The Scattering Amplitude for the Schrödinger Operator in a Layer

Michel Cristofol Patricia Gaitan*

Abstract

For a layer with compactly supported inhomogeneity we give an appropriate definition of the scattering amplitude. Then we recover the relation between the far field pattern and the scattering amplitude.

1 Introduction

The scattering amplitude is a wellknown way to solve some inverse scattering problem. In the litterature we actually find the definition of the scattering amplitude in the whole homogeneous perturbed space [5], [3] or half space [1]. For a stratified space, this definition is more complicated [2]. The situation in the layer, not yet studied, introduces also difficulties. In this paper we are looking for a definition of the scattering amplitude in the layer. Such wave guides can modelize problems of wave propagation in geophysic, underwater acoustic and so on.
One consider the Schrödinger operator $A=-\Delta+V(X)$ in $L^{2}(\Omega)$ which derives from $A_{0}=-\Delta$ in $L^{2}(\Omega)$, where $\Omega=\mathbb{R}^{n} \times(0, \pi), n \geq 1$ and $D(A)=D\left(A_{0}\right)=H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$. We study the boundary value problem:

$$
\left\{\begin{array}{l}
(-\Delta+V(X)) u(X)=\lambda u(X) \text { in } L^{2}(\Omega), \tag{1.1}\\
u(X)_{\mid \partial \Omega}=0 .
\end{array}\right.
$$

We define the scattering amplitude and the outgoing solutions of (1.1). A work in progress uses the scattering amplitude to establish uniqueness theorem for the potential $V(X)$.
The paper is organized as follow. In section 2, we carry out the generalized eigenfunctions of A and we define the wave operators. We state results on the existence and completeness of these operators. This allows us to prove that the system of generalized eigenfunctions of A is dense. In section 3 , we define the scattering operator, the scattering matrix and finally the scattering amplitude. In section 4 , we give an asymptotic development of the generalized eigenfunctions of A and we link it with the scattering amplitude.

2 Spectral Study of A

2.1 Generalized Eigenfunctions of A_{0}

By a standard Fourier technique, we obtain the generalized eigenfunctions ψ_{j}^{0} of A_{0} associated to the eigenvalues $\lambda_{j}(|p|)$ in the following form

$$
\psi_{j}^{0}\left(x^{\prime}, y, p\right)=(2 \pi)^{n} \sqrt{\frac{2}{\pi}} e^{i x^{\prime} \cdot p} \sin (j y), \quad \text { and } \quad \lambda_{j}(|p|)=j^{2}+|p|^{2}, \quad j \geq 1
$$

with $X=\left(x^{\prime}, y\right), x^{\prime}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, y \in(0, \pi)$ and $p \in \mathbb{R}^{n}$.
This family of generalized eigenfunctions $\left\{\psi_{j}^{0}\right\}_{j \geq 1}$ is dense in $L^{2}(\Omega)$. Then to obtain a spectral representation

[^0]of A_{0}, if $f \in L^{2}(\Omega)$, we define the following limit in $L^{2}(\Omega)$ and the spaces \mathcal{H}_{j} :
\[

$$
\begin{gather*}
\widetilde{f}_{j}(p)=\lim _{M \rightarrow+\infty} \int_{\left|x^{\prime}\right|<M} \overline{\psi_{j}^{0}\left(x^{\prime}, y, p\right)} f\left(x^{\prime}, y\right) d x^{\prime} d y \\
\mathcal{H}_{j}=\left\{u \in L^{2}(\Omega) ; \exists \widetilde{f}_{j} \in L^{2}\left(\mathbb{R}^{n}\right), u\left(x^{\prime}, y\right)=\int_{\mathbb{R}^{n}} \psi_{j}^{0}\left(x^{\prime}, y, p\right) \widetilde{f}_{j}(p) d p\right\} . \tag{2.1}
\end{gather*}
$$
\]

The unitary map $\Phi: f \mapsto\left(\widetilde{f}_{1}(p), \widetilde{f}_{2}(p), \ldots\right)$ from $L^{2}(\Omega)$ into $\mathcal{H}_{1} \oplus \mathcal{H}_{2} \oplus \ldots$ is a spectral representation of A_{0} in the following sense

$$
\Phi\left(A_{0} f\right)=\left(\widetilde{A_{0} f_{1}}, \widetilde{A_{0} f_{2}}, \ldots\right)=\left(\lambda_{1}(|p|) \tilde{f}_{1}(p), \lambda_{2}(|p|) \widetilde{f_{2}}(p), \ldots\right)
$$

