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Abstract

We study the notions of differentiating and non-differentiating σ-fields in the
general framework of (possibly drifted) Gaussian processes, and characterize
their invariance properties under equivalent changes of probability measure.
As an application, we investigate the class of stochastic derivatives associated
with shifted fractional Brownian motions. We finally establish conditions for
the existence of a jointly measurable version of the differentiated process, and
we outline a general framework for stochastic embedded equations.

1 Introduction

Let X be the solution of the stochastic differential equation Xt = X0 +
∫ t

0
σ(Xs)dBs+

∫ t

0
b(Xs)ds, t ∈ [0, T ], where σ, b : R → R are suitably regular functions

and B is a standard Brownian motion, and denote by PX
t the σ-field generated by

{Xs, s ∈ [0, t]}. Then, the following quantity:

h−1E
[

f(Xt+h) − f(Xt)|P
X
t

]

(1)
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‡LSTA, Université Paris 6, Bôıte courrier 188, 4 Place Jussieu, 75252 Paris Cedex 05, France,
giovanni.peccati@gmail.com

1



converges (in probability and for h ↓ 0) for every smooth and bounded function
f . This existence result is the key to define one of the central operators in the
theory of diffusion processes: the infinitesimal generator L of X, which is given by
Lf(x) = b(x) df

dx
(x) + 1

2
σ(x)2 d2f

dx2 (x) (the domain of L contains all regular functions f
as above). Note that the limit in (1) is taken conditionally to the past of X before
t; however, due to the Markov property of X, one may as well replace PX

t with the
σ-field σ{Xt} generated by Xt. On the other hand, under rather mild conditions on b
and σ, one can take f = Id in (1), so that the limit still exists and coincides with the
natural definition of the mean velocity of X at t (the reader is referred to Nelson’s
dynamical theory of Brownian diffusions, as developed e.g. in [8], for more results in
this direction – see also [1] for a recent survey).

In this paper we are concerned with the following question: is it possible to
obtain the existence, and to study the nature, of limits analogous to (1), when X
is neither a Markov process nor a semimartingale? We will mainly focus on the
case where X is a (possibly shifted) Gaussian random process and f = Id (the case
of a non-linear and smooth f will be investigated elsewhere). The subtleties of the
problem are better appreciated through an example. Consider for instance a fractional
Brownian motion (fBm) B of Hurst index H ∈ (1/2, 1), and recall that B is neither
Markovian nor a semimartingale (see e.g. [9]). Then, the quantity h−1E[Bt+h−Bt|Bt]
converges in L2(Ω) (as h ↓ 0), while the quantity h−1E[Bt+h−Bt|P

B
t ] does not admit

a limit in probability. More to the point, similar properties can be shown to hold also
for suitably regular solutions of stochastic differential equations driven by B (see [3]
for precise statements and proofs).

To address the problem evoked above, we shall mainly use the notion of dif-
ferentiating σ-field introduced in [3]: if Z is a process defined on a probability space
(Ω,F ,P), we say that a σ-field G ⊂ F is differentiating for Z at t if

h−1E [Zt+h − Zt|G ] (2)

converges in some topology, when h tends to 0. When it exists, the limit of (2) is
noted DGZt, and it is called the stochastic derivative of Z at t with respect to G . Note
that if a sub-σ-field G of F is not differentiating, one can implement two “strategies”
to make (2) converge: either one replaces G with a differentiating sub-σ-field H , or
one replaces h−1 with h−α with 0 < α < 1. In particular, the second strategy pays
dividends when a non-differentiating σ-field G is too poor, in the sense that G does
not contain sufficiently good differentiating σ-fields. We will see that this is exactly
the case for a fBm B with index H < 1/2, when G is generated by Bs for some s > 0.

The aim of this paper is to give a precise characterization of the classes of differ-
entiating and non differentiating σ-fields for Gaussian and shifted Gaussian processes.
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We will systematically investigate their mutual relations, and pay special attention
to their invariance properties under equivalent changes of probability measure.

The paper is organized as follows. In Sections 2 and 3 we introduce several
notions related to the concept of differentiating σ-field, and give a characterization
of differentiating and non differentiating σ-fields in a Gaussian framework. In Sec-
tion 4 we prove some invariance properties of differentiating σ-fields under equivalent
changes of probability measure. Notably, we will be able to write an explicit rela-
tion between the stochastic derivatives associated with different probabilities. We
will illustrate our results by considering the example of shifted fractional Brownian
motions, and we shall pinpoint different behaviors when the Hurst index is, respec-
tively, in (0, 1/2) and in (1/2, 1) . In Section 5 we establish fairly general conditions,
ensuring the existence of a jointly measurable version of the differentiated process
induced by a collection of differentiating σ-fields. Finally, in Section 6 we outline a
general framework for embedded ordinary stochastic differential equations (as defined
in [2]) and we analyze a simple example.

2 Preliminaries on stochastic derivatives

Let (Zt)t∈[0,T ] be a stochastic process defined on a probability space (Ω,F ,P). In the
sequel, we will always assume that Zt ∈ L2(Ω,F ,P) for every t ∈ [0, T ]. It will also
be implicit that each σ-field we consider is a sub-σ-field of F ; analogously, given a
σ-field H , the notation G ⊂ H will mean that G is a sub-σ-field of H . For every
t ∈ (0, T ) and every h 6= 0 such that t+ h ∈ (0, T ), we set

∆hZt =
Zt+h − Zt

h
.

For the rest of the paper, we will use the letter τ as a generic symbol to indicate
a topology on the class of real-valued and F -measurable random variables. For
instance, τ can be the topology induced either by the a.s. convergence, or by the Lp

convergence (p > 1), or by the convergence in probability, or by both a.s. and Lp

convergences, in which cases we shall write, respectively,

τ = a.s., τ = Lp, τ = proba, τ = Lp ⋆ a.s..

Note that, when no further specification is provided, any convergence is tacitly defined
with respect to the reference probability measure P.

Definition 1 Fix t ∈ (0, T ) and let G ⊂ F . We say that G τ -differentiates Z at t
if

E[∆hZt |G ] converges w.r.t. τ when h→ 0. (3)
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In this case, we define the so-called τ -stochastic derivative of Z w.r.t. G at t by

DG

τ Zt = τ - lim
h→0

E[∆hZt |G ]. (4)

If the limit in (3) does not exist, we say that G does not τ -differentiate Z at t. If
there is no risk of ambiguity on the topology τ , we will write DGZt instead of DG

τ Zt

to simplify the notation.

