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The Scattering Amplitude for the Schrödinger Operator in a Layer

For a layer with compactly supported inhomogeneity we give an appropriate definition of the scattering amplitude. Then we recover the relation between the far field pattern and the scattering amplitude.

Introduction

The scattering amplitude is a wellknown way to solve some inverse scattering problem. In the litterature we actually find the definition of the scattering amplitude in the whole homogeneous perturbed space [START_REF] Novikov | On determination of the Fourier transform of a potential from the scattering amplitude[END_REF], [START_REF] Ikehata | Reconstruction of a obstacle from the scattering amplitude at fixed energy[END_REF] or half space [START_REF] Eskin | Inverse coefficient problems in perturbed half space[END_REF]. For a stratified space, this definition is more complicated [START_REF] Guillot | Inverse scattering at fixed energy for layered media[END_REF]. The situation in the layer, not yet studied, introduces also difficulties. In this paper we are looking for a definition of the scattering amplitude in the layer. Such wave guides can modelize problems of wave propagation in geophysic, underwater acoustic and so on.

One consider the Schrödinger operator

A = -∆ + V (X) in L 2 (Ω) which derives from A 0 = -∆ in L 2 (Ω), where Ω = R n × (0, π), n ≥ 1 and D(A) = D(A 0 ) = H 1 0 (Ω) ∩ H 2 (Ω).
We study the boundary value problem:

(-∆ + V (X))u(X) = λu(X) in L 2 (Ω), u(X) |∂Ω = 0. (1.1)
We define the scattering amplitude and the outgoing solutions of (1.1). A work in progress uses the scattering amplitude to establish uniqueness theorem for the potential V (X). The paper is organized as follow. In section 2, we carry out the generalized eigenfunctions of A and we define the wave operators. We state results on the existence and completeness of these operators. This allows us to prove that the system of generalized eigenfunctions of A is dense. In section 3, we define the scattering operator, the scattering matrix and finally the scattering amplitude. In section 4, we give an asymptotic development of the generalized eigenfunctions of A and we link it with the scattering amplitude.

2 Spectral Study of A

Generalized Eigenfunctions of A 0

By a standard Fourier technique, we obtain the generalized eigenfunctions ψ 0 j of A 0 associated to the eigenvalues λ j (|p|) in the following form

ψ 0 j (x , y, p) = (2π) n 2 π e ix •p sin(jy), and λ j (|p|) = j 2 + |p| 2 , j ≥ 1, with X = (x , y), x = (x 1 , ..., x n ) ∈ R n , y ∈ (0, π) and p ∈ R n .
This family of generalized eigenfunctions {ψ 0 j } j≥1 is dense in L 2 (Ω). Then to obtain a spectral representation of A 0 , if f ∈ L 2 (Ω), we define the following limit in L 2 (Ω) and the spaces H j :

f j (p) = lim M →+∞ |x |<M ψ 0 j (x , y, p)f (x , y)dx dy, H j = {u ∈ L 2 (Ω); ∃ f j ∈ L 2 (R n ), u(x , y) = R n ψ 0 j (x , y, p) f j (p)dp}. (2.1)
The unitary map Φ :

f → ( f 1 (p), f 2 (p), ...) from L 2 (Ω) into H 1 ⊕ H 2 ⊕ ... is a spectral representation of A 0 in the following sense Φ(A 0 f ) = ( A 0 f 1 , A 0 f 2 , ...) = (λ 1 (|p|) f 1 (p), λ 2 (|p|) f 2 (p), ...).

Generalized Eigenfunctions of A

We look for the generalized eigenfunctions of A in the form:

ψ ± j (x , y, p) = ψ 0 j (x , y, p) + w ± j (x , y, p), (2.2) 
We denote

N (λ) = {j > 1;  2 ≤ λ}. (2.
3)

The function ψ ± j satisfies the eigenvalue equation

(-∆ + V (x , y) -λ j (|p|))ψ ± j (x , y, p) = 0. (2.4) 
Then, taking into account the equations (2.2), (2.4) and the limiting absorption principle, we obtain

w ± j (x , y, p) = -R ± (λ j (|p|))(V ψ 0 j )(x , y, p), (2.5) 
where R ± (z) is the resolvent of A. If we introduce the resolvent equation in (2.5), we obtain

w ± j (x , y, p) = -R ± 0 (λ j (|p|))(V ψ 0 j )(x , y, p) + R ± 0 (λ j (|p|))V R ± (λ j (|p|))(V ψ 0 j )(x , y, p).
(2.6)

Wave Operators

We first consider the wave operators

W ± = s -lim t→±∞ e itA e -itA0 , (2.7) 
and the scattering operator S = W * + W -. The wave operators actually exist. The proof is an adaptation of the theorem XIII-31 of [START_REF] Reed | Methods of Modern Mathematical Physics[END_REF]. Then the limits (2.7) exist, moreover we obtain the completeness of the wave operators W ± from H 0 ac (Ω) = L 2 (Ω) (subspace of absolute continuity of A 0 ) into H ac (Ω) (subspace of absolute continuity of A), see [START_REF] Lyford | Spectral Analysis of the Laplacian in Domains with Cylinders[END_REF]. To obtain a spectral representation of A, if f ∈ L 2 (Ω), we define the following limit in L 2 (Ω):

f ± j (p) = lim M →+∞ |x |<M ψ ± j (x , y, p)f (x , y)dx dy,
and H ± j = W ± H j , where H j is defined by (2.1). The unitary map Φ

