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A NEW ALGORITHM FOR ESTIMATING THE
EFFECTIVE DIMENSION-REDUCTION SUBSPACE

By Arnak Dalalyan, Anatoly Juditsky and Vladimir Spokoiny

University Paris 6, University Joseph Fourier of Grenoble and Weierstrass
Institute for Applied Analysis and Stochastics

The statistical problem of estimating the effective dimension-
reduction (EDR) subspace in the multi-index regression model with
deterministic design and additive noise is considered. A new proce-
dure for recovering the directions of the EDR subspace is proposed.
Under mild assumptions,

√

n-consistency of the proposed procedure
is proved (up to a logarithmic factor) in the case when the struc-
tural dimension is not larger than 4. The empirical behavior of the
algorithm is studied through numerical simulations.

1. Introduction. One of the most challenging problems in modern statis-
tics is to find efficient methods for treating high-dimensional data sets. In
various practical situations the problem of predicting or explaining a scalar
response variable Y by d scalar predictors X(1), . . . ,X(d) arises. For solving
this problem one should first specify an appropriate mathematical model and
then find an algorithm for estimating that model based on the observed data.
In the absence of a priori information on the relationship between Y and
X = (X(1), . . . ,X(d)), complex models are to be preferred. Unfortunately,
the accuracy of estimation is in general a decreasing function of the model
complexity. For example, in the regression model with additive noise and
two-times continuously differentiable regression function f : R

d → R, the
most accurate estimators of f based on a sample of size n have a quadratic
risk decreasing as n−4/(4+d) when n becomes large. This rate deteriorates
very rapidly with increasing d leading to unsatisfactory accuracy of estima-
tion for moderate sample sizes. This phenomenon is called “curse of dimen-
sionality”, the latter term being coined by Bellman (1961).

To overcome the “curse of dimensionality”, additional restrictions on the
candidates f for describing the relationship between Y and X are necessary.
One popular approach is to consider the multi-index model with m∗ indices:
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for some linearly independent vectors ϑ1, . . ., ϑm∗ and for some function
g : R

m∗ → R, the relation f(x) = g(ϑ⊤1 x, . . . , ϑ
⊤
m∗x) holds for every x ∈ R

d.
Here and in the sequel the vectors are understood as one column matrices
and M⊤ denotes the transpose of the matrix M . Of course, such a restriction
is useful only if m∗ < d and the main argument in favor of using the multi-
index model is that for most data sets the underlying structural dimension
m∗ is substantially smaller than d. Therefore, if the vectors ϑ1, . . ., ϑm∗ are
known, the estimation of f reduces to the estimation of g, which can be
performed much better because of lower dimensionality of the function g
compared to that of f .

Another advantage of the multi-index model is that it assesses that only
few linear combinations of the predictors may suffice for “explaining” the
response Y . Considering these combinations as new predictors leads to a
much simpler model (due to its low dimensionality), which can be success-
fully analyzed by graphical methods, see [12], [7] for more details.

Thus, throughout this work we assume that we are given n observations
(Y1,X1), . . . , (Yn,Xn) from the model

Yi = f(Xi) + εi = g(ϑ⊤1 Xi, . . . , ϑ
⊤
m∗Xi) + εi, (1.1)

where ε1, . . . , εn are unobserved errors assumed to be mutually independent
zero mean random variables, independent of the design {Xi, i ≤ n}.
Since it is unrealistic to assume that ϑ1, . . . , ϑm∗ are known, estimation of
these vectors from the data is of high practical interest. When the function
g is unspecified, only the linear subspace Sϑ spanned by these vectors may
be identified from the sample. This subspace is usually called index space or
dimension-reduction (DR) subspace. Clearly, there are many DR subspaces
for a fixed model f . Even if f is observed without error, only the smallest
DR subspace, henceforth denoted by S, can be consistently identified. This
smallest DR subspace, which is the intersection of all DR subspaces, is called
effective dimension-reduction (EDR) subspace [18] or central mean subspace
[8]. We adopt in this paper the former term, in order to be consistent with
[15] and [22], which are the closest references to our work.

The present work is devoted to studying a new algorithm for estimating the
EDR subspace.We call it structural adaption via maximum minimization
(SAMM). It can be regarded as a branch of the structure-adaptive (SA)
approach introduced in [16], [15].

Note that a closely related problem is the estimation of the central subspace
(CS), see [12] for its definition. For model (1.1) with i.i.d. predictors, the
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CS coincides with the EDR subspace. Hence, all the methods developed for
estimating the CS can potentially be applied in our set-up. We refer to [8] for
background on the difference between the CS and the central mean subspace
and to [10] for a discussion of the relationship between different algorithms
estimating these subspaces.

There are a number of methods providing an estimator of the EDR subspace
in our set-up. These include ordinary least square [17], sliced inverse regres-
sion [18], sliced inverse variance estimation [11], principal Hessian directions
[19], graphical regression [7], parametric inverse regression [4], SA approach
[15], iterative Hessian transformation [8], minimum average variance estima-
tion (MAVE) [22] and minimum discrepancy approach [10].

All these methods, except SA approach and MAVE, are related to the prin-
ciple of inverse regression (IR). Therefore they inherit its well known lim-
itations. First, they require a hypothesis on the probabilistic structure of
the predictors usually called linearity condition. Second, there is no theoret-
ical justification guaranteeing that these methods estimate the whole EDR
subspace and not just a part thereof (cf. [9, Section 3.1] and the comments
on the third example in [15, Section 4]). In the same time, they have the
advantage of being simple for implementation and for inference.

The two other methods mentioned above – SA approach and MAVE – have
much wider applicability including even time series analysis. The inference
for these methods is more involved than that of IR based methods, but SA
approach and MAVE are recognized to provide more accurate estimates of
the EDR subspace.

These arguments, combined with the empirical experience, indicate the com-
plementarity of different methods designed to estimate the EDR subspace.
It turns out that there is no procedure among those cited above that outper-
forms all the others in plausible settings. Therefore, a reasonable strategy for
estimating the EDR subspace is to execute different procedures and to take
a decision after comparing the obtained results. In the case of strong con-
tradictions, collecting additional data or using extra-statistical arguments is
recommended.

The algorithm SAMM we introduce here exploits the fact that the gradi-
ent ∇f of the regression function f evaluated at any point x ∈ R

d be-
longs to the EDR subspace. The estimation of the gradient being an ill-
posed inverse problem, it is better to estimate some linear combinations of
∇f(X1), . . . ,∇f(Xn), which still belong to the EDR subspace.

Let L be a positive integer. The main idea leading to the algorithm proposed
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in [15] is to iteratively estimate L linear combinations β1, . . . , βL of vectors
∇f(X1), . . . ,∇f(Xn) and then to recover the EDR subspace from the vec-
tors βℓ by running a principal component analysis (PCA). The resulting
estimator is proved to be

√
n-consistent provided that L is chosen indepen-

dently on the sample size n. Unfortunately, if L is small with respect to n,
the subspace spanned by the vectors β1, . . . , βL may cover only a part of
the EDR subspace. Therefore, the empirical experience advocates for large
values of L, even if the desirable feature of

√
n-consistency fails in this case.

The estimator proposed in the present work is designed to provide a remedy
for this dissension between the theory and the empirical experience. This
goal is achieved by introducing a new method of extracting the EDR sub-
space from the estimators of the vectors β1, . . . , βL. If we think of PCA as
the solution to a minimization problem involving a sum over L terms (see
(2.4) in the next section) then, to some extent, our proposal is to replace
the sum by the maximum. This motivates the term structural adaptation
via maximum minimization. The main advantage of SAMM is that it allows
us to deal with the case when L increases polynomially in n and yields an
estimator of the EDR subspace which is consistent under a very weak identi-
fiability assumption. In addition, SAMM provides a

√
n-consistent estimator

(up to a logarithmic factor) of the EDR subspace when m∗ ≤ 4.

If m∗ = 1, the corresponding model is referred to as single-index regression.
There are many methods for estimating the EDR subspace in this case
(see [23], [13] and the references therein). Note also that the methods for
estimating the EDR subspace have often their counterparts in the partially
linear regression analysis, see for example [21] and [6].

Some aspects of the application of dimension reduction techniques in bioin-
formatics are studied in [1] and [5].

The rest of the paper is organized as follows. We review the structure-
adaptive approach and introduce the SAMM procedure in Section 2. The-
oretical features including

√
n-consistency of the procedure are stated in

Section 3. Section 4 contains an empirical study of the proposed procedure
through Monte Carlo simulations. The technical proofs are deferred to the
Appendix.

2. Structural adaptation and SAMM. Introduced in [16], the structure-
adaptive approach is based on two observations. First, knowing the struc-
tural information helps better estimate the model function. Second, im-
proved model estimation contributes to recovering more accurate structural
information about the model. These advocate for the following iterative pro-
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cedure. Start with the null structural information, then iterate the above-
mentioned two steps (estimation of the model and extraction of the struc-
ture) several times improving the quality of model estimation and increasing
the accuracy of structural information during the iteration.

2.1. Purely nonparametric local linear estimation. When no structural in-
formation is available, one can only proceed in a fully nonparametric way.
A proper estimation method is based on local linear smoothing (cf. [14] for
more details): estimators of the function f and its gradient ∇f at a point
Xi are given by

(
f̂(Xi)

∇̂f(Xi)

)
= arg inf

(a,c)⊤

n∑

j=1

(
Yj − a− c⊤Xij

)2
K
(|Xij |2/b2

)

=

{ n∑

j=1

(
1
Xij

)(
1
Xij

)⊤
K

( |Xij |2
b2

)}−1 n∑

j=1

Yj

(
1
Xij

)
K

( |Xij |2
b2

)
,

where Xij = Xj − Xi, b is a bandwidth and K(·) is a univariate kernel
supported on [0, 1]. The bandwidth b should be selected so that the ball with
the radius b and the center at the point of estimation Xi contains at least
d + 1 design points. For large value of d this leads to a bandwidth of order
one and to a large estimation bias. The goal of the structural adaptation
is to diminish this bias using an iterative procedure exploiting the available
estimated structural information.

