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Introduction

In the past, critical applications often used fixed-point computations. However, with the wide availability of processors with hardware floating-point units, many current critical applications (say, for controlling automotive or aerospace systems) use floating-point operations. Such applications have to undergo stringent testing or validation. In this paper, we show how the particularities of floatingpoint implementations can hinder testing methodologies and have to be cared for in techniques based on program semantics, be them assisted proofs, or automatic analysers.

It has been known for a long time that it was erroneous to compute with floating-point numbers and operations as though they were on the real field. There exist entire treatises discussing the topic of stability in numerical algorithms from the point of view of the applied mathematician: whether or not some algorithm, when implemented with floating-point, will give "good" approximations of the real result; we will however not discuss such issues in this paper. The purpose of this paper is to show the kind of difficulties that floating-point computations pose for static analysis and program testing methods: both for defining the semantics of the programs to be analysed, and for defining and implementing the analysis techniques. We shall not discuss "bugs" in floating-point implementations in microprocessors, 1 but, rather, how misunderstandings and non-intuitive behaviours of correct hardware implementations affect the safety of programs and program analysis techniques. 1 Many of the issues that we discuss here are known to floating-point arithmetic experts. However, they have often been ignored or misunderstood by designers of programming languages, compilers, verification techniques and program analysers. Some of them were taken care of, at least partially, in the definition of Java and the latest standard for C, as well as modern hardware implementations. Our primary objective, however, is to educate the designers of verification systems, who in general do not have the luxury to change the hardware implementation, the programming language, the compilers used or the algorithms of the systems that they have to verify. Some of the issues we discuss pertain to the Intel TM 386, i86, Pentium TM lines (IA32 TM architecture), which will most probably continue to be used for embedded work for a number of years. Because of this focus on program analysis for critical systems, we shall be particularly interested in programs written in the C programming language, because this language is often favoured for embedded systems. We shall in particular discuss some implications of the most recent standard of that language, "C99" [ISO, 1999]. In order to emphasise that the issues we discuss are real, we shall give specific program fragments as well as versions of compilers, libraries and operating systems with which "surprising" behaviours were witnessed.

All current major microprocessor architectures (IA32, x86 64, PowerPC) support IEEE-754 floating-point arithmetic [IEE, 1985], now also an international standard [IEC, 1989]; microcontrollers based on these architectures also do so. Other microcontrollers and microprocessors often implement some variant of it with some features omitted. The specification for the default floating-point arithmetic in the Java programming language is also based on IEEE-754. For these reasons, we shall focus on this standard and its main implementations, though some of our remarks apply to other kinds of systems. For the sake of a better understanding, in Section 2, we recall the basics of IEEE-754 arithmetic.

Despite, or perhaps because of, the prevalence of "IEEE-compliant" systems, there exist a number of myths of what IEEE-compliance really entails from the point of view of program semantics. We shall discuss the following myths, among others:

• "Since C's float (resp. double) type is mapped to IEEE single (resp. double) precision arithmetic, arithmetic operations have a uniquely defined meaning across platforms."

• "Arithmetic operations are deterministic; that is, if I do z=x+y in two places in the same program and my program never touches x and y in the meantime, then the results should be the same."

• A variant: "If x < 1 tests true at one point, then x < 1 stays true later if I never modify x."

• "The same program, strictly compliant with the C standard with no "undefined behaviours", should yield identical results if compiled on the same IEEE-compliant platform by different compliant compilers."

A well-known cause for such unintuitive discrepancies is the 80-bit internal floating-point registers on the Intel platform. [Sun, 2001, Appendix D] In Section 3.1, we shall expand on such issues and show, for instance, how low-level issues such as register allocation [Appel and Ginsburg, 1997, chapter 11] and the insertion of logging instructions with no "apparent" computational effects can change the final results of computations. In Section 3.2 we shall discuss issues pertaining to the PowerPC architecture.

An important factor throughout the discussion is that it is not the hardware platform that matters in itself, but its combination with the software context, including the compiler, libraries, and possible run-time environment. Compatibility has to be appreciated at the level of the application writer -how code written using types mapped to IEEE normalised formats will effectively behave when compiled and run. Indeed, the standard recalls [IEC, 1989, IEE, 1985, §1.1]:

It is the environment the programmer or user of the system sees that conforms or fails to conform to this standard. Hardware components that require software support to conform shall not be said to conform apart from such software.

IEEE-754 standardises a few basic operations; however, many programs use functions such as sine, cosine, . . . , which are not specified by this standard and are generally not strictly specified in the system documentation. In Section 4, we shall explore some difficulties with respect to mathematical libraries. In addition to issues related to certain floating-point implementations, or certain mathematical libraries, there are issues more particularly related to the C programming language, its compilers and libraries. Section 4.3 explores such system dependencies. Section 4.4 explores issues with input and output of floating-point values.

A commonly held opinion is that whatever the discrepancies, they will be negligible enough and should not have noticeable consequences. In Section 5, we give a complete example of some seemingly innocuous floating-point code fragment based on real-life industrial code. We illustrate how the floating-point "oddities" that we explained in the preceding sections can lead to rare and extremely hard to diagnose run-time errors.

While the focus of the paper is on the C programming language, in Section 6 we shall discuss a few aspects of the compilation of Java, a language reputedly more "predictable", which many advocate for use in embedded systems.

While in most of the paper we dismiss some incorrectly optimistic beliefs about how floating-point computations behave and what one can safely suppose about them for program analysis, an opposite misconception exists: that floating-point is inherently so complex and tricky that it is impossible to do any kind of sound analysis, or do any kind of sound reasoning, on programs using floating-point, except perhaps in very simple cases. By sound analysis (Sec. 7.2), we mean that when one analyses the program in order to prove properties (say, "variable x does not exceed 42), using some automated, semi-automated or manual proof techniques, then the results that are obtained truly hold of the concrete system (e.g. one does not prove the above statement when in reality x can reach 42.000000001). The Astrée static analyser 2 implements mathematically sound analyses by taking into account some "error bounds" derived 2 Astrée is a static analyser specialised on a subset of C suitable for many critical applications. It features specific, sound and precise analyses for floating-point digital filters. It was successfully applied to several classes of critical code, especially fly-by-wire software. See http://www.astree.ens.fr as well as [START_REF] Blanchet | Design and implementation of a special-purpose static program analyzer for safety-critical real-time embedded software[END_REF][START_REF]Abstract interpretation-based certification of assembly code[END_REF][START_REF] Cousot | The ASTR ÉE analyzer[END_REF]. Simply put, Astrée takes as input the source code of a program, a specification of bounds on program inputs, and computes, symbolically, a super-set of reachable program states and possible program executions, from which it extracts properties interesting to the user, and from the specification of the concrete floating-point semantics. The existence of Astrée and its use in an industrial context demonstrate that it is possible to obtain sound analyses with a reasonable cost, at least for some classes of applications. We shall therefore refer to this tool as a practical example further on.

In Section 7 we analyse the consequences of the issues discussed in previous sections on abstract interpretation-based static analysis and other validation techniques, and show how to obtain sound results.

IEEE-754: a reminder

All current general-purpose microprocessors, and many microcontrollers, implement hardware floating-point as a variant of standard ANSI/IEEE-754 [IEE, 1985], later adopted as international standard IEC-60559 [IEC, 1989]. We thus begin by an overview of this standard. We shall not, however, describe how algorithms can make clever use of the standard for numerical computation purposes, and refer the reader to papers and presentations from e.g. William Kahan 3 on such issues.

Numbers

IEEE floating point numbers are of the following kinds:

Zeroes There exist both a +0 and a -0. Most operations behave identically regardless of the sign of the zero, however one gets different results if one extracts the sign bit from the number, or if one divides a nonzero number by a zero (the sign of the zero and that of the nonzero other operand determine whether +∞ or -∞ is returned).

Many programs do not depend on this feature of IEEE arithmetic and would behave identically if only a single zero was provided. This is the case of most programs implementing real (as opposed to complex) computations. However, discriminating between +0 and -0 allows for some simpler implementations of certain classes of algorithms.

An important example of the use for separate ±0 is complex arithmetic [START_REF] Kahan | Branch cuts for complex elementary functions, or much ado about nothing's sign bit[END_REF]: if branch cuts are located along the real or complex axes, then distinguishing +0 and -0 allow making functions continuous from both sides of the slit, while having a single zero value introduces a discontinuity. As an example, consider ℑ log(z) with z = x + iy, x < 0: lim y→0 + ℑ log(x + iy) = +π and lim y→0 -ℑ log(x + iy) = -π, and thus it makes sense to define by continuity from both sides: log(x + 0i) = +π and log(x -0i) = -π. This behaviour of complex arithmetic along branch cuts is mandated by the C99 standard [ISO, 1999, §7.3.3].

Infinities Infinities are generated by divisions by zero or by overflow (computations of numbers of such a large magnitude that they cannot be represented).

proves that certain undesirable behaviours (overflow, array access out of bounds, bad pointer dereference, violation of assertion) are impossible.

3 http://www.cs.berkeley.edu/~wkahan/

NaNs

The special values Not a Number (NaN) represent the result of operations that cannot have a meaningful result in terms of a finite number or infinity. Such is for instance the case of (+∞) -(+∞), 0/0 or √ -1.

Normal numbers (Also known as normalised numbers.) These are the most common kind of nonzero representable reals.

Subnormal numbers (Also known as denormalised numbers or denormals.)

These represent some values very close to zero. They pose special issues regarding rounding errors.

IEEE specifies 5 possible kinds of exceptions. These exceptions can, at the request of the programmer, be substituted for "silent" default responses:

Invalid operation This is the exception corresponding to the conditions producing a NaN as silent response.

Overflow This exception is raised when the result of an operation is a number too large in magnitude to be represented in the data type. The silent response is to generate ±∞.

Division by zero Raised by x/ ± 0 where x = 0. The default response is to produce ±∞, depending on the sign of x and of ±0.

Underflow This exception is raised when a result is too small in magnitude to be computed accurately. This is generally harmless in programs; however, care must be taken when computing error bounds on floating-point computations, because error bounds on underflow differ from those on normal computations (see below).

Inexact

The "real" result of a computation cannot be exactly represented by a floating-point number. The silent response is to round the number, which is a behaviour that the vast majority of programs using floating-point numbers rely upon. However, rounding has to be correctly taking into account for sound analysis.

In typical critical embedded critical programs, invalid operations, divisions by zero, and overflows are undesirable conditions. In such systems, inputs vary within controlled ranges, many variables model physical quantities (which also should lie within some reasonable range), and thus NaNs and ±∞ should not appear. This is especially true since infinities may generate NaNs down the line (e.g. (+∞) -(+∞) = N aN ), NaNs propagate throughout the algorithms, and converting a NaN to an output quantity (conversion to integer after scaling, for instance) yields an undefined result. For this reason, in most critical embedded systems, the generation of a NaN or infinity is an undesirable condition, which the designers of the system will want to rule out, including through formal methods (see Sec. 7). The invalid operation, overflow and division by zero exceptions may be activated, so that they are raised as soon as an undesirable result is computed. They may trigger the termination of the program, or the running of a "degraded" version of it with limited functionality or complexity. This is why one of the features of analysers such as Astrée is to detect where in programs such exceptions may be raised. In order to achieve this goal, the analyser will have to bound variables and results of floating-point operations, which requires some sound analysis techniques and motivates this paper.

