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Abstract
Current critical systems commonly use a lot of floating-point com-
putations, and thus the testing or static analysis of programs con-
taining floating-point operators has become a priority. However,
correctly defining the semantics of common implementationsof
floating-point is tricky, because semantics may change withmany
factors beyond source-code level, such as choices made by compil-
ers. We here give concrete examples of problems that can appear
and solutions to implement in analysis software.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Program Verification—formal methods, validation, asser-
tion checkers; D.3.1 [Programming Languages]: Formal Def-
initions and Theory—semantics; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about
Programs—Mechanical verification, assertions, invariants; G.1.0
[Mathematics of Computing]: Numerical analysis—Computer arith-
metic, Interval arithmetic; G.4 [Mathematics of Computing]:
Mathematical software—Certification and testing, Algorithm de-
sign and analysis

General Terms Experimentation, Reliability, Standardisation,
Verification

Keywords Abstract interpretation, Static analysis, Program test-
ing, Verification, Floating point, Embedded software, Safety-
Critical Software, x87, IA32, AMD64, PowerPC, FPU, Rounding,
IEEE-754

1. Introduction
In the past, critical applications often used fixed-point computa-
tions. However, with the wide availability of processors with hard-
ware floating-point units, many current critical applications (say,
for controlling automotive or aerospace systems) use floating-point
operations. Such applications have to undergo stringent testing
or validation. In this paper, we show how the particularities of
floating-point implementations can hinder testing methodologies,
and have to be cared for in static analysis.

It has been known for a long time that it was erroneous to
compute with floating-point numbers and operations as though they
were on the real field. There exist entire treatises discussing the
topic of stability in numerical algorithms from the point ofview of
the applied mathematician: whether or not some algorithm, when
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implemented with floating-point, will give “good” approximations
of the real result; we will not discuss such issues in this paper.
The purpose of this paper is to show the kind of difficulties that
floating-point computations pose for static analysis and program
testing methods: both for defining the semantics of the programs
to be analysed, and for defining and implementing the analysis
techniques.

For the sake of a better understanding, in Sect. 2, we recall the
bases of IEEE-754 arithmetics. For a wider perspective on issues
related to floating-point computations, see the papers by William
Kahan.

A naive approach to floating-point issues is that since all current
commonplace platforms claim to support IEEE-754, there should
not be problems for analysing or simulating the computations of
one platform on another platform. In fact, there are subtle differ-
ences between hardware or software floating-point units (FPUs);
and compilers tend not to implement exact IEEE-754 single- or
double-precision semantics [VCV97]. Differences betweenhard-
ware platforms are one reason why, for instance, implementors of
Java found it difficult to implement consistent floating-point across
various systems, since the semantics of Java programs was sup-
posed to be the same whatever the platform.1 A well-known is-
sue is the 80-bit internal floating-point registers on the Intel plat-
form. [Sun01, Appendix D] In Section 3, we shall expand on such
issues and show, for instance, how low-level issues such as register
allocation [AG97, chapter 11] and the insertion of logging instruc-
tions with no “apparent” computational effects can change the final
results of computations. In Section 4.1 we shall discuss issues per-
taining to the PowerPC architecture.

An important factor throughout the discussion is that it is not
the hardware platform that matters in itself, but its combination
with the software context, including the compiler, libraries, and
possible runtime environment. Compatibility has to be appreciated
at the level of the application writer — whether code writtenusing
types mapped to IEEE normalised types will effectively behave as
though all atomic floating-point operations (say,+, −, ×, /) will

1 Java’s early floating-point model was a strict subset of IEEE-754 [GJS96,
§4.2.3]: essentially, strict IEEE-754 single and double-precision arithmetics
without the exception traps (overflow, invalid operation. .. ) and without
rounding modes other than round-to-nearest. However, strict compatibil-
ity with IEEE-754 single- and double-precision operationsis difficult to
achieve on certain widely used platforms, such as the Intel IA32 (x86); on
all but the latest processors, it incurs a performance hit. As a consequence
requests were made so that strict compatibility would be relaxed in order to
get better performance, particularly for scientific computing applications.
The possibility of giving up Java’s deterministic, portable semantics was re-
quested by some [KD98], but controversial for others [Pan98]. Finally, the
Java language specification was altered [GJSB00,§4.2.3]: runtime comput-
ing in extra precision (single-extended and double-extended formats) was
allowed for classes and methods not carrying the newstrictfp modifier
[GJSB00,§15.4]. TheBorneoproject introduces full IEEE-754 features.
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go according to the standardised definition. [IEC89, IEE85,§1.1]
Indeed, the standard recalls [IEC89, IEE85,§1.1]:

It is the environment the programmer or user of the system
sees that conforms or fails to conform to this standard. Hardware
components that require software support to conform shall not be
said to conform apart from such software.