In order to transform these general observations to a concrete procedure, let
us describe in the rest of this section how the knowledge of the structure
can help to improve the quality of the estimation and how the structural
information can be obtained when the function or its estimator is given.

2.2. Model estimation when an estimator of S is available. Let us start
with the case of known S. The function f has the same smoothness as g in
the directions of the EDR subspace S spanned by the vectors ϑ1, . . . , ϑm∗ ,
whereas it is constant (and therefore, infinitely smooth) in all the orthogonal
directions. This suggests to apply an anisotropic bandwidth for estimating
the model function and its gradient. The corresponding local-linear estima-
tor can be defined by

(
f̂(Xi)

∇̂f(Xi)

)
=

{ n∑

j=1

(
1
Xij

)(
1
Xij

)⊤
w∗
ij

}−1 n∑

j=1

Yj

(
1
Xij

)
w∗
ij , (2.1)
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with the weights w∗
ij = K(|Π∗Xij |2/h2), where h is some positive real num-

ber and Π∗ is the orthogonal projector onto the EDR subspace S.This choice
of weights amounts to using infinite bandwidth in the directions lying in the
orthogonal complement of the EDR subspace.

If only an estimator Ŝ of S is available, the orthogonal projector Π̂ onto the
subspace Ŝ may replace Π∗ in the expression (2.1). This rule of defining the
local neighborhoods is too stringent, since it definitely discards the directions
belonging to Ŝ⊥. Being not sure that our information about the structure
is exact, it is preferable to define the neighborhoods in a softer way. This is
done by setting wij = K(X⊤

ij (I + ρ−2Π̂)Xij/h
2) and by redefining

(
f̂(Xi)

∇̂f(Xi)

)
=

{ n∑

j=1

(
1
Xij

)(
1
Xij

)⊤
wij

}−1 n∑

j=1

Yj

(
1
Xij

)
wij . (2.2)

Here, ρ is a real number from the interval [0, 1] measuring the importance
attributed to the estimator Π̂. If we are very confident in our estimator Π̂,
we should choose ρ close to zero.

2.3. Recovering the EDR subspace from an estimator of ∇f . Suppose first
that the values of the function ∇f at the points Xi are known.Then S is the
linear subspace of R

d spanned by the vectors ∇f(Xi), i = 1, . . . , n. For clas-
sifying the directions of R

d according to the variability of f in each direction
and, as a by-product identifying S, the principal component analysis (PCA)
can be used.

The PCA method is based on the orthogonal decomposition of the matrix
M = n−1∑n

i=1 ∇f(Xi)∇f(Xi)
⊤: M = OΛOT with an orthogonal matrix O

and a diagonal matrix Λ with diagonal entries λ1 ≥ λ2 ≥ . . . ≥ λd. Clearly,
for the multi-index model with m∗-indices, only the first m∗ eigenvalues of
M are positive. The firstm∗ eigenvectors of M (or, equivalently, the firstm∗

columns of the matrix O) define an orthonormal basis in the EDR subspace
.

Let L be a positive integer. In [15], a “truncated” matrix ML is considered,
which coincides with M if L equals n. Let {ψℓ, ℓ = 1, . . . , L} be a system of
functions on R

d satisfying the conditions n−1∑n
i=1 ψℓ(Xi)ψℓ′(Xi) = δℓ,ℓ′ for

every ℓ, ℓ′ ∈ {1, . . . , L}, with δℓ,ℓ′ being the Kronecker symbol. Define

βℓ = n−1
n∑

i=1

∇f(Xi)ψℓ(Xi) (2.3)
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andML =
∑L
ℓ=1 βℓβ

⊤
ℓ . By the Bessel inequality, it holds ML ≤ M . More-

over, since MML = MLM , any eigenvector of M is an eigenvector of ML.
Finally, by the Parseval equality, ML = M if L = n. Note that the estima-
tion of M has been treated in [20].

The reason of considering the matrix ML instead of M is that ML can
be estimated much better than M . In fact, estimators of M have poor
performance for samples of moderate size because of the sparsity of high
dimensional data, ill-posedness of the gradient estimation and the non-linear
dependence of M on ∇f . On the other hand, estimation of ML reduces to
the estimation of L linear functionals of ∇f and may be done with a better
accuracy. The obvious limitation of this approach is that it recovers the
EDR subspace entirely only if the rank of ML coincides with the rank of
M , which is equal to m∗. To enhance our chances of seeing the condition
rank(ML) = m∗ fulfilled, we have to choose L sufficiently large. In practice,
L is chosen of the same order as n.

In the case when only an estimator of ∇f is available, the above described
method of recovering the EDR directions from an estimator of ML have
a risk of order

√
L/n (see [15, Theorem 5.1]). This fact advocates against

using very large values of L. We desire nevertheless to use many linear
combinations in order to increase our chances of capturing the whole EDR
subspace. To this end, we modify the method of extracting the structural
information from the estimators β̂ℓ of vectors βℓ.

Let m ≥ m∗ be an integer. Observe that the estimator Π̃m of the projector
Π∗ based on the PCA solves the following quadratic optimization problem:

minimize
∑

ℓ

β̂⊤ℓ (I − Π)β̂ℓ subject to Π2 = Π, tr Π ≤ m, (2.4)

where the minimization is carried over the set of all symmetric (d × d)-
matrices. The value m∗ can be estimated by looking how many eigenvalues
of Π̃m are significant. Let Am be the set of (d×d)-matrices defined as follows:

Am = {Π : Π = Π⊤, 0 � Π � I, tr Π ≤ m}.
From now on, for two symmetric matrices A and B, A � B means that
B − A is semidefinite positive. Define Π̂m as a minimizer of the maximum
of the β̂⊤ℓ (I − Π)β̂ℓ’s instead of their sum:

Π̂m ∈ arg inf
Π∈Am

max
ℓ
β̂⊤ℓ (I − Π)β̂ℓ. (2.5)

This is a convex optimization problem that can be effectively solved even for
a large d although a closed form solution is not known. Moreover, as we will
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show below, the incorporation of (2.5) in the structural adaptation yields an
algorithm having good theoretical and empirical performance.

3. Theoretical features of SAMM. Throughout this section the true
dimension m∗ of the EDR subspace is assumed to be known. Thus, we are
given n observations (Y1,X1), . . . , (Yn,Xn) from the model

Yi = f(Xi) + εi = g(ϑ⊤1 Xi, . . . , ϑ
⊤
m∗Xi) + εi,

where ε1, . . . , εn are independent centered random variables. The vectors ϑj
are assumed to form an orthonormal basis of the EDR subspace entailing
thus the representation Π∗ =

∑m∗

j=1 ϑjϑ
⊤
j . In what follows, we mainly con-

sider deterministic design. Nevertheless, the results hold in the case of ran-
dom design as well, provided that the errors are independent of X1, . . . ,Xn.
Henceforth, without loss of generality we assume that |Xi| < 1 for any
i = 1, . . . , n, where |v| denotes the Euclidian norm of the vector v.

3.1. Description of the algorithm. The structure-adaptive algorithm with
maximum minimization consists of following steps.

a) Specify positive real numbers aρ, ah, ρ1 and h1. Choose an integer L
and select a set {ψℓ, ℓ ≤ L} of vectors from R

n verifying |ψℓ|2 = n.
Set k = 1.

b) Initialize the parameters h = h1, ρ = ρ1 and Π̂0 = 0.
c) Define the estimators ∇̂f(Xi) for i = 1, . . . , n by formula (2.2) with

the current values of h, ρ and Π̂. Set

β̂ℓ =
1

n

n∑

i=1

∇̂f(Xi)ψℓ,i, ℓ = 1, . . . , L, (3.1)

where ψℓ,i is the ith coordinate of ψℓ.

d) Define the new value Π̂k as the solution to (2.5).
e) Set ρk+1 = aρ · ρk, hk+1 = ah · hk and increase k by one.
f) Stop if ρ < ρmin or h > hmax, otherwise continue with the step c).

Let k(n) be the total number of iterations. The matrix Π̂k(n) is the desired

estimator of the projector Π∗. We denote by Π̂n the orthogonal projection
onto the space spanned by the eigenvectors of Π̂k(n) corresponding to the m∗

largest eigenvalues. The estimator of the EDR subspace is then the image
of Π̂n. Equivalently, Π̂n is the estimator of the projector onto S.
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The described algorithm requires the specification of the parameters ρ1, h1,
aρ and ah, as well as the choice of the set of vectors {ψℓ}. In what follows
we use the values

ρ1 = 1, ρmin = n−1/(3∨m∗), aρ = e−1/2(3∨m∗),

h1 = C0n
−1/(4∨d), hmax = 2

√
d, ah = e1/2(4∨d).

This choice of input parameters is up to some minor modifications the same
as in [16], [15] and [21], and is based on the trade-off between the bias and
the variance of estimation. It also takes into account the fact that the local
neighborhoods used in (2.1) should contain enough design points to entail
the consistency of the estimator. The choice of L and that of vectors ψℓ will
be discussed in Section 4.

3.2. Assumptions. Prior to stating rigorous theoretical results we need to
introduce a set of assumptions. From now on, we use the notation I for the
identity matrix of dimension d, ‖A‖2 for the largest eigenvalue of A⊤ ·A and
‖A‖2

2 for the sum of squares of all elements of the matrix A.

(A1) There exists a positive real Cg such that |∇g(x)| ≤ Cg and |g(x) −
g(x′) − (x− x′)⊤∇g(x)| ≤ Cg|x− x′|2 for every x, x′ ∈ R

m∗

.

Unlike the smoothness assumption, the assumptions on the identifiability of
the model and the regularity of design are more involved and specific for
each algorithm. The formal statements read as follows.

(A2) Let the vectors βℓ ∈ R
d be defined by (2.3) and let B∗ =

{
β̄ =∑L

ℓ=1 cℓβℓ :
∑L
ℓ=1 |cℓ| ≤ 1

}
. There exist vectors β̄1, . . . , β̄m∗ ∈ B∗ and

constants µ1, . . . , µm∗ such that

Π∗ �
m∗∑

k=1

µkβ̄kβ̄
⊤
k . (3.2)

We denote µ∗ = µ1 + . . .+ µk.