Floating point numbers are represented as follows: x = ±s.m where 1 ≤ m < 2 is the mantissa or significand, which has a fixed number p of bits, and s = 2 e the scaling factor (E min ≤ e ≤ E max is the exponent ). The difference introduced by changing the last binary digit of the mantissa is ±s.ε last where ε last = 2 -(p-1) : the unit in the last place or ulp. Such a decomposition is unique for a given number if we impose that the leftmost digit of the mantissa is 1this is called a normalised representation. Except in the case of numbers of very small magnitude, IEEE-754 always works with normalised representations.

The IEEE-754 single precision type, generally associated with C's float type [ISO, 1999, §F.2], has p = 24, E min = -126, E max = +127. The IEEE-754 single precision type, associated to C's double, has p = 53, E min = -1022, E max = +1023.

We thus obtain normalised floating-point representations of the form:

x = ±[1.m 1 . . . m p-1 ] 2 .2 e , (1) 
noting [vvv] 2 the representation of a number in terms of binary digits vvv.

Conversion to and from decimal representation is delicate; special care must be taken in order not to introduce inaccuracies or discrepancies. [Steele andWhite, 1990, Clinger, 1990]. Because of this, C99 introduces hexadecimal floating-point literals in source code. [ISO, 1999, §6.4.4.2] Their syntax is as follows: 0xmmmmmm.mmmm p±ee where mmmmmm.mmmm is a mantissa in hexadecimal, possibly containing a point, and ee is an exponent, written in decimal, possibly preceded by a sign. They are interpreted as [mmmmmm.mmmm ] 16 ×2 ee . Hexadecimal floating-point representations are especially important when values must be represented exactly, for reproducible results -for instance, for testing "borderline cases" in algorithms. For this reason, we shall use them in this paper wherever it is important to specify exact values. See also Section 4.4 for more information on inputting and outputting floating-point values.

Rounding

Each real number x is mapped to a floating-point value r(x) by a uniquely defined rounding function; the choice of this function is determined by the rounding mode.

Generally, floating-point units and libraries allow the program to change the current rounding mode; C99 mandates fegetround() and fesetround() to respectively get and set the current rounding mode on IEEE-compliant platforms. Other platforms (BSD etc.) provide fpgetround() and fpsetround(). Finally, on some other platforms, it may be necessary to use assembly language instructions that directly change the mode bits inside the floating-point unit.4 IEEE-754 mandates four standard rounding modes:

• Round-to-+∞ (directed rounding to +∞): r(x) is the least floating point value greater than or equal to x.

• Round-to--∞ (directed rounding to -∞): r(x) is the greatest floating point value smaller than or equal to x.

• Round-to-0: r(x) is the floating-point value of the same sign as x such that |r(x)| is the greatest floating point value smaller than or equal to |x|.

• Round-to-nearest: r(x) is the floating-point value closest to x with the usual distance; if two floating-point value are equally close to x, then r(x) is the one whose least significant bit is equal to zero. Rounding to nearest with different precisions twice in a row (say, first to double precision, then to single precision) may yield different results than rounding directly to the final type; this is known as double rounding. Some implications of double-rounding are investigated in Sec. 3.1.2.

The default mode is round-to-nearest, and this is the only one used in the vast majority of programs.

The discussion on floating-point errors frequently refers to the notion of "unit in the last place" or "ulp"; but there are different definitions of this notion, with subtle differences [START_REF] Muller | On the definition of ulp(x)[END_REF]. If the range of exponents were unbounded, there would exist a positive real ε rel such that, for all x, |x -r(x)| ≤ ε rel .|x|. This relative error characterisation is used in some papers analysing the impact of roundoff errors. It is, however, incorrect in the context of IEEE-754, where the range of exponents is bounded: not only there is the possibility of overflow, but there exists a least positive representable number, which introduces an absolute error for values very close to zero [Miné, 2004a, §7.4.3][Miné, 2004b]. As a result, for any floating-point type with a bounded number of bits, there exist two positive reals ε rel and ε abs such that |x -r(x)| ≤ max(ε rel .|x|, ε abs )

(2)

The following, coarser, property may be easier to use in some contexts:

|x -r(x)| ≤ ε rel .|x| + ε abs (3)

Operations

IEEE-754 standardises 5 operations: addition (which we shall note ⊕ in order to distinguish it from the operation over the reals), subtraction (⊖), multiplication (⊗), division (⊘), and also square root. IEEE-754 specifies exact rounding [Goldberg, 1991, §1.5]: the result of a floating-point operation is the same as if the operation were performed on the real numbers with the given inputs, then rounded according to the rules in the preceding section. Thus, x ⊕ y is defined as r(x + y), with x and y taken as elements of R ∪ {-∞, +∞}; the same applies for the other operators.

One difficulty, when reasoning about floating-point computations, both with human and automated reasoning, is that floating-point operations "almost" behave like their name-sakes on the reals, but not quite exactly. For instance, it is well-known that floating-point operations are not associative (e.g (10 20 ⊕ 1) ⊖ 10 20 = 0 = 1 = (10 20 ⊖ 10 20 ) ⊕ 1 using IEEE-754 double precision operations). Many symbolic computation techniques, used in compiler optimisers, program analysers or proof assistants, assume some good algebraic properties of the arithmetic in order to be sound; thus, if applied directly and straightforwardly on floating-point operation, they are unsound. Yet, some compilers rely on such properties to perform optimisations (see 4.3.2). In Section 7.5, we shall explain how it is possible to make such analysis methods sound with respect to floating-point.

3 Architecture-dependent issues Some commonplace architectures, or, more appropriately, some commonplace ways of compiling programs and using floating-point programs on certain commonplace architectures, can introduce subtle inconsistencies between program executions.

IA32, x86 64 architectures

The IA32 architecture, originating from Intel, encompasses processors such as the i386, i486 and the various Pentium variants. It was until recently the most common architecture for personal computers, but has since been superseded for that usage by the x86 64 architecture, a 64-bit extension of IA32. 5 IA32, however, is a very commonplace architecture for embedded systems, including with embedded variants of the i386 and i486 processors. IA32 offers almost complete upward compatibility from the 8086 processor, first released in 1978; it features a floating-point unit, often nicknamed x87, mostly upwardly compatible with the 8087 coprocessor, first released in 1980.

Later, another floating-point unit, known as SSE, was added to the architecture, with full support for IEEE-754 starting from the Pentium 4 processor; it is now the preferred unit to use. The use of the x87 unit is deprecated on x86 64 -for instance, the popular gcc compiler does not use it by default on this platform, and the documentation for Microsoft Visual Studio C++ on x86 64 calls this unit "legacy floating-point". However, microcontrollers and embedded microprocessors are likely not to include this SSE unit in the years to come, even if they include x87 hardware floating-point.

x87 floating-point unit

Processors of the IA32 architecture (Intel 386,486,Pentium etc. and compatibles) feature a floating-point unit often known as "x87" [Int, 2005, chapter 8].

It supports the floating-point, integer, and packed BCD integer data types and the floating-point processing algorithms and exception handling architecture defined in the IEEE Standard 754 for Binary Floating-Point Arithmetic.

This unit has 80-bit registers in "double extended" format (64-bit mantissa and 15-bit exponent), often associated to the long double C type; IEEE-754 specifies the possibility of such a format. The unit can read and write data 5 AMD made a 64-bit architecture called AMD64 TM . Intel then produced a mostly compatible architecture, calling it Intel r 64 (not to be confused with IA64 TM , another, incompatible, 64-bit architecture from Intel, found in the Itanium TM processor), after briefly calling it EM64T TM . Microsoft Windows documentation calls these architectures x64. We chose a middle ground and followed the terminology of GNU/Linux distributions (x86 64).

to memory in this 80-bit format or in standard IEEE-754 single and double precision.

By default, all operations performed on CPU registers are done with 64-bit precision, but it is possible to reduce precision to 24-bit (same as IEEE single precision) and 53-bit (same as IEEE double precision) mantissas by setting some bits in the unit's control register. [Int, 2005, §8.1.5.2] These precision settings, however, do not affect the range of exponents available, and only affect a limited subset of operations (containing all operations specified in IEEE-754). As a result, changing these precisions settings will not result in floating-point operations being performed in strict IEEE-754 single or double precision. 6The most usual way of generating code for the IA32 is to hold temporariesand, in optimised code, program variables -in the x87 registers. Doing so yields more compact and efficient code than always storing register values into memory and reloading them. However, it is not always possible to do everything inside registers, and compilers then generally spill extra temporary values to main memory, [Appel and Ginsburg, 1997, chapter 11] using the format associated to the type associated to the value by the typing rules of the language. For instance, a double temporary will be spilt to a 64-bit double precision memory cell. This means that the final result of the computations depend on how the compiler allocates registers, since temporaries (and possibly variables) will incur or not incur rounding whether or not they are spilt to main memory.

As an example, the following program compiled with gcc 4.0.1 [Fre, 2005b] under Linux will print 10 308 (1E308):

double v = 1E308; double x = (v * v) / v; printf("%g %d\n", x, x==v);
How is that possible? v * v done in double precision will overflow, and thus yield +∞, and the final result should be +∞. However, since all computations are performed in extended precision, with a larger exponent range, the computations do not overflow. If we use the -ffloat-store option, which forces gcc to store floating-point variables in memory, we obtain +∞.

The result of computations can actually depend on compilation options or compiler versions, or anything that affects propagation. With the same compiler and system, the following program prints 10 308 (when compiled in optimised mode (-O), while it prints +∞ when compiled in default mode.

double foo(double v) { double y = v * v; return (y / v); } main() { printf("%g\n", foo(1E308));} Examination of the assembly code shows that when optimising, the compiler reuses the value of y stored in a register, while it saves and reloads y to and from main memory in non-optimised mode.

A common optimisation is inlining -that is, replacing a call to a function by the expansion of the code of the function at the point of call. For simple functions (such as small arithmetic operations, e.g. x → x 2 ), this can increase performance significantly, since function calls induce costs (saving registers, passing parameters, performing the call, handling return values). C99 [ISO, 1999, §6.7.4] and C++ have an inline keyword in order to pinpoint functions that should be inlined (however, compilers are free to inline or not to inline such functions; they may also inline other functions when it is safe to do so). However, on x87, whether or not inlining is performed may change the semantics of the code! Consider what gcc 4.0.1 on IA32 does with the following program, depending on whether the optimisation switch -O is passed:

static inline double f(double x) { return x/1E308; } double square(double x) { double y = x*x; return y; } int main(void) {
printf("%g\n", f(square(1E308))); } gcc does not inline functions when optimisation is turned off. The square function returns a double, but the calling convention is to return floating point values into a x87 register -thus in long double format. Thus, when square is called, it returns approximately 10 716 , which fits in long double but not double format. But when f is called, the parameter is passed on the stackthus as a double, +∞. The program therefore prints +∞. In comparison, if the program is compiled with optimisation on, f is inlined; no parameter passing takes place, thus no conversion to double before division, and thus the final result printed is 10 308 .

It is somewhat common for beginners to add a comparison check to 0 before computing a division, in order to avoid possible division-by-zero exceptions or the generation of infinite results. A first objection to this practise is that, anyway, computing 1/x for x very close to zero will generate very large numbers that will most probably result in overflows later. Indeed, programmers lacking experience with floating-point are advised that they should hardly ever use strict comparison tests (=, =, < and > as opposed to ≤ and ≥) with floatingpoint operands, as it is somewhat pointless to exclude some singularity point by excluding one single value, since it will anyway be surrounded by mathematical instability or at least very large values which will break the algorithms. Another objection, which few programmers know about and that we wish to draw attention to, is that it may actually fail to work, depending on what the compiler does -that is, the program may actually test that x = 0, then, further down, find that x = 0 without any apparent change to x. How can this be possible?

