
HAL Id: hal-00128138
https://hal.science/hal-00128138v1

Submitted on 30 Jan 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Abstract Monte-Carlo Method for the Analysis of
Probabilistic Programs

David Monniaux

To cite this version:
David Monniaux. An Abstract Monte-Carlo Method for the Analysis of Probabilistic Programs. 2001,
pp.93 - 101, �10.1145/360204.360211�. �hal-00128138�

https://hal.science/hal-00128138v1
https://hal.archives-ouvertes.fr

ha
l-

00
12

81
38

, v
er

si
on

 1
 -

 3
0

Ja
n

20
07

An Abstract Monte-Carlo Method for the Analysis of

Probabilistic Programs∗

David Monniaux

École Normale Supérieure
Laboratoire d’Informatique

45, rue d’Ulm
75230 Paris cedex 5

France

David.Monniaux@ens.fr

ABSTRACT

We introduce a new method, combination of random test-
ing and abstract interpretation, for the analysis of programs
featuring both probabilistic and non-probabilistic nondeter-
minism. After introducing “ordinary” testing, we show how
to combine testing and abstract interpretation and give for-
mulas linking the precision of the results to the number of
iterations. We then discuss complexity and optimization is-
sues and end with some experimental results.

1 INTRODUCTION

We introduce a generic method that lifts an ordinary ab-
stract interpretation scheme to an analyzer yielding upper
bounds on the probability of certain outcomes, taking into
account both randomness and ordinary nondeterminism.

1.1 Motivations

It is sometimes desirable to estimate the probability of cer-
tain outcomes of a randomized computation process, such
as a randomized algorithm or an embedded systems whose
environment (users, mechanical and electrical parts. . .) is
modeled by known random distributions. In this latter case,
it is particularly important to obtain upper bounds on the
probability of failure.

Let us take an example. A copy machine has a comput-
erized control system that interacts with the user through

∗This work was partially funded by Commissariat à
l’Énergie Atomique under contract 27234/VSF.

some control panel, drives (servo)motors and receives infor-
mation from sensors. In some circumstances, the sensors
can give bad information; for instance, some loose scrap of
paper might prevent some optical sensor from working cor-
rectly. It is nevertheless desired that the probability that
the machine will stop in an undesired state (without having
returned the original, for instance) is very low given some re-
alistic rates of failure from the sensors. To make the system
more reliable, some sensors are redundant and the control-
ling algorithm tries to act coherently. Since adding sensors
to the design costs space and hardware, it is interesting to
evaluate the probabilities of failure even before building a
prototype. A similar case can be made of industrial systems
such as nuclear power plants were sensors have a limited life
time and cannot be expected to be reliable. Sound analysis
methods are especially needed for that kind of systems as
safety guidelines are often formulated in terms of maximal
probabilities of failures [10].

1.2 Nondeterminism and Probabilities

Treating the above problem in an entirely probabilistic fash-
ion is not entirely satisfactory. While it is possible to model
the user by properties such as “the probability that the user
will hit the C key during the transfer of double-sided doc-
uments is less than 1%”, this can prevent detecting some
failures. For instance, if pressing some “unlikely” key combi-
nation during a certain phase of copying has a good chance of
preventing correct accounting of the number of copies made,
certain users might use it to get free copies. This is cer-
tainly a bug in the system. To account for the behavior of
inputs that cannot be reliably modeled by random distribu-
tions (for instance, malicious attacks) we must incorporate
nondeterminism.

1.3 Comparison to other works

An important literature has been published on software test-
ing [13, 19, . . .]; the purpose of testing techniques is to dis-
cover bugs and even to assert some sort of reliability criterion
by testing the program on a certain number of cases. Such
cases are either chosen randomly (random testing) or accord-
ing to some ad hoc criteria, such as program statement or
branch coverage (partition testing). Partition-based meth-
ods can be enhanced by sampling randomly inside the par-

tition elements. Often, since the actual distribution in pro-
duction use is unknown, a uniform distribution is assumed.

In our case, all the results our method gives are relative
to some fixed, known, distributions driving some inputs. On
the other hand, we will not have to assume some known
distribution on the other inputs: they will be treated as
nondeterministic. We thus avoid all problems pertaining to
arbitrary choices of partitions or random distributions; our
method, contrary to most testing methods, is fully mathe-
matically sound.

There exists a domain called probabilistic software engi-
neering [14] also aiming at estimating the safety of soft-
ware. It is based on statistical studies on syntactic aspects of
source code, or software engineering practices (programming
language used, organization of the development teams. . .),
trying to estimate number of bugs in software according to
recorded engineering experience. Our method does not use
such considerations and bases itself on the actual software
only.

Our analysis is based on a semantics equivalent to those
proposed by Kozen [8, 9, 2nd semantics] and Monniaux [11].
We proposed a definition of abstract interpretation on prob-
abilistic programs, using sets of measures, and gave a generic
construction for abstract domains for the construction of an-
alyzers. Nevertheless, this construction is rather “algebraic”
and, contrary to the one explained here, does not make use
of the well-studied properties of probabilities.