Remark 3.1. Assumption (A2) implies that the subspace S = Im(Π∗) is
the smallest DR subspace, therefore it is the EDR subspace. Indeed, for any
DR subspace S ′, the gradient ∇f(Xi) belongs to S ′ for every i. Therefore
βℓ ∈ S ′ for every ℓ ≤ L and B∗ ⊂ S ′. Thus, for every β◦ from the orthogonal
complement S ′⊥, it holds |Π∗β◦|2 ≤∑

k µk|β̄⊤k β◦|2 = 0. Therefore S ′⊥ ⊂ S⊥

implying thus the inclusion S ⊂ S ′.
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Lemma 3.1. If the family {ψℓ} spans R
n, then assumption (A2) is always

satisfied with some µk (that may depend on n).

Proof. Set Ψ = (ψ1, . . . , ψL) ∈ R
n×L, ∇f = (∇f(X1), . . . ,∇f(Xn)) ∈ R

d×n

and write the d×L matrix B = (β1, . . . , βL) in the form ∇f ·Ψ. Recall that if
M1,M2 are two matrices such that M1 ·M2 is well defined and the rank ofM2

coincides with the number of lines in M2, then rank(M1 ·M2) = rank(M1).
This implies that rank(B) = m∗ provided that rank(Ψ) = n, which amounts
to span({ψℓ}) = R

n.

Let now β̃1, . . . , β̃m∗ be a linearly independent subfamily of {βℓ, ℓ ≤ L}. Then
the m∗th largest eigenvalue λm∗(M̃ ) of the matrixM̃ =

∑m∗

k=1 β̃kβ̃
⊤
k is strictly

positive. Moreover, if v1, . . . , vm∗ are the eigenvectors of M̃ corresponding
to the eigenvalues λ1(M̃ ) ≥ . . . ≥ λm∗(M̃ ) > 0, then

Π∗ =
m∗∑

k=1

vkv
⊤
k � 1

λm∗

m∗∑

k=1

λkvkv
⊤
k = λ−1

m∗M̃ = λ−1
m∗

m∗∑

k=1

β̃kβ̃
⊤
k .

Hence, (3.2) is fulfilled with µk = 1/λm∗(M̃ ) for every k = 1, . . . ,m∗.

These arguments show that (A2) is a fairly weak identifiability assumption.
In fact, since we always choose {ψℓ} so that span({ψℓ}) = R

n, (A2) amounts
to requiring that the value µ∗ remains bounded when n increases.

Let us proceed with the assumption on the design regularity. Define P ∗
k =

(I+ρ−2
k Π∗)1/2, Z(k)

ij = (hkP
∗
k )−1Xij and for any d×dmatrix U set w

(k)
ij (U) =

K
(
(Z

(k)
ij )⊤UZ(k)

ij

)
, w̄

(k)
ij (U) = K ′((Z(k)

ij )⊤UZ(k)
ij

)
, N

(k)
i (U) =

∑
j w

(k)
ij (U)

and

Ṽ
(k)
i (U) =

n∑

j=1

(
1

Z
(k)
ij

)(
1

Z
(k)
ij

)⊤
w

(k)
ij (U).

(A3) For some positive constants CV , CK , CK ′ , Cw and for some α ∈]0, 1/2],
the inequalities

‖Ṽ (k)
i (U)−1‖N (k)

i (U) ≤ CV , i = 1, . . . , n, (3.3)
n∑

i=1

w
(k)
ij (U)/N

(k)
i (U) ≤ CK , j = 1, . . . , n, (3.4)

n∑

i=1

|w̄(k)
ij (U)|/N (k)

i (U) ≤ CK ′ , j = 1, . . . , n, (3.5)

n∑

j=1

|w̄(k)
ij (U)|/N (k)

i (U) ≤ Cw i = 1, . . . , n, (3.6)
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hold for every k ≤ k(n) and for every d × d matrix U verifying ‖U −
I‖2 ≤ α.

(A4) The errors {εi, i ≤ n} are centered Gaussian with variance σ2.

3.3. Main result. We assume that the kernel K used in (2.2) is chosen to
be continuous, positive and vanishing outside the interval [0, 1]. The vectors
ψℓ are assumed to verify

max
ℓ=1,...,L

max
i=1,...,n

|ψℓ,i| < ψ̄, (3.7)

for some constant ψ̄ independent of n. In the sequel, we denote by C,C1, . . .
some constants depending only on m∗, µ∗, Cg, CV , CK , CK ′ , Cw and ψ̄.

Theorem 3.1. Assume that assumptions (A1)-(A4) are fulfilled. There
exists a constant C > 0 such that for any z ∈]0, 2

√
log(nL)] and for suffi-

ciently large values of n, it holds

P

(√
tr(I − Π̂n)Π∗ > Cn−

2

3∨m∗ t2n +
2zc0

√
µ∗σ√

n(1 − ζn)

)
≤ Lze−

z2
−1

2 +
3k(n) − 5

n
,

where c0 = ψ̄
√
dCKCV , tn = O(

√
log(Ln)) and ζn = O(tn n

− 1

6∨m∗ ).

Corollary 3.1. Under the assumptions of Theorem 3.1, for sufficiently
large n, it holds

P

(
‖Π̂n − Π∗‖2 > Cn−

2

3∨m∗ t2n +
2
√

2µ∗zc0σ√
n(1 − ζn)

)
≤ Lze−

z2
−1

2 +
3k(n) − 5

n

E(‖Π̂n − Π∗‖2) ≤ C

(
n−2/(3∨m∗)t2n +

√
log nL√
n

)
+

√
2m∗(3k(n) − 5)

n
.

Proof. Easy algebra yields

‖Π̂n − Π∗‖2
2 = tr(Π̂n − Π∗)2 = tr Π̂2

n − 2 tr Π̂nΠ
∗ + tr Π∗

≤ tr Π̂n +m∗ − 2 tr Π̂nΠ
∗ ≤ 2m∗ − 2 tr Π̂nΠ

∗.

The equality tr Π∗ = m∗ and the linearity of the trace operator complete the
proof of the first inequality. The second inequality can be derived from the
first one by standard arguments in view of the inequality ‖Π̂n−Π∗‖2

2 ≤ 2m∗.
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These results assess that for m∗ ≤ 4, the estimator of S provided by the
SAMM procedure is

√
n-consistent up to a logarithmic factor. This rate

of convergence is known to be optimal for a broad class of semiparametric
problems, see [3] for a detailed account on the subject.

Remark 3.2. The inspection of the proof of Theorem 3.1 shows that the
factor t2n multiplying the “bias” term n−2/(3∨m∗) disappears when m∗ > 3.

Remark 3.3. The same rate of convergence remains valid in the case when
the errors are not necessarily identically distributed Gaussian random vari-
ables, but have (uniformly in n) a bounded exponential moment. This can
be proved along the lines of Proposition 4.3, see Appendix.

Remark 3.4. Note that in (A3) we implicitly assumed that the matrices

Ṽ
(k)
i are invertible, which may be true only if any neighborhood E(k)(Xi) =

{x : |(I + ρ−2
k Π∗)−1/2(Xi − x)| ≤ hk} contains at least d design points

different from Xi. The parameters h1, ρ1, aρ and ah are chosen so that
the volume of ellipsoids E(k)(Xi) is a non-decreasing function of k and
V ol(E(1)(Xi)) = C0/n. Therefore, from theoretical point of view, if the
design is random with positive density on [0, 1]d, it is easy to check that for
a properly chosen constant C0, assumption (A3) is satisfied with a probabil-
ity close to one. In applications, we define h1 as the smallest real such that
mini=1,...,n #E(1)(Xi) = d + 1 and add to Ṽi a small full-rank matrix to be
sure that the resulting matrix is invertible, see Section 4.

Remark 3.5. In the case when m = n1/d is integer, an example of deter-
ministic design satisfying (A3) is as follows. Choose d functions hk : [0, 1] →
[0,∞[ such that inf [0,1] hk(x) > 0 and sup[0,1] hk(x) < ∞. Define the de-

sign points {Xi} by {∫ 1+i1/m
i1/m

h1(x) dx, . . .
∫ 1+id/m
id/m

hd(x) dx}, where i1, . . . , id
range over {0, . . . ,m−1}. This definition guarantees that the number of de-
sign points lying in an ellipsoid E is asymptotically of the same order as
nV ol(E), as n→ ∞. This suffices for (A3). Of course, it is unlikely to have
such a design in practice, since even for small m and moderate d it leads to
an unrealistically large sample size.

4. Simulation results. The aim of this section is to demonstrate on sev-
eral examples how the performance of the algorithm SAMM depends on the
sample size n, the dimension d and the noise level σ. We also show that
our procedure can be successfully applied in autoregressive models. Many
unreported results show that in most situations the performance of SAMM
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is comparable to the performance of SA approach based on PCA and to that
of MAVE. A thorough comparison of the numerical virtues of these meth-
ods being out of scope of this paper, we simply show on some examples that
SAMM may substantially outperform MAVE in the case of large “bias”.

The computer code of the procedure SAMM is distributed freely, it can be
downloaded from http://www.proba.jussieu.fr/pageperso/dalalyan/. It requires
the MATLAB packages SDPT3 and Yalmip.We are grateful to Professor
Yingcun Xia for making the computer code of MAVE available to us.

To obtain higher stability of the algorithm, we preliminarily standardize
the response Y and the predictors X(j). More precisely, we deal with Ỹi =
Yi/σY and X̃ = diag(ΣX)−1/2X, where σ2

Y is the empirical variance of Y ,
ΣX is the empirical covariance matrix of X and diag(ΣX) is the d × d
matrix obtained from ΣX by replacing the off-diagonal elements by zero. To
preserve consistency, we set β̃ℓ,k(n) = diag(ΣX)−1/2β̂ℓ,k(n), where β̂ℓ,k(n) is

the last-step estimate of βℓ, and define Π̂k(n) as the solution to (2.5) with β̂ℓ

replaced by β̃ℓ,k(n). Furthermore, we add the small full-rank matrix Id+1/n

to
∑n
j=1

(
1
Xij

)(
1
Xij

)⊤
wij in (2.2).