2.2 Generalized Eigenfunctions of A

We look for the generalized eigenfunctions of A in the form:

$$
\begin{equation*}
\psi_{j}^{ \pm}\left(x^{\prime}, y, p\right)=\psi_{j}^{0}\left(x^{\prime}, y, p\right)+w_{j}^{ \pm}\left(x^{\prime}, y, p\right), \tag{2.2}
\end{equation*}
$$

We denote

$$
\begin{equation*}
N(\lambda)=\sharp\left\{j>1 ; \mathrm{j}^{2} \leq \lambda\right\} . \tag{2.3}
\end{equation*}
$$

The function $\psi_{j}^{ \pm}$satisfies the eigenvalue equation

$$
\begin{equation*}
\left(-\Delta+V\left(x^{\prime}, y\right)-\lambda_{j}(|p|)\right) \psi_{j}^{ \pm}\left(x^{\prime}, y, p\right)=0 \tag{2.4}
\end{equation*}
$$

Then, taking into account the equations (2.2), (2.4) and the limiting absorption principle, we obtain

$$
\begin{equation*}
w_{j}^{ \pm}\left(x^{\prime}, y, p\right)=-R^{ \pm}\left(\lambda_{j}(|p|)\right)\left(V \psi_{j}^{0}\right)\left(x^{\prime}, y, p\right), \tag{2.5}
\end{equation*}
$$

where $R^{ \pm}(z)$ is the resolvent of A. If we introduce the resolvent equation in (2.5), we obtain

$$
\begin{equation*}
w_{j}^{ \pm}\left(x^{\prime}, y, p\right)=-R_{0}^{ \pm}\left(\lambda_{j}(|p|)\right)\left(V \psi_{j}^{0}\right)\left(x^{\prime}, y, p\right)+R_{0}^{ \pm}\left(\lambda_{j}(|p|)\right) V R^{ \pm}\left(\lambda_{j}(|p|)\right)\left(V \psi_{j}^{0}\right)\left(x^{\prime}, y, p\right) \tag{2.6}
\end{equation*}
$$

2.3 Wave Operators

We first consider the wave operators

$$
\begin{equation*}
W_{ \pm}=s-\lim _{t \rightarrow \pm \infty} e^{i t A} e^{-i t A_{0}} \tag{2.7}
\end{equation*}
$$

and the scattering operator $S=W_{+}^{*} W_{-}$. The wave operators actually exist. The proof is an adaptation of the theorem XIII-31 of [6]. Then the limits (2.7) exist, moreover we obtain the completeness of the wave operators $W_{ \pm}$from $\mathcal{H}_{a c}^{0}(\Omega)=L^{2}(\Omega)$ (subspace of absolute continuity of A_{0}) into $\mathcal{H}_{a c}(\Omega)$ (subspace of absolute continuity of A), see [4]. To obtain a spectral representation of A, if $f \in L^{2}(\Omega)$, we define the following limit in $L^{2}(\Omega)$:

$$
\widetilde{f_{j}^{ \pm}}(p)=\lim _{M \rightarrow+\infty} \int_{\left|x^{\prime}\right|<M} \overline{\psi_{j}^{ \pm}\left(x^{\prime}, y, p\right)} f\left(x^{\prime}, y\right) d x^{\prime} d y
$$

and $\mathcal{H}_{j}^{ \pm}=W_{ \pm} \mathcal{H}_{j}$, where \mathcal{H}_{j} is defined by (2.1). The unitary map $\Phi^{ \pm}: f \mapsto\left(\widetilde{f_{1}^{ \pm}}(p), \widetilde{f_{2}^{ \pm}}(p), \ldots\right)$ from $L^{2}(\Omega)$ to $\mathcal{H}_{1}^{ \pm} \oplus \mathcal{H}_{2}^{ \pm} \oplus \ldots$ is a spectral representation of $A_{\mid \mathcal{H}_{a c}}$.