Remark. When τ = a.s. (i.e., when τ is the topology induced by a.s. conver-
gence), equation (3) must be understood in the following sense (note that, in (3), t acts
as a fixed parameter): there exists a jointly measurable application (ω, h) 7→ q(ω, h),
from Ω×(−ε, ε) to R, such that (i) q(·, h) is a version of E[∆hZt |G ] for every fixed h,
and (ii) there exists a set Ω′ ⊂ Ω, of P-probability one, such that q(ω, h) converges,
as h → 0, for every ω ∈ Ω′. An analogous remark applies to the case τ = Lp ⋆ a.s.
(p > 1).

The set of all σ-fields that τ -differentiate Z at time t is denoted by M
(t),τ
Z .

Intuitively, one can say that the more M
(t),τ
Z is large, the more Z is regular at time

t. For instance, one has clearly that {∅,Ω} ∈ M
(t),τ
Z if, and only if, the application

s 7→ E(Zs) is differentiable at time t. On the other hand, F ∈ M
(t),τ
Z if, and only if,

the random function s 7→ Zs is τ -differentiable at time t.

Before introducing some further definitions, we shall illustrate the above no-
tions by a simple example involving the L2⋆a.s.-topology. Assume that Z = (Zt)t∈[0,T ]

is a Gaussian process such that Var(Zt) 6= 0 for every t ∈ (0, T ]. Fix t ∈ (0, T ) and
take G to be the present of Z at a fixed time s ∈ (0, T ], that is, G = σ{Zs} is the
σ-field generated by Zs. Since one has, by linear regression,

E[∆hZt |G ] =
Cov(∆hZt, Zs)

Var(Zs)
Zs,

we immediately deduce that G differentiates Z at t if, and only if,

d

du
Cov(Zu, Zs)|u=t

exists (see also Lemma 1). Now, let H be a σ-field such that H ⊂ G . Owing to the
projection principle, one can write:

E[∆hZt|H ] =
Cov(∆hZt, Zs)

Var(Zs)
E[Zs|H ],

and we conclude that
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(A) If G differentiates Z at t, then it is also the case for any H ⊂ G .

(B) If G does not differentiates Z at t, then any H ⊂ G either does not differentiates
Z at t, or (when E[Zs|H ] = 0) differentiates Z at t with DH Zt = 0

The phenomenon appearing in (A) is quite natural, not only in a Gaussian setting,
and it is due to the well-known properties of conditional expectations: see Proposition
1 below. On the other hand, (B) seems strongly linked to the Gaussian assumptions
we made on Z. We shall use fine arguments to generalize (B) to a non-Gaussian
framework, see Sections 3 and 4 below.

This example naturally leads to the subsequent definitions.

Definition 2 Fix t ∈ (0, T ) and let G ⊂ F . If G τ -differentiates Z at t and if we
have DG

τ Zt = c a.s. for a certain real c ∈ R, we say that G τ -degenerates Z at t. We
say that a random variable Y τ -degenerates Z at t if the σ-field σ{Y } generated by
Y τ -degenerates Z at t.

If DG
τ Zt ∈ L2 (for instance when we choose τ = L2, or τ = L2 ⋆ a.s., etc.), the

condition onDG
τ Zt in the previous definition is obviously equivalent to Var(DG

τ Zt) = 0.
For instance, if Z is a process such that s→ E(Zs) is differentiable in t ∈ (0, T ) then
{∅,Ω} degenerates Z at t.

Definition 3 Let t ∈ (0, T ) and G ⊂ F . We say that G really does not τ -
differentiate Z at t if G does not τ -differentiate Z at t and if any H ⊂ G either
τ -degenerates Z at t, or does not τ -differentiate Z at t.

Consider e.g. the phenomenon described at point (B) above: the σ-field
G , σ{Zs} really does not differentiate the Gaussian process Z at t whenever
d
du

Cov(Zu, Zs)|u=t does not exist, since every H ⊂ G either does not differentiate or
degenerates Z at t. It is for instance the case when Z = B is a fractional Brownian
motion with Hurst index H < 1/2 and s = t, see Corollary 2. Another interesting
example is given by the process Zt = f1(t)N1 + f2(t)N2, where f1, f2 : [0, T ] → R

are two deterministic functions and N1, N2 are two centered and independent random
variables. Assume that f1 is differentiable at t ∈ (0, T ) but that f2 is not. This yields
that G , σ{N1, N2} does not differentiates Z at t. Moreover, one can easily show
that H , σ{N1} ⊂ G differentiates Z at t with DH Zt = f ′

1(t)N1, which is not
constant in general. Then, although G does not differentiate Z at t, it does not meet
the requirements of Definition 3.
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3 Stochastic derivatives and Gaussian processes

In this section we mainly focus on Gaussian processes, and we shall systematically
work with the L2- or the L2 ⋆a.s.-topology, which are quite natural in this framework.
In the sequel we will also omit the symbol τ in (4), as we will always indicate the
topology we are working with.

Our aim is to establish several relationships between differentiating and (re-
ally) non differentiating σ-fields under Gaussian-type assumptions. However, our first
result pinpoints a general simple fact, which also holds in a non-Gaussian framework,
that is: any sub-σ-field of a differentiating σ-field is also differentiating.

Proposition 1 Let Z be a stochastic process (not necessarily Gaussian) such that
Zt ∈ L2(Ω,F ,P) for every t ∈ (0, T ). Let t ∈ (0, T ) be fixed, and let G ⊂ F . If G

L2-differentiates Z at t, then any H ⊂ G also L2-differentiates Z at t. Moreover, we
have

DH Zt = E[DGZt|H ]. (5)

Proof: We can write, by the projection principle and Jensen inequality:

E
[

(

E(∆hZt |H ) − E(DGZt |H )
)2
]

= E
[

E[E(∆hZt −DGZt |G ) |H ]2
]

≤ E
[

(

E(∆hZt |G ) −DGZt

)2
]

.

So, the L2-convergence of E(∆hZt |H ) to E(DGZt |H ) as h→ 0 is obvious.

On the other hand, a non differentiating σ-field may contain a differentiating σ-field
(for instance, when the non differentiating σ-field is generated both by differentiating
and non differentiating random variables).

We now provide a characterization of the really non-differentiating σ-fields that
are generated by some subspace of the first Wiener chaos associated with a centered
Gaussian process Z, noted H1(Z). We recall that H1(Z) is the L2-closed linear vector
space generated by random variables of the type Zt, t ∈ [0, T ].