In all examples presented below the number of replications is N = 250. The

mean loss erN = 1
N

∑
j erj and the standard deviation

√
1
N

∑
j(erj − erN )2

are reported, where erj = ‖Π̂(j) − Π∗‖ with Π̂(j) being the estimator of Π∗

for jth replication.

4.1. Choice of {ψℓ, ℓ ≤ L}. The set {ψℓ} plays an essential role in the
algorithm. The optimal choice of this set is an important issue that needs
further investigation. We content ourselves with giving one particular choice
which agrees with theory and leads to nice empirical results.

Let Sj, j ≤ d, be the permutation of the set {1, . . . , n} satisfying X
(j)
Sj(1)

≤
. . . ≤ X

(j)
Sj(n). Let S

−1
j be the inverse of Sj , i.e. Sj(S

−1
j (k)) = k for every

k = 1, . . . , n. Define {ψℓ} as the set of vectors

{(
cos

(2π(k−1)S−1

j
(1)

n

)
, . . . , cos

(2π(k−1)S−1

j
(n)

n

))⊤

(
sin
(2πkS−1

j
(1)

n

)
, . . . , sin

(2πkS−1

j
(n)

n

))⊤ , k ≤ [n/2], j ≤ d

}

normalized to satisfy
∑n
i=1 ψ

2
ℓ,i = n for every ℓ. It is easily seen that these

vectors satisfy conditions (3.7) and span({ψℓ}) = R
n, so the conclusion of
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Fig 1. (a) Average loss multiplied by
√

n versus n for the first step (full line) and the final
(dotted line) estimators provided by SAMM and for the estimator based on MAVE (broken
line) in Example 1, (b) (resp. (c)) Average loss versus d (resp. σ) for the first step (full
line) and the final (dotted line) estimators provided by SAMM and for the estimator based
on MAVE (broken line) in Example 2 (resp. Example 3).

Lemma 3.1 holds. Above, [n/2] is the integer part of n/2 and k and j are
positive integers.

Example 1 (Single-index). We set d = 5 and f(x) = g(ϑ⊤x) with

g(t) = 4|t|1/2 sin2(πt), and ϑ = (1/
√

5, 2/
√

5, 0, 0, 0)⊤ ∈ R
5.

We run SAMM and MAVE procedures on the data generated by the model

Yi = f(Xi) + 0.5 · εi,

where the design X is such that the coordinates (X
(j)
i , j ≤ 5, i ≤ n) are i.i.d.

uniform on [−1, 1], and the errors εi are i.i.d. standard Gaussian independent
of the design.

Table 1 contains the average loss for different values of the sample size n for
the first step estimator by SAMM, the final estimator provided by SAMM
and the estimator based on MAVE. We plot in Figure 1 (a) the average loss
normalized by the square rood of the sample size n versus n. It is clearly seen
that the iterative procedure improves considerably the quality of estimation
and that the final estimator provided by SAMM is

√
n-consistent. In this

example, MAVE method often fails to recover the EDR subspace. However,
the number of failures decreases very rapidly with increasing n. This is the
reason why the curve corresponding to MAVE in Figure 1 (a) decreases with
a strong slope.
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Table 1

Average loss ‖Π̂ − Π∗‖ of the estimators obtained by SAMM and MAVE
procedures in Example 1. The standard deviation is given in parentheses.

n 200 300 400 600 800

SAMM, 1st 0.443 0.329 0.271 0.215 0.155
(.211) (.120) (.115) (.095) (.079)

SAMM, Fnl 0.337 0.170 0.116 0.076 0.053
(.273) (.147) (.104) (.054) (.031)

MAVE 0.626 0.455 0.249 0.154 0.061
(.363) (.408) (.342) (.290) (.161)

Table 2

Average loss ‖Π̂ − Π∗‖ of the estimators obtained by SAMM and MAVE
procedures‘in Example 2. The standard deviation is given in parentheses.

d 4 6 8 10 12

SAMM 1st 0.154 0.242 0.296 0.365 0.421
(.063) (.081) (.071) (.087) (.095)

SAMM, Fnl 0.028 0.048 0.060 0.077 0.098
(.011) (.020) (.021) (.026) (.037)

MAVE 0.284 0.607 0.664 0.681 0.693
(.147) (.073) (.052) (.054) (.044)

Example 2. For d ≥ 2 we set f(x) = g(ϑ⊤x) with

g(x) = (x1 − x3
2)(x

3
1 + x2);

and ϑ1 = (1, 0, . . . , 0) ∈ R
d, ϑ2 = (0, 1, . . . , 0) ∈ R

d. We run SAMM and
MAVE procedures on the data generated by the model

Yi = f(Xi) + 0.1 · εi, i = 1, . . . , 300,

where the design X is such that the coordinates (X
(j)
i , j ≤ d, i ≤ n) are

i.i.d. uniform on [−40, 40], and the errors εi are i.i.d. standard Gaussian
independent of the design. The results of simulations for different values of
d are reported in Table 2.

As expected, we found that (cf. Figure 1(b)) the quality of SAMM deterio-
rated linearly in d as d increased. This agrees with our theoretical results.
It should be noted that in this case MAVE fails to find the EDR space.

Example 3. For d = 5 we set f(x) = g(ϑ⊤x) with

g(x) = (1 + x1)(1 + x2)(1 + x3)
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Table 3

Average loss ‖Π̂ − Π∗‖ of the estimators obtained by SAMM and MAVE
procedures in Example 3. The standard deviation is given in parentheses.

σ 200 150 100 50 25 10

SAMM 1st 0.227 0.177 0.141 0.119 0.113 106
(.092) (.075) (.055) (.051) (.048) (.043)

SAMM, Fnl 0.125 0.084 0.057 0.039 0.034 0.03
(.076) (.037) (.026) (.019) (.021) (.018)

MAVE 0.103 0.087 0.073 0.062 0.063 0.059
(.041) (.035) (.027) (.023) (.024) (.023)

and ϑ1 = (1, 0, 0, 0, 0), ϑ2 = (0, 1, 0, 0, 0), ϑ3 = (0, 0, 1, 0, 0). We run SAMM
and MAVE procedures on the data generated by the model

Yi = f(Xi) + σ · εi, i = 1, . . . , 250,

where the design X is such that the coordinates (X
(j)
i , j ≤ d, i ≤ n) are i.i.d.

uniform on [0, 20], and the errors εi are i.i.d. standard Gaussian independent
of the design.

Figure 1(c) shows that the qualities of both SAMM and MAVE deteriorate
linearly in σ, when σ increases. These results also demonstrate that, thanks
to an efficient bias reduction, the SAMM procedure outperforms MAVE
when stochastic error is small, whereas MAVE works better than SAMM in
the case of dominating stochastic error (that is when σ is large).

Example 4 (time series). Let now T1, . . . , Tn+6 be generated by the autore-
gressive model

Ti+6 = f(Ti+5, Ti+4, Ti+3, Ti+2, Ti+1, Ti) + 0.2 · εi, i = 1, . . . , n,

with initial variables T1, . . . , T6 being independent standard normal inde-
pendent of the innovations εi, which are i.i.d. standard normal as well. Let
now f(x) = g(ϑ⊤x) with

g(x) = −1 + 0.6x1 − cos(0.5πx2) + e−x
2

3,

ϑ1 = (1, 0, 0, 2, 0, 0)/
√

5,

ϑ2 = (0, 0, 1, 0, 0, 2)/
√

5,

ϑ3 = (−2, 2,−2, 1,−1, 1)/
√

15.

We run SAMM and MAVE procedures on the data (Xi, Yi), i = 1, . . . , 250,
where Yi = Ti+6 and Xi = (Ti, . . . , Ti+5)

⊤. The results of simulations re-
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Table 4

Average loss ‖Π̂ − Π∗‖ of the estimators obtained by SAMM and MAVE
procedures in Example 4. The standard deviation is given in parentheses.

n 300 400 500 600

SAMM, 1st 0.391 0.351 0.334 0.293
(.172) (.161) (.137) (.132)

SAMM, Fnl 0.220 0.186 0.174 0.146
(.119) (.123) (.102) (.089)

MAVE 0.268 0.231 0.209 0.182
(.209) (.170) (.159) (.122)

ported in Table 4 show that the qualities of SAMM and MAVE are compa-
rable, with SAMM being slightly more performant.

Appendix. Since the proof of the main result is carried out in several
steps, we give a short road map for guiding the reader throughout the proof.
The main idea is to evaluate the accuracy of the first step estimators of βℓ
and, given the accuracy of the estimator at the step k, evaluate the accuracy
of the estimators at the step k + 1. This is done in Subsections 4.2 and 4.3.
These results are based on a maximal inequality proved in Subsection 4.5
and on some properties of the solution to (2.5) proved in Subsection 4.6. The
proof of Theorem 3.1 is presented in Subsection 4.4, while some technical
lemmas are postponed to Subsection 4.7.

4.2. The accuracy of the first-step estimator. Since at the first step no in-
formation about the EDR subspace is available, we use the same bandwidth
in all directions, that is the local neighborhoods are balls (and not ellipsoids)
of radius h. Therefore the first step estimator β̂1,ℓ of the vector β∗ℓ is the
same as the one used in [15].

Proposition 4.1. Under assumptions (A1),(A3), (A4) and (3.7), for ev-
ery ℓ ≤ L,

|β̂1,ℓ − βℓ| ≤ h1Cg
√

2CV +
ξ1,ℓ
h1

√
n
,

where ξ1,ℓ is a zero mean normal vector verifying E|ξ1,ℓ|2 ≤ 2dσ2CV CKψ̄
2.