Consider the following source code (see Section 2.1 for the meaning of hexadecimal floating-point constants):

/* zero_nonzero.c */ void do_nothing(double *x) { } int main(void) { double x = 0x1p-1022, y = 0x1p100, z; do_nothing(&y); z = x / y; if (z != 0) { do_nothing(&z); assert(z != 0); } }
This program exhibits different behaviours depending on various factors, even when one uses the same compiler (gcc version 4.0.2 on IA32):

• If it is compiled without optimisation, x / y is computed as a long double then converted into a IEEE-754 double precision number (0) in order to be saved into memory variable z, which is then reloaded from memory for the test. The if statement is thus not taken.

• If it is compiled as a single source code with optimisation, gcc performs some kind of global analysis which understands that do_nothing does nothing. Then, it does constant propagation, sees that z is 0, thus that the if statement is not taken, and finally that main() performs no side effect. It then effectively compiles main() as a "no operation".

• If it is compiled as two source codes (one for each function) with optimisation, gcc is not able to use information about what do_nothing() does when compiling main(). It will thus generate two function calls to do_nothing(), and will not assume that the value of y (respectively, z) is conserved across do_nothing(&y) (respectively, do_nothing(&z)).

The z != 0 test is performed on a nonzero long double quantity and thus the test is taken. However, after the do_nothing(&z) function call, z is reloaded from main memory as the value 0 (because conversion to double-precision flushed it to 0). As a consequence, the final assertion fails, somehow contrary to what many programmers would expect.

• With the same compilation setup as the last case, removing do_nothing(&z) results in the assertion being true: z is then not flushed to memory and thus kept as an extended precision nonzero floating-point value.

One should therefore be extra careful with strict comparisons, because the comparison may be performed on extended precision values, and fail to hold later after the values have been converted to single or double precision -which may happen or not depending on a variety of factors including compiler optimisations and "no-operation" statements.

We are surprised by these discrepancies. After all, the C specification says [ISO, 1999, 5.1.2.3, program execution, §12, ex. 4]:

Implementations employing wide registers have to take care to honour appropriate semantics. Values are independent of whether they are represented in a register or in memory. For example, an implicit spilling of a register is not permitted to alter the value. Also, an explicit store and load is required to round to the precision of the storage type.

However, this paragraph, being an example, is not normative. [ISO, 1999, foreword, §6]. By reading the C specification more generally, one gets the impression that such hidden side-effects ("hidden", that is, not corresponding to program statements) are prohibited.

The above examples indicate that common debugging practises that apparently should not change the computational semantics may actually alter the result of computations. Adding a logging statement in the middle of a computation may alter the scheduling of registers, for instance by forcing some value to be spilt into main memory and thus undergo additional rounding. As an example, simply inserting a printf("%g\n", y); call after the computation of y in the above square function forces y to be spilt to memory, and thus the final result then becomes +∞ regardless of optimisation. Similarly, our do_nothing() function may be understood as a place-holder for logging or debugging statements which are not supposed to affect the state of the variables.

In addition, it is commonplace to disable optimisation when one intends to use a software debugger, because in optimised code, the compiled code corresponding to distinct statements may become fused, variables may not reside in a well-defined location, etc. However, as we have seen, simply disabling or enabling optimisation may change computational results.

Double rounding

In some circumstances, floating-point results are rounded twice in a row, first to a type A then to a type B. Surprisingly, such double rounding can yield different results from direct rounding to the destination type.7 Such is the case, for instance, of results computed in the long double 80-bit type of the x87 floating-point registers, then rounded to the IEEE double precision type for storage in memory. In round-to-0, round-to-+∞ and round-to--∞ modes, this is not a problem provided that the values representable by type B are a subset of those representable by type A. However, in round-to-nearest mode, there exist some borderline cases where differences are exhibited.

In order to define the round-to-nearest mode, one has to define arbitrarily how to round a real exactly in the middle between the nearest floating-point values. IEEE-754 chooses round-to-even [IEC, 1989, IEE, 1985, §4.1]:8 

In this mode, the representable value nearest to the infinitely precise result shall be delivered; if the two nearest representable values are equally near, the one with its least significant bit equal to zero shall be delivered.

This definition makes it possible for double rounding to yield different results than single rounding to the destination type. Consider a floating-point type B where two consecutive values are x 0 and x 0 + δ B , and another floating-type A containing all values in B and also x 0 + δ B /2. There exists δ A > 0 such that all reals in the interval

I = (x 0 + δ B /2 -δ A /2, x 0 + δ B /2) get rounded to x 0 + δ B /2
when mapped to type A. We shall suppose that the mantissa of x 0 finishes by a 1. If x ∈ I, then indirect rounding yields:

x → A (x 0 + δ B /2) → B (x 0 + δ B )
and direct rounding yields: x → B x 0 .

A practical example is with x 0 = 1 + 2 -52 , δ = 2 -52 and r = x 0 + y where y = (δ /2)(1 -2 -11 ). Both x 0 and y are exactly representable in IEEE-754 double precision (B). In order to get strict IEEE-754 double precision computations for the double type, we execute double-precision computations on the SSE unit (see Section 3.1.3) of an x86 64 or Pentium 4 processor. We then obtain that z 1 = x 0 and that z 2 = x 0 + 2 -52 : both z 1 and z 2 are double values obtained by apparently identical computations (the sum of x 0 and y), but the value that z 2 holds will have been doubly rounded (first to extended precision, then to double precision for storing to z 2 ) while z 1 holds a value directly rounded to double precision.

Note that, on IA32, depending on compilation modes, the above discrepancy may disappear, with both values undergoing double rounding: on IA32 Linux / gcc-4.0.1 with default options, the computations on double will be actually performed in the long double type inside the x87 unit, then converted to IEEE double precision. There is thus no difference between the formulae computing z 1 and z 2 .

Another example was reported as a bug by a user who noticed inconsistencies between 387 and SSE but did not identify the source of the problem:

double b = 0x1.fffffffffffffp-1; double x = 1 / b; Let ε = 2 -53 , then b = 1 -ε. 1/b = 1 + ε + ε 2 + .
. . ; the nearest double precision numbers are 1 and 1 + 2ε and thus direct rounding gives x = 1 + 2ε. However, rounding to extended precision will give 1 + ε, which is rounded to 1 when converting to double precision.

A similar problem occurs with rounding behaviour near infinities: see the definition of round-to-nearest for large values [IEE, 1985, §4.1]:

However, an infinitely precise result with magnitude at least 2 Emax (2 -2 -p ) shall round to ∞ with no change in sign.

For IEEE double-precision, E max = 1023 and p = 53; let us take x 0 to be the greatest representable real, M double = 2 Emax (2-2 -(p-1) ) and y = 2 970 (1-2 -11 ). With a similar program as above, r = x 0 + y gets rounded to z 1 = x 0 in IEEE double precision, but gets rounded to 2 Emax (2 -2 -p ) in extended precision. As a result, the subsequent conversion into IEEE double precision will yield +∞.

Double rounding can also cause some subtle differences for very small numbers that are rounded into subnormal double-precision values if computed in IEEE-754 double precision: if one uses the "double-precision" mode of the x87 FPU, these numbers will be rounded into normalised values inside the FPU register, because of a wider range of negative exponents; then they will be rounded again into double-precision subnormals when written to memory. This is known as double-rounding on underflow. Working around double-rounding on underflow is somewhat tedious (however, the phenomenon is exhibited by × and /, not by + and -). [Java Grande Forum Panel, 1998] A concrete example : taking x = 0x1.8000000000001p-1018 ≈ 5.34018 × 10 -307 y = 0x1.0000000000001p+56 ≈ 7.20576 × 10 16 , then x⊘y = 0x0.0000000000001p-1022 in strict IEEE-754 double precision and x ⊘ y = 0x0.0000000000002p-1022 with the x87 in "double precision mode".

SSE floating-point unit

Intel introduced the SSE floating-point unit [Int, 2005, chapter 10] in the Pentium III processor, then the SSE2 extension in the Pentium 4 [Int, 2005, chapter 11]. These extensions to the x86 instruction set contain, respectively, IEEE-compatible single-precision and double-precision instructions.9 One can make gcc generate code for the SSE subsystem with the -mfpmath=sse option; since SSE is only available for certain processors, it is also necessary to specify, for instance, -march=pentium4. On x86 64, -mfpmath=sse is the default, but -mfpmath=387 forces the use of the x87 unit.

Note the implication: the same program may give different results when compiled on 32-bit and 64-bit "PCs" (or even the same machine, depending on whether one compiles in 32-bit or 64-bit mode) because of the difference in the default floating-point subsystem used.

The differences may seem academic, but the following incident proves they are not. The Objective Caml system [START_REF] Leroy | The Objective Caml system release 3.09: Documentation and user's manual[END_REF] includes two compilers: one compiles Caml code into a portable bytecode, executed by a virtual machine (this virtual machine is written in C); the other one compiles directly to native assembly code. One user of Objective Caml on the recent Intel-based Apple Macintosh computers complained of a mysterious "bug" to the Caml maintainers: the same program gave slightly different results across the bytecode and native code versions. The problem could not be reproduced on other platforms, such as Linux on the same kind of processors. It turned out that, as all Intel-based Macintosh machines have a SSE unit, Apple configured gcc to use the SSE unit by default. As a consequence, on this platform, by default, the Objective Caml virtual machine uses the SSE unit when executing bytecode performing floating-point computations: for instance, an isolated floating-point addition will be performed as a sequence of two loads from double-precision operands, addition with the result in a double-precision register, and then save to a double-precision variable. The native code compiler, however, uses the x87 unit: the same floating-point addition is thus performed as a sequence of two loads from double-precision operands, addition with the result in an extendedprecision register, and then save to a double-precision variable. As we pointed out in the preceding section, these two sequences of operations are not equivalent in the default round-to-nearest mode, due to double rounding. It turned out that the user had stumbled upon a value resulting in double rounding. The widespread lack of awareness of floating-point issues resulted in the user blaming the discrepancy on a bug in Objective Caml!

In addition, the SSE unit offers some non-IEEE-754 compliant modes for better efficiency: with the flush-to-zero flag [Int, 2005, §10.2.3.3] on, subnormals are not generated and are replaced by zeroes; this is more efficient. As we noted in Section 2.2, this does not hamper obtaining good bounds on the errors introduced by floating-point computations; also, we can assume the worst-case situation and suppose that this flag is on when we derive error bounds.

The flush-to-zero flag, however, has another notable consequence: x ⊖ y = 0 is no longer equivalent to x = y. As an example, if x = 2 -1022 and y = 1.5 × 2 -1022 , then y ⊖ x = 2 -1023 in normal mode, and y ⊖ x = 0 in flush-to-zero mode. Analysers should therefore be careful when replacing comparisons by "equivalent" comparisons.

In addition, there exists a denormals-are-zero flag [Int, 2005, §10.2.3.4]: if it is on, all subnormal operands are considered to be zero, which improves performance. It is still possible to obtain bounds on the errors of floating point computations by assuming that operands are offset by an amount of at most ±2 emin-(p-1) before being computed upon. However, techniques based on exact replays of instruction sequences will have to replay the sequence with the same value of the flag.