Theorem 1 Let I = {1, 2, . . . , N}, with N ∈ N
∗ ∪ {+∞} and let Z = (Zt)t∈[0,T ] be

a centered Gaussian process. Fix t ∈ (0, T ), and consider a subset {Yi}i∈I of H1(Z)
such that, for any n ∈ I, the covariance matrix Mn of {Yi}1≤i≤n is invertible. Finally,
note Y = σ{Yi, i ∈ I}. Then:

1. If Y L2-differentiates Z at t, then, for any i ∈ I, Yi L2-differentiates Z at t. If
N < +∞, the converse also holds.
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2. Suppose N < +∞. Then Y really does not L2 ⋆ a.s.-differentiate Z at t if, and
only if, any finite linear combination of the Yi’s either L2 ⋆ a.s.-degenerates or
does not L2 ⋆ a.s.-differentiate Z at t.

3. Suppose that N = +∞ and that the sequence {Yi}i∈I is i.i.d.. Write moreover
R(Y ) to indicate the class of all the sub-σ-fields of Y that are generated by
rectangles of the type A1 × · · · × Ad, with Ai ∈ σ{Yi}, and d > 1. Then, the
previous characterization holds in a weak sense: if Y really does not L2 ⋆ a.s.-
differentiate Z at t, then every finite linear combination of the Yi’s either L2 ⋆
a.s.-degenerates or does not L2 ⋆ a.s.-differentiate Z at t; on the other hand, if
every finite linear combination of the Yi’s either L2⋆a.s.-degenerates or does not
L2 ⋆ a.s.-differentiate Z at t, then any G ∈ R(Y ) either L2 ⋆ a.s.-degenerates or
does not L2 ⋆ a.s.-differentiate Z at t.

The class R(Y ) contains for instance the σ-fields of the type

G = σ{f1(Y1), ..., fd(Yd)},

where d > 1. When N = 1, the second point of Theorem 1 can be reformulated as
follows (see also the examples discussed in Section 2 above).

Corollary 1 Let Z = (Zt)t∈[0,T ] be a centered Gaussian process and let H1(Z) be its
first Wiener chaos. Fix t ∈ (0, T ), as well as Y ∈ H1(Z), and set Y = σ{Y }. Then,
Y does not L2-differentiate Z at t (resp. L2 ⋆ a.s.) if, and only if, Y really does not
L2-differentiate Z at t (resp. L2 ⋆ a.s.).

In particular, when Z = B is a fractional Brownian motion with Hurst index H ∈
(0, 1/2) ∪ (1/2, 1), t is a fixed time in (0, T ) and Y = σ{Bt} is the present of B at
time t, we observe two distinct behaviors, according to the different values of H :

(a) If H > 1/2, then Y L2 ⋆ a.s.-differentiates B at t and it is also the case for any
Y0 ⊂ Y .

(b) If H < 1/2, then Y really does not L2 ⋆ a.s.-differentiate B at t.

Indeed, (a) and (b) are direct consequences of Proposition 1, Corollary 1 and the
equality

E[∆hBt|Bt] =
(t+ h)2H − t2H − |h|2H

2 t2Hh
Bt,

which is immediately verified by a Gaussian linear regression.
Note that [3, Theorem 22] generalizes (a) to the case of fractional diffusions.

In the subsequent sections, we will propose a generalization of (a) and (b) to the case
of shifted fractional Brownian motions – see Proposition 2.

In order to prove Theorem 1, we state an easy but quite useful lemma:

7



Lemma 1 Let Z = (Zt)t∈[0,T ] be a centered Gaussian process, and let H1(Z) be its
first Wiener chaos. Fix Y ∈ H1(Z) and t ∈ (0, T ). Then, the following assertions
are equivalent:

(a) Y a.s.-differentiates Z at t.

(b) Y L2-differentiates Z at t.

(c) d
ds

Cov(Zs, Y )|s=t exists and is finite.

If either (a), (b) or (c) are verified and P (Y = 0) < 1, one has moreover that

DY Zt =
Y

Var(Y )
.
d

ds
Cov(Zs, Y )|s=t. (6)

In particular, for every s, t ∈ (0, T ), we have: Zs L2 ⋆ a.s.-differentiates Z at t if, and
only if, u 7→ Cov(Zs, Zu) is differentiable at u = t.

On the other hand, suppose that Y ∈ H1(Z) is such that: (i) P (Y = 0) < 1,
and (ii) Y does not L2⋆a.s.-differentiate Z at t ∈ (0, T ). Then, for every H ⊂ σ{Y },
either H does not L2 ⋆a.s.-differentiate Z at t, or H is such that E [Y | H ] = 0 and
DH Zt = 0.

Proof: If Y ∈ H1(Z) \ {0}, we have

E [∆hZt | Y ] =
Cov(∆hZt, Y )

Var(Y )
Y.

The conclusions follow.

We now turn to the proof of Theorem 1:

Proof: Since Mn is an invertible matrix for any n ∈ I, the Gram-Schmidt orthonor-
malization procedure can be applied to {Yi}i∈I . For this reason we may assume, for
the rest of the proof and without loss of generality, that the family {Yi}i∈I is composed
of i.i.d. random variables with common law N (0, 1).

1. The first implication is an immediate consequence of Proposition 1. Assume
now that N < +∞ and that any Yi, i = 1, . . . , N , L2-differentiates Z at t. By
Lemma 1, we have in particular that

d

ds
Cov(Zs, Yi)|s=t
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exists for any i = 1, . . . , N . Since

E [∆hZt | Y ] =
N
∑

i=1

Cov(∆hZt, Yi) Yi (7)

we deduce that Y L2-differentiates Z at t.

2. By definition, if Y really does not L2 ⋆ a.s.-differentiate Z at t, then any finite
linear combination of the Yi’s either L2 ⋆ a.s.-degenerates, or does not L2 ⋆ a.s.-
differentiate Z at t.

Conversely, assume that any finite linear combination of the Yi’s either L2 ⋆a.s.-
degenerates or does not L2 ⋆ a.s.-differentiate Z at t. Let G ⊂ Y . By the
projection principle, we can write:

E [∆hZt | G ] =
∑

i∈I

Cov (∆hZt, Yi) E [Yi | G ] . (8)

Let us assume that G L2 ⋆ a.s.-differentiates Z at t. By (8) this implies in
particular that, for almost all fixed ω0 ∈ Ω,

E [∆hZt | G ] (ω0) = Cov

(

∆hZt,

N
∑

i=1

ai(ω0) Yi

)

,

converges as h→ 0, where ai(ω0) = E [Yi | G ] (ω0). Due to Lemma 1, we deduce
that X(ω0) ,

∑N
i=1 ai(ω0) Yi L2 ⋆ a.s.-differentiates Z at t for almost all ω0 ∈ Ω.