± : f → ( f ± 1 (p), f ± 2 (p), ...) from L 2 (Ω) to H ± 1 ⊕ H ± 2 ⊕ ... is a spectral representation of A |Hac .
We are looking for the asymptotic behaviour of each term of this sum. Let us consider the k th component of the first term

[I 1,j (x , y, p)] k = R n ψ 0 k (x , y, p) 1 |p | 2 + k 2 -λ j -i0 [V ψ 0 j (•, p)](p )dp . Then [I 1,j (x , y, p)] k = (2π) -3n ( 2 π ) 3/2 sin(ky) R n e ix •p |p | 2 + k 2 -λ j -i0 f 1 (p )dp with f 1 (p ) = R n ×(0,π) e i x •(p-p ) sin(k y) sin(j y)V ( x , y)d x d y.
Remark: To obtain an asymptotic development of [I 1,j (x , y, p] k , we use the lemma A1 of [START_REF] Guillot | Inverse scattering at fixed energy for layered media[END_REF]. For this we have to replace

f 1 ∈ C ∞ (R n ) by a C ∞ 0 (R n ) function. Let p 0 = αω , (p 0 verify |p 0 | 2 + k 2 = λ j (|p|)), we define the C ∞ 0 (R n ) function χ equal to 1 in a neighborough of p 0 and 0 outside. Then [I 1,j (x , y, p)] k = (2π) -2n ( 2 π ) 3/2 sin(ky)(J 1 (x ) + K 1 (x )) J 1 (x ) = 1 (2π) n R n e ix •p χ(p ) |p | 2 + k 2 -λ j -i0 f 1 (p )dp , K 1 (x ) = 1 (2π) n R n e ix •p (1 -χ(p )) |p | 2 + k 2 -λ j -i0 f 1 (p )dp .
Then, we apply the lemma A1 of [START_REF] Guillot | Inverse scattering at fixed energy for layered media[END_REF] and we obtain

J 1 (x ) = C p 0 e i|x |•|p 0 | |x | n-1 2 (f 1 (p 0 ) + O(|x | -1 ))
where × R n ×(0,π) e i x •(p-p 0 ) sin(k y) sin(j y)V ( x , y)d x d y.

C p 0 = (4π) -1 α n-3 4 (2π)
In the same way, we prove that the asymptotic behaviour of the second term of w + j , denoted [I 2,j (x , y, p)] k , is given by

[I 2,j (x , y, p)] k = (2π) 1-3n 2 π sin(ky)α n-3 V (x , y)e -iπ n-3 4 e i|x |•|p 0 | |x | n-1 2 × R n ×(0,π) e -i x •p 0 sin(k y)R(λ j (|p|)(V (•, •)ψ 0 j (•, •, p))( x , y, p)d x d y.
In conclusion, we obtain the asymptotic behaviour of the k th component of w + j : This relation allows us to give a physical sense to the scattering amplitude.

[w + j (x , y, p)] k = [I 1,j (x , y, p)] k + [I 2,j (x , y, p)] k . ( 4 
Our goal is to prove that exists an injection between the scattering amplitude and the potential V (X). For the layer (R 2 × (0, π)) [START_REF] Ikehata | Reconstruction of a obstacle from the scattering amplitude at fixed energy[END_REF] prove an uniqueness result but using the Dirichlet to Neumann map. In a strip (R × (0, π)) does not exist any result. We think that the knowledge of the scattering amplitude at fixed energy is not sufficient to determine the potential. We want to prove that a countable infinity of energies will be sufficient.

4 . 2 )

 42 Moreover, we prove that K 1 (x ) = O(|x | - n+1 . So the asymptotic behaviour of the first term of w + j , denoted [I 1,j (x , y, p)] k , is given by [I 1,j (x , y, p)] k = ( 2 π )

. 1 )Proposition 4 . 1 2 ,

 1412 So we have to link the far field pattern with the scattering amplitude. For this, we compare (3.5) with (4.1). If we set [G(x , y, p)] with α = (λ j (|p|) -k 2 ) 1/2 , we can writeψ + j (x , y, p) = ψ 0 j (x , y, p) + N (λ) k=1 A j,k (ω, ω , λ j (|p|))[G(x , y, p)] k + o(|x | -n+1 2 ).
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The Scattering Amplitude in a Layer

We have defined in the previous section the scattering operator S = W * + W -. Using the relations Φ + = ΦW * and Φ -= ΦW * + , the scattering operator can be written

In a first step we define the scattering matrix as follows

Note that S(λ) ∈ L((L 2 (S n-1 )) N (λ) ). We obtain an N (λ) × N (λ)-matrix, where N (λ) was defined by (2.3). So we have to determine Su j (p). Using (3.1) we obtain ΦSu = Φu + (Φ --Φ + )θ + u where θ + = Φ + * Φ.

Then we have

After several technical transformations, we obtain: 

R n ×(0,π)

V (x , y)ψ 0 j (x , y, p)

Remark: It should be mentioned the matrix-form of the scattering amplitude which differs radically from the classical one.

Asymptotic Behaviour of the Generalized Eigenfunctions

The functions w ± j see (2.2) are defined by w ± j (x , y, p) = -R ± 0 (λ j (|p|))(V ψ 0 j )(x , y, p) + R ± 0 (λ j (|p|))V R ± (λ j (|p|))(V ψ 0 j )(x , y, p) = I 1,j (x , y, p) + I 2,j (x , y, p).