Problems and solutions

We have shown that computations on the float (respectively, double) types are not performed on the x87 unit exactly as if each atomic arithmetic operation were performed with IEEE-754 single (respectively, double precision) operands and result, and that what is actually performed may depend on seemingly irrelevant factors such as calls to tracing or printing functions. This goes against the widespread myth that the result of the evaluation of a floating-point expression should be the same across all platforms compatible with IEEE-754.

This discrepancy has long been known to some people in the programming language community, and some "fixes" have been proposed. For instance, gcc has a -ffloat-store option, flushing floating-point variables to memory. [Fre, 2005b] Indeed, the gcc manual [Fre, 2005b] says:

On 68000 and x86 systems, for instance, you can get paradoxical results if you test the precise values of floating point numbers. For example, you can find that a floating point value which is not a NaN is not equal to itself. This results from the fact that the floating point registers hold a few more bits of precision than fit in a double in memory. Compiled code moves values between memory and floating point registers at its convenience, and moving them into memory truncates them. You can partially avoid this problem by using the -ffloat-store option.

The manual refers to the following option:

-ffloat-store Do not store floating point variables in registers, and inhibit other options that might change whether a floating point value is taken from a register or memory. This option prevents undesirable excess precision on machines [. . . ] where the floating registers [. . . ] keep more precision than a 'double' is supposed to have. Similarly for the x86 architecture. For most programs, the excess precision does only good, but a few programs rely on the precise definition of IEEE floating point.[sic] Use '-ffloat-store' for such programs, after modifying them to store all pertinent intermediate computations into variables.

Note that this option does not force unnamed temporaries to be flushed to memory, as shown by experiments. To our knowledge, no compiler offers the choice to always spill temporaries to memory, or to flush temporaries to long double memory, which would at least remove the worst problem, which is the nonreproducibility of results depending on factors independent of the computation code (register allocation differences caused by compiler options or debugging code, etc.). We suggest that compilers should include such options.

Unfortunately, anyway, systematically flushing values to single-or doubleprecision memory cells do not reconstitute strict IEEE-754 single-or doubleprecision rounding behaviour in round-to-nearest mode, because of the double rounding problem (3.1.2). In addition, the -ffloat-store option is difficult to use, because it only affects program variables and not temporaries: to approximate strict IEEE-754 behaviour, the programmer would have to rewrite all program formulae to store temporaries in variables. This does not seem to be reasonable for human-written code, but may be possible with automatically generated code -it is frequent that control/command applications are implemented in a high-level language such as Simulink10 Lustre [START_REF] Caspi | LUSTRE: a declarative language for real-time programming[END_REF] or Scade TM ,11 then compiled into C [ISO, 1999].

Another possibility is to force the floating-point unit to limit the width of the mantissa to that of IEEE-754 basic formats (single or double precision).12 This mostly solves the double-rounding problem. However, there is no way to constrain the range of the exponents, and thus these modes do not allow exact simulation of strict computations on IEEE single and double precision formats, when overflows and underflows are possible. For instance, the square program of Sec. 3.1.1, which results in an overflow to +∞ if computations are done on IEEE double precision numbers, does not result in overflows if run with the x87 in double precision mode. Let us note, however, that if a computation never results in overflows or underflows when done with IEEE-754 double-precision (resp. single-) arithmetic, it can be exactly simulated with the x87 in doubleprecision (resp. single) mode. 13If one wants semantics almost exactly faithful to strict IEEE-754 single or double precision computations in round-to-nearest mode, including with respect to overflow and underflow conditions, one can use, at the same time, limitation of precision and options and programming style that force operands to be systematically written to memory between floating-point operations. This incurs some performance loss; furthermore, there will still be slight discrepancy due to double rounding on underflow. A simpler solution for current personal computers is simply to force the compiler to use the SSE unit for computations on IEEE-754 types; however, most embedded systems using IA32 microprocessors or microcontrollers do not use processors equipped with this unit. Yet another solution is to do all computations in long double format. This solves all inconsistency issues. However, long double formats are not the same between processors and operating systems, thus this workaround leads to portability problems.

PowerPC architecture

The floating point operations implemented in the PowerPC architecture are compatible with IEEE-754 [Fre, 2001b, §1.2.2.3, §3.2]. However, [Fre, 2001b, §4.2.2] also points out that:

The architecture supports the IEEE-754 floating-point standard, but requires software support to conform with that standard.

The PowerPC architecture features floating-point multiply-add instructions [Fre, 2001b, §4.2.2.2]. These perform (a, b, c) → ±a.b ± c computations in one instruction -with obvious benefits for computations such as matrix computations [Cormen et al., 1990, §26.1], dot products, or Horner's rule for evaluating polynomials [Cormen et al., 1990, §32.1]. Note, however, that they are not semantically equivalent to performing separate addition, multiplication and optional negate IEEE-compatible instructions; in fact, intermediate results are computed with extra precision [Fre, 2001b, D.2]. Whether these instructions are used or not depends on the compiler, optimisation options, and also how the compiler subdivides instructions. For instance, gcc 3.3 compiles the following code using the multiply-add instruction if optimisation (-O) is turned on, but without it if optimisation is off, yielding different semantics:14 double dotProduct(double a1, double b1, double a2, double b2) { return a1*b1 + a2*b2; } In addition, the fpscr control register has a NI bit, which, if on, possibly enables implementation-dependent semantics different from IEEE-754 semantics. [Fre, 2001b, §2.1.4]. This alternate semantics may include behaviours disallowed by IEEE-754 regardless of which data formats and precisions are used. For instance, on the MPC750 family, such non-compliant behaviour encompasses flushing subnormal results to zero, rounding subnormal operands to zero, and treating NaNs differently [Fre, 2001a, §2.2.4]. Similar caveats apply as in Section 3.1.3.

Mathematical functions

Many operations related to floating-point are not implemented in hardware; most programs using floating-point will thus rely on suitable support libraries. Our purpose, in this section, is not to comprehensively list bugs in current floating-point libraries; it is to illustrate, using examples from common operating systems and runtime environments, the kind of problems that may happen.

Transcendental functions

A first remark is that, though IEEE-754 specifies the behaviour of elementary operations +, -, ×, / and √ , it does not specify the behaviour of other functions, including the popular trigonometric functions. These are generally supplied by a system library, occasionally by the hardware.

As an example, consider the sine function. On the x87, it is implemented in hardware; on Linux IA32, the GNU libc function sin() is just a wrapper around the hardware call, or, depending on compilation options, can be replaced by inline assembly. 15 Intel [Int, 2005, §8.3.10] and AMD [Adv, 2005, §6.5.5] claim that their transcendental instructions (on recent processors) commit errors less than 1 ulp in round-to-nearest mode; however it is to be understood that this is after the operands of the trigonometric functions are reduced modulo 2π, which is done currently using a 66-bit approximation for π. [Int, 2005, §8.3.8] However, the AMD-K5 used up to 256 bits for approximating π/2. [START_REF] Lynch | The K5 transcendental functions[END_REF] One obtains different results for sin(0x1969869861.p+0) on PCs running Linux. The Intel Pentium 4, AMD Athlon64 and AMD Opteron processors, and GNU libc running in 32-bit mode on IA32 or x86 64 all yield -0x1.95b011554d4b5p-1, However, Mathematica, Sun Sparc under Solaris and Linux, and GNU libc on x86 64 (in 64-bit mode) yield -0x1.95b0115490ca6p-1.

A more striking example of discrepancies is sin(p) where p = 14885392687. This value was chosen so that sin(p) is close to 0, in order to demonstrate the impact of imprecise reduction modulo 2π. 16 Both the Pentium 4 x87 and Mathematica yield a result sin(p) ≈ 1.671 × 10 -10 . However, GNU libc on x86 64 yields sin(p) ≈ 1.4798 × 10 -10 , about 11.5% off! Note, also, that different processors within the same architecture can implement the same transcendental functions with different accuracies. We already noted the difference between the AMD-K5 and the K6 and following processors with respect to angular reduction. Intel also notes that the algorithms' precision was improved between the 80387 / i486DX processors and the Pentium processors. [Int, 1997, §7.5.10] With the Intel486 processor and Intel 387 math coprocessor, the worstcase, transcendental function error is typically 3 or 3.5 ulps, but is sometimes as large as 4.5 ulps. 15 The latter behaviour is triggered by option -ffast-math. The documentation for this function says it can result in incorrect output for programs which depend on an exact implementation of IEEE or ISO rules/specifications for math functions.

16 Consider a rational approximation of π, i.e. integers p and q such that p/q ≈ π (such an approximation can be obtained by a continued fraction development of π [START_REF] Weisstein | Continued fraction[END_REF]). sin(p) ≈ sin(qπ) = 0. If p ′ , the result of reduction modulo 2π of p, is imprecise by a margin of ε (∃k p ′ -p = ε + 2kπ), then sin(p ′ ) -sin(p) ≈ ε (sin(x) ∼ x close to 0). Such inputs are thus good candidates to illustrate possible lack of precision in the algorithm for reduction modulo 2π.

There thus may be floating-point discrepancies between the current Intel embedded processors (based on i386 / i387) and the current Pentium workstation processors.

To summarise, one should not expect consistent behaviour of transcendental functions across libraries, processor manufacturers or models, although recent developments such as the MPFR library17 provide exactly rounded transcendental functions. In any case, static analysis tools should never assume that the libraries on the analysis host platform behave identically to those on the target platform, nor, unless it is specified in the documentation, that they fulfil properties such as monotonicity (on intervals where the corresponding mathematical function is monotonic).

Non-default rounding modes

We also have found that floating-point libraries are often poorly tested in "uncommon" usage conditions, such as rounding modes different from "round-tonearest"; or, perhaps, that they are not supposed to work in such modes, but that this fact is not reflected adequately in documentation. This is especially of interest for implementers of static analysers (Section 7.5), since some form of interval arithmetic will almost certainly be used in such software.

FreeBSD 4.4 provides the fpsetround() function to set the rounding mode of the processor. This function is the BSD counterpart of the C99 fesetround() function. However, the printf() standard printing function of the C library does not work properly if the processor is set in round-to-+∞ mode: when one attempts to print very large values (such as 10 308 ), one can get garbage output (such as a colon in a location where a digit should be, e.g. :e+307).

On GNU libc 2.2.93 on IA32 processors, the fesetround() function only changed the rounding mode of the x87 FPU, while the gcc compiler also offered the possibility of compiling for SSE.

On GNU libc 2.3.3 on x86 64, computing x y using the pow() function in round-to-+∞ mode can result in a segmentation violation for certain values of x and y, e.g. x = 0x1.3d027p+6 and y = 0x1.555p-2. As for the exp() exponential function, it gives a result close to 2 502 on input 1, and a negative result on input 0x1.75p+0. The problems were corrected in version 2.3.5.

Compiler issues

The C standard is fairly restrictive with respect to what compilers are allowed or not allowed to do with floating-point operations. Unfortunately, some compilers may fail to comply with the standard. This may create discrepancies between what really happens on the one hand, and what users and static analysis tools expect on the other hand.