IEEE-754 normalises a few basic operations; however, many
programs use functions such as sine, cosine, . . . , which are not
specified by this norm and are generally not strictly specified in
the system documentation. In Sect. 4.2, we shall explore some
difficulties with respect to mathematical libraries. In addition to
issues related to certain floating-point implementations,or certain
mathematical libraries, there are issues more particularly related to
the C programming language, its compilers and libraries. Sect. 4.3
explores such system dependencies. Sect. 4.4 explores issues with
input and output of floating-point values.

A commonly held opinion is that whatever the discrepancies,
they will be negligible enough and should not have noticeable
consequences. In Section 5, we give a complete example of some
seemingly innocuous floating-point code fragment based on real-
life industrial code. We illustrate how the floating-point “oddities”
that we explained in the preceding sections can lead to rare and
extremely hard to diagnose runtime errors.

In Section 6 we analyse the consequences of these issues on ab-
stract interpretation-based static analysis and other validation tech-
niques, and show how to obtain sound results. The static analysis
techniques that we describe are implemented in the ASTRÉE static
analyser [BCC+02, BCC+03, CCF+05].

We shall be particularly interested in programs written in the
C programming language, because this language is often favoured
for embedded systems. We shall in particular discuss some impli-
cations of the most recent norm of that language, “C99” [ISO99].

2. IEEE-754: a reminder
All current general-purpose microprocessors, and many microcon-
trollers, implement hardware floating-point as a variant ofnorm
ANSI/IEEE-754 [IEE85], later adopted as international standard
IEC-60559 [IEC89]. We thus begin by an overview of this stan-
dard.

2.1 Numbers

IEEE floating point numbers are of the following kinds:

Zeroes There exist both a+0 and a−0. The difference between
the two has practical importance only if one extracts the sign
bit from the number, or if one divides a nonzero number by a
zero (the sign of the zero determines whether+∞ or −∞ is
returned).

Infinities Infinities are generated by divisions by zero or byover-
flow (computations of numbers of such a large magnitude that
they cannot be represented).

NaNs The special valuesNot a Number(NaN) represent the result
of operations that cannot have a meaningful result in terms of
an finite number or infinity. Such is for instance the case of
(+∞) − (+∞), 0/0 or

√
−1.

Normalised numbers This is the most common kind of nonzero
representable reals.

Denormalised numbersThese represent some values very close
to zero. They pose special issues regarding rounding errors.

Floating point numbers are represented as follows:x = ±s.m
where1 ≤ m < 2 is themantissa, which has a fixed numberp
of bits, ands = 2e thescaling factor(Emin ≤ e ≤ Emax is the

exponent). The difference introduced by changing the last binary
digit of the mantissa is±s.εlast whereεlast = 2−(p−1): theunit in
the last placeor ulp. For Any nonzero number can be represented
uniquely in this way if we impose that the leftmost digit of the
mantissa is1 — this is called anormalised representation. Except
in the case of numbers of very small magnitude, IEEE-754 always
works with normalised representations.

The IEEE-754single precisiontype, associated to C’sfloat
type [ISO99, F.2], hasp = 24, Emin = −126, Emax = +127.
The IEEE-754single precisiontype, associated to C’sdouble, has
p = 53, Emin = −1022, Emax = +1023.

We thus obtain a floating-point representation of the form:

x = ±[1.m1 . . . mp−1]2.2
e (1)

We note[vvv]2 the representation of a number in terms of binary
digitsvvv.

2.2 Rounding

Let us notex the result of an operation between two non-NaN,
non-infinity floating point numbers in the real field. Each ideal real
x is mapped to a floating-point valuer(x) by a uniquely defined
rounding function; the choice of this function is determined by
the rounding mode. IEEE-754 mandates four standard rounding
modes:

• round-to-+∞: r(x) is the least floating point value greater than
or equal tox;

• round-to-−∞: r(x) is the greatest floating point value smaller
than or equal tox;

• round-to-0: r(x) is the floating-point value of the same sign as
x such that|r(x)| is the greatest floating point value smaller
than or equal to|x|;

• round-to-nearest:r(x) is the floating-point value closest tox
with the usual distance (see below for details); this is the de-
fault.

Depending on the rounding mode, the errorδ = r(x) − x
committed on normalised floating-point results (see below for de-
normalised and underflow results) is constrained as follows: in
round-to-+∞ mode,0 ≤ δ < s.εlast; in round-to-−∞ mode,
−s.εlast < δ ≤ 0; in round-to-0 mode,−s.εlast < δ < s.εlast;
in round-to-nearest mode,−s.εlast/2 ≤ δ ≤ s.εlast/2.

We can bound the maximal error:

|x|.εlast/2 < |s|.εlast ≤ |x|.εlast (2)

and|δ| ≤ |x|.εlast/2 in round-to-nearest mode,|δ| ≤ x.εlast in other
modes. If we do not assume a specific rounding mode, we should
takeεrel = εlast. Thus, whatever the rounding mode, for anyx such
thatr(x) does not result in underflow,|x − r(x)| ≤ εrel.|x|.