3 The Scattering Amplitude in a Layer

We have defined in the previous section the scattering operator $S=W_{+}^{*} W_{-}$. Using the relations $\Phi^{+}=\Phi W_{-}^{*}$ and $\Phi^{-}=\Phi W_{+}^{*}$, the scattering operator can be written

$$
\begin{equation*}
S=\Phi^{*} \Phi^{-} \Phi^{+*} \Phi \tag{3.1}
\end{equation*}
$$

In a first step we define the scattering matrix as follows

$$
\begin{equation*}
\widetilde{S u_{j}}(p)=\left(\widetilde{S}\left(\lambda_{j}(|p|)\right) u_{j}\right)(\omega) \quad \text { with } \quad \omega \in S^{n-1} \tag{3.2}
\end{equation*}
$$

Note that $\widetilde{S}(\lambda) \in \mathcal{L}\left(\left(L^{2}\left(S^{n-1}\right)\right)^{N(\lambda)}\right)$. We obtain an $N(\lambda) \times N(\lambda)$-matrix, where $N(\lambda)$ was defined by (2.3). So we have to determine $\widetilde{S u_{j}}(p)$. Using (3.1) we obtain $\Phi S u=\Phi u+\left(\Phi^{-}-\Phi^{+}\right) \theta^{+} u$ where $\theta^{+}=\Phi^{+*} \Phi$. Then we have

$$
\widetilde{S u_{j}}(p)=\widetilde{u_{j}}(p)+\lim _{M \rightarrow+\infty} \int_{\left|x^{\prime}\right|<M, y \in(0, \pi)} \overline{\left[\psi_{j}^{-}\left(x^{\prime}, y, p\right)-\psi_{j}^{+}\left(x^{\prime}, y, p\right)\right]} \theta^{+} u\left(x^{\prime}, y\right) d x^{\prime} d y
$$

After several technical transformations, we obtain:

$$
\begin{align*}
& \widetilde{S u_{j}}(p)=\widetilde{u_{j}}(p)+\sum_{k^{2}<j^{2}+|p|^{2}} i \pi \alpha^{n-2} \\
& \left(\int_{\mathbb{R}^{n} \times(0, \pi)} V\left(x^{\prime}, y\right) \psi_{j}^{0}\left(x^{\prime}, y, p\right) \int_{S^{n-1}} \overline{\psi_{k}^{0}\left(x^{\prime}, y, \alpha \omega^{\prime}\right) \widetilde{u_{k}}\left(\alpha \omega^{\prime}\right) d \omega^{\prime} d x^{\prime} d y}\right. \tag{3.3}\\
& -\int_{\mathbb{R}^{n} \times(0, \pi)} V\left(x^{\prime}, y\right) \psi_{j}^{0}\left(x^{\prime}, y, p\right) \int_{S^{n-1}} \overline{\left[R^{+}\left(\lambda_{k}\left(\alpha \omega^{\prime}\right)\right) V \psi_{k}^{0}\left(\cdot, \cdot, \alpha \omega^{\prime}\right)\right]}\left(x^{\prime}, y, \alpha \omega^{\prime}\right) \widetilde{u_{k}}\left(\alpha \omega^{\prime}\right) d \omega^{\prime} d x^{\prime} d y,
\end{align*}
$$

with $\alpha=\left(\lambda_{j}(|p|)-k^{2}\right)^{1 / 2}$. So taking into account (3.2) and (3.3) we obtain explicitely the scattering matrix and the scattering amplitude $\mathcal{A}\left(\omega, \omega^{\prime}, \lambda_{j}(|p|)\right)=\left[\mathcal{A}_{j, k}\left(\omega, \omega^{\prime}, \lambda_{j}(|p|)\right)\right]_{1 \leq j, k \leq N(\lambda)}$ is defined as the kernel of this operator

$$
\begin{equation*}
\left(\left(S\left(\lambda_{j} \widetilde{(|p|))}-I\right) \widetilde{u_{j}}\right)(\omega)=\int_{S^{n-1}} \sum_{k^{2}<j^{2}+|p|^{2}} \mathcal{A}_{j, k}\left(\omega, \omega^{\prime}, \lambda_{j}(|p|)\right) \widetilde{u_{k}}\left(\alpha \omega^{\prime}\right) d \omega^{\prime}\right. \tag{3.4}
\end{equation*}
$$