Standard pragmas

The C standard, by default, allows the compiler some substantial leeway in the way that floating-point expressions may be evaluated. While outright simplifications based on operator associativity are not permitted, since these can be very unsound on floating-point types [ISO, 1999, §5.1.2.3 #13], the compiler is for instance permitted to replace a complex expression by a simpler one, for instance using compound operators (e.g. the fused multiply-and-add in Section 3.2) [ISO, 1999, 6.5]:

A floating expression may be contracted, that is, evaluated as though it were an atomic operation, thereby omitting rounding errors implied by the source code and the expression evaluation method. [. . . ] This license is specifically intended to allow implementations to exploit fast machine instructions that combine multiple C operators. As contractions potentially undermine predictability, and can even decrease accuracy for containing expressions, their use needs to be well-defined and clearly documented.

While some desirable properties of contracted expressions [ISO, 1999, §F.6] are requested, no precise behaviour is made compulsory.

Because of the inconveniences that discrepancies can create, the standard also mandates a special directive, #PRAGMA STDC FP_CONTRACT [ISO, 1999, §7.12.2], for controlling whether or not such contractions can be performed. Unfortunately, while many compilers will contract expressions if they can, few compilers implement this pragma. As of 2007, gcc (v4.1.1) ignores the pragma with a warning, and Microsoft's Visual C++ handles it as a recent addition.

We have explained how, on certain processors such as the x87 (Section 3.1.1), it was possible to change the precision of results by setting special flags -while no access to such flags is mandated by the C norm, the possibility of various precision modes is acknowledged by the norm [ISO, 1999, F.7.2]. Furthermore, IEEE-754 mandates the availability of various rounding modes (Section 2.2); in addition, some processors offer further flags that change the behaviour of floating-point computations.

All changes of modes are done through library functions (or inline assembly) executed at runtime; at the same time, the C compiler may do some computations at compile time, without regard to how these modes are set.

During translation the IEC 60559 default modes are in effect: The rounding direction mode is rounding to nearest. The rounding precision mode (if supported) is set so that results are not shortened. Trapping or stopping (if supported) is disabled on all floating-point exceptions.

[. . . ] The implementation should produce a diagnostic message for each translation-time floating-point exception, other than inexact; the implementation should then proceed with the translation of the program.

In addition, programs to be compiled may test or change the floating-point status or operating modes using library functions, or even inline assembly. If the compiler performs code reorganisations, then some results may end up being computed before the applicable rounding modes are set. For this reason, the C norm introduces #pragma STDC FENV_ACCESS ON/OFF [ISO, 1999, §7.6.1]:

The FENV ACCESS pragma provides a means to inform the implementation when a program might access the floating-point environment to test floating-point status flags or run under non-default floating-point control modes. [. . . ] If part of a program tests floating-point status flags, sets floating-point control modes, or runs under non-default mode settings, but was translated with the state for the FENV ACCESS pragma off, the behaviour is undefined. The default state ( on or off ) for the pragma is implementation-defined. [. . . ] The purpose of the FENV ACCESS pragma is to allow certain optimisations that could subvert flag tests and mode changes (e.g., global common subexpression elimination, code motion, and constant folding). In general, if the state of FENV ACCESS is off, the translator can assume that default modes are in effect and the flags are not tested.

Another effect of this pragma is to change how much the compiler can evaluate at compile time regarding constant initialisations. [ISO, 1999, F.7.4, F.7.5]. If it is set to OFF, the compiler can evaluate floating-point constants at compile time, whereas if they had been evaluated at runtime, they would have resulted in different values (because of different rounding modes) or floating-point exception. If it is set to ON, the compiler may do so only for static constants -which are generally all evaluated at compile time and stored as a block of constants in the binary code of the program.

Unfortunately, as per the preceding pragma, most compilers do not recognise this pragma. There may, though, be some compilation options that have some of the same effect. Again, the user should carefully read the compiler documentation.

Optimisations and associativity

Some optimising compilers will apply rules such as associativity, which may significantly alter the outcome of an algorithm, and thus are not allowed to apply according to the language standard. [ISO, 1999, §5.1.

2.3]

A particularly interesting application of such permissiveness is vectorisation; that is, using the features of certain processors (such as IA32, x86 64 or EM64T processors, with a SSE unit) that enable doing the same mathematical operation on several operands in a single instruction. Take for instance the following program, which sums an array: double s = 0.0; for(int i=0; i<n; i++) { s = s + t[i]; } This code is not immediately vectorisable. However, assuming that n is a multiple of two and that addition is associative, one may rewrite this code as follows:

double sa[2], s; sa[0]=sa[1]= 0.0; for(int i=0; i<n/2; i++) { sa[0] = sa[0] + t[i*2+0]; sa[1] = sa[1] + t[i*2+1]; } s = sa[0] + sa[1];
That is, we sum separately the elements of the array with even or odd indexes. Depending on other conditions such as memory alignment, this code may be immediately vectorised on processors that can do two simultaneous double precision operations with one single vector instruction.

If we compile the first code fragment above using Intel's icc compiler with options -xW -O2 (optimise for Pentium 4 and compatible processors), we see that the loop has been automatically vectorised into something resembling the second fragment. This is because, by default, icc uses a "relaxed" conformance mode with respect to floating-point; if one specifies -fp-model precise, then the application of associativity is prohibited and the compiler says "loop was not vectorised: modifying order of reduction not allowed under given switches". Beta versions of gcc 4.2 do not vectorise this loop when using -O3 -ftree-vectorize, but they will do so on appropriate platforms with option -ffast-math or the aptly named -funsafe-math-optimisations.

Another class of optimisations involves the assumption, by the compiler, that certain values (±∞, NaN) do not occur in regular computations, or that the distinction between ±0 does not matter. This reflects the needs of most computations, but may be inappropriate in some contexts; for instance, some computations on complex numbers use the fact that ±0 are distinct [START_REF] Kahan | Branch cuts for complex elementary functions, or much ado about nothing's sign bit[END_REF]. It is thus regrettable, besides being contrary the C standard, that some compilers, such as icc, choose, by default, to assume that NaNs should not be handled correctly, or that ±0 can be used interchangeably. We shall see this on a simple example.

Consider the problem of computing the minimum of two floating-point numbers. This can be implemented in four straightforward ways: 1. x < y ? x : y 2. x <= y ? x : y 3. x > y ? y : x 4. x >= y ? y : x These four expressions are equivalent over the real numbers, but they are not if one takes NaNs into account, or one differentiates ±0. Witness:

x y x<y ? x:y x<=y ? x:y x>y ? y:x x>=y ? y:

x +0 -0 -0 0 0 -0 NaN 1 1 1 NaN NaN
On SSE (see 3.1.3), both icc, by default, and gcc with the -O2 -ffast-math option will compile all four expressions as though they were the first one. The reason is that the first expression maps directly to one assembly instruction, minss or minsd, while the others entail more complex and slower code. Interestingly, if the four above expression are present in the same function, gcc -O2 -ffast-math will detect that they are equivalent and simply reuse the same result.

We echo William Kahan 18 in deploring that some compilers allow themselves, by default, to ignore language standards and apply unsafe optimisations, presumably in order to increase performance in benchmarks. Some algorithms are written in a certain way so as to minimise roundoff error, and compilers should not rewrite them in another way. Also, static analysis results obtained from the source code (see Section 7.5) may not be applicable on the object code if the compilers make such unsafe transformations. We thus suggest that users of analysis tool operating on the source code read the documentation of their compiler carefully in search of discussion of "relaxed" or "strict" floating-point issues.

Input/output issues

Another possible compilation issue is how compilers interpret constants in source code. The C norm states:

For decimal floating constants, and also for hexadecimal floating constants when FLT RADIX19 is not a power of 2, the result is either the nearest representable value, or the larger or smaller representable value immediately adjacent to the nearest representable value, chosen in an implementation-defined manner. For hexadecimal floating constants when FLT RADIX is a power of 2, the result is correctly rounded.

This means that two compilers on the same platform may well interpret the same floating-point decimal literal in the source code as different floating-point value, even if both compilers follow C99 closely. Similar limitations apply to the behaviour of the C library when converting from decimal representations to floating-point variables [ISO, 1999, §7.20.1.3].

Reading and printing floating-point numbers accurately is a non-trivial issue if the printing base (here, 10) is not a power of the computation base (binary in the case of IEEE-754) [Clinger, 1990, Steele and[START_REF] Guy | How to print floating-point numbers accurately[END_REF]. There exist few guarantees as to the precision of results printed in decimal in the C norm [ISO, 1999, §7.19.6.1, F.5]. IEEE-754, however, mandates some guarantees [IEC, 1989, IEE, 1985, §5.6], such that printing and reading back the values should yield the same numbers, within certain bounds. However, we have seen that the standard C libraries of certain systems are somewhat unreliable; thus, one may prefer not to trust them on accuracy issues. Printing out exact values and reading them is important for replaying exact test cases.

In order to alleviate this, we suggest the use of hexadecimal floating-point constants, which are interpreted exactly. Unfortunately, many older compilers do not support these; also, in order to print floating-point values as hexadecimal easily, printf and associated functions have to support the %a and %A formats, which is not yet the case of all current C libraries.

Example

Arguably, many of the examples we gave in the preceding sections, though correct, are somewhat contrived: they discuss small discrepancies, often happening with very large or very small inputs. In this section, we give a complete and realistic example of semantic problems related to differences between floatingpoint implementations (even, dependent on compilation options!). It consists of two parts:

1. an algorithm for computing a modulo (such as mapping an angle into [-180, 180] degrees), inspired by an algorithm found in an embedded system;

2. possible implementations of tabulated functions.

The composition of the two give seemingly innocuous implementations of angular periodic functions... which crash for certain specific values of the inputs on certain platforms. Given x, m and M (m < M ), we want to compute r such that r -x is an integer multiple of M -m and m ≤ r ≤ M . The following algorithm, adapted from code found in a real-life critical system, is correct if implemented over the real numbers: double modulo(double x, double mini, double maxi) { double delta = maxi-mini; double decl = x-mini; double q = decl/delta; return x -floor(q)*delta; } Let us apply this algorithm to the following case: int main() { double m = 180.; double r = modulo(nextafter(m, 0.), -m, m); }

We recall that floor(x ) is the greatest integer less than or equal to x , and that nextafter(a, b ) is the next representable double value from a in the direction of b . nextafter(m, 0.) is thus the greatest double-precision number strictly smaller than 180.

The above program, compiled by gcc 3.3 with optimisation for the x87 target, yields an output r ≃ 179.99999999999997158. In such a mode, variable q is cached in a extended precision register; q = 1-ε with ε ≃ 7.893.10 -17 . However, if the program is compiled without optimisation, decl is saved to, then reloaded from, a double-precision temporary variable; in the process, decl is rounded to 360, then q is 1. The program then returns r ≃ -180.00000000000002842, which is outside the specified bounds.

Simply rewriting the code as follows makes the problem disappear (because the compiler holds the value in a register): double modulo(double x, double mini, double maxi) { double delta = maxi-mini; return x -floor((x-mini)/delta)*delta; } This is especially troubling since this code and the previous one look semantically equivalent.

The same phenomenon occurs, even if optimisation is turned on, if we add a logging statement (printf()) after the computation of decl. This is due to the forced spilling of the floating-point registers into main memory across function calls.