Proof. Since at the first iteration we take S1 = I, the inequality |S1Xij | ≤
h1 implies that |Π∗Xij | ≤ |Xij | ≤ h1. Therefore the bias term |P ∗

1 (Eβ̂1,ℓ −
βℓ)| is bounded by h1Cg

√
CV (cf. the proof of Proposition 4.2).
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For the stochastic term, we set ξ1,ℓ = h1
√
n(β̂1,ℓ − Eβ̂1,ℓ). By Lemma 4.4,

we have E|P ∗
1 ξ1,ℓ|2 ≤ dσ2CVCK ψ̄

2. The assertion of the proposition follows
now from P ∗

1 = (I + ρ−2
1 Π∗)−1/2 � I/

√
2.

Corollary 4.1. If nL ≥ 6 and the assertions of Proposition 4.1 hold,
then

P

(
max
ℓ

|β̂1,ℓ − βℓ| ≥ h1Cg
√
CV +

2
√

2dCV CK log(nL)σψ̄

h1
√
n

)
≤ 1

n
.

Remark 4.1. In order that the kernel estimator of ∇f(x) be consistent,
the ball centered at x with radius h1 should contain at least d points from
{Xi, i = 1, . . . , n}. If the design is regular, this means that h1 is at least of
order n−1/d. The optimization of the risk of β̂1,ℓ with respect to h1 verifying
h1 ≥ n−1/d leads to the choice h1 = Const.n−1/(4∨d).

4.3. One step improvement. At the kth step of iteration, we have at our
disposal a symmetric matrix Π ∈ Md×d belonging to the set

Pδ(Π
∗) =

{
Π ∈ Md×d : tr Π ≤ m∗, 0 � Π � I, tr(I − Π)Π∗ ≤ δ2

}

Thus the matrix Π is the kth step approximation of the projector Π∗ onto the
EDR subspace S∗. Using this approximation, we construct the new matrix
Π̂ in the following way: Set SΠ,ρ = (I + ρ−2Π)1/2, PΠ,ρ = S−1

Π,ρ and define
the estimator of the regression function and its gradient at the design point
Xi as follows:

(
f̂Π(Xi)

∇̂fΠ(Xi)

)
= Vi(Π)−1

n∑

j=1

Yj

(
1
Xij

)
wij(Π),

where wij(Π) = K
(
h−2|SΠ,ρXij |2

)
and

Vi(Π) =
n∑

j=1

(
1
Xij

)(
1
Xij

)⊤
wij(Π).

To state the next result, we need some additional notation. Set Zij =
(hP ∗

ρ )−1Xij , U = P ∗
ρS

2
Π,ρP

∗
ρ and U∗ = I, where P ∗

ρ = PΠ∗,ρ = (I − Π∗) +
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ρ(1 + ρ2)−1/2 Π∗. In this notation, we obtain

(
h−1f̂Π(Xi)

P ∗
ρ ∇̂fΠ(Xi)

)
=

(
h−1 0
0 P ∗

ρ

)
Vi(Π)−1

n∑

j=1

Yj

(
1
Xij

)
wij(Π)

=
1

h

(
1 0
0 hP ∗

ρ

)
Vi(Π)−1

(
1 0
0 hP ∗

ρ

)
n∑

j=1

Yj

(
1
Zij

)
wij(Π)

= h−1Ṽi(U)−1
n∑

j=1

Yj

(
1
Zij

)
wij(U)

where wij(U) = K
(
Z⊤
ijUZij

)
and

Ṽi(U) =
n∑

j=1

(
1
Zij

)(
1
Zij

)⊤
wij(U).

Set Ni(U) =
∑
j wij(U) and α = 2δ2ρ−2 + 2δρ−1.

Proposition 4.2. If (A1)-(A4) are fulfilled then there exist Gaussian vec-
tors ξ∗1 , . . . , ξ

∗
L ∈ R

d such that E[|ξ∗ℓ |2] ≤ c20σ
2 and

P

(
sup
Π,ℓ

∣∣∣P ∗
ρ (β̂ℓ,Π − βℓ) −

ξ∗ℓ
h
√
n

∣∣∣ ≥
√
CV Cg(ρ+ δ)2h+

c1σαtn
h
√
n

)
≤ 2

n
,

where the sup is taken over Π ∈ Pδ, ℓ = 1, . . . , L and we used the notation

tn = 5+
√

3 log(Ln) + 3
2d

2 log n, c0 = ψ̄
√
dCKCV and c1 = 30ψ̄(C2

wC
4
V C

2
K+

C2
V C

2
K ′)1/2.

Proof. Let us start with evaluating the bias term |P ∗
ρ (Eβ̂ℓ,Π − βℓ)|. Ac-

cording to the Cauchy-Schwarz inequality, it holds

∣∣P ∗
ρ

(
Eβ̂ℓ,Π − βℓ

)∣∣2 = n−2

∣∣∣∣
n∑

i=1

P ∗
ρ

(
E[∇̂fΠ(Xi)] −∇f(Xi)

)
ψℓ(Xi)

∣∣∣∣
2

≤ 1

n2

n∑

i=1

∣∣P ∗
ρ

(
E[∇̂fΠ(Xi)] −∇f(Xi)

)∣∣2
n∑

i=1

ψ2
l (Xi)

≤ max
i=1,...,n

∣∣P ∗
ρ

(
E[∇̂fΠ(Xi)] −∇f(Xi)

)∣∣2.
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Simple computations show that
∣∣P ∗
ρ

(
E[∇̂fΠ(Xi)] −∇f(Xi)

)∣∣

≤
∣∣∣∣∣E
(
h−1f̂Π(Xi)

P ∗
ρ ∇̂fΠ(Xi)

)
−
(
h−1f(Xi)

P ∗
ρ∇f(Xi)

) ∣∣∣∣∣

= h−1

∣∣∣∣∣Ṽ
−1
i

n∑

j=1

f(Xj)

(
1
Zij

)
wij(U) −

(
h−1f(Xi)

P ∗
ρ∇f(Xi)

) ∣∣∣∣∣

= h−1
∣∣∣Ṽ −1
i

n∑

j=1

rij

(
1
Zij

)
wij(U)

∣∣∣ := b(Xi),

where rij = f(Xj) − f(Xi) − X⊤
ij∇f(Xi). Define λj = h−1rij

√
wij(U) and

vj = Ṽ
−1/2
i

(
1
Zij

)√
wij(U). Then

b(Xi) =

∣∣∣∣Ṽ
−1/2
i

n∑

j=1

λjvj

∣∣∣∣ ≤
∥∥Ṽ −1/2

i

∥∥ · |λ| ·
∥∥∥∥
n∑

j=1

vjv
⊤
j

∥∥∥∥
1/2

.

The identity
∑
j vjv

⊤
j = Id+1 implies

b(Xi)
2 ≤ 1

h2

∥∥∥Ṽ −1/2
i

∥∥∥
2
·
n∑

j=1

r2ijwij(U)

≤ h−2 max
j
r2ij

∥∥∥Ṽ −1
i

∥∥∥ ·
n∑

j=1

wij(U)

≤ CV h
−2 max

j
r2ij ,

where the maximum of rij is taken over the indices j satisfying wij(U) 6=
0. Since the weights wij are defined via the kernel function K vanishing
on the interval [1,∞[, we havemaxj rij = max{rij : |SΠ,ρXij | ≤ h}. By
Corollary 4.3 |SΠ,ρXij | ≤ h implies |Π∗Xij | ≤ (ρ+ δ)h. Let us denote by Θ
the (d×m∗) matrix having ϑk as kth column. Then Π∗ = ΘΘ⊤ and therefore

|rij | = |f(Xj) − f(Xi) −X⊤
ij∇f(Xi)|

= |g(Θ⊤Xj) − g(Θ⊤Xi) − (Θ⊤Xij)
⊤∇g(Θ⊤Xi)|

≤ Cg|Θ⊤Xij |2 ≤ Cg(ρ+ δ)2h2.

These estimates yield |b(Xi)| ≤
√
CV Cg(ρ+ δ)2h, and consequently,

∣∣P ∗
ρ

(
Eβ̂ℓ,Π − βℓ

)∣∣ ≤ max
i
b(Xi) ≤

√
CV Cg(ρ+ δ)2h. (4.1)
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Let us treat now the stochastic term P ∗
ρ

(
β̂ℓ,Π − β∗l

)
. It can be bounded as

follows

∣∣P ∗
ρ

(
β̂ℓ,Π − Eβ̂ℓ,Π

)∣∣ ≤
∣∣∣∣
n∑

j=1

cj,ℓ(U) εj

∣∣∣∣,

where

cj,ℓ(U) =
1

hn

n∑

i=1

Ṽ −1
i (U)

(
1
Zij

)
wij(U)ψℓ(Xi).

Let us define ξ∗ℓ = h
√
nP ∗

ρ (β̂ℓ,Π∗ −E[β̂ℓ,Π∗]). In view of Lemma 4.4, we have
E[|ξ∗ℓ |2] ≤ nh2σ2∑

j |cj,ℓ(U∗)|2 ≤ c20σ
2.

One checks that for any ℓ = 1, . . . , L and for any Π such that tr(I−Π)Π∗ ≤
δ2, it holds

∣∣∣P ∗
ρ (β̂ℓ,Π − E[β̂ℓ,Π]) − ξ∗ℓ

h
√
n

∣∣∣ ≤ sup
‖U−U∗‖2≤α

∣∣∣∣
n∑

j=1

(
cj,ℓ(U) − cj,ℓ(U

∗)
)
εj

∣∣∣∣.

Set aj,ℓ(U) = cj,ℓ(U)− cj,ℓ(U∗). Lemma 4.5 implies that Proposition 4.3 can
be applied with κ0 = c1α

h
√
n

and κ1 = c1
h
√
n
. Setting ǫ = 2α/

√
n we get that

the probability of the event

{
sup
U,ℓ

∣∣∣∣
n∑

j=1

(
cj,ℓ(U) − cj,ℓ(U

∗)
)
εj

∣∣∣∣ ≥
c1σα(5 +

√
3 log(Ln) + 3d2 log(

√
n))

h
√
n

}

is less than 2/n. This completes the proof of the proposition.