Ramalingam [15] proposed an abstraction using vectors of
upper bounds of the probabilities of certain properties, the
resulting linear system being solved numerically. While his
approach is sound and effective, it is restricted to programs
where probabilities are only introduced as constant transi-
tion probabilities on the control flow graph. Furthermore,
the class of properties is limited to data-flow analyses.

Several schemes of guarded logic commands [5] or refine-
ment [12] have been introduced. While these systems are
based on semantics broadly equivalent to ours, they are not
analysis systems: they require considerable human input and
are rather formal systems in which to construct derivations
of properties of programs.

1.4 Contribution

We introduce for the first time a method combining statisti-
cal and static analyses. This method is proven to be math-
ematically sound. While some other methods have been re-
cently proposed to statically derive properties of probabilis-
tic programs in a general purpose programming language
[11], ours is to our knowledge the first that makes use of
statistical convergences.

1.5 Structure of the paper

We shall begin by an explanation of ordinary testing and
its mathematical justification, then explain our “abstract
Monte-Carlo” method (mathematical bases are given in ap-
pendix). We shall then give the precise concrete seman-
tics that an abstract interpreter must use to implement our
method, first for a block-structured language then for arbi-
trary control graphs. We shall finish with some early results
from our implementation.

2 ABSTRACT MONTE-CARLO: THE

IDEA

In this section, we shall explain, in a mathematical fashion,
how our method works.

2.1 The Ordinary Monte-Carlo Testing

Method

The reader unfamiliar with probability theory is invited to
consult appendix A.

Let us consider a deterministic program c whose input
x lies in X and whose output lies in Z. We shall note
JcK : X 7→ Z the semantics of c (so that JcK (x) is the re-
sult of the computation of c on the input x). We shall take
X and Z two measurable spaces and constrain JcK to be
measurable. These measurability conditions are technical
and do not actually restrict the scope of programs to con-
sider [11]. For the sake of simplicity, we shall suppose in this
sub-section that c always terminates.

Let us consider W ⊆ Z a measurable set of final states
whose probability we wish to measure when x is a random
variable whose probability measure is µ. The probability of
W is therefore µ(JcK−1(W)). Noting

tW (x) =

{

1 if JcK (x) ∈W
0 otherwise,

this probability is the expectation EtW .
Let us apply the Monte-Carlo method for averages to this

random variable tW (see appendix B). EtW is then approx-
imated by n random trials:

c← 0
for i = 1 to n do

x← random(µ)
run program c on input x.
if program run ended in a state in W then

c← c+ 1
end if

end for

p← c/n

A confidence interval can be supplied, for instance using the
Chernoff-Hoeffding bound (Inequ. 11): there is at least a
1− ε probability that the true expectation EtW is less than

p′ = p +
√

− log ε

2n
(Fig. 1 — we shall see the implications in

terms of complexity of these safety margins in more detail
in section 4).

This method suffers from two drawbacks that make it un-
suitable in certain cases:

• It supposes that all inputs to the program are either
constant or driven according to a known probability
distribution. In general, this is not the case: some in-
puts might well be only specified by intervals of possible
values, without any probability measure. In such cases,
it is common [13] to assume some kind of distribution
on the inputs, such as an uniform one for numeric in-
puts. This might work in some cases, but grossly fail
in others, since this is mathematically unsound.

• It supposes that the program terminates every time
within an acceptable delay.

We propose a method that overcomes both of these prob-
lems.

2.2 Abstract Monte-Carlo

We shall now consider the case where the inputs of the pro-
gram are divided in two: those, in X, that follow a random
distribution µ and those that simply lie in some set Y . Now
JcK : X × Y → Z. The probability we are now trying to
quantify is µ{x ∈ X | ∃y ∈ Y JcK 〈x, y〉 ∈ W}. Some techni-
cal conditions must be met so that this probability is well-
defined; namely, the spaces X and Y must be standard Borel
spaces [7, Def. 12.5].1 Since countable sets, R, products of
sequences of standard Borel spaces are standard Borel [7,
§12.B], this restriction does not concern most semantics.

Noting

tW (x) =

{

1 if ∃y ∈ Y JcK 〈x, y〉 ∈ W
0 otherwise,

this probability is the expectation EtW .
While it would be tempting, we cannot use a straight-

forward Monte-Carlo method since, in general, tW is not
computable.2

Abstract interpretation (see appendix C) is a general
scheme for approximated analyses of safety properties of pro-
grams. We use an abstract interpreter to compute a function
TW : X → {0, 1} testing the following safety property:

• TW (x) = 0 means that no value of y ∈ Y results in
JcK (x, y) ∈ W ;

• TW (x) = 1 means that some value of y ∈ Y may result
in JcK (x, y) ∈W .