By hypothesis, we deduce that X(ω0) L2 ⋆ a.s.-degenerates Z at t for almost all
ω0 ∈ Ω. But, by Lemma 1, the stochastic derivative DX(ω0)

Zt necessarily writes
c(ω0)X

(ω0) with c(ω0) ∈ R. Since X(ω0) is centered and Var(DX(ω0)
Zt) = 0, we

deduce that DX(ω0)
Zt = 0. Thus

lim
h→0

Cov(∆hZt, X
(ω0)) = lim

h→0
E [∆hZt | G ] (ω0) = 0

for almost all ω0 ∈ Ω. Thus G a.s.-degenerates Z at t. Since G also L2-
differentiates Z at t, we conclude that G L2 ⋆ a.s.-degenerates Z at t. The proof
that Y really does not L2 ⋆ a.s.-differentiate Z at t is complete.

3. Again by definition, if Y really does not L2 ⋆ a.s.-differentiate Z at t, then any
finite linear combination of the Yi’s either L2 ⋆ a.s.-degenerates, or does not
L2 ⋆ a.s.-differentiate Z at t. We shall now assume that every finite linear com-
bination of the Yi’s either L2 ⋆ a.s.-degenerates or does not L2 ⋆ a.s.-differentiate

9



Z at t. Let (Jm)m∈N be the increasing sequence given by Jm = {1, . . . , m}, so
that ∪m∈NJm = I = N.
Suppose that G ∈ R(Y ) and that G L2 ⋆ a.s.-differentiates Z at t. By Propo-
sition 1, G i , G ∩ σ{Yi} L2-differentiates Z at t, for any i ∈ N. But

E[∆hZt|G
i] = Cov(∆hZt, Yi)E[Yi|G

i].

So, for any i ∈ N:

either lim
h→0

Cov(∆hZt, Yi) exists, or E[Yi|G
i] = 0. (9)

Set Gm , G ∩ σ(Yj, j ∈ Jm), and observe that, if G ∈ R(Y ), then

E[Yi|G
i] = E[Yi|Gm]

for every i = 1, ..., m. We have

E [∆hZt | Gm] =
∑

i∈Jm

Cov (∆hZt, Yi) E
[

Yi | G
i
]

. (10)

By (9), and since Jm is finite, we deduce that Gm L2 ⋆ a.s.-differentiates Z at t.
By the same proof as in step (a) for Gm instead of G and using (10) instead of
(8), we deduce that

X(t)
m , DGmZt = 0.

But, from Proposition 1, we have:

DGmZt = E[DGZt|Gm], m > 1.

Thus {X
(t)
m , m ∈ N} is a (discrete) square integrable martingale w.r.t. the

filtration {Gm, m ∈ N}. So we conclude that

DGZt = lim
m→∞

X(t)
m = 0 a.s.

In other words, G L2 ⋆ a.s.-degenerates Z at t. Therefore, Y really does not
L2 ⋆ a.s.-differentiate Z at t.

Counterexample. In what follows we show that, if N = +∞, the converse
of the first point in the statement of Theorem 1 does not hold in general. Indeed,
let {ξi : i > 1} be an infinite sequence of i.i.d. centered standard Gaussian random
variables. Let {fi : i > 1} be a collection of deterministic functions belonging to
L2 ([0, 1] , dt), such that the following hold:
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– for every i > 1, fi (t) is differentiable in t for every t ∈ [0, 1];

– there exists A ∈ (0,+∞) such that, for every t ∈ [0, 1],
∑+∞

i=1 fi (t)
2 < A.

Then, we may apply the Itô-Nisio theorem (see [6]) to deduce that there exists
a Gaussian process {Zt : t ∈ [0, 1]} such that, a.s.-P,

lim
N→+∞

sup
t∈[0,1]

∣

∣

∣

∣

∣

Zt −
N
∑

i=1

ξifi (t)

∣

∣

∣

∣

∣

= 0.

Now suppose that the paths of Z are a.s. not-differentiable for every t. Then, by
setting Y = σ(ξi, i > 1), we obtain that Y does not L2 ⋆ a.s. differentiate Z at every
t, although, for every i > 1 and every t ∈ [0, 1], ξi L2 ⋆ a.s. differentiates Z at t. As
an example, one can consider the case

fi (t) =

∫ t

0

ei (x) dx, i > 1,

where {ei : i > 1} is any orthonormal basis of L2 ([0, 1] , dx), so that the limit process
Z is a standard Brownian motion. See also Kadota [7] for several related results,
concerning the differentiability of stochastic processes admitting a Karhunen-Loève
type expansion.

4 Invariance properties of differentiating σ-fields and stochastic deriva-

tives under equivalent changes of probability

Let Z be a Gaussian process, and let G ⊂ F be differentiating for Z. In this section
we establish conditions on Z and G , ensuring that G is still differentiating for Z
after an equivalent change of probability measure. As anticipated, this result will
be used to study the class of differentiating σ-fields associated with drifted Gaussian
processes. Roughly speaking, we will show that – under adequate conditions – one can
study the stochastic derivatives of a drifted Gaussian process by first eliminating the
drift through a Girsanov-type transformation. We concentrate on σ-fields generated
by a single random variable. To achieve our goals we will use several techniques from
Malliavin calculus, as for instance those developed by H. Föllmer (see [5, Sec. 4]) in
order to compute the backward drift of a non-Markovian Brownian diffusion.

Let Z = (Zt)t∈[0,T ] be a square integrable stochastic process defined on a
probability space (Ω,F ,P). We assume that, under an equivalent probability Q ∼ P,
Z is a centered Gaussian process (so that, in particular, Zt ∈ L2(P)∩L2(Q) for every
t). Let H1(Z,Q) = {Z(h), h ∈ H} be the first Wiener chaos associated with Z
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under Q (this means that the closure is in L2(Q)), canonically represented as an
isonormal Gaussian process with respect to a separable Hilbert space (H, 〈·, ·〉H). In
particular: (i) the space H contains the set E of step functions on [0, T ], (ii) the
covariance function of Z under Q is given by ρQ(s, t) = 〈1[0,s], 1[0,t]〉H, and (iii) the
scalar product 〈·, ·〉H verifies the general relation:

∀ h, h′ ∈ H, 〈h, h′〉H = EQ[Z(h)Z(h′)] (11)

(note that, given Z, the properties (i)-(iii) completely characterize the pair (H, 〈·, ·〉H)).
We denote by D the Malliavin derivative associated with the process Z under Q (the
reader is referred to [9] for more details about these notions). The following result is
an extension of Theorem 22 in [3] to a general Gaussian setting. Note that, in the
following statements, we will exclusively refer to the L2 topology.