Corollary 4.2. If nL ≥ 6 and the assumptions of Proposition 4.2 are
fulfilled, then

P

(
sup
ℓ,Π

∣∣P ∗
ρ (β̂ℓ,Π − βℓ)

∣∣ ≥
√
CV Cg(ρ+ δ)2h+

σ(zc0 + c1αtn)

h
√
n

)
≤ Lze−

z2
−1

2 .

In particular, if nL ≥ 6, the probability of the event

{
sup
ℓ,Π

∣∣P ∗
ρ (β̂ℓ,Π − βℓ)

∣∣ ≥
√
CV Cg(ρ+ δ)2h+

σ(2c0
√

log(Ln) + c1αtn)

h
√
n

}

does not exceed 3/n, where sup is taken over all Π ∈ Pδ(Π
∗), ℓ = 1, . . . , L

and c0, c1, tn are defined in Proposition 4.2 and in Theorem 3.1.
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Proof. In view of Lemma 7 in [16] and Lemma 4.4 , we have

P
(

max
ℓ=1,...,L

∣∣ξ∗ℓ
∣∣ ≥ zc0σ

) ≤
L∑

ℓ=1

P
(∣∣ξ∗ℓ

∣∣ ≥ zc0σ
) ≤ Lze−(z2−1)/2.

The choice z =
√

4 log(nL) leads to the desired inequality provided that
nL ≥ 6.

4.4. Proof of Theorem 3.1. Recall that at the first step we use the following
values of parameters: Π̂0 = 0, ρ1 = 1 and h1 = n−1/(d∨4). Let us denote

γ1 = h1Cg
√
CV +

2
√

2dCV CK log(nL)σψ̄

h1
√
n

, δ1 = 2γ1

√
µ∗,

and introduce the event Ω1 = {maxℓ |β̂1,ℓ − βℓ| ≤ γ1}. According to Corol-
lary 4.1 the probability of the event Ω1 is at least 1 − n−1. In view of
Proposition 4.5, we get P(tr(I − Π̂1)Π

∗ ≤ δ21) ≥ 1 − n−1.

For any integer k ∈ [2, k(n)] (where k(n) is the total number of iterations),
we define

ρk = aρρk−1, hk = ahhk−1, αk =
2δk−1

ρk

(
δk−1

ρk
+ 1

)
,

γk =





Cg
√
CV (ρk + δk−1)

2hk +
σ(2c0

√
log(nL) + c1αktn)

hk
√
n

, k < k(n),

Cg
√
CV (ρk + δk−1)

2hk +
σ(zc0 + c1αktn)

hk
√
n

, k = k(n),

ζk = 2µ∗(γ2
kρ

−2
k +

√
2 γkρ

−1
k Cg),

δk = 2γk
√
µ∗/

√
1 − ζk,

Ωk = {max
ℓ

|P ∗
k (β̂k,ℓ − βℓ)| ≤ γk}.

Here β̂k,ℓ = 1
n

∑n
i=1 ∇̂f

(k)
(Xi)ψℓ(Xi) with


 f̂ (k)(Xi)

∇̂f (k)
(Xi)


 =

( n∑

j=1

(
1
Xij

)(
1
Xij

)⊤
w

(k)
ij

)−1 n∑

j=1

Yj

(
1
Xij

)
w

(k)
ij ,

and w
(k)
ij = K

(
h−2
k |(I + ρ−2

k Π̂k−1)
1/2Xij |2

)
.
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Combining Lemmas 4.6 and 4.7, we obtain P(tr(I − Π̂k−1)Π
∗ > δ2k−1) ≤

P(Ωc
k−1) and therefore, using Corollary 4.2, we get

P
(
Ωc
k

) ≤ P
(

max
ℓ

|P ∗
k (β̂k,ℓ − βℓ)| > γk, tr(I − Π̂k−1)Π

∗ ≤ δ2k−1

)
+ P

(
Ωc
k−1

)

≤ P
(

sup
Π∈Pm∗,δk−1

max
ℓ

|P ∗
k (β̂k,ℓ − βℓ)| > γk

)
+ P

(
Ωc
k−1

)

≤ 3

n
+ P

(
Ωc
k−1

)
, k ≤ k(n) − 1.

Since P(Ωc
1) ≤ 1/n, it holds P(Ωc

k(n)−1) ≤ (3k(n) − 5)/n and P(Ωc
k(n)) ≤

Lze−(z2−1)/2 + 3k(n)−5
n . Lemma 4.7 implies that

P
(
tr(I − Π̂k(n))Π

∗ > δ2k(n)

) ≤ Lze−(z2−1)/2 +
3k(n) − 5

n
.

According to Lemma 4.6, we have δk(n)−2 ≤ ρk(n)−1, αk(n)−1 ≤ 4 and
ζk(n)−1 ≤ 1/2. Consequently, for n sufficiently large, we have

δk(n)−1 =
2
√
µ∗γk(n)−1√

1 − ζk(n)−1

≤ C

(
log(Ln)

n

)1/2

∨ n−2/3∨m∗

and αk(n) ≤ 4δk(n)−1ρ
−1
k(n) ≤ C[(

√
log(Ln)(ρk(n)

√
n)−1) ∨ n−1/3∨m∗

]. Since

hk(n) = 1 and (nρk(n))
−1 ≤ ρ2

k(n) = n−2/(3∨m∗), we infer that

γk(n) = Cg
√
CV (ρk(n) + δk(n)−1)

2 +
σ(zc0 + c1αk(n)tn)√

n

≤ Ct2nn
−2/(3∨m∗) +

c0σ z√
n
.

Therefore ζn := ζk(n) = O(γk(n)ρ
−1
k(n)) tends to zero as n → ∞ at least as

fast as
√

log(nL)n−1/(6∨m∗) and the assertion of the theorem follows from
the definition of δk(n) and Lemma 4.2 (see below).

4.5. Maximal inequality. The following result contains a well known maxi-
mal inequality for the maximum of a Gaussian process. We include its proof
for the completeness of exposition.
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Proposition 4.3. Let r be a positive number and let Γ be a finite set. Let
functions aj,γ : R

p → R
d obey the conditions

sup
γ∈Γ

sup
|u−u∗|≤r

n∑

j=1

|aj,γ(u)|2 ≤ κ2
0, (4.2)

sup
γ∈Γ

sup
|u−u∗|≤r

sup
e∈Sd−1

n∑

j=1

∣∣∣∣
d

du
(e⊤aj,γ(u))

∣∣∣∣
2

≤ κ2
1. (4.3)

If the εj ’s are independent N (0, σ2)-distributed random variables, then

P

(
sup
γ∈Γ

sup
|u−u∗|≤r

∣∣∣∣
n∑

j=1

aj,γ(u) εj

∣∣∣∣ > tσκ0 + 2
√
nσκ1ǫ

)
≤ 2

n
,

where t =
√

3 log(|Γ|(2r/ǫ)pn).

Proof. Let Br be the ball {u : |u − u∗| ≤ r} ⊂ R
p and Σr,ǫ be the ǫ-net

on Br such that for any u ∈ Br there is an element ul ∈ Σr,ǫ such that
|u− ul| ≤ ǫ. It is easy to see that such a net with cardinality Nr,ǫ < (2r/ǫ)p

can be constructed. For every u ∈ Br we denoteηγ(u) =
∑n
j=1 aj,γ(u) εj .

Since E(|ηγ(u)|2) ≤ σ2κ2
0 for any γ and for any u, we have

P
(|ηγ(ul)| > tσκ0

) ≤ P
(
|ηγ(ul)| > t

√
E(|ηγ(ul)|2)

)
≤ te−(t2−1)/2.

Thus we get

P
(

sup
γ∈Γ

sup
ul∈Σr,ǫ

∣∣ηγ(ul)
∣∣ > tσκ0

)
≤
∑

γ∈Γ

Nr,ǫ∑

l=1

P
(∣∣ηγ(ul)

∣∣ > tσκ0

)

≤ |Γ|Nr,ǫte
−(t2−1)/2.

Hence, if t =
√

3 log(|Γ|Nr,ǫn), then P
(

supγ∈Γ supul∈Σr,ǫ

∣∣ηγ(ul)
∣∣ > tσκ0

)
≤

1/n. On the other hand, for any u, u′ ∈ Br the Cauchy-Schwarz inequality
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yields

∣∣ηγ(u) − ηγ(u
′)
∣∣2 = sup

e∈Sd−1

∣∣e⊤(ηγ(u) − ηγ(u
′)
)∣∣2

≤ |u− u′|2 · sup
u∈Br

sup
e∈Sd−1

∣∣∣∣
d(e⊤ηγ)
du

(u)

∣∣∣∣
2

= |u− u′|2 · sup
u∈Br

sup
e∈Sd−1

∣∣∣∣
n∑

j=1

d(e⊤aj,γ)
du

(u) εj

∣∣∣∣
2

≤ |u− u′|2 · sup
u∈Br

sup
e∈Sd−1

n∑

j=1

∣∣∣∣
d(e⊤aj,γ)

du
(u)

∣∣∣∣
2 n∑

j=1

ε2j

≤ κ2
1|u− u′|2

n∑

j=1

ε2j .

Since P
(∑n

j=1 ε
2
j > 4nσ2

)
is certainly less than n−1, we have

P
(

sup
γ∈Γ

sup
u∈Br

∣∣ηγ(u)
∣∣ > tσκ0 + 2

√
nσκ1ǫ

)

≤ P
(

sup
γ∈Γ

sup
ul∈Σr,ǫ

|ηγ(ul)|
tσκ0

> 1
)

+ P
(

sup
γ∈Γ

sup
u∈Br

|ηγ(u) − ηγ(ul(u))|
2
√
nσκ1ǫ

> 1
)

≤ 1

n
+ P

(
sup
u∈Br

κ2
1|u− ul(u)|2

n∑

j=1

ε2j > 4nσ2κ2
1ǫ

2
)
≤ 2

n
,

and the assertion of proposition follows.