Interestingly enough, we discovered the above bug after Astrée would not validate the first code fragment with the post-condition that the output should be between mini and maxi: Astrée was giving an interval with a lower bound slightly below mini. After vainly trying to prove that the code fragment worked, the author began to specifically search for counter-examples. In comparison, simply performing unit testing on a IA32 PC will not discover the problem if the compiler implements even simple register scheduling (which will be turned on by any optimisation option). Guidelines for testing generally specify that programs should be tested on the target system; however, unit testing on the target architecture will discover this problem only if using carefully chosen values. The above phenomenon was missed because testers, following testing guidelines, had tested the program at points of discontinuity, and slightly before and after these points, but had not tested the values just before and after these points. Now, one could argue that the odds of landing exactly on nextafter(180., 0.) are very rare. Assuming an embedded control routine executed at 100 kHz, 24 hours a day, and a uniform distribution of values in the [-180, 180] interval, such a value should happen once every 4000 years or so on a single unit. 20 However, in the case of a mass-produced system (an automobile model, for instance), this argument does not hold. If hundreds of thousands of systems featuring a defective component are manufactured every year, there will be real failures happening when the systems are deployed -and they will be very difficult to recreate and diagnose. If the system is implemented in single precision, the odds are considerably higher with the same probabilistic assumptions: a single 100 Hz system would break down twice a day. Now, it seems that a slight error such as this should be of no consequence: the return value is less than the intended lower bound, but still extremely close to it. However, let us consider a typical application of computing modulos: computing some kind of periodic function, for instance depending on an angle. Such a function is likely to contain trigonometric operators, or other operations that are costly and complex to compute. A common way to work around this cost and complexity is to look such functions up from a precomputed table.

One implementation technique sometimes found is to put all these tables in some big array of constants (perhaps loaded from a file during initialisation), and read from the array at various offsets:

val = bigTable[r + 180 + FUNCTION_F_OFFSET];
This means an implicit truncation of r+180+FUNCTION_F_OFFSET to 0; if r is a little below -180, then this truncation will evaluate to FUNCTION F OFFSET -1. The table look-up can then yield whatever value is at this point in memory, possibly totally out of the expected range.

Another example is a table look-up with interpolation:

double periodicFunction(double r) { 20 For 180, the unit at the last position is δ = 2 -45 ; all reals in (180 -(3/2)δ, 180 -δ/2) are rounded to 180 -δ, thus the probability of rounding a random real in [-180, 180] to this number is 360/δ. double biased = r+180; double low = floor(biased); double delta = biased-low; int index = (int) low; return ( table [index]*(1-delta) + table[index+1]*delta ); } If r is slightly below -180, the value return will depend on table[-1], that is, whatever is in memory before table. This can result in a segmentation fault (access to a unallocated memory location), or, more annoyingly, in reading whatever is at that location, including special values such as NaN or ±∞, or even simply very large values. With table[-1] = 10 308 and table[0] = 0, the above program outputs approximately 2.8 × 10 294 -a value probably too large for many algorithms to handle gracefully.

Such kinds of problems are extremely difficult to reproduce if they are found in practise -they may result in program crashes or nondeterministic behaviour for very rare input values. Furthermore, they are not likely to be elicited by random testing.21 Finally, the problem may disappear if the program is tested with another compiler, compilation options, or execution platform.

A few remarks on Java

Java's early floating-point model was a strict subset of IEEE-754 [Gosling et al., 1996, §4.2.3]: essentially, strict IEEE-754 single and double-precision arithmetic without the exception traps (overflow, invalid operation. . . ) and without rounding modes other than round-to-nearest. However, strict compatibility with IEEE-754 single-and double-precision operations is difficult to achieve on x87 (see Section 3.1.1). As a consequence, requests were made so that strict compatibility would be relaxed in order to get better performance, particularly for scientific computing applications. The possibility of giving up Java's deterministic, portable semantics was requested by some [START_REF] Kahan | How Java's floating-point hurts everyone everywhere[END_REF]], but controversial for others [START_REF] Grande | Java grande forum report: Making java work for high-end computing[END_REF]]. Finally, the Java language specification was altered [Gosling et al., 2000, §4.2.3]: run-time computing in extra precision (single-extended and double-extended formats) was allowed for classes and methods not carrying the new strictfp modifier [START_REF] Gosling | The Java Language Specification[END_REF][Gosling et al., , 2005, §15.4, §15.4]: they may be evaluated with an extended exponent range. To summarise, the Java designers made it legal to compile expressions to straightforward x87 code. This is actually a bolder decision than may appear at first sight. The whole design of the Java language, with well-defined semantics, aimed at enforcing unique semantics for single-threaded programs 22 that do not use systemdependent features (files, graphical interfaces, etc.): a program that merely did memory and output one value, a JIT-compiled version may give another value, but if JIT specialises the function it may give a third value (or the same value as if interpreted). Note that JIT can thus dynamically change the semantics of a function for reasons unrelated to the program being executed: the programmer has no means to predict or control when and how JIT compilation is performed.

We can conclude that programmers should be cautious before assuming that Java programs will behave predictably when using floating-point. First, this is only true if the strictfp modifier is used, and, even then, some very popular compilers and runtime systems (gcj ships by default with many GNU/Linux systems) ignore this modifier and may even ignore some other parts of the specification. The presence of JIT compilers may also add various amusing effects.

Implications for program verification

Program verification comprises a variety of methods whose goals is to prove formally that programs fit their specifications, often lumped together under the term "formal methods". Formal methods have long ignored floating-point computations, because they were judged too baroque or too difficult to model.

Goals of program verifications

Purposes of verification of programs using floating-point computations may be, in increasing order of complexity:

1. Proving that the program will never trigger "undefined" or "undesirable" behaviours, such as an overflow on a conversion from a floating-point type to an integer type. This problem has attracted the attention of both the industrial world and the program analysis community since the much publicised self-destruction of the Ariane 5 launcher during its maiden flight, which was due to overflow in a conversion from a 64-bit floating point value to a 16-bit integer [START_REF] Lions | Ariane 5: flight 501 failure, report by the inquiry board[END_REF].

Proving that a value does not overflow entails finding some bounds for that value, and if that value is the result of a complex computation depending on the history of previous inputs and outputs (as is the case of e.g. infinite impulse response filters, rate limiters, and combinations thereof), then finding and proving such bounds entails proving the stability of the numerical computation. In many cases, though, automatic program analysers, taking as input the source code of the program (typically in C or some other language, perhaps even in assembly language) can automatically compute properties of such systems. If the analyser is sound, then all the properties it prints (say, x < 5) hold for every run of the analysed programs.

The Astrée system analyses programs written in a subset of the C programming language [START_REF] Cousot | The ASTR ÉE analyzer[END_REF][START_REF] Blanchet | A static analyzer for large safety-critical software[END_REF], 2002] and attempts bounding all variables and proving the absence of overflows and other runtime errors. While it is possible to specify assertions (such as bounds on some variables representing physical quantities with known lim-its), which Astrée will attempt to prove, the system is not designed to prove such user-defined properties.

2. Pin-pointing the sources of roundoff errors in the program; proving an upper bound on the amount of roundoff error in some variable.

While in the preceding class of problems, it does not matter whether the numerical computation makes sense as long as it does not crash or violate some user-specified assertion, here the problems are subtler. The Fluctuat tool automatically provides results on the origin and magnitude of roundoff errors in numerical programs [START_REF] Martel | Semantics of roundoff error propagation in finite precision computations[END_REF][START_REF] Goubault | Static analyses of floating-foint operations[END_REF], Martel, 2002b,a].

3. Proving that the program implements such or such numerical computation up to some specified error bound. Except in the simplest cases, automated methods are unsuitable; if formal proofs are desired, then computerised proof assistants may help. Proving that a program fits its specification is difficult in general, even more so over numerical programs, which do not have "good" algebraic properties; yet some progress has been recently made in that direction [START_REF] Filliâtre | Formal verification of floating-point programs[END_REF].

Semantic bases of program analysis

In order to provide some proofs in the mathematical sense, one has to start with a mathematical definition of program behaviours, that is, a semantics. [START_REF] Winskel | The Formal Semantics of Programming Languages: An Introduction[END_REF] This semantics should model all possible concrete behaviours of the system, without omitting any. An alternative point of view is that, for the sake of simplicity of verification, the chosen semantics may fail to reflect some behaviours of the concrete system. For instance, one may consider that all floating-point variables behave as real numbers. We have shown, however, in Sec. 5, that very real bugs can occur in simple, straightforward programs that are correct if implemented over the real numbers, but that exhibit odd, even fatal, behaviours due to floatingpoint roundoff. Such an approach is thus risky if the goal is to provide some assurance that the program performs correctly, but it may be suitable for bugfinding systems, whose goal is not to prove the absence of bugs, but to direct programmers to probable bugs. Indeed, bug-findings techniques are typically unsound : they trade soundness (all possible bugs should be listed) for ease of use (not too many warnings about bugs that do not exist) and efficiency (quick analysis). In that context, methods that consider that floating-point variables contain real numbers (as opposed to floating-point values), or that integer variables contain unbounded integers (as opposed to n-bit integers computed using modular arithmetic), may be relevant.

In this paper, we are concerned with sound verification techniques: techniques that only produce correct results; that is, if the analysis of a program results in the analyser claiming that some conversion from floating-point to integer will not overflow, then it should not be possible to have this conversion overflow, regardless of inputs and roundoff errors. Given the various misunderstandings about floating-point that we cited in the previous sections, it is no surprise that it is extremely easy for an analysis designer to build an unsound static analysis tool without meaning it, for instance by starting with a semantics of floating-point operations that does not model reality accurately enough.

It is well-known that any method for program verification cannot be at the same time sound (all results produced are truthful), automatic (no human intervention), complete (true results can always be proved) and terminating (always produces a result) [START_REF] Cousot | Methods and logics for proving programs[END_REF],23 unless one supposes that program memory is finite and thus that the system is available to model-checking techniques. Given that the state spaces of programs with floating-point variables are enormous even with small numbers of variables, and that the Boolean functions implementing floating-point computations are not very regular, it seems that model-checking for whole floating-point algorithms should not be tractable. As a consequence, we must content ourselves with techniques that are unsound, non-terminating, incomplete, or not automatic, or several at the same time. The purpose of this section is to point out how to avoid introducing unsoundness through carelessness.

All terminating automatic program analysis methods are bound to be incomplete; that is, they may be unable to prove certain true facts. Incompleteness is equivalent to considering a system that has more behaviours than the true concrete system. Since we must be incomplete anyway, it is as well that we take this opportunity to simplify the system to make analysis more tractable; in doing so, we can still be sound as long as we only add behaviours, and not remove any. For instance, in Astrée, most analyses do not attempt to track exactly (bit-by-bit) the possible relationships between floating-point values, but rather rely on the bound on roundoff given by inequality 3.

Difficulties in defining sound semantics

We have seen many problems regarding the definition of sound semantics for programs using floating-point; that is, how to attach to each program a mathematical characterisation of what it actually does. The following approaches may be used:

• A naive approach to the concrete semantics of programs running on "IEEE-754-compatible" platforms is to consider that a +, -, * or / sign in the source code, between operands of type float (resp. double), corresponds to a strict IEEE-754 ⊕, ⊖, ⊗, ⊘ operation, with single-precision (resp. double-precision) operands and result: a ⊕ b = r(a + b) where r rounds to the target precision. As we have seen, this does not hold in many common cases, especially on the x87 (Section 3.1.1).