Because the exponent of floating-point numbers is bounded
(emin ≤ e ≤ emax), there exists a minimal positive representable
floating-point numberεabs (in IEEE-754 double precision arith-
metics, it is2−1074 ≈ 5 × 10−324). When|x| < εabs, depending
on rounding conditions,r(x) may be rounded to±εabsor to0. The
generation of a zero floating-point result for a nonzero realresult is
known asunderflow.

In addition to normalised numbers, IEEE floating-point repre-
sentations allow fordenormalnumbers.2 These are numbers very
close to zero and are of the form:

x = ±[0.m1 . . . mp−1]2.2
εmin (3)

2 Note, however, that certain floating-point units such as theSSE allow
disabling the use of denormals for efficiency reasons (see Sect. 3.3). We
still can accommodate this case by choosingεabs to be the least positive
normalisednumber, that is,2emin−(p−1).
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It follows that εabs = 2εmin−(p−1). We can bound the maximal
error: |δ| ≤ εabs/2 in round-to-nearest mode,|δ| ≤ εabs in other
modes. The generation of denormal numbers is also considered by
IEEE-754 to be an underflow [IEC89, IEE85,§7.4] — especially
since they may incur an “extraordinary” absolute loss of precision,
while normalised results incur a relative loss of precision.

2.3 Operations

IEEE-754 normalises 5 operations: addition (which we shallnote
⊕ in order to distinguish it from the operation over the reals),
subtraction (⊖), multiplication (⊗), division (⊘), and also square
root.

IEEE-754 specifiesexact rounding[Gol91, §1.5]: the result of
a floating-point operation is the same as if the operation wasper-
formed on the reals with the given inputs, then rounded according
to the rules in the preceding section. Thus,x ⊕ y is defined as
r(x + y), with x andy taken as elements ofR ∪ {−∞, +∞}; the
same applies for the other operators.

From the inequalities derived in 2.1, we obtain

|x − r(x)| ≤ max(εrel.|x|, εabs) (4)

Thus also,a fortiori:

|x − r(x)| ≤ εrel.|x| + εabs. (5)

It is well-known that floating-point operations arenot associa-
tive (e.g (1020 ⊕ 1) ⊖ 1020 = 0 6= 1 = (1020 ⊖ 1020) ⊕ 1).
Many symbolic computation techniques, used in static analysers
or in compiler optimisers, assume some good algebraic properties
of the arithmetics in order to be sound. In Sect. 6.1, we shallex-
plain how it is possible to make such methods sound with respect
to floating-point.

3. IA32, AMD64 and ET64 architectures
The IA32 architecture, originating from Intel, encompasses proces-
sors such as the i386, i486 and the various Pentium variants.It is, as
of 2005, the most common architecture for micro-computers.The
AMD64 and ET64 architectures are 64-bit extensions of IA32.
IA32 offers almost complete ascending compatibility from the
8086 processor, first released in 1978; it features a floating-point
unit, often nicknamed x87, mostly upwardly compatible withthe
8087 co-processor, first released in 1980. However, later, another
floating-point unit, known as SSE, was added to the architecture.

3.1 x87 floating-point unit

Processors of the IA32 architecture (Intel 386, 486, Pentium etc.
and compatibles) feature a floating-point unit often known as
“x87” [Int05, chapter 8].

It supports the floating-point, integer, and packed BCD integer
data types and the floating-point processing algorithms andexcep-
tion handling architecture defined in the IEEE Standard 754 for
Binary Floating-Point Arithmetic.

This unit has 80-bit registers internally in “extended double” format
(64-bit mantissa and 15-bit exponent), often associated tothelong
double C type; it can read and write data to memory in this 80-bit
format or in standard IEEE-754 single and double precision.By de-
fault, all operations performed on CPU registers are done with 64-
bit precision, but it is possible to reduce precision to 24-bit (same as
IEEE single precision) and 53-bit (same as IEEE double precision)
mantissas by setting some bits in the unit’s control register.[Int05,
§8.1.5.2] Note, however, that these precision settings do not affect
the range of exponents available, and only affect a limited number
of operations (containing all operations specified in IEEE-754).

The most usual way of generating code for the IA32 is to hold
temporaries — and, in optimised code, program variables — inthe

x87 registers. Doing so yields more compact and efficient code
than always storing register values into memory and reloading
them. However, it is not always possible to do everything inside
registers, and compilers then generally store extra temporary values
to main memory using the type of the value per the typing rulesof
the language. This means thatthe final result of the computations
depend on how the compiler allocates registers, since temporaries
(and possibly variables) will incur or not incur rounding whether or
not they are spilt to main memory.

As an example, the following program compiled withgcc 4.0.1
[Fre] under Linux will print10308 (1E308):

double v = 1E308;
double x = (v * v) / v;
printf("%g %d\n", x, x==v);

How is that possible?v * v done in double precision will over-
flow, and thus yield+∞, and the final result should be+∞.
However, since all computations are performed in extended pre-
cision, the computations do not overflow. However, if we use the
-ffloat-store option, which forcesgcc to store floating-point
variables in memory, we obtain+∞.