4.6. Properties of the solution to (2.5). We collect below some simple facts
concerning the solution to the optimization problem (2.5). By classical ar-
guments, it is always possible to choose a measurable solution Π̂ to (2.5).
This measurability will be assumed in the sequel.

In Proposition 4.4 the case of general m (not necessarily equal to m∗) is
considered. As we explain below, this generality is useful for further de-
velopments of the method extending it to the case of unknown structural
dimension m∗.

The vectors βℓ are assumed to belong to a m∗-dimensional subspace S of
R
d, but in this subsection we do not assume that βℓs are defined by (2.3).

In fact, we will apply the results of this subsection to the vectors Π∗β̂ℓ.
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Denote

R(Π) = max
ℓ
β̂⊤ℓ (I − Π)β̂ℓ,

R̂(m) = min
Π∈Am

√
R(Π) =

√
R(Π̂m).

We also define

R∗(m) = min
Π∈Am

max
ℓ

|(I − Π)1/2βℓ|.

and denote by Π∗
m a minimizer of maxℓ β

⊤
ℓ (I −Π)βℓ over Π ∈ Am. Since for

m ≥ m∗ the projector Π∗ is in Am, we have Π∗
m = Π∗ and R∗(m) = 0.

Proposition 4.4. Let B∗ =
{
β̄ =

∑
ℓ cℓβℓ :

∑
ℓ |cℓ| ≤ 1

}
be the convex hull

of vectors βℓ. If maxℓ |β̂ℓ − βℓ| ≤ ε, then

R̂(m) ≤ R∗(m) + ε,

max
β̄∈B∗

|(I − Π̂m)1/2β̄| ≤ R∗(m) + 2ε.

When m < m∗, we have also the lower bound R̂(m) ≥ (R∗(m) − ε)+.

Proof. For every ℓ ∈ 1, . . . , L, we have

|(I − Π∗
m)1/2β̂ℓ| ≤ |(I − Π∗

m)1/2βℓ| + |(I − Π∗
m)1/2(β̂ℓ − βℓ)|

≤ R∗(m) + |β̂ℓ − βℓ| ≤ R∗(m) + ε.

Since Π̂m minimizes maxℓ |(I − Π)1/2β̂ℓ| over Π ∈ Am, we have

max
ℓ

|(I − Π̂m)1/2β̂ℓ| ≤ max
ℓ

|(I − Π∗
m)1/2β̂ℓ| ≤ R∗(m) + ε.

Denote A = (I − Π̂m)1/2. From definition 0 � A � I. Therefore, for every ℓ

|Aβℓ| ≤ |Aβ̂ℓ| + |A(βℓ − β̂ℓ)| ≤ |Aβ̂ℓ| + |βℓ − β̂ℓ| ≤ R∗(m) + 2ε.

The second inequality of the proposition follows now from |Aβ̄| ≤ maxℓ |Aβℓ|
for every β̄ ∈ B∗.

To prove the last assertion, remark that according to the definition of R∗(m),
for every matrix Π ∈ Am there exists an index ℓ such that |(I − Π)1/2βℓ| ≥
R∗(m). In particular, |(I − Π̂m)1/2βℓ| ≥ R∗(m) for some ℓ and hence |(I −
Π̂m)1/2β̂ℓ| ≥ |(I − Π̂m)1/2βℓ| − |β̂ℓ − βℓ| ≥ R∗(m) − ε.
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Proposition 4.4 can be used for estimating the structural dimension m. In-
deed, R̂(m) ≤ ε form ≥ m∗ and the results mean that R̂(m) ≥ (R∗(m)−ε)+
for m < m∗. Therefore, it is natural to search for the smallest value m̂ of m
such that the function R̂(m) does not significantly decrease for m ≥ m̂.

From now on, we assume that the structural dimension m∗ is known and
write Π̂ instead of Π̂m∗ .

Proposition 4.5. If the vectors βℓ satisfy (A2) and maxℓ |β̂ℓ − βℓ| ≤ ε,
then tr(I − Π̂)Π∗ ≤ 4ε2µ∗ and tr[(Π̂ − Π∗)2] ≤ 8ε2µ∗.

Proof. In view of the relations tr Π̂2 ≤ tr Π̂ ≤ m∗ and tr(Π∗)2 = tr Π∗ =
m∗, we have

tr(Π̂ − Π∗)2 = tr(Π̂2 − Π∗) + 2 tr(I − Π̂)Π∗ ≤ 2| tr(I − Π̂)Π∗|.

Note also that the equality tr(I − Π̂)Π∗ = tr(I − Π̂)1/2Π∗(I − Π̂)1/2 implies
that tr(I − Π̂)Π∗ ≥ 0. Now condition (3.2) and Proposition 4.4 imply

tr(I − Π̂)Π∗ = tr(I − Π̂)1/2Π∗(I − Π̂)1/2

≤
m∗∑

k=1

µk tr(I − Π̂)1/2β̄kβ̄
⊤
k (I − Π̂)1/2

≤
m∗∑

k=1

µkβ̄
⊤
k (I − Π̂)β̄k ≤ (2ε)2

m∗∑

k=1

µk

and the assertion follows.

Lemma 4.1. Let tr(I − Π̂)Π∗ ≤ δ2 for some δ < 1. Then for any x ∈ R
d

|Π∗x| ≤ |Π̂1/2x| + δ|x|.

Proof. Denote Â = Π̂1/2. It obviously holds |Π∗x| ≤ |Π∗Âx|+ |Π∗(I− Â)x|
and

|Π∗(I − Â)x|2 ≤ ‖Π∗(I − Â)‖2
2 · |x|2 ≤ tr[Π∗(I − Â)2Π∗] · |x|2.

For every Π ∈ Am, it obviously holds (I −Π1/2)2 = I − 2Π1/2 + Π � I −Π,
and hence, tr Π∗(I − Π1/2)2Π∗ ≤ tr Π∗(I − Π)Π∗. Therefore,

tr Π∗(I − Â)2Π∗ ≤ tr Π∗(I − Π̂)Π∗ = tr(I − Π̂)Π∗ ≤ δ2

yielding |Π∗x| ≤ |Π∗Âx| + δ|x| ≤ |Âx| + δ|x| as required.
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Corollary 4.3. Let ρ ∈ (0, 1), and Ŝρ = (I + ρ−2Π̂)1/2. If tr(I − Π̂)Π∗ ≤
δ2, then for any x ∈ R

d, the condition |Ŝρx| ≤ h implies |Π∗x| ≤ (ρ+ δ)h.

Proof. The result follows from Lemma 4.1 and the obvious inequalities
|x| ≤ |Ŝρx| ≤ h and |Π̂1/2x| ≤ ρ|Ŝρx| ≤ ρh.

Lemma 4.2. Let tr(I − Π̂)Π∗ ≤ δ2 for some δ ∈ [0, 1[ and let Π̂m∗ be
the orthogonal projection matrix in R

d onto the subspace spanned by the
eigenvectors of Π̂ corresponding to its largest m∗ eigenvalues. Then tr(I −
Π̂m∗)Π∗ ≤ δ2/(1 − δ2).

Proof. Let λ̂j and ϑ̂j, j = 1, . . . , d be respectively the eigenvalues and the

eigenvectors of Π̂. Assume that λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂d. Then Π̂ =
∑d
j=1 λ̂j ϑ̂jϑ̂

⊤
j

and Π̂m∗ =
∑m∗

j=1 ϑ̂jϑ̂
⊤
j . Moreover,

∑d
j=1 ϑ̂jϑ̂

⊤
j = I since {ϑ̂1, . . . , ϑ̂d} is an

orthonormal basis of R
d, Therefore, on the one hand,

tr[Π̂Π∗] ≤
∑

j≤m∗

λ̂j tr[ϑ̂j ϑ̂
⊤
j Π∗] + λ̂m∗

∑

j>m∗

tr[ϑ̂j ϑ̂
⊤
j Π∗]

=
∑

j≤m∗

(λ̂j − λ̂m∗) tr[ϑ̂jϑ̂
⊤
j Π∗] + λ̂m∗ tr

[ d∑

j=1

ϑ̂jϑ̂
⊤
j Π∗

]

=
∑

j≤m∗

(λ̂j − λ̂m∗) tr[ϑ̂jϑ̂
⊤
j Π∗] +m∗λ̂m∗ .

Since tr[ϑ̂j ϑ̂
⊤
j Π∗] = |Π∗ϑ̂j|2 ≤ 1, we get tr[Π̂Π∗] ≤ ∑

j≤m∗ λ̂j. Taking into

account the relations
∑
j≤d λ̂j ≤ m∗, tr Π∗ = m∗ and (1−λ̂m∗+1)(I−Π̂m∗) �

I − Π̂, we get λm∗+1 ≤ m∗ −∑j≤m∗ λ̂j ≤ tr[(I − Π̂)Π∗] ≤ δ2 and therefore

tr[(I − Π̂m∗)Π∗] ≤ δ2/(1 − λ̂m∗+1) ≤ δ2/(1 − δ2).

4.7. Technical lemmas. This subsection contains five technical results. The
first three lemmas have been used in the proof of Proposition 4.2, whereas
the two last lemmas have been used in the proof of Theorem 3.1.

Lemma 4.3. If ρ ≤ 1, then ‖U − U∗‖2 ≤ α.

Proof. The inequality P ∗
ρ � (I − Π∗) + ρΠ∗ implies that

ρ2
∥∥U − U∗∥∥

2
=
∥∥P ∗

ρ (Π − Π∗)P ∗
ρ

∥∥
2

≤ ρ2
∥∥Π∗(Π − Π∗)Π∗∥∥

2
+
∥∥(I − Π∗)(Π − Π∗)(I − Π∗)

∥∥
2

+ 2ρ
∥∥Π∗(Π − Π∗)(I − Π∗)

∥∥
2
.
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Since ‖A‖2
2 = trAA⊤ ≤ (tr(AA⊤)1/2)2 for any matrix A, it holds

∥∥Π∗(Π − Π∗)Π∗∥∥
2

=
∥∥Π∗(I − Π)Π∗∥∥

2

≤ tr Π∗(I − Π)Π∗ = tr(I − Π)Π∗ ≤ δ2.