• A second approach is to analyse assembly or object code, and take the exact processor-specified semantics as the concrete semantics for each operation. This is likely to be the best solution if the compiler is not trusted not to make "unsafe optimisations" (see §4.3.2). It is possible to perform static analysis directly on the assembly code, or even object code [START_REF] Balakrishnan | Analyzing memory accesses in x86 executables[END_REF]. In addition, it is possible, if source code in a high level language is available, to help the assembly-level static analyser with information obtained from source-level analysis, through invariant translation [START_REF]Abstract interpretation-based certification of assembly code[END_REF], which may be helpful for instance for pointer information.

One remaining difficulty is that some "advanced" functions in floatingpoint units may have been defined differently in successive generations of processors, so we still cannot rule out discrepancies. However, when doing analysis for embedded systems, the exact kind of target processor is generally known, so it is possible to use information as to its behaviour.

Another possibility is to request that programmers do not use poorlyspecified functions of the processor.

• A third approach is to encompass all possible semantics of the source code into the analysis. Static analysis methods based on abstract interpretations (Section 7.5) are well-suited for absorbing such "implementationdefined" behaviours while still staying sound.

Hoare logic

As an example in the difficulty of proposing simple semantics based on the source code of the program, let us consider the proof rules of the popular Hoare logic [START_REF] Hoare | An axiomatic basis for computer programming[END_REF][START_REF] Winskel | The Formal Semantics of Programming Languages: An Introduction[END_REF]. These rules are the basis of many proof assistants and other systems for proving properties on imperative programs. A 
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In the following rule, we use hypotheses of the form ⊢ C, reading "it is possible to prove C in the underlying mathematical logic". Indeed, Hoare logic, used to reason about programs, is parametrised by an underlying mathematical logic, used to reason about the quantities inside the program.

⊢ A =⇒ A ′ {A ′ }P {B ′ } ⊢ B ′ =⇒ B
{A}P {B} weakening These rules sound suitable for proving properties of floating-point programs, if one keeps floating-point expressions such as x ⊕ y inside formulae (if multiple floating-point types are used, then one has to distinguish the various precisions for each operator, e.g. x ⊕ d y defined as r d (x + y)).

Hoare logic is generally used inside a proof assistant, a program which allows the user to prove properties following the rules, possibly with some partial automation. The proof assistant must know how to reason about floating-point quantities. x ⊕ y may be defined as r(x + y), where r is the appropriate rounding function. x + y is the usual operation over the reals (thus, the underlying mathematical logic of the Hoare prover should include a theory of the reals), and r is the rounding function, which may be defined axiomatically. Inequalities such as ineq. 2, or properties such as r • r = r then appear as lemmas of the mathematical prover. An axiomatisation of the floating-point numbers is, for instance, used in the Caduceus tool [START_REF] Filliâtre | Formal verification of floating-point programs[END_REF].

However, the above rules, as well as all tools based on them, including Caduceus, are unsound when applied to programs running on architectures such as the x87. They assume that any given arithmetic or Boolean expression has a unique value, depending only the value of all variables involved, and that this value does not change unless at least one of the variables involved changes through an assignment (direct or through pointers). Yet, in the program zero_nonzero.c of Sec. 3.1.1, we have shown that it is possible that inequality z != 0 holds at a program line, then, without any instruction assigning anything to z in whatever way, that inequality ceases to hold. Any proof assistant straightforwardly based on Hoare logic would have accepted proving that the assertion in zero_nonzero.c always holds, whereas it does not in some concrete executions.

Such tools based on "straightforward" Hoare rules are thus sound only on architectures and compilation schemes for which the points where rounding takes place are precisely known. This excludes:

• The x87 architecture, because of rounding points depending on register scheduling and other circumstances not apparent in the source code.

• Architectures using a fused multiply-add instruction, such as the PowerPC (Sec. 3.2), because one does not know whether x ⊗ y ⊕ z will get executed as r(r(x × y) + z) or r(xy + z).

What can we propose to make these tools sound even on such architectures? The first possibility is to have tools operate not on the C source code (or, more generally, any high-level source code) but on the generated assembly code, whose semantics is unambiguous.24 However, directly checking assembly code is strenuous, since code in assembly language is longer than in higher-level languages, directly deals with many issues hidden in higher-level languages (such as stack allocation of variables), and exhibits many system dependencies.

Another solution for the x87 rounding issue, is to replace the "simple" axiomatic semantics given above by a nondeterministic semantics where the nondeterminacy of the position of rounding is made explicit. Instead of an assignment x := a being treated as a single step, it is broken into a sequence of elementary operations. Thus, x := a ⊕ (b ⊗ c), over the double precision numbers, is decomposed into t := b ⊗ c; x := a ⊕ t. Then, each operation is written using the r e extended precision rounding function and the r d double precision rounding function, taking into account the nondeterminism involved, noting ndt a function returning true or false nondeterministically and skip the instruction doing nothing:

t := r e (b × c); if ndt then t := r d (t) else skip; x := r e (a + t)
The transformation consists in using the r e rounding operation in elementary operations (thus a ⊕ b gets translated as r e (a + b)) and prepending an optional (nondeterministically chosen) r d rounding step before any operation on any operand on that operation. The resulting code is then suitable for proofs in Hoare logic, and the properties proved are necessarily fulfilled by any compilation of the source code, because, through nondeterminism, we have encompassed all possible ways of compiling the operations. We have thus made the proof method sound again, at the expense of introduced nondeterminism (which, in practise, will entail increased complexity and tediousness when proving properties) and also, possibly, of increased incompleteness with respect to a particular target (we consider behaviours that cannot occur on that target, due to the way the compiler allocates registers or schedules instructions).

If we know more about the compiler or the application binary interface, we can provide more precise semantics (less nondeterminism, encompassing fewer cases that cannot occur in practice). For instance, using the standard parameter passing scheme on IA32 Linux for a non-inline function, floating-point values are passed on the stack. Thus, a Hoare logic semantics for parameter passing would include a necessary r s (single precision) or r d rounding phase, which could simplify the reasoning down the program, for instance by using the fact that r s • r s = r s and r d • r d = r d .

A similar technique may be used to properly handle compound instructions such as fused-multiply-add. On a processor where fused-multiply-add yields r(a × b + c), there are two ways of compiling the expression (a ⊗ b) ⊕ c: as r(r(a × b) + c) or as r(a × b + c). By compiling floating-point expressions (using ⊕, ⊗ etc.) into a nondeterministic choice between unambiguous expressions over the reals (using r, +, × etc.) we get a program amenable to sound Hoare proof techniques. Again, the added nondeterminism is likely to complicate proofs. This technique, however, relies on the knowledge of how the compiler may possibly group expressions. Because compilers can optimise code across instructions and even across function calls, it is likely that the set of possible ways of compiling a certain code on a certain platform is large.

To summarise our findings: the use of Hoare-logic provers is hampered by platforms or language where a given floating-point expression does not have a single, unambiguous meaning; straightforward application of the rules may yield unsound results, and workarounds are possible, but costly.

Static analysers based on abstract interpretation

We here consider methods based on abstract interpretation, a generic framework for giving an over-approximation of the set of possible program executions. [START_REF] Cousot | Abstract interpretation and application to logic programs[END_REF] An abstract domain is a set of possible symbolic constraints with which to analyse programs. For instance, the interval domain represents constraints of the form C 1 ≤ x ≤ C 2 , the octagon abstract domain [START_REF] Miné | The octagon abstract domain[END_REF] constraints of the form ±x ± y ≤ C where x and y are program variables and the C are numbers.

Intervals

The most basic domain for the analysis of floating-point programs is the interval domain [START_REF] Blanchet | Design and implementation of a special-purpose static program analyzer for safety-critical real-time embedded software[END_REF], Miné, 2004a,b]: to each quantity x in the program, attach an interval [m x , M x ] such that in any concrete execution, x ∈ [m x , M x ]. Such intervals [m x , M x ] can be computed efficiently in a static analyser for software running on a IEEE-754 machine if one runs the analyser on a IEEE-754 machine, by doing interval arithmetic on the same data types as used in the concrete system, or smaller ones.

Fixing x, y → x ⊕ y is monotonic. It is therefore tempting, when implementing interval arithmetic, to approximate

[a, b] ⊕ [a ′ , b ′ ] by [a ⊕ a ′ , b ⊕ b ′ ]
with the same rounding mode. Unfortunately, this is not advisable unless one is really sure that computations in the program to be analysed are really done with the intended precision (no extended precision temporary values, as common on x87, see Sec. 3.1.1), do not suffer from double rounding effects (see 3.1.2 and the preceding section), and do not use compound operations instead of atomic elementary arithmetic operations. In contrast, it is safe to use directed rounding: computing upper bounds in round-to-+∞ mode, and lower bounds in round-to--∞ mode: 25 This is what is done in Astrée [START_REF] Cousot | The ASTR ÉE analyzer[END_REF]. Note, however, that on some systems, rounding-modes other than round-to-nearest are poorly tested and may fail to work properly (see Section 4.2); the implementers of analysers should therefore pay extra caution in that respect.

[a, b] ⊕ [a ′ , b ′ ] = [a ⊕ -∞ a ′ , b ⊕ +∞ b ′ ].
Another area where one should exercise caution is strict comparisons. A simple solution for abstracting the outcome for x of x < y, where x ∈ [m x , M x ] and y ∈ [m y , M y ], is to take M ′ x = min(M x , M y ), as if one abstracted x <= y. Unfortunately, this is not sufficient to deal with programs that use special floatingpoint values as markers (say, 0 is a special value meaning "end of table"). One can thus take M ′ x = min(M x , pred(M y )) where pred(x) is the largest floatingpoint number less than x in the exact floating-point type used. However, as we showed in §3.1.1, on x87 a comparison may be performed on extended precision operands, which may later be rounded to lesser precisions depending on register spills. We showed in the preceding section that this particularity made some proof methods unsound, and it also makes the above bound unsound.

In order to be sound, we should use the pred operation on the extended precision type; but then, because of possible rounding to lesser precisions, we should round the bounds of the interval... which would bring us back to abstracting < as we abstract ≤.

We can, however, refine the technique even more. If we know that x is exactly representable in single (resp. double) precision, then we can safely use the pred function on single (resp. double) precision floats. Some knowledge of the compiler and the application binary interface may help an analyser establish that a variable is exactly representable in a floating-point type; for instance, if a function is not inlined and receives a floating-point value in a double variable passed by value on the stack, then this value is exactly representable in double precision. More generally, values read from memory without the possibility that the compiler has "cached" them inside a register will necessarily be representable in the floating-point format associated with the type of the variable.

Numerical relational domains

The interval domain, while simple to implement, suffers from not keeping relations between variables. For many applications, one should also use relational abstract domains -abstract domains capable of reflecting relations between two or more variables. Relational domains however tend to be designed for data taken in ideal structures (ordered rings, etc.); it is thus necessary to bridge the gap between these ideal abstract structures and the concrete execution. Furthermore, it is necessary to have effective, implementable algorithms for the abstract domains.

Miné proposed three abstraction steps [Miné, 2004a,b]:

1. From a (deterministic) semantics over floating-point numbers to a nondeterministic semantics over the real numbers, taking into account the rounding errors.

2. From the "concrete" nondeterministic semantics over the reals, to some ideal abstract domain over the reals (R) or the rationals (Q), such as the octagon abstract domain [START_REF] Miné | The octagon abstract domain[END_REF].

3. Optionally, the ideal abstract domain is over-approximated by some effective implementation. For instance, wherever a real number is computed in the ideal domain, a lower or upper bound, or both, is computed in the implementation, for instance using floating-point arithmetic with directed rounding.