This means that for any x, tw(x) ≤ TW (x). Let us use the
following algorithm:

c← 0
for i = 1 to n do

x← random(µ)
c← c+ TW (x)

1Let us suppose X and Y are standard Borel spaces [7,
§12.B]. X × Y is thus a Polish space [7, §3.A] so that the
first projection π1 is continuous. Let A = {x ∈ X | ∃y ∈
Y JcK 〈x, y〉 ∈ W}; then A = π1(JcK

−1(W)). Since JcK is a
measurable function and W is a measurable set, JcK−1(W)
is a Borel subset in the Polish space X × Y . A is therefore
analytic [7, Def. 14.1]; from Lusin’s theorem [7, Th. 21.10], it
is universally measurable. In particular, it is µ-measurable
[7, §17.A]. µ(A) is thus well-defined.

2Let us take a Turing machine (or program in a Turing-
complete language) F . There exists an algorithmic transla-
tion taking F as input and outputting the Turing machine
F̃ computing the total function ϕF̃ so that

ϕF̃ 〈x, y〉 =
{

1 if F terminates in y or less steps on input x

0 otherwise.

Let us take X = Y = N and Z = {0, 1} and the program
F̃ , and define t{1} as before. t{1}(x) = 1 if and only if F
terminates on input x. It is a classical fact of computability
theory that the t{1} function is not computable for all F [16].

end for

p← c/n

With the same notations as in the previous sub-section:

t
(c)
W ≤ T

(n)
W and thus the confidence interval is still valid:

there is at least a 1− ε probability that the true expectation

EtW is less than p′ = p+
√

− log ε

2n
.

We shall see in the following section how to build abstract
interpreters with a view to using them for this Monte-Carlo
method.

3 A CONCRETE SEMANTICS SUIT-

ABLE FOR ANALYSIS

From the previous section, it would seem that it is easy to
use any abstract interpreter in a Monte-Carlo method. Alas,
we shall now see that special precautions must be taken in
the presence of calls to random generators inside loops or,
more generally, fixpoints.

3.1 Concrete Semantics

We have for now spoken of deterministic programs taking
one input x chosen according to some random distribution
and one input y in some domain. Calls to random gener-
ators (such as the POSIX drand48() function) are usually
modeled by a sequence of independent random variables. If
a bounded number of calls (≤ N) to such generators is used
in the program, we can consider them as input values: x is
then a tuple 〈x1, . . . , xN , v〉 where x1, . . . , xn are the values
for the generator and v is the input of the program. If an
unbounded number of calls can be made, it is tempting to
consider as an input a countable sequence of values (xn)n∈N

where x1 is the result of the first call to the generator, x2

the result of the second call. . . ; a formal description of such
a semantics has been made by Kozen [8, 9].

Such a semantics is not very suitable for program analysis.
Intuitively, analyzing such a semantics implies tracking the
number of calls made to number generators. The problem is
that such simple constructs as:

if (...) { random(); } else {}

are difficult to handle: the countings are not synchronized
in both branches.

We shall now propose another semantics, identifying oc-
currences of random generators by their program location
and loop indices. The Backus-Naur form of the program-
ming language we shall consider is:

instruction ::= elementary
| instruction ; instruction
| if boolean expr

then instruction
else instruction
endif

| while boolean expr
do instruction
done

We leave the subcomponents largely unspecified, as they
are not relevant to our method. elementary instructions

are deterministic, terminating basic program blocks like as-
signments and simple expression evaluations. boolean expr
boolean expressions, such as comparisons, have semantics as
sets of acceptable environments. For instance, a boolean expr
expression can be x < y + 4; its semantics is the set of exe-
cution environments where variables x and y verify the above
comparison. If we restrict ourselves to a finite number n of
integer variables, an environment is just a n-tuple of integers.

The denotational semantics of a code fragment c is a map-
ping from the set X of possible execution environments be-
fore the instruction into the set Y of possible environments
after the instruction. Let us take an example. If we take
environments as elements of Z

3, representing the values of
three integer variables x, y and z, then Jx:=y+zK is the
strict function 〈x, y, z〉 7→ 〈y + z, y, z〉. Semantics of basic
constructs (assignments, arithmetic operators) can be easily
dealt with this forward semantics; we shall now see how to
deal with flow control.

The semantics of a sequence is expressed by simple com-
position

Je1; e2K = Je2K ◦ Je1K (1)

Tests get expressed easily, using as the semantics JcK of a
boolean expression c the set of environments it matches:

Jif c then e1 else e2K (x) =

if x ∈ JcK then Je1K (x) else Je2K (x) (2)

and loops get the usual least-fixpoint semantics (considering
the point-wise extension of the Scott flat ordering on partial
functions)

Jwhile c do fK = lfp(λφ.λx.

if x ∈ JcK then φ ◦ JfK (x) else x). (3)

Non-termination shall be noted by ⊥.
As for expressions, the only constructs whose semantics

we shall precise are the random generators. We shall con-
sider a finite set G of different generators. Each generator g
outputs a random variable rg with distribution µg; each call
is independent from the precedent calls. Let us also con-
sider the set P of program points and the set N

∗ of finite
sequences of positive integers. The set C = P × N

∗ shall
denote the possible times in an execution where a call to a
random generator is made: 〈p, n1n2...nl〉 notes the execution
of program point p at the n1-th execution of the outermost
program loop, . . . , nl-th execution of the innermost loop at
that point. C is countable. We shall suppose that inside the
inputs of the program there is for each generator g in G a
family (ĝ〈p,w〉)〈p,w〉∈C of random choices.