By similar arguments one checks that

∥∥(I − Π∗)(Π − Π∗)(I − Π∗)
∥∥
2

=
∥∥(I − Π∗)Π(I − Π∗)

∥∥
2
≤ tr(I − Π∗)Π

= tr Π − tr Π∗ + tr Π∗(I − Π)

≤ m∗ −m∗ + δ2,
∥∥Π∗(Π − Π∗)(I − Π∗)

∥∥
2
≤
∥∥Π∗(Π − Π∗)

∥∥
2

=
∥∥Π∗(I − Π)

∥∥
2

≤
∥∥Π∗(I − Π)1/2

∥∥
2
≤ (tr Π∗(I − Π)Π∗)1/2

= (tr(I − Π)Π∗)1/2 ≤ δ.

Thus we get
∥∥U −U∗∥∥

2
≤ δ2(1+ ρ−2)+2δρ−1. The assumption ρ ≤ 1 yields

the assertion of the lemma.

Lemma 4.4. If ψℓs and U satisfy (A3) and (3.7), then

n∑

j=1

|cj,ℓ(U)|2 ≤ dCKCV ψ̄
2

h2n
.

Proof. Simple computations yield

n∑

j=1

∣∣∣∣Ṽ
−1
i

(
1
Zij

)∣∣∣∣
2

wij = tr(Ṽ −1
i ) ≤ dCV

Ni
. (4.4)

Hence, we have

n∑

j=1

|cj,ℓ|2 =
1

h2n2

n∑

j=1

∣∣∣∣
n∑

i=1

Ṽ −1
i

(
1
Zij

)
wij ψℓ(Xi)

∣∣∣∣
2

≤ ψ̄2

h2n2

n∑

j=1

( n∑

i=1

wij
Ni

)( n∑

i=1

∣∣∣∣Ṽ
−1
i

(
1
Zij

)∣∣∣∣
2

Niwij

)

≤ CKψ̄
2

h2n2

n∑

j=1

n∑

i=1

∣∣∣∣Ṽ
−1
i

(
1
Zij

)∣∣∣∣
2

Niwij .

Interchanging the order of summation and using inequality (4.4) we get the
desired result.
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Lemma 4.5. If (A3) and (3.7) are fulfilled, then, for any j = 1, . . . , n,

sup
U

sup
e∈Sd−1

∣∣∣∣
d

dU
(e⊤cj,ℓ)(U)

∣∣∣∣
2

≤ C

(
C2
wC

4
V C

2
Kψ̄

2

n2h2
+
C2
V C

2
K ′ψ̄2

n2h2

)
,

where C is a numerical constant and d
dU (e⊤cj,ℓ)(U) is the d× d matrix with

entries
∂ e

⊤cj,ℓ(U)
∂Upq

.

Proof. We have

∥∥∥∥
de⊤cj,ℓ(U)

dU

∥∥∥∥
2

2

≤ 2

∥∥∥∥
1

hn

n∑

i=1

[
d

dU
e⊤Ṽ −1

i (U)

(
1
Zij

)]
wij(U)ψℓ(Xi)

∥∥∥∥
2

2

+ 2

∥∥∥∥
1

hn

n∑

i=1

e⊤Ṽ −1
i (U)

(
1
Zij

)
dwij(U)

dU
ψℓ(Xi)

∥∥∥∥
2

2

= ∆1 + ∆2.

One checks that ‖dwij(U)/dU‖2 = |w′
ij(U)| · |Zij |2 ≤ 5|w′

ij(U)|, where we

used the notation w′
ij(U) = K ′(Z⊤

ijUZij) and the inequality

h2|Zij |2 = |S∗
ρXij|2 = |(I − Π∗)Xij |2 + 2ρ−2|Π∗Xij |2

≤ h2 + 2(δ/ρ + 1)2h2 ≤ 5h2,

which follows from Lemma 4.1. We get

∆2 ≤ 50ψ̄2

n2h2

( n∑

i=1

∣∣∣Ṽ −1
i (U)

(
1
Zij

)
w′
ij(U)

∣∣∣
)2

≤ Cψ̄2C2
V C

2
K ′

n2h2
.

In order to estimate the term ∆1, remark that the differentiation (with
respect to Upq) of the identity Ṽ −1

i (U)Ṽi(U) = Id+1 yields

∂Ṽ −1
i

∂Upq
(U) = −Ṽ −1

i (U)
∂Ṽi
∂Upq

(U)Ṽ −1
i (U).

Simple computations show that

∂Ṽi
∂Upq

(U) =
n∑

j=1

(
1
Zij

)(
1
Zij

)⊤ ∂

∂Upq
wij(U)

=
n∑

j=1

(
1
Zij

)(
1
Zij

)⊤
w′
ij(U)(Zij)p(Zij)q.
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Hence, for any a1, a2 ∈ R
d+1,

da⊤1 Ṽ
−1
i a2

dU
(U) =

n∑

j=1

a⊤1 Ṽ
−1
i (U)

(
1
Zij

)(
1
Zij

)⊤
Ṽ −1
i (U)a2 w

′
ij(U)ZijZ

⊤
ij .

This relation combined with the estimate |Zij | ≤ 5 for all i, j such that
wij 6= 0, implies the norm estimate

∥∥∥∥
da⊤1 Ṽ

−1
i a2

dU
(U)

∥∥∥∥
2

≤ 25
n∑

j=1

∣∣∣∣a⊤1 Ṽ
−1
i (U)

(
1
Zij

)(
1
Zij

)⊤
Ṽ −1
i (U)a2 w

′
ij(U)

∣∣∣∣

≤ 150|a1| |a2|
n∑

j=1

∥∥Ṽ −1
i (U)

∥∥2|w′
ij(U)|

≤ 150CwC
2
V |a1| |a2|Ni(U)−1.

It leads to the estimate ∆1 ≤ C
C2

wC
4

V
C2

K
ψ̄2

n2h2 , and the assertion of the lemma
follows.

Lemma 4.6. There exists an integer n0 ≥ 0 such that, as soon as n ≥ n0,
δk−1 ≤ ρk, αk ≤ 4 and ζk ≤ 1/2 for all k ∈ {2, . . . , k(n)}.

Proof. In view of C0n
−1/(d∨4) = ρ1h1 and ρk(n)hk(n) ≥ C2n

−1/3, the se-
quence

sn = 4
√
CV Cgh1 +

4σ(c0
√

log(Ln) + c1tn)√
n ρk(n)hk(n)

tends to zero as n→ ∞.

We do now an induction on k. Since sn → 0 as n → ∞ and γ1 ≤ sn, the
inequality δ1 = 2γ1

√
µ∗ ≤ 1/

√
2 = ρ1/

√
2 is true for sufficiently large values

of n. Let us prove the implication

δk−1 ≤ ρk−1/
√

2 =⇒
{
ζk ≤ 1/2,

δk ≤ ρk/
√

2.

Since 1/
√

2 ≤ e−1/6 we infer that δk−1 ≤ ρk and therefore αk ≤ 4. By our
choice of ah and aρ, we have ρ1h1 ≥ ρkhk ≥ ρk(n)hk(n). Therefore,

γk
ρk

≤ 4
√
CV Cgρkhk +

4σ(c0
√

log(Ln) + c1tn)√
n ρkhk

≤ 4
√
CV Cgh1 +

4σ(c0
√

log(Ln) + c1tn)√
nρk(n)hk(n)

= sn.
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Thus, for n large enough, ζk ≤ 1/2 and γk ≤ ρk/4. This implies that δk =
2γk(1 − ζk)

−1/2 ≤ ρk/
√

2. By induction we infer that δk−1 ≤ ρk−1/
√

2 ≤ ρk
and ζk ≤ 1/2 for any k = 2, . . . , k(n) − 1. This completes the proof of the
lemma.

Lemma 4.7. If k > 2 and ζk−1 < 1 then Ωk−1 ⊂ {tr(I − Π̂k−1)Π
∗ ≤ δ2k−1}.

Proof. Let us denote β̃ℓ = Π∗β̂k−1,ℓ, then β̃ℓ ∈ S∗ and under Ωk−1 we have

|P ∗
k−1(β̂k−1,ℓ − βℓ)| ≤ γk−1 =⇒

{
maxℓ |β̂k−1,ℓ − β̃ℓ| ≤ γk−1,

maxℓ |β̃ℓ − βℓ| ≤
√

2γk−1/ρk−1.

Set B =
∑m∗

i=1 µiβ̄iβ̄
⊤
i and B̃ =

∑m∗

i=1 µi
¯̃
βi

¯̃
β⊤i , where

¯̃
βi =

∑
ℓ cℓβ̃ℓ if β̄i =

∑
ℓ cℓβℓ. Since

∑
ℓ |cℓ| ≤ 1, we have |β̄i| ≤ maxℓ |βℓ| ≤ ‖∇f‖∞ and |β̄i− ¯̃

βi| ≤
maxℓ |βℓ − β̃ℓ|. Therefore

‖B − B̃‖ ≤
m∗∑

i=1

µi‖β̄iβ̄⊤i − ¯̃βi
¯̃β⊤i ‖ ≤ µ∗ max

k
‖β̄iβ̄⊤i − ¯̃βi

¯̃β⊤i ‖

≤ µ∗ max
i

(
|β̄i − ¯̃

βi|2 + 2|β̄i| · |β̄i − ¯̃
βi|
)

≤ µ∗
(
2γ2
k−1ρ

−2
k−1 + 2

√
2 γk−1ρ

−1
k−1 max

ℓ
|βℓ|

)
= ζk−1

and hence, for every unit vector v ∈ S∗, v⊤B̃v ≥ (
v⊤Bv−

∣∣v⊤Bv−v⊤B̃v
∣∣) ≥

v⊤Bv−‖B−B̃‖ ≥ 1−ζk−1. This inequality implies that Π∗ � (1−ζk−1)
−1B̃

and, in view of Proposition 4.5 we obtain the assertion of the lemma.
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