Proposition 3.1 The scattering amplitude is a $N(\lambda) \times N(\lambda)$-matrix

$$
\begin{gather*}
\mathcal{A}\left(\omega, \omega^{\prime}, \lambda\right)=\left[\mathcal{A}_{j, k}\left(\omega, \omega^{\prime}, \lambda_{j}(|p|)\right)\right]_{1 \leq j, k \leq N(\lambda)} \\
\mathcal{A}_{j, k}\left(\omega, \omega^{\prime}, \lambda_{j}(|p|)\right)=\mathcal{B}_{j, k}\left(\omega, \omega^{\prime}, \lambda_{j}(|p|)\right)+\mathcal{C}_{j, k}\left(\omega, \omega^{\prime}, \lambda_{j}(|p|)\right), \tag{3.5}\\
\mathcal{B}_{j, k}=i \pi \alpha^{n-2} \int_{\mathbb{R}^{n} \times(0, \pi)} V\left(x^{\prime}, y\right) \psi_{j}^{0}\left(x^{\prime}, y, p\right) \int_{S^{n-1}} \overline{\psi_{k}^{0}\left(x^{\prime}, y, \alpha \omega^{\prime}\right) \widetilde{u_{k}}\left(\alpha \omega^{\prime}\right) d \omega^{\prime} d x^{\prime} d y} \\
\mathcal{C}_{j, k}=-i \pi \alpha^{n-2} \int_{\mathbb{R}^{n} \times(0, \pi)} V\left(x^{\prime}, y\right) \psi_{j}^{0}\left(x^{\prime}, y, p\right) \int_{S^{n-1}} \overline{\left[R^{+}\left(\lambda_{k}\left(\alpha \omega^{\prime}\right)\right) V \psi_{k}^{0}\left(\cdot, \cdot, \alpha \omega^{\prime}\right)\right]}\left(x^{\prime}, y, \alpha \omega^{\prime}\right) \widetilde{u_{k}}\left(\alpha \omega^{\prime}\right) d \omega^{\prime} d x^{\prime} d y .
\end{gather*}
$$

Remark: It should be mentioned the matrix-form of the scattering amplitude which differs radically from the classical one.

4 Asymptotic Behaviour of the Generalized Eigenfunctions

The functions $w_{j}^{ \pm}$see (2.2) are defined by

$$
\begin{aligned}
w_{j}^{ \pm}\left(x^{\prime}, y, p\right) & =-R_{0}^{ \pm}\left(\lambda_{j}(|p|)\right)\left(V \psi_{j}^{0}\right)\left(x^{\prime}, y, p\right)+R_{0}^{ \pm}\left(\lambda_{j}(|p|)\right) V R^{ \pm}\left(\lambda_{j}(|p|)\right)\left(V \psi_{j}^{0}\right)\left(x^{\prime}, y, p\right) \\
& =I_{1, j}\left(x^{\prime}, y, p\right)+I_{2, j}\left(x^{\prime}, y, p\right)
\end{aligned}
$$

We are looking for the asymptotic behaviour of each term of this sum. Let us consider the $k^{\text {th }}$ component of the first term

$$
\left[I_{1, j}\left(x^{\prime}, y, p\right)\right]_{k}=\int_{\mathbb{R}^{n}} \psi_{k}^{0}\left(x^{\prime}, y, p\right) \frac{1}{\left|p^{\prime}\right|^{2}+k^{2}-\lambda_{j}-i 0}\left[\widetilde{V \psi_{j}^{0}(\cdot, p)}\right]\left(p^{\prime}\right) d p^{\prime}
$$

Then

$$
\begin{gathered}
{\left[I_{1, j}\left(x^{\prime}, y, p\right)\right]_{k}=(2 \pi)^{-3 n}\left(\frac{2}{\pi}\right)^{3 / 2} \sin (k y) \int_{\mathbb{R}^{n}} \frac{e^{i x^{\prime} \cdot p^{\prime}}}{\left|p^{\prime}\right|^{2}+k^{2}-\lambda_{j}-i 0} f_{1}\left(p^{\prime}\right) d p^{\prime}} \\
\text { with } f_{1}\left(p^{\prime}\right)=\int_{\mathbb{R}^{n} \times(0, \pi)} e^{i \tilde{x^{\prime}} \cdot\left(p-p^{\prime}\right)} \sin (k \widetilde{y}) \sin (j \tilde{y}) V\left(\widetilde{x^{\prime}}, \widetilde{y}\right) d \widetilde{x^{\prime}} d \widetilde{y} .
\end{gathered}
$$