The semantics of the language then become:

Je1; e2K = Je2K ◦ Je1K (4)

Tests get expressed easily, using as the semantics JcK of a
boolean expression c the set of environments it matches:

Jif c then e1 else e2K .〈w, x〉 =
if x ∈ JcK then Je1K .〈w, x〉 else Je2K .〈w, x〉 (5)

Loops get the usual least-fixpoint semantics (considering
the point-wise extension of the Scott flat ordering on partial

functions):

Jwhile c do fK .〈w0, x0〉 =
lfp (λφ.λ〈w, x〉.if x ∈ JcK then φ ◦ S ◦ JfK 〈w, x〉) else x).〈1.w0, x0〉

(6)

where S.〈c.w, x〉 = 〈(c + 1).w, x〉. The only change is that
we keep track of the iterations of the loop.

As for random expressions,

Jp : randomgK .〈w, x〉 = ĝ〈p,w〉 (7)

where p is the program point.
This semantics is equivalent to the denotational semantics

proposed by Kozen [8, 9, 2nd semantics] and Monniaux [11],
the semantic of a program being a continuous linear opera-
tor mapping an input measure to the corresponding output.
The key point of this equivalence is that two invocations
of random generators in the same execution have different
indices, which implies that a fresh output of a random gen-
erator is randomly independent of the environment coming
to that program point.

3.2 Analysis

Our analysis algorithm is a randomized version of an ordi-
nary abstract interpreter. Informally, we treat calls to ran-
dom generators are treated as follows:

• calls occurring outside fixpoint convergence iterations
are interpreted as constants chosen randomly by the
interpreter;

• calls occurring inside fixpoint convergence iterations are
interpreted as upper approximations of the whole do-
main of values the random generator yield.

For instance, in the following C program:

int x;

x = coin_flip(); /* coin_flip() returns 0 or 1 */

/* each with probability 0.5 */

for(i=0; i<5; i++)

{

x = x + coin_flip();

}

the first occurrence of coin_flip() will be treated as a ran-
dom value, while the second occurrence will be treated as
the least upper bound of {0} and {1}.

This holds for “naive” abstract interpreters; more ad-
vanced ones might perform “dynamic loop unrolling” or
other semantic transformations corresponding to a refine-
ment of the abstract domain to handle execution traces:

Jwhile c do eK (x) =
((

⋃

k<N1+N2

ψk(x)

)

∪ ψN2
(

lfp
(

λl.ψN1 (x) ∪ ψ(l)
))

)

∩ JcKC

(8)

where ψ(x) = JeK (x ∩ JcK) and N1 and N2 are possibly de-
cided at run-time, depending on the computed values. In
this case, the interpreter uses a random generator for the
occurrences of randomg operations outside lfp computations

and abstract values for the operations inside lfp’s. Its exe-
cution defines the finite set K of 〈p, n1 . . . nl〉 tags uniquely
identifying the random values chosen for ĝ〈p,n1...nl〉, as well
as the values (ǧc)c∈K that have been chosen. This yields

∀(ĝc)g∈G,c∈C ∀y ∈ Y (∀c ∈ K ĝc = ǧc)⇒
JcK 〈(ĝc)g∈G,c∈C , y〉 ∈ γZ(z♯) (9)

which means that

∀(ĝc)g∈G,c∈C (∀c ∈ K ĝc = ǧc)⇒
tW ((ĝc)g∈G,c∈C) ≤ τW (z♯) (10)

If we virtually choose randomly some ǧc for c /∈ K, we know
that tW ((ǧc)g∈G,c∈C) ≤ τW (z♯). Furthermore, (ǧc) follows
the product random distribution µ⊗C

g (each ǧc has been cho-
sen independently of the others according to measure µg).

Let us summarize: we wish to generate upper bounds
of experimental averages of a Bernoulli random variable
tW : X → {0, 1} whose domain has the product probability
measure µI ⊗

⊗

g∈G µ
⊗C
g where µI is the input measure and

the µg’s are the measures for the random number genera-
tors. The problem is that the domain of this random vari-
able is made of countable sequences; thus we cannot generate
its input strictly speaking. We instead effectively choose at
random a finite number of coordinates for the countable se-
quences, and compute a common upper bound for tW for all
inputs identical to our chosen values on this finite number
of coordinates. This is identical to virtually choosing a ran-
dom countable sequence x and getting an upper bound of its
image by tW .

Implementing such an analysis inside an ordinary abstract
interpreter is easy. The calls to random generators are inter-
preted as either a random generation, or as the least upper
bound over the range of the generator, depending on a “ran-
domize” flag. This flag is adjusted depending on whether
the interpreter is computing a fixpoint. The interpreter does
not track the indices of the random variables: these are only
needed for the proof of correctness. The analyzer does a cer-
tain number n of trials and outputs the experimental average

t̄
(n)
W . As a convenience, our implementation also outputs the

t̄
(n)
W +t upper bound so that there is at least a probability 1−ε

that this upper bound is safe according to inequation (11).
This is the value that is reported in the experiments of sec-
tion 5.

