1 ∈ C∞(Rn) by a C∞0 (Rn) function.
Let p′0 = αω′, (p′0 verify |p′0|2 +k2 = λj(|p|)), we define the C∞0 (Rn) function χ equal to 1 in a neighborough
of p′0 and 0 outside. Then

[I1,j(x′, y, p)]k = (2π)−2n(
2
π

)3/2sin(ky)(J1(x′) +K1(x′))

J1(x′) =
1

(2π)n

∫
Rn

eix′·p′χ(p′)
|p′|2 + k2 − λj − i0

f1(p′)dp′,

K1(x′) =
1

(2π)n

∫
Rn

eix′·p′(1− χ(p′))
|p′|2 + k2 − λj − i0

f1(p′)dp′.

Then, we apply the lemma A1 of [2] and we obtain

J1(x′) = Cp′0

ei|x′|·|p′0|

|x′|n−1
2

(f1(p′0) +O(|x′|−1))

where Cp′0
= (4π)−1α

n−3
4 (2π)

3−n
2 e−iπ

n−3
4 . Moreover, we prove that K1(x′) = O(|x′|−

n+1
2 ). So the asymp-

totic behaviour of the first term of w+
j , denoted [I1,j(x′, y, p)]k, is given by

[I1,j(x′, y, p)]k = ( 2
π )

1+5n
2 sin(ky)α

n−3
2 e−iπ n−3

4 ei|x′|·|p′0|

|x′|
n−1

2

×
∫

Rn×(0,π)
eix̃′·(p−p′0) sin(kỹ) sin(jỹ)V (x̃′, ỹ)dx̃′dỹ.

In the same way, we prove that the asymptotic behaviour of the second term of w+
j , denoted [I2,j(x′, y, p)]k,

is given by

[I2,j(x′, y, p)]k = (2π)
1−3n

2

π sin(ky)αn−3V (x′, y)e−iπ n−3
4 ei|x′|·|p′0|

|x′|
n−1

2

×
∫

Rn×(0,π)
e−ix̃′·p′0 sin(kỹ)R(λj(|p|)(V (·, ·)ψ0

j (·, ·, p))(x̃′, ỹ, p)dx̃′dỹ.

In conclusion, we obtain the asymptotic behaviour of the kth component of w+
j :

[w+
j (x′, y, p)]k = [I1,j(x′, y, p)]k + [I2,j(x′, y, p)]k. (4.1)

So we have to link the far field pattern with the scattering amplitude. For this, we compare (3.5) with (4.1).
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Proposition 4.1 If we set

[G(x′, y, p)]k =

√
2
π

(2π)
−n−1

2 sin(ky)α
−n+1

2 e−iπ n−1
2
ei|x′|·α

|x′|n−1
2

,

with α = (λj(|p|)− k2)1/2, we can write

ψ+
j (x′, y, p) = ψ0

j (x′, y, p) +
N(λ)∑
k=1

Aj,k(ω, ω′, λj(|p|))[G(x′, y, p)]k + o(|x′|−
n+1

2 ).

This relation allows us to give a physical sense to the scattering amplitude.
Our goal is to prove that exists an injection between the scattering amplitude and the potential V (X). For
the layer (R2 × (0, π)) [3] prove an uniqueness result but using the Dirichlet to Neumann map. In a strip
(R × (0, π)) does not exist any result. We think that the knowledge of the scattering amplitude at fixed
energy is not sufficient to determine the potential. We want to prove that a countable infinity of energies
will be sufficient.
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