The result of computations can actually depend on compilation
options or compiler versions, or anything that affects propagation.
With the same compiler and system, the following program prints
10308 (when compiled in optimised mode (-O), while it prints+∞
when compiled in default mode.

double foo(double v) {
double y = v * v;
return (y / v);

}
main() { printf("%g\n", foo(1E308));}

Examination of the assembly code shows that when optimising, the
compiler reuses the value ofy stored in a register, while it saves
and reloadsy to and from main memory in non-optimised mode.

A common optimisation isinlining — that is, replacing a call to
a function by the expansion of the code of the function at the point
of call. For simple functions (such as small arithmetic operations,
e.g.x 7→ x2), this can increase performance significantly, since
function calls induce costs (saving registers, passing parameters,
performing the call, handling return values). C [ISO99,§6.7.4] and
C++ have aninline keyword in order to pinpoint functions that
should be inlined (however, compilers are free to inline or not to
inline such functions; they may also inline other functionswhen
it is safe to do so). However, on x87, whether or not inlining is
performed may change the semantics of the code!

Consider whatgcc 4.0.1 on IA32 does with the following pro-
gram, depending on whether the optimisation switch-O is passed:

static inline double f(double x) {
return x/1E308;

}
double square(double x) { return x*x; }
int main(void) {
printf("%g\n", f(square(1E308)));

}

gcc does not inline functions when optimisation is turned off.
Thesquare function returns adouble, but the calling convention
is to return floating point value into a x87 register — thus in
long double format. Thus, whensquare is called, it returns
approximately10716, which fits inlong double but notdouble
format. But whenf is called, the parameter is passed on the stack
— thus as adouble, +∞. The program therefore prints+∞. In
comparison, if the program is compiled with optimisation on, f is
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inlined; no parameter passing takes place, thus no conversion to
double before division, and thus the final result printed is10308.

It is somewhat common for programmers to add a comparison
check to0 before computing a division, in order to avoid possible
division-by-zero exceptions or the generation of infinite results. A
first objection to this practise is that, anyway, computing1/x for
x very close to zero will generate very large numbers that will
result in overflows later. Another objection is that it may actually
not work, depending on what the compiler does.

Consider the following source code:3

void do_nothing(double *x) { }
int main(void) {
double x = 0x1p-1022, y = 0x1p100, z;
do_nothing(&y);
z = x / y;
if (z != 0) {

do_nothing(&z);
assert(z != 0);

}
}

This program exhibits different behaviours depending on vari-
ous factors, even when one uses the same compiler (gcc version
4.0.2 on IA32):

• If it is compiled without optimisation,x / y is computed as a
long double then converted into a IEEE-754 double precision
number (0) in order to be saved into memory variablez. Theif
statement is thus not taken.

• If it is compiled as a single source code with optimisation,gcc
performs some kind of global analysis which understands that
do_nothing does nothing. Then, it does constant propagation,
sees thatz is 0, thus that theif statement is not taken, and
finally thatmain() performs no side effect. It then effectively
compilesmain() as a “no operation”.

• If it is compiled as two source codes (one for each function),
gcc cannot do constant propagation. Thez != 0 is performed
on a nonzerolong double quantity and thus is taken. How-
ever, after the seconddo_nothing() call, z is reloaded from
main memory as the value0 (because conversion to double-
precision flushed it to0). As a consequence, the printed result
is +∞.

• If, with the same compilation setup, one removes the second
do_nothing() call, the program detects an assertion failure
and aborts. Note that cursory program analysis, optimisation,
or naive static analysis may well conclude that the assertion
z != 0 is true throughout theif branch.

One should therefore be extra careful with strict comparisons, be-
cause these may be performed on the extended precision type.

We are surprised of these discrepancies. After all, the C specifi-
cation says [ISO99, 5.1.2.3,program execution, §12, ex. 4]:

Implementations employing wide registers have to take careto
honor appropriate semantics. Values are independent of whether
they are represented in a register or in memory. For example,an
implicit spilling of a register is not permitted to alter thevalue.
Also, an explicit store and load is required to round to the precision
of the storage type.

3 C99 introduces hexadecimal floating-point literals in source code. [ISO99,
§6.4.4.2] Their syntax is as follows:0xmmmmmm.mmmm p±ee where
mmmmmm.mmmm is a mantissa in hexadecimal, possibly containing a point,
andee is n exponent possibly preceded by a sign. They are interpreted as
[mmmmmm.mmmm ]16 × 2ee . See also Sect. 4.4.

However, this paragraph, being an example, is not normative. [ISO99,
foreword,§6].

Let us note, finally, that common debugging practises that, ap-
parently, should not change the computational semantics, may actu-
ally alter the result of computations. Adding a logging statement in
the middle of a computation may alter the scheduling of registers,
for instance by forcing some value to be spilt into main memory
and thus undergo additional rounding. As an example, simplyin-
serting aprintf("%g\n", y); call after the computation ofy in
the abovefoo function forcesy to be flushed to memory, and thus
the final result then becomes+∞ regardless of optimisation.