While our explanations referred to a forward semantics,
the abstract interpreter can of course combine forward and
backward analysis [2, section 6], provided the chosen random
values are recorded so that subsequent passes of analysis
can reuse them. Another related improvement, explained
in section 4, uses a preliminary backward analysis prior to
random generation.

3.3 Arbitrary control-flow graphs

The abstract interpretation framework can be extended to
logic languages, functional languages and imperative lan-
guages with recursion and other “complex programming
mechanisms (call-by-reference, local procedures passed as
parameters, non-local gotos, exceptions)” [1]. In such cases,
the semantics of the program are expressed as a fixpoint of

a system of equations over parts of the domain of environ-
ments. The environment in that case includes the program
counter, call stack and memory heap; of course a suitable
abstract lattice must be used.

Analyzing a program P written in a realistic imperative
language is very similar to analyzing the following inter-
preter:

s← initial state for P
while s is not a termination state do

s← N(s)
end while

where N(s) is the next-state function for P (operational se-
mantics). The abstract analyzer analysis that loop using an
abstract state and an abstract version of N . Most analy-
ses partition the domain of states according to the program
counter, and the abstract interpreter then computes the least
fixpoint of a system of semantic equations.

Such an analysis can be randomized in exactly the same
fashion as the one for block-structured programs presented
in the previous section. It is all the same essential to store
the generated values in a table so that backwards analysis
can be used.

4 COMPLEXITY

The complexity of our method is the product of two inde-
pendent factors:

• the complexity of one ordinary static analysis of the
program; strictly speaking, this complexity depends not
only on the program but on the random choices made,
but we can take a rough “average” estimate that de-
pends only on the program being analyzed;

• the number of iterations, that depends only on the re-
quested confidence interval; the minimal number of it-
erations to reach a certain confidence criterion can be
derived from inequalities [18, appendix A] such as in-
equation (11) and does not depend on the actual pro-
gram being analyzed.

We shall now focus on the latter factor, as the former de-
pends on the particular case of analysis being implemented.

Let us recall inequation (11): Pr
(

EtW ≥ t̄(n)
W + t

)

≤
e−2nt2 . It means that to get with 1 − ε probability an ap-
proximation of the requested probability µ, it is sufficient to
compute an experimental average over

⌈

− log ε

2t2

⌉

trials.
This exponential improvement in quality (Fig. 1) is nev-

ertheless not that interesting. Indeed, in practice, we might
want ε and t of the same order of magnitude as µ. Let us
take ε = αt where α is fixed. We then have n ∼ − log t

t2
,

which indicates prohibitive computation times for low prob-
ability events (Fig. 2). This high cost of computation for
low-probability events is not specific to our method; it is true
of any Monte-Carlo method, since it is inherent in the speed
of convergence of averages of identically distributed random
variables; this relates to the speed of convergence in the cen-
tral limit theorem [18, ch 1]. It can nevertheless be circum-
vented by tricks aimed at estimating the desired low prob-
ability by computing some other, bigger, probability from
which the desired result can be computed.

1 − 2nt2
e−2nt

2

n

100009000800070006000500040003000200010000

1

0.8

0.6

0.4

0.2

0

Figure 1: Upper bound on the probability that the computed
probability exceeds the real value by more than t, for t =
0.01.

− log t

t2

t

lo
g
1
0

sc
a
le

0.10.080.060.040.020

7

6.5

6

5.5

5

4.5

4

3.5

3

2.5

2

Figure 2: Numbers of iterations necessary to achieve a prob-
ability of false report on the same order of magnitude as the
error margin.

int x, i;

know (x>=0 && x<=2);

i=0;

while (i < 5)

{

x += coin_flip();

i++;

}

know (x<3);

Figure 3: Discrete probabilities. The analyzer es-
tablishes that, with 99% safety, the probability p of
the outcome (x < 3) is less than 0.509 given worst-case
nondeterministic choices of the precondition (x ≥ 0∧x ≤ 2).
The analyzer used n = 10000 random trials. Formally, p is
Pr

(

coin flip ∈ {0, 1}5 | ∃x ∈ [0, 2] ∩ Z JP K (coin flip, x) < 3
)

.
Each coin flip is chosen randomly in {0, 1} with a uniform
distribution. The exact value is 0.5.

Fortunately, such an improvement is possible in our
method. If we know that π1(JcK

−1 (W)) ⊆ R, with a mea-
surable R, then we can replace the random variable tW by
its restriction to R: tW |R; then EtW = Pr (R) .EtW |R. If
Pr (R) and EtW are on the same order of magnitude, this
means that EtW |R will be large and thus that the number
of required iterations will be low. Such a restricting R can
be obtained by static analysis, using ordinary backwards ab-
stract interpretation.