Remark: To obtain an asymptotic development of $\left[I_{1, j}\left(x^{\prime}, y, p\right]_{k}\right.$, we use the lemma A1 of [2]. For this we have to replace $f_{1} \in C^{\infty}\left(\mathbb{R}^{n}\right)$ by a $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ function.
Let $p_{0}^{\prime}=\alpha \omega^{\prime},\left(p_{0}^{\prime}\right.$ verify $\left.\left|p_{0}^{\prime}\right|^{2}+k^{2}=\lambda_{j}(|p|)\right)$, we define the $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ function χ equal to 1 in a neighborough of p_{0}^{\prime} and 0 outside. Then

$$
\begin{gathered}
{\left[I_{1, j}\left(x^{\prime}, y, p\right)\right]_{k}=(2 \pi)^{-2 n}\left(\frac{2}{\pi}\right)^{3 / 2} \sin (k y)\left(J_{1}\left(x^{\prime}\right)+K_{1}\left(x^{\prime}\right)\right)} \\
J_{1}\left(x^{\prime}\right)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \frac{e^{i x^{\prime} \cdot p^{\prime}} \chi\left(p^{\prime}\right)}{\left|p^{\prime}\right|^{2}+k^{2}-\lambda_{j}-i 0} f_{1}\left(p^{\prime}\right) d p^{\prime} \\
K_{1}\left(x^{\prime}\right)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \frac{e^{i x^{\prime} \cdot p^{\prime}}\left(1-\chi\left(p^{\prime}\right)\right)}{\left|p^{\prime}\right|^{2}+k^{2}-\lambda_{j}-i 0} f_{1}\left(p^{\prime}\right) d p^{\prime}
\end{gathered}
$$

Then, we apply the lemma A1 of [2] and we obtain

$$
J_{1}\left(x^{\prime}\right)=C_{p_{0}^{\prime}} \frac{e^{i\left|x^{\prime}\right| \cdot\left|p_{0}^{\prime}\right|}}{\left|x^{\prime}\right|^{\frac{n-1}{2}}}\left(f_{1}\left(p_{0}^{\prime}\right)+\mathcal{O}\left(\left|x^{\prime}\right|^{-1}\right)\right)
$$

where $C_{p_{0}^{\prime}}=(4 \pi)^{-1} \alpha^{\frac{n-3}{4}}(2 \pi)^{\frac{3-n}{2}} e^{-i \pi^{\frac{n-3}{4}}}$. Moreover, we prove that $K_{1}\left(x^{\prime}\right)=\mathcal{O}\left(\left|x^{\prime}\right|^{-\frac{n+1}{2}}\right)$. So the asymptotic behaviour of the first term of w_{j}^{+}, denoted $\overline{\overline{\left[I_{1, j}\left(x^{\prime}, y, p\right)\right]_{k}}}$, is given by

$$
\begin{aligned}
\overline{\overline{\left[I_{1, j}\left(x^{\prime}, y, p\right)\right]_{k}}}= & \left(\frac{2}{\pi}\right)^{\frac{1+5 n}{2}} \sin (k y) \alpha^{\frac{n-3}{2}} e^{-i \pi \frac{n-3}{4}} \frac{e^{i\left|x^{\prime}\right| \cdot\left|\cdot p_{0}^{\prime}\right|}}{\left|x^{\prime}\right| \frac{n-1}{2}} \\
& \times \int_{\mathbb{R}^{n} \times(0, \pi)} e^{i \tilde{x}^{\prime} \cdot\left(p-p_{0}^{\prime}\right)} \sin (k \widetilde{y}) \sin (j \widetilde{y}) V\left(\widetilde{x^{\prime}}, \widetilde{y}\right) d \widetilde{x^{\prime}} d \widetilde{y}
\end{aligned}
$$