Theorem 2 Fix t ∈ (0, T ) and select g ∈ H such that 〈1[0,t], g〉H 6= 0. We write η to
indicate the Radon-Nikodym derivative of Q with respect to P (that is, dQ = η dP),
and we assume that η has the form η = exp(−ζ), for some random variable ζ for
which Dζ exists. Suppose that

µt , lim
h→0

h−1〈1[t,t+h], Dζ〉H exists in the L2 topology. (12)

Then, Z(g) L2-differentiates Z at t under P if, and only if, Z(g) L2-differentiates Z
at t under Q, that is, if, and only if,

d

du
〈g, 1[0,u]〉H|u=t =

d

du
CovQ(Z(g), Zu)|u=t exists. (13)

Moreover,

1. If Z(g) L2-differentiates Z at t under Q, then

D
Z(g)
P Zt =

|g|2H EP[Zt − 〈1[0,t], Dζ〉H|Z(g)]

Z(g) 〈g, 1[0,t]〉H
D

Z(g)
Q Zt + EP[µt|Z(g)]. (14)

2. If Z(g) does not L2-differentiate Z at t under Q, then H ⊂ σ{Z(g)} differen-
tiates Z at t with respect to P if, and only if,

EP[Zt − 〈1[0,t], Dζ〉H|H ] = 0.

In this case, DH
P Zt = EP[µt|H ].

12



Remark. Since Z is Gaussian under Q, Corollary 1 implies that Z(g) is not
differentiating for Z at t w.r.t. Q if, and only if, Z(g) is really not differentiating
w.r.t. Q. Point 2 in Theorem 2 shows that this double implication does not hold, in
general, under the equivalent probability P. Indeed, even if Z(g) does not differentiate
Z under P (and therefore under Q), one may have that there exists a differentiating
H ⊂ σ{Z(g)} such that DH

P Zt is non-deterministic. Observe, however, that DH
P Zt

is forced to have the particular form DH
P Zt = EP[µt|H ].

Proof: Let ξ ∈ L2(P) ∩ L2(Q) and A ∈ G ⊂ F . The relation

∫

A

ξdP =

∫

A

EP[ξ|G ]dP

implies

∫

A

EQ[ξη−1|G ]dQ =

∫

A

ξη−1dQ =

∫

A

EP[ξ|G ]η−1dQ

=

∫

A

EP[ξ|G ]EQ
[

η−1|G
]

dQ.

Thus:

EP[ξ|G ] =
EQ [ξη−1|G ]

EQ [η−1|G ]
, (15)

from which we deduce that the study of EP[∆hZt|Z(g)] can be reduced to that of
EQ[η−1∆hZt|Z(g)]. Let φ ∈ C1

b (R). We have

EQ[(Zt+h − Zt)η
−1φ(Z(g))] = EQ[〈1[t,t+h], D(η−1φ(Z(g)))〉H]

= EQ[φ(Z(g))η−1〈1[t,t+h], Dζ〉H]

+〈1[t,t+h], g〉HEQ[η−1φ′(Z(g))].

By using an analogous decomposition for EQ[Ztη
−1φ(Z(g))], we can also write:

EQ[η−1φ′(Z(g))] =
EQ[(Zt − 〈1[0,t], Dζ〉H)η−1φ(Z(g))]

〈1[0,t], g〉H
. (16)

Therefore, EQ[η−1∆hZt|Z(g)] is equal to

EQ[(Zt − 〈1[0,t], Dζ〉H)η−1|Z(g)]

〈

1[t,t+h], g
〉

H

h〈1[0,t], g〉H
+ h−1〈1[t,t+h],E

Q[η−1Dζ |Z(g)]〉H,

13



whereas EP[∆hZt|Z(g)] equals the following expression:

EP[Zt − 〈1[0,t], Dζ〉H|Z(g)]

〈

1[t,t+h], g
〉

H

h〈1[0,t], g〉H
+ h−1

〈

1[t,t+h],E
P[Dζ |Z(g)]

〉

H
. (17)

Now, by assumption (12) and thanks to Proposition 1, we have that

lim
h→0

h−1
〈

1[t,t+h],E
P[Dζ |Z(g)]

〉

H
= EP[µt|Z(g)] in the L2 topology.

Note moreover that P(EP[Zt − 〈1[0,t], Dζ〉H|Z(g)] = 0) < 1. Indeed, if it was not the
case, one would have (δ stands for the Skorohod integral)

0 = EQ[(Ztη
−1 − 〈1[0,t], Dη

−1〉H)Z(g)] = EQ[δ(1[0,t]η
−1)Z(g)]

= EQ[η−1]〈1[0,t], g〉H = 〈1[0,t], g〉H 6= 0

which is clearly a contradiction. As a consequence, we deduce from (17) that Z(g)
L2-differentiates Z at t under P if, and only if, d

du
〈g, 1[0,u]〉H|u=t exists. By Lemma 1,

this last condition is equivalent to Z(g) being L2-differentiating for Z at t under Q.
We can therefore deduce (14) from (17) and (6).
If H ⊂ σ{Z(g)}, the projection principle and (17) yield that EP[∆hZt|H ] equals

EP[Zt − 〈1[0,t], Dζ〉H|H ]

〈

1[t,t+h], g
〉

H

h〈1[0,t], g〉H
+ h−1

〈

1[t,t+h],E
P[Dζ |H ]

〉

H
.

When d
du

〈1[0,s], 1[0,u]〉H|u=t does not exist, we deduce that H differentiates Z at t if,
and only if, EP[Zt − 〈1[0,t], Dζ〉H|H ] = 0. If this condition is verified, we then have
DH

P Zt = EP[µt|H ], again by Proposition 1.

As an application of Theorem 2, we shall consider the case where the isonormal
process Z in (11) is generated by a fractional Brownian motion of Hurst index H ∈
(0, 1/2) ∪ (1/2, 1) (see also [3, Theorem 22], for related results concerning the case
H ∈ (1/2, 1)).