A salient point of our method is that our Monte-Carlo
computations are highly parallelizable, with linear speed-
ups: n iterations on 1 machine can be replaced by n/m iter-
ations on m machines, with very little communication. Our
method thus seems especially adapted for clusters of low-
cost PC with off-the-shelf communication hardware, or even
more distributed forms of computing. Another improvement
can be to compute bounds for several W sets simultaneously,
doing common computations only once.

5 PRACTICAL IMPLEMENTATION

AND EXPERIMENTS

We have a prototype implementation of our method, imple-
mented on top of an ordinary abstract interpreter doing for-
ward analysis using integer and real intervals. Figures 3 to 5
show various examples for which the probability could be
computed exactly by symbolic integration. Figure 6 shows a
simple program whose probability of outcome is difficult to
figure out by hand. Of course, more complex programs can
be handled, but the current lack of support of user-defined
functions and mixed use of reals and integers prevents us
from supplying real-life examples. We hope to overcome
these limitations soon as implementation progresses.

6 CONCLUSIONS

We have proposed a generic method that combines the
well-known techniques of abstract interpretation and Monte-
Carlo program testing into an analysis scheme for probabilis-
tic and nondeterministic programs, including reactive pro-

double x;

know (x>=0. && x<=1.);

x+=uniform()+uniform()+uniform();

know (x<2.);

Figure 4: Continuous probabilities. The analyzer es-
tablishes that, with 99% safety, the probability p of the
outcome (x < 2) is less than 0.848 given worst-case nonde-
terministic choices of the precondition (x ≥ 0 ∧ x ≤ 1).
The analyzer used n = 10000 random trials. Formally,
p is Pr

(

uniform ∈ [0, 1]3 | ∃x ∈ [0, 1] JP K (uniform, x) < 2
)

.
Each uniform is chosen randomly in [0, 1] with the Lebesgue
uniform distribution.
The exact value is 5/6 ≈ 0.833.

double x, i;

know(x<0.0 && x>0.0-1.0);

i=0.;

while (i < 3.0)

{

x += uniform();

i += 1.0;

}

know (x<1.0);

Figure 5: Loops. The analyzer establishes that, with
99% safety, the probability p of the outcome (x <
1) is less than 0.859 given worst-case nondeterministic
choices of the precondition (x < 0 ∧ x > −1). The
analyzer used n = 10000 random trials. Formally,
p is Pr

(

uniform ∈ [0, 1]3 | ∃x ∈ [0, 1] JP K (uniform, x) < 1
)

.
Each uniform is chosen randomly in [0, 1] with the Lebesgue
uniform distribution. The exact value is 5/6 ≈ 0.833.

{

double x, y, z;

know (x>=0. && x<=0.1);

z=uniform(); z+=z;

if (x+z<2.)

{

x += uniform();

} else

{

x -= uniform();

}

know (x>0.9 && x<1.1);

}

Figure 6: The analyzer establishes that, with 99% safety,
the probability p of the outcome (x > 0.9 ∧ x < 1.1)
is less than 0.225 given worst-case nondeterministic
choices of the precondition (x ≥ 0 ∧ x ≤ 0.1). Formally, p is
Pr

(

uniform ∈ [0, 1]2 | ∃x ∈ [0, 0.1] JP K (uniform, x) ∈ [0.9, 1.1]
)

.
Each uniform is chosen randomly in [0, 1] with the Lebesgue
uniform distribution.

grams whose inputs are modeled by both random and non-
deterministic inputs. This method is mathematically proven
correct, and uses no assumption apart from the distributions
and nondeterminism domains supplied by the user. It yields
upper bounds on the probability of outcomes of the program,
according to the supplied random distributions, with worse-
case behavior according to the nondeterminism; whether or
not this bounds are sound is probabilistic, and a lower-bound
of the soundness of those bounds is supplied. While our ex-
planations are given using a simple imperative language as
an example, the method is by no means restricted to imper-
ative programming.

The number of trials, and thus the complexity of the com-
putation, depends on the desired precision. The method is
parallelizable with linear speed-ups. The complexity of the
analysis, or at least its part dealing with probabilities, in-
creases if the probability to be evaluated is low. However,
static analysis can come to help to reduce this complexity.

We have implemented the method on top of a simple static
analyzer and conducted experiments showing interesting re-
sults on small programs written in an imperative language.
As implementation progresses, we expect to have results on
complex programs akin to those used in embedded systems.

REFERENCES

[1] François Bourdoncle. Sémantiques des Langages
Impératifs d’Ordre Supérieur et Interprétation Ab-
straite. PhD thesis, École Polytechnique, 1992.

[2] Patrick Cousot and Radhia Cousot. Abstract interpre-
tation and application to logic programs. J. Logic Prog.,
2-3(13):103–179, 1992.

[3] Patrick Cousot and Nicolas Halbwachs. Automatic dis-
covery of linear restraints among variables of a program.
In Proceedings of the Fifth Conference on Principles of
Programming Languages. ACM Press, 1978.

[4] J.L. Doob. Measure Theory, volume 143 of Graduate
Texts in Mathematics. Springer-Verlag, 1994.