Also, it is commonplace to disable optimisation when one in-
tends to use a software debugger, because in optimised code,the
compiled code corresponding to distinct statements may become
fused, variables may not reside in a well-defined location, etc. How-
ever, as we have seen, simply disabling or enabling optimisation
may change computational results.

3.2 Double rounding

In some circumstances, floating-point results are rounded twice
in a row, first to a typeA then to a typeB. Surprisingly, such
double roundingcan yield different results from direct rounding
to the destination type.4 Such is the case, for instance, of results
computed in thelong double 80-bit type of the x87 floating-
point registers, then rounded to the IEEE double precision type for
storage in memory. In round-to-0, round-to-+∞ and round-to-−∞
modes, this is not a problem provided that the values representable
by typeB are a subset of those representable by typeA. However,
in round-to-nearest mode, there exist some borderline cases where
differences are exhibited.

In order to define the round-to-nearest mode, one has to de-
fine arbitrarily how to round a real exactly in the middle between
the nearest floating-point values. IEEE-754 chooses round-to-even
[IEC89, IEE85,§4.1]:5

In this mode, the representable value nearest to the infinitely
precise result shall be delivered; if the two nearest representable
values are equally near, the one with its least significant bit equal
to zero shall be delivered.

This definition makes it possible for double rounding to yield
different results than single rounding to the destination type. Con-
sider a floating-point typeB where two consecutive values arex0

and x0 + δB, and another floating-typeA containing all values
in B and alsox0 + δB/2. There existsδA such that all reals in
the intervalI =]x0 + δB/2 − δA/2, x0 + δB/2[ get rounded to
x0 + δB/2 when mapped toA. We shall suppose that the man-
tissa ofx0 finished by a1. If x ∈ I , then indirect rounding yields:
x →A x0 + δB/2 →B x0 + δB and direct rounding yields:
x →B x0.

A practical example is withx0 = 1 + 2−52, δ = 2−52 and
r = x0 + y wherey = δ/2(1 − 2−11). Bothx0 andy are exactly
representable in IEEE-754 double precision (B).

double x0 = 0x1.0000000000001p0;
double y = 0x1p-53 * (1. - 0x1p-11);
double z1 = x0 + y;
double z2 = (long double) x0 + (long double) y;
printf("%a %a\n", z1, z2);

We see thatz1 = x0 and thatz2 = x0 + 2−52. In order to get
true IEEE-754 computations on thedouble type, we execute the
single- and double- precision computations on the SSE unit (see
Sect. 3.3) of an AMD64 or Pentium 4 processor. Note that if this

4 This problem has been known for a long time.[FdC00, chapter 6][Gol91,
4.2]
5 [Gol91, 1.5] explains a rationale for this.
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program is executed on an IA32 processor, it is likely thatz1 =
z2 = x0 + 2−52, as seen on Linux /gcc-4.0.1: the computations
on double will be actually performed in thelong double type
inside the processor, then converted to IEEE double precision.

A similar problem occurs with rounding behaviour near infini-
ties:

However, an infinitely precise result with magnitude at least
2Emax(2 − 2−p) shall round to∞ with no change in sign.

For IEEE double-precision,Emax = 1023 and p = 53; let us
takex0 to be the greatest representable real,Mdouble = 2Emax(2 −
2−(p−1)) and y = 2970(1 − 2−11). With a similar program as
above,r = x0 + y gets rounded toz1 = x0 in IEEE double
precision, but gets rounded to2Emax(2−2−p) in extended precision.
As a result, the subsequent conversion into IEEE double precision
will yield +∞.

Double rounding can also cause some subtle differences for very
small numbers that are rounded into denormal double-precision
values if computed in IEEE-754 double precision: if one uses
the “double-precision” mode of the x87 FPU, these numbers
will be rounded into normalised values inside the FPU regis-
ter, because of a wider range of negative exponents; then they
will be rounded again into double-precision denormals when
written to memory. This is known asdouble-rounding on un-
derflow [Sun, §10.4.3.1]. Working around double-rounding on
underflow is extremely tedious and incurs significant efficiency
penalties (however, the phenomenon is exhibited by× and /,
not by + and −). [Pan98] A concrete example : takingx =
0x1.8000000000001p-1018 (≈ 5.34018 × 10−307) and y =
0x1.0000000000001p+56 (≈ 7.20576 × 1016), thenx ⊘ y =
0x0.0000000000001p-1022 in IEEE-754 double precision and
x ⊘ y = 0x0.0000000000002p-1022 with the x87 in “double
precision mode”.

3.3 SSE floating-point unit

Intel introduced in the Pentium III processor the SSE floating-point
unit [Int05, chapter 10], then the SSE2 extension in the Pentium 4
[Int05, chapter 11]. These extensions to the x86 instruction set con-
tain, respectively, IEEE-compatible single-precision and double-
precision instructions.