We briefly recall some basic facts about stochastic calculus with respect to a
fractional Brownian motion. We refer the reader to [10] for any unexplained notion
or result. Let B = (Bt)t∈[0,T ] be a fractional Brownian motion with Hurst parameter
H ∈ (0, 1), and assume thatB is defined on a probability space (Ω,F ,P). This means
that B is a centered Gaussian process with covariance function E(BsBt) = RH(s, t)
given by

RH(s, t) =
1

2

(

t2H + s2H − |t− s|2H
)

. (18)

14



We denote by E the set of all R−valued step functions on [0,T ]. Let H be the Hilbert
space defined as the closure of E with respect to the scalar product

〈

1[0,t], g
〉

H
= RH(t, s),

and denote by | · |H the associate norm. The mapping 1[0,t] 7→ Bt can be extended to
an isometry between H and the Gaussian space H1(B) associated with B. We denote
this isometry by ϕ 7→ B(ϕ). Recall that the covariance kernel RH(t, s) introduced in
(18) can be written as

RH(t, s) =

∫ s∧t

0

KH(s, u)KH(t, u)du,

where KH(t, s) is the square integrable kernel defined, for s < t, by

KH(t, s) = Γ(H +
1

2
)−1(t− s)H− 1

2F
(

H −
1

2
,
1

2
−H,H +

1

2
, 1 −

t

s

)

, (19)

where F (a, b, c, z) is the classical Gauss hypergeometric function. By convention, we
set KH(t, s) = 0 if s ≥ t. We define the operator KH on L2([0, T ]) as

(KHh)(t) =

∫ t

0

KH(t, s)h(s)ds.

Let K∗
H : E → L2([0, T ]) be the linear operator defined as:

K∗
H

(

1[0,t]

)

= KH(t, ·).

The following equality holds for any φ, ψ ∈ E

〈φ, ψ〉H = 〈K∗
Hφ,K

∗
Hψ〉L2([0,T ]) = E (B(φ)B(ψ)) ,

implying that K∗
H is indeed an isometry between the Hilbert spaces H and a closed

subspace of L2([0, T ]). Now consider the process W = (Wt)t∈[0,T ] defined as

Wt = B
(

(K∗
H)−1(1[0,t])

)

,

and observe that W is a standard Wiener process, and also that the process B has
an integral representation of the type

Bt =

∫ t

0

KH(t, s)dWs,

so that, for any φ ∈ H,
B(φ) = W (K∗

Hφ) .
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We will also need the fact that the operator KH can be expressed in terms of
fractional integrals as follows:

(KHh)(s) = I2H
0+ s

1
2
−HI

1
2
−H

0+ sH− 1
2h(s), if H < 1/2, (20)

(KHh)(s) = I1
0+s

H− 1
2 I

H− 1
2

0+ s
1
2
−Hh(s), if H > 1/2, (21)

for every h ∈ L2([0, T ]). Here, Iα
0+f denotes the left fractional Riemann-Liouville

integral of order α of f , which is defined by

Iα
0+f(x) =

1

Γ(α)

∫ x

0

(x− y)α−1f(y)dy.

Let ΥH be the set of the so-called shifted fBm Z = (Zt)t∈[0,T ] defined by

Zt = x0 +Bt +

∫ t

0

bsds, t ∈ [0, T ], (22)

where b runs over the set of adapted processes (w.r.t. the natural filtration of B)
having integrable trajectories.

We also need to introduce a technical assumption. Define

ar =

(

K−1
H

∫ ·

0

bsds

)

(r); (23)

in what follows we shall always assume that

(H1) a is bounded a.s.,

(H2) Φ defined by Φ(s) =
∫ T

0
DsarδBr exists and belongs in L2([0, T ]) a.s..

First, let us consider the case H > 1/2. We suppose moreover that the trajec-
tories of b are a.s. Hölder continuous of order H− 1/2+ ε, for some ε > 0. Then, the
fractional version of the Girsanov theorem (see [11, Theorem 2]) applies, yielding that
Z is a fractional Brownian motion of Hurst parameter H under the new probability
Q defined by dQ = ηdP, where

η = exp

(

−

∫ T

0

(

K−1
H

∫ ·

0

brdr
)

(s)dWs −
1

2

∫ T

0

(

K−1
H

∫ ·

0

brdr
)2

(s)ds

)

. (24)

We can now state the following extension of Theorem 22 in [3]:

Corollary 2 Let Z ∈ ΥH with H > 1/2 and s, t ∈ (0, T ). Then Zs L2-differentiates
Z at t.
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Proof: The proof of this result relies on Theorem 2. Note also that parts of the argu-
ments rehearsed below are only sketched, since they are analogous to those involved
in the proof of [3, Theorem 22]. Let us consider

ζ =

∫ T

0

asdWs +
1

2

∫ T

0

a2
sds,

where a is defined according to (23). We shall show that (12) holds. We can compute
(see the proof of [3, Theorem 22])

〈1[t,t+h], Dζ〉H =

∫ t+h

t

brdr + (KHΦ)(t+ h) − (KHΦ)(t), (25)

where Φ(s) =
∫ T

0
DsarδBr, see (H2). Since, in the case where H > 1/2, KHΦ is

differentiable at t (see for instance (21)) we deduce that (12) holds. Moreover, one
can easily prove that (13) also holds, so that the proof is concluded.

Now we consider the case H < 1/2. We assume moreover that
∫ T

0
b2rdr < +∞

a.s.. Then, the fractional version of the Girsanov theorem (see [11, Theorem 2])
holds again, implying that Z is a fractional Brownian motion of Hurst parameter H
under the new probability Q defined by dQ = ηdP, with η given by (24). Note that,
when H < 1/2, we cannot apply Theorem 2, since (12) does not hold in general.
The reason is that KHΦ is no more differentiable at t, see (20). In order to make
h−1E[Zt+h − Zt|Z(g)] converge, we have to replace h−1 with h−2H (we only consider
the case where h > 0). This fact is made precise by the following result.

Proposition 2 Let Z ∈ ΥH with H < 1/2 and s, t ∈ (0, T ). Then,

lim
h↓0

h−2HE[Zt+h − Zt|Zs] exists in the L2-topology.

Proof: We go back to the proof of Corollary 2, with special attention to relation (25).
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By setting φ(s) = s
1
2
−HI

1
2
−H

0+ sH− 1
2 Φ(s), we have

KHΦ(t+ h) −KHΦ(t) = I2H
0+ φ(t+ h) − I2H

0+ φ(t)

=
1

Γ(2H)

∫ t

0

(

(t+ h− y)2H−1 − (t− y)2H−1
)

φ(y)dy

+
1

Γ(2H)

∫ t+h

t

(t+ h− y)2H−1φ(y)dy

=
1

Γ(2H)

∫ t

0

(

(y + h)2H−1 − y2H−1
)

φ(t− y)dy

+
1

Γ(2H)

∫ h

0

y2H−1φ(t+ h− y)dy

=
h2H

Γ(2H)

∫ t/h

0

(

(y + 1)2H−1 − y2H−1
)

φ(t− hy)dy

+
h2H

Γ(2H)

∫ 1

0

y2H−1φ(t+ h− hy)dy.