[5] Jifeng He, K. Seidel, and A. McIver. Probabilistic mod-
els for the guarded command language. Science of Com-
puter Programming, 28(2–3):171–192, April 1997. For-
mal specifications: foundations, methods, tools and ap-
plications (Konstancin, 1995).

[6] Wassily Hoeffding. Probability inequalities for sums of
bounded random variables. J. Amer. Statist. Assoc.,
58(301):13–30, 1963.

[7] Alexander S. Kechris. Classical descriptive set theory.
Graduate Texts in Mathematics. Springer-Verlag, New
York, 1995.

[8] D. Kozen. Semantics of probabilistic programs. In 20th
Annual Symposium on Foundations of Computer Sci-
ence, pages 101–114, Long Beach, Ca., USA, October
1979. IEEE Computer Society Press.

[9] D. Kozen. Semantics of probabilistic programs. Journal
of Computer and System Sciences, 22(3):328–350, 1981.

[10] N. G. Leveson. Software safety: Why, what, and how.
Computing Surveys, 18(2):125–163, June 1986.

[11] David Monniaux. Abstract interpretation of probabilis-
tic semantics. In Seventh International Static Analysis
Symposium (SAS’00), number 1824 in Lecture Notes in
Computer Science. Springer-Verlag, 2000. c© Springer-
Verlag.

[12] Carroll Morgan, Annabelle McIver, Karen Seidel, and
J. W. Sanders. Refinement-oriented probability for
CSP. Formal Aspects of Computing, 8(6):617–647,
1996.

[13] Simeon Ntafos. On random and partition testing. In
Michal Young, editor, ISSTA 98: Proceedings of the
ACM SIGSOFT International Symposium on Software
Testing and Analysis, pages 42–48, 1998.

[14] Panel on Statistical Methods in Software Engineering.
Statistical Software Engineering. National Academy of
Sciences, 1996.

[15] G. Ramalingam. Data flow frequency analysis. In Pro-
ceedings of the ACM SIGPLAN ’96 Conference on Pro-
gramming Language Design and Implementation, pages
267–277, Philadelphia, Pennsylvania, 21–24 May 1996.

[16] H. Rogers. Theory of recursive and effective computabil-
ity. MGH, 1967.

[17] Walter Rudin. Real and Complex Analysis. McGraw-
Hill, 1966.

[18] Galen R. Shorack and Jon A. Wellner. Empirical Pro-
cesses with Applications to Statistics. Wiley series in
probability and mathematical statistics. John Wiley &
Sons, 1986.

[19] P. Thévenod-Fosse and H. Waeselynck. Statemate ap-
plied to statistical software testing pages 99-109. In Pro-
ceedings of the 1993 international symposium on Soft-
ware testing and analysis, pages 99–109. Association for
Computer Machinery, June 1993.

A PROBABILITY THEORY

Throughout this paper we take the usual mathematical point
of view of considering probabilities to be given by measures

over measurable sets [17, 4].

• A σ-algebra is a set of subsets of a set X that contains
∅ and is stable by countable union and complementa-
tion (and thus contains X and is stable by countable
intersection). For technical reasons, not all sets can be
measured (that is, given a probability) and we have to
restrict ourselves to some sufficiently large σ-algebras,
such as the Borel or Lebesgue sets [17].

• A set X with a σ-algebra σX defined on it is called a
measurable space and the elements of the σ-algebra
are the measurable subsets. We shall often men-
tion measurable spaces by their name, omitting the σ-
algebra, if no confusion is possible.

• If X and Y are measurable spaces, f : X → Y is a
measurable function if for all W measurable in Y ,
f−1(W) is measurable in X.

• A positive measure is a function µ defined on a
σ-algebra σX whose range is in [0,∞] and which is
countably additive. µ is countably additive if, taking
(An)n∈N a disjoint collection of elements of σX , then
µ (∪∞

n=0An) =
∑∞

n=0 µ(An). To avoid trivialities, we
assume µ(A) <∞ for at least one A.

If X is countable, σX can be P(X), the power-set of
X, and a measure µ is determined by its value on the
singletons: for any A ⊆ X, µ(A) =

∑

a∈A µ({a}).

• A probability measure is a positive measure of total
weight 1; a sub-probability measure has total weight
less or equal to 1. We shall note M≤1(X) the sub-
probability measures on X.

• Given two sub-probability measures µ and µ′ (or more
generally, two σ-finite measures) on X and X ′ respec-
tively, we note µ⊗ µ′ the product measure [17, defini-
tion 7.7], defined on the product σ-algebra σX × σX′ .
The characterizing property of this product measure is
that µ ⊗ µ′(A × A′) = µ(A).µ′(A′) for all measurable
sets A and A′. It is also possible to define countable
products of measures; if µ is a measure over the mea-
surable space X, then µ⊗N is a measure over the set XN

of sequences of elements of X.