One can makegcc generate code for the SSE subsystem
with the -fpmath=sse option; since SSE is only available for
certain processors, it is also necessary to specify, for instance,
-march=pentium4. On AMD64,-fpmath=sse is the default.

Note the implication: the same program may give different
results when compiled on 32-bit and 64-bit “PCs” (or even the
same machine, depending on whether one compiles in 32-bit or
64-bit mode) because of the difference in the default floating-point
subsystem used.

In addition, the SSE unit offers some non-IEEE-754 compli-
ant modes for better efficiency: with theflush-to-zeroflag [Int05,
§10.2.3.3] on, denormals are not generated and are replaced by ze-
roes; this is more efficient. As we noted in Sect. 2.1, this does not
hamper obtaining good bounds on the errors introduced by floating-
point computations; also, we can assume the worst-case situation
and suppose that this flag is on when we derive error bounds.

The flush-to-zero flag, however, has another notable conse-
quence:x⊖y = 0 is no longer equivalent tox = y. As an example,
if x = 2−1022 andy = 1.5× 2−1022, theny ⊖ x = 2−1023 in nor-
mal mode, andy ⊖ x = 0 in flush-to-zero mode. Analysers should
therefore be careful when replacing comparisons by “equivalent”
comparisons.

In addition, there exists adenormals-are-zeroflag [Int05,
§10.2.3.4]: if it is on, all denormal operands are consideredto
be zero, which improves performance. It is still possible toobtain

bounds on the errors of floating point computations by assuming
that operands are offset by an amount of at most±2emin−(p−1)

before being computed upon. However, techniques based are exact
replays of instruction sequences will have to replay the sequence
with the same value of the flag.

3.4 Problems and solutions

The problems of running programs written with strict IEEE-
754 compliance in mind on thenearly compatiblex87 floating-
point unit have long been recognised. For this reason,gcc has a
-ffloat-store option, flushing floating-point variables to mem-
ory. [Fre] Indeed, thegcc manual [Fre] says:

On 68000 and x86 systems, for instance, you can get paradox-
ical results if you test the precise values of floating point numbers.
For example, you can find that a floating point value which is not a
NaN is not equal to itself. This results from the fact that thefloat-
ing point registers hold a few more bits of precision than fit in a
double in memory. Compiled code moves values between memory
and floating point registers at its convenience, and moving them
into memory truncates them. You can partially avoid this problem
by using the-ffloat-store option.

The manual refers to the following option:

-ffloat-storeDo not store floating point variables in regis-
ters, and inhibit other options that might change whether a floating
point value is taken from a register or memory.

This option prevents undesirable excess precision on machines
[. . . ] where the floating registers [. . . ] keep more precisionthan a
‘double’ is supposed to have. Similarly for the x86 architecture.
For most programs, the excess precision does only good, but a
few programs rely on the precise definition of IEEE floating point.
Use ‘-ffloat-store’ for such programs, after modifying them to
store all pertinent intermediate computations into variables.

Note that this option does not force unnamed temporaries to be
flushed to memory, as shown by experiments. To our knowledge,no
compiler offers the choice to always flush temporaries to memory,
or to flush temporaries tolong double memory, which would at
least remove the worst problem, which is the non-reproducibility
of results depending on factors independent of the computation
code (register allocation differences caused by compiler options or
debugging code, etc.).

Unfortunately, the above precautions do not reconstitute exact
IEEE-754 behaviour in round-to-nearest mode, because of the dou-
ble rounding problem (3.2). In addition, this option is difficult to
use: to get IEEE-754 behaviour, the programmer would have to
rewrite all program formulae to store temporaries in variables. This
does not seem to be reasonable for human-written code, but may
be possible with automatically generated code — it is frequent that
control/command applications are implemented in a high-level lan-
guage such as Simulink, the compiled into C.

Another possibility is to force the floating-point unit to limit
precision to IEEE-754 standard precisions.6 This mostlysolves the
double-rounding problem. However, there is no way to constrain
the range of the exponents, and thus these modes do not allow exact
simulation of IEEE computations when overflows are possible. For
instance, the programs of Sec. 3.1, which result in overflowsto+∞
if run under strict IEEE-754 compliant arithmetics, do not result
in overflows if run with the x87 in double precision mode. Let us
note, however, that if a computation never results in overflows when
done with IEEE-754 double-precision (resp. single-) arithmetics, it

6 This is the default setting on FreeBSD 4, presumably in orderto achieve
closer IEEE-754 compatibility.
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can be exactly simulated with the x87 in double-precision (resp.
single).7

If one wants semantics almost exactly faithful to IEEE-754 in
round-to-nearest mode, including with respect to overflow condi-
tion, one can use, at the same time, limitation of precision and op-
tions and programming style that force operands to be systemati-
cally written to memory between floating-point operations.This is
incurs some performance loss. Furthermore, there is still adiscrep-
ancy due to double rounding of numbers with very small absolute
values A simpler solution in current machines is simply to force the
compiler to use the SSE unit for computations on IEEE-754 types.