We deduce that

h−2H
(

KHΦ(t+ h) −KHΦ(t)
)

−→ cH φ(t), as h→ 0,

where

cH =
1

Γ(2H)

∫ +∞

0

(

(y + 1)2H−1 − y2H−1
)

dy +
1

Γ(2H)

∫ 1

0

y2H−1dy < +∞.

Thus, by using the notations adopted in (the proof of) Theorem 2, one deduces an
analogue of (12), obtained by replacing h−1 with h−2H , that is:

µ̃t , lim
h→0

h−2H〈1[t,t+h], Dζ〉H exists in the L2 topology.

Moreover, it is easily shown that limh→0 h
−2H〈1[t,t+h], 1[0,s]〉H exists. By using (17),

we obtain the desired conclusion.

5 Differentiating collections of σ-fields and the as-

sociated differentiated process

In this section, we work on a complete probability space (Ω,F ,P), and we denote
by B(0,T ) the Borel σ-field of (0, T ). In the previous sections, we have studied the
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properties of those σ-field that are differentiating for some processes at a fixed time
t. We will now concentrate on collections of differentiating σ-fields indexed by the
whole interval (0, T ).

Definition 4 We say that a collection (A t)t∈(0,T ) of σ-fields τ -differentiates Z if, for
any t ∈ (0, T ), A t τ -differentiates Z at t.

A differentiating collection of σ-fields need not be a filtration (see e.g. section
5 in [3]). Nevertheless, we can associate to each τ -differentiating collection A =
(A t)t∈(0,T ) for Z a filtration A = (At)t∈(0,T ), obtained by setting:

At =
∨

0<s6t

A
t, t ∈ (0, T ).

The collection of r.v. (DA t

Zt)t∈(0,T ) is a A-adapted process [12, Definition

27.1], in the sense that for all t ∈ (0, T ), DA t

Zt is At-measurable. We call it the
differentiated process of Z w.r.t. A, and we denote it by DAZ.

In order to use such a process in stochastic analysis, one should know whether
it admits a measurable version, that is, whether there exists a process Y which is
B(0,T ) ⊗ F -measurable and such that for all t, Yt = DA t

Zt a.s.. Our aim in this
section is to obtain a sufficient condition for the existence of a measurable version.
To this end, we introduce the following

Definition 5 Let A = (A t)t be a collection of σ-fields and Z be a measurable stochas-
tic process. We say that A is regular for Z if for all n ∈ N, i ∈ {1, · · · , n}, ti ∈ [0, T ],
φi ∈ C∞

0 (Rd), the process

t 7→ E[φ1(Zt1) · · ·φn(Ztn)|A t]

has a measurable version.

If A is a filtration, then A is regular for any process. For Gaussian processes
and most of drifted Gaussian processes X, the collection A = (σ{Xt})t is a regular
collection for X.

The next result shows that, under the regularity condition defined above, a
measurable version of the differentiated process exists. This follows from one of
Doob’s most celebrated theorems (see e.g. [4, Theorem 30 p.158]).
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Theorem 3 Let X be a B(0,T ) ⊗F -measurable stochastic process defined on a com-
plete probability space (Ω,F ,P), and assume that F = σ{X}. Let A be a regular
L1-differentiating collection for X. Then, there exists a measurable version of the
differentiated process DAX. This version is also adapted to the filtration generated by
A.

Proof: Fix ε > 0, and let (hk) be a sequence converging to 0 and Zk be the process
defined by

Zk
t =

Xt+hk
−Xt

hk

.

SinceX is measurable, so is the process Z. Then, by [4, Theorem 30 p.158], there exist
elementary processes Unk

t such that, for all t ∈ (0, T ) and every k, E|Zk
t −U

nk

t | < ε/2.
These elementary processes have the form:

Unk

t =
∑

i

1A
n

k

i

(t)Hnk

i ,

where (Ank

i )i is a finite partition of (0, T ) and Hnk

i are F -measurable random vari-
ables. We have

E[Unk

t |A t] =
∑

i

1A
nk

i

(t)E[Hnk

i |A t].

Since cylindrical functionals ofX are dense in L1(Ω,F ), we deduce from the regularity
condition that the processes t 7→ E[Hnk

i |A t] admits a B(0,T ) ⊗F -measurable modifi-
cation and also, by linearity, the same conclusion holds for the process t 7→ E[Unk

t |A t].
Moreover,

E
∣

∣E[Zk
t |A

t] − E[Unk

t |A t]
∣

∣ < ε/2.

Since A is a L1-differentiating collection for X, we deduce that there exists k such
that

E
∣

∣

∣
DA t

Xt − E[Zk
t |A

t]
∣

∣

∣
< ε/2,

and therefore E
∣

∣DA t

Xt −E[Unk

t |A t]
∣

∣ < ε for every t.

We now deduce that the map t 7→ [DA t

Xt] is measurable, where [·] denotes the class
of a process in L1(Ω) reduced by null sets. Indeed, it is the limit in the Banach
space L1(Ω) (when k goes to infinity) of the measurable map t 7→ E[Unk

t |A t]. Since
L1(Ω) is separable, we again deduce from [4, Theorem 30 p.158] that DAX admits a
measurable modification.
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6 Embedded differential equations

The last section of the paper is devoted to the outline of a general framework for
stochastic embedding problems (introduced in [2]) related to ordinary differential equa-
tions. As we will see, this notion involves the stochastic derivative operators that we
have defined and studied in the previous sections. Roughly speaking, the aim of a
stochastic embedding procedure is to write a ”stochastic equation” which admits both
stochastic and deterministic solutions, in such a way that the deterministic solutions
also satisfy a fixed ordinary differential equation (see [2]). It follows that the embed-
ded stochastic equation is a genuine extension of the underlying ordinary differential
equation to a stochastic framework.

6.1 General setting

Let χ : R
d → R

d (d ∈ N
∗) be a smooth vector field. Consider the ordinary differential

equation:
dx

dt
(t) = χ(x(t)), t ∈ [0, T ]. (26)

Let Λ be a set of measurable stochastic processes X : Ω × [0, T ] → R
d, where

(Ω,F ,P) is a fixed probability space. In order to distinguish two different kinds
of families of σ-fields, we shall adopt the following notation: (i) the symbol A0 =
(A t

0 )t∈[0,T ] denotes a collection of σ-fields whose definition does not depend on the
choice of X in the class Λ, and (ii) A = (A t

X)X∈Λ,t∈[0,T ] indicates a generic family of
σ-fields such that, for every t ∈ [0, T ] and every X ∈ Λ, A t

X ⊂ PX
T . We introduce

the following natural assumption:

(T ) Λ contains all the deterministic differentiable functions f : [0, T ] → R
d (viewed

as deterministic stochastic processes).