For instance, let us take µ the measure on the set {0, 1}
with µ({1}) = p and µ({0}) = 1 − p. Let us take S
the set of sequences over {0, 1} beginning with 〈0, 0, 1, 0〉.
µ⊗N(S) = p(1− p)3 is the probability of getting a sequence
beginning with 〈0, 0, 1, 0〉 when choosing at random a count-
able sequence of {0, 1} independently distributed follow-
ing µ.

B ESTIMATING THE PROBABIL-

ITY OF A RANDOM EVENT BY

THE MONTE-CARLO METHOD

We consider a system whose outcome (success or failure)
depends on the value of a parameter x, chosen in the set X
according to a random distribution µ. The behavior of this
system is described by a random variable V : X → {0, 1},
where 0 means success and 1 failure.

The law of large numbers says that if we indepen-
dently choose inputs xk, with distribution µ, and com-
pute the experimental average V (n) = 1

n

∑n
k=1 V (xk), then

limn→∞ V (n) = EV where EV is the expectation of fail-
ure. Intuitively, it is possible to estimate accurately EV by
effectively computing V (n) for a large enough value of n.

Just how far should we go? Unfortunately, a general fea-
ture of all Monte-Carlo methods is their slow asymptotic
convergence speed. Indeed, the distribution of the exper-
imental average V (n) is a binomial distribution centered
around EV . With large enough values of n (say n ≥ 20), this
binomial distribution behaves mostly like a normal (Gaus-
sian) distribution (Fig. 7) with means p = EV and standard

deviate p(1−p)√
n

. More generally, the central limit theorem

exp(−t2/2)

95% in [−2σ, 2σ]

68% in [−σ, σ]

t

3210-1-2-3

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 7: The Gaussian normal distribution centered on 0,
with standard deviate 1.

predicts that the average of n random variables identically
distributed as V has the same expectation EV as V and
standard deviate σ√

n
where σ is the standard deviate of V .

The standard deviate measures the error margin on the com-
puted result: samples from a gaussian variable centered on
x0 and with standard deviate σ fall within [x0− 2σ, x0 +2σ]
about 95% of the time.

We can better evaluate the probability of underestimating
the probability by more than t using the Chernoff-Hoeffding
[6] [18, inequality A.4.4] bounds:

Pr
(

EV ≥ V (n) + t
)

≤ e−2nt2 (11)

This bound, fully mathematically sound, means that the
probability of underestimating V using V (n) by more than t

is less than e−2nt2 .
Any Monte-Carlo method has an inherent margin of error;

this margin of error is probabilistic, in the sense that facts
such as “the value we want to compute is in the interval

[a, b]” are valid up to a certain probability. The size of the
interval of safety for a given probability of error varies in
1/
√
n.

C ABSTRACT INTERPRETATION

Let us recall the mathematical foundations of abstract inter-
pretation [3, 2]. Let us consider two preordered sets A♯ and
Z♯ so that there exist monotone functions γA : A♯ → P(A),
where A = X × Y , and γW : Z♯ → P(Z), where P(Z) is the
set of parts of set Z, ordered by inclusion. γW is called the
concretization function.

The elements in A♯ and Z♯ represent some properties;
for instance, if X = Z

m and Y = Z
n, A♯ could be the

set of machine descriptions of polyhedra in Z
m+n and γA

the function mapping the description to the set of points
inside the polyhedron [3]. A simpler case is the intervals,
where the machine description is an array of integer couples
〈a1, b1; a2, b2; . . . ; an, bn〉 and its concretization is the set of
tuples 〈c1; . . . ; cn〉 where for all i, ai ≤ ci ≤ bi.

We then define an abstract interpretation of program
c to be a monotone function JcK♯ : A♯ → Z♯ so that

∀a♯ ∈ A♯, ∀a ∈ A a ∈ γA(A♯)⇒ JcK (a) ∈ γZ ◦ JcK♯ (a♯).

In the case of intervals, abstract interpretation propagates
intervals of variation along the computation. Loops get a fix-
point semantics: the abstract interpreter heuristically tries
to find intervals that are invariant for the body of the loop.
Such heuristics are based on widening and narrowing oper-
ators [2].

It is all the same possible to define backwards abstract
interpretation: a backwards abstract interpretation of

a program c is a monotone function JcK−1♯
: Z♯ → A♯ so

that

∀z♯ ∈ Z♯, ∀z ∈ Z z ∈ γZ(Z♯)⇒ JcK−1 (z) ⊆ γA ◦ JcK−1♯
(z♯).

Further refinement can be achieved by iterating forwards and
backwards abstract interpretations [2].

	Introduction
	Motivations
	Nondeterminism and Probabilities
	Comparison to other works
	Contribution
	Structure of the paper

	Abstract Monte-Carlo: the Idea
	The Ordinary Monte-Carlo Testing Method
	Abstract Monte-Carlo

	A Concrete Semantics Suitable for Analysis
	Concrete Semantics
	Analysis
	Arbitrary control-flow graphs

	Complexity
	Practical Implementation and Experiments
	Conclusions
	Probability theory
	Estimating the probability of a random event by the Monte-Carlo method
	Abstract Interpretation