4. Other issues
While the 80-bit internal precision of the x87 may cause significant
semantic problems, they are not the only such features. Here, we
explore how the PowerPC architecture has some similar problems,
and how floating-point libraries are often poorly tested.

4.1 PowerPC architecture

The floating point operations implemented in the PowerPC ar-
chitecture are compatible with IEEE-754 [Fre01b,§1.2.2.3,§3.2].
However, [Fre01b,§4.2.2] also points out that:

The architecture supports the IEEE-754 floating-point stan-
dard, but requires software support to conform with that standard.

The PowerPC architecture features floating-point multiply-add
instructions [Fre01b,§4.2.2.2]. These perform(a, b, c) 7→ ±a.b ±
c computations in one instruction — with obvious benefits for
computations such as matrix computations [CLR90,§26.1], dot
products, or Horner’s rule for evaluating polynomials [CLR90,
§32.1]. Note, however, that they are not semantically equivalent
to performing separate addition, multiplication and optional negate
IEEE-compatible instructions; in fact, intermediate results are com-
puted with extra precision [Fre01b, D.2]. Whether these instruc-
tions are used or not depends on the compiler, optimisation op-
tions, and also how the compiler subdivides instructions. For in-
stance,gcc 3.3 compiles the following code using the multiply-
add instruction if optimisation (-O) is turned on, but without it if
optimisation is off, yielding different semantics:8

double dotProduct(double a1, double b1,
double a2, double b2) {

return a1*b1 + a2*b2;
}

In addition, thefpscr control register has aNI bit, which, if
on, possibly enables implementation-dependent semanticsdiffer-
ent from IEEE-754 semantics. [Fre01b,§2.1.4]. For instance, on
the MPC750 family, such non-compliant behaviour encompasses
flushing denormal results to zero, rounding denormal operands
to zero, and treating NaNs differently [Fre01a,§2.2.4]. Similar
caveats apply as in Sect. 3.3.

4.2 Mathematical functions

Many operations related to floating-point are not implemented in
hardware; most programs using floating-point will thus relyon

7 Let us consider the round-to-nearest case. If|r| ≤ Mdouble, then the x87
in double-precision mode rounds exactly like IEEE-754 double-precision
arithmetics. IfMdouble < |r| < 2Emax(2 − 2−p), then, according to
the round-to-nearest rules (including “round-to-even” for r = 2Emax(2 −
2−p)), r is rounded to±Mdoubleon the x87, which is correct with respect to
IEEE-754. If|r| ≤ 2Emax(2−2−p), then roundingr results in an overflow.
The cases for the other rounding modes are simpler.
8gcc has an option-mno-fused-madd to turn off the use of this instruc-
tion.

suitable support libraries. Our purpose, in this section, is not to
list comprehensively bugs in current floating-point libraries; it is
to illustrate, using examples from common operating systems and
runtime environments, the kind of problems that may happen.

4.2.1 Transcendental functions

A first remark is that, though IEEE-754 specifies the behaviour of
elementary operations+, −, ×, / and√, it does not specify the
behaviour of other functions, including the popular trigonometric
functions. These are generally supplied by a system library, occa-
sionally by the hardware.

As an example, consider the sine function. On the x87, it is
implemented in hardware; on Linux IA32, the GNU libc function
sin() is just a wrapper around the hardware call, or, depending
on compilation options, can be replaced by inline assembly.9 Intel
[Int05, §8.3.10] and AMD [Adv05,§6.5.5] claim that their tran-
scendental instructions (on recent processors) commit errors less
than 1 ulp in round-to-nearest mode; however it is to be understood
that this is after the operands of the trigonometric functions are re-
duced modulo2π, which is done currently using a 66-bit approxi-
mation forπ. [Int05,§8.3.8] However, the AMD-K5 used a 512-bit
value.10

One obtains different results forsin(0x1969869861.p+0) on
PCs running Linux. The Intel Pentium 4, AMD Athlon64 and
AMD Opteron processors, and GNU libc running in 32-bit mode
on IA32 or AMD64 all yield-0x1.95b011554d4b5p-1, However,
Mathematica, Sun Sparc under Solaris and Linux, and GNU libcon
AMD64 (in 64-bit mode) yield-0x1.95b0115490ca6p-1.

A more striking example of discrepancies issin(p) wherep =
14885392687. This value was chosen so thatsin(p) is close to0,
in order to demonstrate the impact of imprecise reduction modulo
2π.11 Both the Pentium 4 x87 and Mathematica yield a result
sin(p) ≈ 1.671 × 10−10. However, GNU libc on AMD64 yields
sin(p) ≈ 1.4798 × 10−10, about 11.5% off!

Note, also, that different processors within the same architecture
can implement the same transcendental functions with different ac-
curacies. We already noted the difference between the AMD-K5
and the K6 and following processors with respect to angular reduc-
tion. Intel also notes that the algorithms’ precision was improved
between the 80387 / i486DX processors and the Pentium proces-
sors. [Int97,§7.5.10]

With the Intel486 processor and Intel 387 math coproces-
sor, the worst-case, transcendental function error is typically 3
or 3.5 ulps, but is sometimes as large as 4.5 ulps.