Following a general method in abstract interpretation [START_REF] Cousot | Constructive design of a hierarchy of semantics of a transition system by abstract interpretation[END_REF], the succession of abstraction steps yields a hierarchy of semantics: concrete semantics over the floats ⊑ nondeterministic semantics over the reals ⊑ ideal abstract domain over R or Q ⊑ (optional) effective implementation over the floats The analysis method is sound (no program behaviour is ignored), but, because of the abstractions, is incomplete (the analyser takes into account program behaviours that cannot appear in reality, thus is incapable of proving certain tight properties).

The first step is what this paper is concerned about: a sound modelling of the floating-point computations. If this step is not done is a sound manner, for instance if the semantics of the programming language or the target platform with respect to floating point are misunderstood, then the whole analysis may be unsound.

The simplest solution, as proposed by Miné and implemented in Astrée, is to consider that the "real" execution and the floating-point execution differ by a small error, which can be bound as recalled in 2.2 (|x -r(x)| ≤ ε rel .|x| + ε abs ). However, in doing so, one must be careful not to be too optimistic: for instance, because of possible double rounding, the error bounds suitable for simply rounded round-to-nearest computations may be incorrect if, due to possible "spills", double rounding may occur (see 3.1.2). The ε rel coefficient must thus be adjusted to compensate possible double rounding.

The second step depends on the abstract domain. For instance, for the octagon abstract domain [START_REF] Miné | The octagon abstract domain[END_REF], it consists in a modified shortest-path algorithm. In any case, it should verify the soundness property: if a constraint (such as x + y < 3) is computed, then this constraint should be true on any concrete state. Finally, the last step is usually achieved using directed rounding.

Symbolic abstract domains

Other kinds of relational domains propagate pure constraints or guards (say, x = y ⊕ z). An example is Miné's symbolic rewrite domain implemented in Astrée [Miné, 2004a]. Intuitively, if some arithmetic condition is true on some variables x and y, and neither x nor y are suppressed, then the condition continues to hold later. However, we have seen in Section 3.1 that one should beware of "hidden" rounding operations, which may render certain propagated identities invalid. We may work around this issue using the same techniques as in Sec. 7.4: allow rounding at intermediate program points.

In addition, we have also seen that certain equivalences such as x ⊖ y = 0 ⇐⇒ x = y are not necessarily valid, depending on whether certain modes such as flush-to-zero are active.26 

Testing

In the case of embedded system development, the development platform (typically, a PC running some variant of IA32 or x86 64 processors) is not the same as the target platform (typically, a microcontroller). Often, the target platform is much slower, thus making extensive unit testing time-consuming; or there may be a limited number of them for the development group. As a consequence, it is tempting to test or debug numerical programs on the development platform. We have shown that this can be a risky approach, even if both the development platform and the target platform are "IEEE-754 compatible", because the same program can behave differently on two IEEE-754 compatible platforms.

We have also seen that in some cases, even if the testing and the target platform are identical, the final result may depend on the vagaries of compilation. One should be particularly cautious on platforms, such as IA32 processors with the x87 floating-point unit, where the results of computations can depend on register scheduling. Even inserting "monitoring" instructions can affect the final result, because these can change register allocation, which can change the results of computations on the x87. This is especially an issue since it is common to have "debugging-only" statements excluded from the final version loaded in the system. In the case of the x87, it is possible to limit the discrepancies (but not totally eradicate them) by setting the floating-point unit to 53-bit mantissa precision, if one computes solely with IEEE-754 double precision numbers.

Static analysis techniques where concrete traces are replayed inside the analysis face similar problems. One has to have an exact semantic model of the program to be analysed as it runs on the target platform.

Conclusion

Despite claims of conformance to standards, common software/hardware platforms may exhibit subtle differences with respect to floating-point computations. These differences pose special problems for unit testing or debugging, unless one uses exactly the same object code as the one executed in the target environment.

More subtly, on some platforms, the exact same expression, with the same values in the same variables, and the same compiler, can be evaluated to different results, depending on seemingly irrelevant statements (printing debugging information or other constructs that do not openly change the values of variables). This is in particular the case on the Intel 32-bit platform, due to the way that temporary variables are commonly handled by compilers. This breaks an assumption, common in program verification techniques, that, barring the modification of some of the variables used in the expression (directly or through a pointer), the same expression or test evaluates twice to the same value. We have seen that this assumption is false, even providing concrete example where a condition holds, then ceases to hold two program lines later, with no instruction in the source code that should change this condition in between.

We proposed some alterations to program verification techniques based on Hoare logic in order to cope with systems where this assumption does not hold. However, these alterations, necessary in order to preclude proving false statements on programs, make proofs more complex due to increase nondeterminism. With respect to automated analysis techniques based on abstract interpretation, we explained how to cope with the Intel 32-bit platform in a sound way, including with precise analysis of strict comparisons, through simple techniques.

With respect to the development of future systems, both hardware, and software, including compilers, we wish to stress that reproducibility of floatingpoint computations is of paramount importance for safety-critical applications. All designs -such as the common compilation schemes on the Intel 32-bit platform -where the results can change depending on seemingly irrelevant circumstances such as the insertion of a "print" statement make debugging fringe conditions in floating-point programs difficult, because the insertion of logging instructions may perturb results. They also make several program analysis techniques unsound, leading to sometimes expensive fixes.

The fact that some well-known compilers, by default, decide to activate optimisations that contradict published programming language standards and also break verification techniques, is not comforting. "Unsafe" optimisations often yield improved performance, but their choice should be conscious.

  double x0 = 0x1.0000000000001p0; double y = 0x1p-53 * (1. -0x1p-11); double z1 = x0 + y; double z2 = (long double) x0 + (long double) y; printf("%a %a\n", z1, z2);

  Hoare triple {A}c{B} is read as follows: if the program state at the beginning of the execution of program c verifies property A, then, if c terminates, then the final program state verifies property B. A rule H 1 . . . H n C r reads as: if we can prove the hypotheses H 1 , . . . , H n , then we can prove the conclusion C by applying rule r. If there are zero hypotheses, then we say rule r is an axiom. We recall the classical rules for assignment, sequence of operation, and test:

	{B[x → a]}x := a{B}	assign

The Astrée static analyser, which uses directed rounding internally as described in Sec. 7.5, contains a module that strives to provide a way of changing rounding modes on most current, common platforms. We regret the uneven support of the standardised functions.

By "strict IEEE-754 behaviour", "strict IEEE-754 single precision" or "strict IEEE-754 double precision", we mean that each individual basic arithmetic operation is performed as if the computation were done over the real numbers, then the result rounded to single or double precision.

This problem has been known for a long time.[START_REF] Samuel | A Rigorous Framework for Fully Supporting the IEEE Standard for Floating-Point Arithmetic in High-Level Programming Languages[END_REF], chapter 6][Goldberg, 1991, 4.2]

8[Goldberg, 1991, 1.5] explains a rationale for this.

In addition to scalar instructions, SSE and SSE2 introduce various vector instructions, that is, instructions operating over several operands in parallel. We shall see in §4.3.2 that compilers may rearrange expressions incorrectly in order to take advantage of these vector instructions. For now, we only discuss the scalar instructions.

Simulink TM is a tool for modelling dynamic systems and control applications, using e.g. networks of numeric filters. The control part may then be compiled to hardware or software. http://www.mathworks.com/products/simulink/

Scade is a commercial product based on LUSTRE. http://www.esterel-technologies.com/products/scade-suite/

This is the default setting on FreeBSD 4, presumably in order to achieve closer compatibility with strict IEEE-754 single or double precision computations.

 13 Let us consider the round-to-nearest case. If |r| ≤ M double (where M double is the greatest representable double precision number), then the x87 in double-precision mode rounds exactly like IEEE-754 double-precision arithmetic. If M double < |r| < 2 Emax (2-2 -p ), then, according to the round-to-nearest rules (including "round-to-even" for r = 2 Emax (2-2 -p )), r is rounded to ±M double on the x87, which is correct with respect to IEEE-754. If |r| ≥ 2 Emax (2 -2 -p ), then rounding r results in an overflow. The cases for the other rounding modes are simpler.

gcc has an option -mno-fused-madd to turn off the use of this instruction.

MPFR, available from http://www.mpfr.org, is a library built on top of the popular GNU MP multiprecision library. MPFR provides arbitrary precision floating-point arithmetic with the same four rounding modes as IEEE-754. In addition to the basic arithmetic operations specified by IEEE-754, MPFR also provides various arbitrary precision transcendental functions with guaranteed rounding.

See for instance the essay The baleful influence of SPEC benchmarks upon floating-point arithmetic on Kahan's web page.

FLT RADIX is the radix of floating-point computations, thus 2 on IEEE-754 systems. There currently exist few systems with other radices.

The example described here actually demonstrates the importance of non-random testing: that is, trying values that "look like they might cause problems"; that is, typically, values at or close to discontinuities in the mathematical function implemented, special values, etc.

Java does not attempt to prescribe how a multi-threaded program should be executed: it describes valid multi-threading behaviours, all of which are equally acceptable[Gosling et al., 2005, Chapter 17]. Some nondeterminism is thus acceptable.

The formal version of this result is a classic of recursion theory, known as Rice's theorem: let C be a collection of partial recursive functions of one variable, then, noting φx the partial recursive function numbered x, then {x | φx ∈ C} has a recursive characteristic function if and only if C is empty or contains all partial recursive functions of all variables.[START_REF] Rogers | Theory of Recursive Functions and Effective Computability[END_REF], p. 34][Rice, 1953, corollary B] This result is proved by reduction to the halting problem.

At least for basic operations ⊕, ⊖, ⊗, ⊘, √ . We have seen in Section 4.1 that transcendental functions may be less well specified.

Changing the rounding mode may entail significant efficiency penalties. A common trick is to set the processor in round-to-+∞ mode permanently, and replace x⊕ -∞ y by -((-x)⊕ +∞ (-y)) and so on.

There is still the possibility of considering that x ⊖ y = 0 =⇒ |x -y| < 2 E min .
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single-threaded computations should behave identically regardless of the machine, operating system and Java runtime system. This decision breaks this uniqueness of semantics and introduces platform dependencies, which Java was supposed to overcome.

Let us take for instance the foo program of Section 3. The strictfp modifier should force the program to adopt strict IEEE-754 round-to-nearest semantics. However, this modifier is ignored by gcj [Fre, 2005a, §2.1] (and the above experiments show identical results regardless of strictfp). The author is even unsure that the behaviour noted above is correct even in the absence of strictfp: strictfp is supposed to affect only temporaries [Gosling et al., 2005, §15.4], and y is not a temporary.

The "normal" mode of operation of Java is not straight compilation to native code, but compilation to bytecode; the bytecode may then be executed inside a Java Runtime Environment (JRE), comprising a Java Virtual Machine (JVM). The simplest JVMs just interpret the bytecode, but more advanced ones do "just-in-time compilation" (JIT). A JIT-capable virtual machine will typically interpret bytecode at first, but will detect frequently used functions and will compile these to native codes. Because JIT occurs at runtime, it can perform advanced optimisations, such as detecting that certain arguments occur frequently for certain functions and specialising these functions, that is, compiling a special version of these functions for certain values of its arguments and replacing the calls to the generic function by calls to the specialised function when appropriate. The same kind of problems that we gave above for generation of native code can thus occur: the interpreted version will spill temporaries to