We now fix a topology τ , and describe two stochastic embedded equations
associated with (26).

Definition 6 Fix a class of stochastic processes Λ on (Ω,F ,P), verifying assumption
(T).

(a) Given a family A0 = (A t
0 )t∈[0,T ] of σ-fields, we say that the equation

X ∈ Λ, DA t

0Xt = χ(Xt) for every t ∈ [0, T ], (27)

is the strong stochastic embedding in Λ of the ODE (26) w.r.t. A0.
(b) Given a family A = (A t

X)X∈Λ,t∈[0,T ] of σ-fields such that for all X ∈ Λ and
t ∈ [0, T ], A t

X ⊂ PX
T , we say that the equation

X ∈ Λ, DA t

XXt = χ(Xt) for every t ∈ [0, T ], (28)
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is the weak stochastic embedding in Λ of the ODE (26) w.r.t. A.
(c) A solution of (27) (resp. (28)) is a stochastic process X ∈ Λ such that: (c-

1) the process DA t

0Xt (resp. DA t

XXt) admits a jointly measurable version, and (c-2)
the equation DA t

0Xt = χ(Xt) (resp. DA t

XXt = χ(Xt)) is verified for every t ∈ [0, T ].

Note that a solution of (26) is always a solution of (27) or (28). Observe
also that if one wants to obtain ”genuinely stochastic” solutions of (26) (i.e. non
deterministic), the previous definition implicitly imposes some restrictions on the
class Λ. Namely, if X ∈ Λ is a solution of (27) (resp. (28)), then for any t ∈ [0, T ],
A t

0 (resp. A t
X) is differentiating for X at t with respect to the topology τ and the

random variable χ(Xt) is A t
0 -measurable (resp. A t

X -measurable) for every t. As an
example, let Γ be the set of all processes X with the form:

Xt = X0 + σBt +

∫ t

0

brdr, t ∈ [0, T ] (29)

where σ ∈ R, B is a fBm of Hurst index H ∈ (0, 1), and b runs over the set of adapted
processes (w.r.t. the natural filtration of BH) having a.s. integrable trajectories.
Suppose that we seek for solutions with σ 6= 0 of the weak stochastic embedding of
(26) given by

X ∈ Γ, Dσ{Xt}Xt = χ(Xt), (30)

Then, Corollary 2 and Proposition 2 imply that such solutions must necessarily be
driven by a fBm of Hurst index H > 1/2.

Stochastic embedded equations may be useful in the following framework.
Suppose that a physical system is described by (26), and that we want to enhance
this deterministic mathematical model in order to take into account some ”stochastic
phenomenon” perturbing the system. Then, the embedded equations (27) or (28)
may be the key to define a stochastic model in a very coherent way, in the sense that
every stochastic process satisfying (27) or (28) is also constrained by the physical laws
(i.e. the ODE (26)) defining the original deterministic description of the system.

6.2 A first example

Consider the set Λ of all continuous processes defined on the probability space (Ω,F ,P),
as well as the ”constant” collection of σ-fields (Ft)t∈[0,T ] such that Ft = F for every t.
Since the stochastic derivative w.r.t. F coincides with the usual pathwise derivative,
the embedding problem

DFXt = χ(Xt), t ∈ [0, T ], (31)
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has a unique strong solution for a given initial condition (deterministic or random).
Note that in this example the embedded differential equation produces no other so-
lution than those given by (26).

6.3 A more interesting example

Let W be a Wiener process on [0, T ] and consider the set Λ of deterministic processes
and of all stochastic processes that can be expressed in terms of multiple stochastic
integrals with respect to W . More precisely, denote by ΛW the set of processes
u ∈ L2(Ω,L2([0, T ])) such that, for every t ∈ [0, T ],

ut =
∑

n≥0

Jn(fn(·, t))

where, for any t ∈ [0, T ], the fn(·, t)’s verify:

∑

n≥0

(

‖fn(·, t)‖2
L2(∆n[0,T ]) +

∥

∥

∥

∥

∂fn

∂t
(·, t)

∥

∥

∥

∥

2

L2(∆n[0,t])

)

< +∞.

Here
∆n[0, T ] = {(s1, . . . , sn) ∈ R

n
+ : 0 ≤ sn ≤ . . . ≤ s1 ≤ T}

and, for g ∈ L2(∆n[0, T ]),

Jn(g) =

∫

∆n[0,T ]

g dW =

∫ T

0

dWs1

∫ s1

0

dWs2 . . .

∫ sn−1

0

dWsn
g(s1, . . . , sn).

On ΛW , we can consider stochastic derivatives of Nelson type (i.e. w.r.t. a fixed
filtration [8]):

Lemma 2 Fix t ∈]0, T [ and let Pt be the past before t, that is the σ-field generated
by {Ws, 0 ≤ s ≤ t}. If u ∈ ΛW then DPtut exists and it is given by

DPtut =
∑

n≥0

Jn

(

∂fn

∂t
(·, t)1∆n[0,t]

)

in the L2 sense. (32)

Proof: Obvious by projection.

As an example, consider the case where χ is given by χ(x) = ax + b with
a, b ∈ R. In other words, we want to solve the strong embedding

X ∈ Λ, DPtXt = aXt + b, t ∈ [0, T ] (33)
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in the class ΛW . It is easy to see that if X ∈ ΛW , then X satisfies (33) if, and only
if, the kernels in its chaotic expansion satisfy

∂fn

∂t
(·, t)1∆n[0,t](·) = a fn(·, t), t ∈]0, T [

for any n ∈ N
∗ and

f ′
0(t) = a f0(t) + b, t ∈]0, T [.

We deduce that X ∈ ΛW solves strongly (33) if, and only if, there exists a sequence
(cn)n∈N of functions from ∆n[0, T ] to R such that

fn(·, t) = cn(·)eat1∆n[0,t](·), t ∈ [0, T ]

for every n ∈ N
∗, and

f0(t) = c0 eat − b/a, t ∈ [0, T ].

Several properties of embedded stochastic equations will be investigated in a
separate paper. For instance, we will be interested in establishing conditions ensur-
ing that the solution of an embedded equation is Markovian. Also, we will explore
embedded stochastic equations that are obtained from ordinary equations of order
greater than one.
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[5] H. Föllmer (1984). Time reversal on Wiener space. Stochastic processes - math-
ematics and physics (Bielefeld). Lecture Notes in Math. 1158, 119-129.
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