In the same way, we prove that the asymptotic behaviour of the second term of w_{j}^{+}, denoted $\overline{\overline{\left[I_{2, j}\left(x^{\prime}, y, p\right)\right]_{k}}}$, is given by

$$
\begin{aligned}
\overline{\overline{\left[I_{2, j}\left(x^{\prime}, y, p\right)\right]_{k}}}= & \frac{(2 \pi)^{\frac{1-3 n}{2}}}{\pi} \sin (k y) \alpha^{n-3} V\left(x^{\prime}, y\right) e^{-i \pi \frac{n-3}{4}} \frac{e^{i\left|x^{\prime}\right| \cdot|\cdot| p_{0}^{\prime} \mid}}{\left|x^{\prime}\right|^{\frac{n-1}{2}}} \\
& \times \int_{\mathbb{R}^{n} \times(0, \pi)} e^{-i \tilde{x}^{\prime} \cdot p_{0}^{\prime}} \sin (k \widetilde{y}) R\left(\lambda_{j}(|p|)\left(V(\cdot, \cdot) \psi_{j}^{0}(\cdot, \cdot, p)\right)\left(\widetilde{x^{\prime}}, \widetilde{y}, p\right) d \widetilde{x^{\prime}} d \widetilde{y} .\right.
\end{aligned}
$$

In conclusion, we obtain the asymptotic behaviour of the $k^{t h}$ component of w_{j}^{+}:

$$
\begin{equation*}
\overline{\overline{\left[w_{j}^{+}\left(x^{\prime}, y, p\right)\right]_{k}}}=\overline{\overline{\left[I_{1, j}\left(x^{\prime}, y, p\right)\right]_{k}}}+\overline{\overline{\left[I_{2, j}\left(x^{\prime}, y, p\right)\right]_{k}}} . \tag{4.1}
\end{equation*}
$$

So we have to link the far field pattern with the scattering amplitude. For this, we compare (3.5) with (4.1).

Proposition 4.1 If we set

$$
\left[G\left(x^{\prime}, y, p\right)\right]_{k}=\sqrt{\frac{2}{\pi}}(2 \pi)^{\frac{-n-1}{2}} \sin (k y) \alpha^{\frac{-n+1}{2}} e^{-i \pi \frac{n-1}{2}} \frac{e^{i\left|x^{\prime}\right| \cdot \alpha}}{\left|x^{\prime}\right|^{\frac{n-1}{2}}},
$$

with $\alpha=\left(\lambda_{j}(|p|)-k^{2}\right)^{1 / 2}$, we can write

$$
\psi_{j}^{+}\left(x^{\prime}, y, p\right)=\psi_{j}^{0}\left(x^{\prime}, y, p\right)+\sum_{k=1}^{N(\lambda)} \mathcal{A}_{j, k}\left(\omega, \omega^{\prime}, \lambda_{j}(|p|)\right)\left[G\left(x^{\prime}, y, p\right)\right]_{k}+o\left(\left|x^{\prime}\right|^{-\frac{n+1}{2}}\right) .
$$

This relation allows us to give a physical sense to the scattering amplitude.
Our goal is to prove that exists an injection between the scattering amplitude and the potential $V(X)$. For the layer $\left(\mathbb{R}^{2} \times(0, \pi)\right)[3]$ prove an uniqueness result but using the Dirichlet to Neumann map. In a strip $(\mathbb{R} \times(0, \pi))$ does not exist any result. We think that the knowledge of the scattering amplitude at fixed energy is not sufficient to determine the potential. We want to prove that a countable infinity of energies will be sufficient.

References

[1] G. Eskin and J. Ralston, Inverse coefficient problems in perturbed half space, Inverse Problems, 1999 vol 3, p.683-699.
[2] J.C. Guillot and J. Ralston, Inverse scattering at fixed energy for layered media, J. Math. Pures Appl., 78, 1999, p.27-48 .
[3] M. Ikehata, Reconstruction of a obstacle from the scattering amplitude at fixed energy, Inverse Problems, vol 14, (1998) p.949-954.
[4] W.C. Lyford, Spectral Analysis of the Laplacian in Domains with Cylinders, Math. Ann., (1975) p.213-251.
[5] R.G. Novikov, On determination of the Fourier transform of a potential from the scattering amplitude, Inverse Problems, vol 17, (2001) p.1243-1251.
[6] M. Reed and B. Simon, Methods of Modern Mathematical Physics, vol IV, Analysis of Operators, Academic Press, 1978.

[^0]: *Centre de Mathématiques et d'Informatique, Université de Provence, 39 rue Joliot Curie, 13453 Marseille cedex 13, France, e-mail :cristo@cmi.univ-mrs.fr and gaitan@cmi.univ-mrs.fr