There thus may be floating-point discrepancies between the current
Intel embedded processors (based on i386 / i387) and the current
Pentium workstation processors.

To summarise, one should not expect consistent behaviour on
transcendental functions across libraries, processor manufacturers
or models.

9 The latter behaviour is triggered by option-ffast-math. The doc-
umentation for this function saysit can result in incorrect output for
programs which depend on an exact implementation of IEEE or ISO
rules/specifications for math functions.
10Personal communication.
11Let us now consider a rational approximation ofπ, i.e. integersp andq
such thatp/q ≈ π (such an approximation can be obtained by a continued
fraction development ofπ [Wei]). sin(p) ≈ sin(qπ) = 0. If p′, the result
of reduction modulo2π of p, is imprecise by a margin ofǫ (∃k p′ − p =
ǫ + 2kπ), then sin(p′) − sin(p) ≈ ǫ (sin(x) ∼ x close to0). Such
inputs are thus good candidates to illustrate possible lackof precision in the
algorithm for reduction modulo2π.
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4.2.2 Non-standard rounding modes

We also have found that floating-point libraries are often poorly
tested in “uncommon” usage conditions, such as rounding modes
different from “round-to-nearest”. This is especially of interest for
implementors of static analysers (Sect. 6.1), since some form of
interval arithmetic will almost certainly be used.

FreeBSD 4.4 provides thefpsetround() function to set the
rounding mode of the processor. However, theprintf() standard
printing function of the C library does not work properly if the
processor is set in round-to-+∞ mode: when one attempts to print
very large values (such as10308), one can get garbage output (such
as a semicolon in a location where a digit should be, e.g.:e+307).

On GNU libc 2.2.93 on IA32 processors, thefesetround()
function only changed the rounding mode of the x87 FPU, while
thegcc compiler also offered the possibility of compiling for SSE.

On GNU libc 2.3.3 on AMD64, computingxy using thepow()
function in round-to-+∞ mode can result in a segmentation vio-
lation for certain values ofx andy, e.g.x = 0x1.3d027p+6 and
y = 0x1.555p-2. As for theexp() exponential function, it gives
a result close to2502 on input 1, and a negative result on input
0x1.75p+0. The problems were corrected in version 2.3.5.

4.3 Compiler issues

The C standard, by default, allows the compiler some substantial
leeway in the way that floating-point expressions may be evaluated.
While outright simplifications based on operator associativity are
not permitted, since these can be very unsound on floating-point
types [ISO99,§5.1.2.3 #13], the compiler is for instance permitted
to replace a complex expression by a simpler one, for instance using
compound operators (e.g. the fused multiply-and-add in Sect. 4.1)
[ISO99, 6.5]:

A floating expression may be contracted, that is, evaluated
as though it were an atomic operation, thereby omitting round-
ing errors implied by the source code and the expression evalu-
ation method. [. . . ] This license is specifically intended toallow
implementations to exploit fast machine instructions thatcombine
multiple C operators. As contractions potentially undermine pre-
dictability, and can even decrease accuracy for containingexpres-
sions, their use needs to be well-defined and clearly documented.

While some desirable properties of contracted expressions[ISO99,
§F.6] are requested, but no precise behaviour is made compulsory.

Because of the inconveniences that discrepancies can create,
the standard also mandates a special directive,#PRAGMA STDC
FP_CONTRACT [ISO99, §7.12.2], for controlling whether or not
such contractions can be performed. Unfortunately, while many
compiler will contract expressions if they can, few compilers im-
plement this pragma. As of 2005,gcc (v4.0) ignores the pragma
with a warning, and Microsoft’s Visual C++ handles it as a recent
addition.

We have explained how, on certain processors such as the x87
(Sect. 3.1), it was possible to change the precision of results by
setting special flags — while no access to such flags is mandated
by the C norm, the possibility of various precision modes is ac-
knowledged by the norm [ISO99, F.7.2]. Furthermore, IEEE-754
mandates the availability of various rounding modes (Sect.2.1); in
addition, some processors offer further flags that change the be-
haviour of floating-point computations.

All changes of modes are done through library functions (or
inline assembly) executed at runtime; at the same time, the C
compiler may do some computations at compile time, when these
modes are not reflected.

During translation the IEC 60559 default modes are in effect:
The rounding direction mode is rounding to nearest. The round-
ing precision mode (if supported) is set so that results are not
shortened. Trapping or stopping (if supported) is disabledon all

floating-point exceptions. [. . . ] The implementation should pro-
duce a diagnostic message for each translation-time floating-point
exception, other than inexact; the implementation should then pro-
ceed with the translation of the program.

In addition, compilers may test or change the floating-point
status or operating modes using library functions, or even inline
assembly. If the compiler performs code reorganisations, then
some results may end up being computed before the applicable
rounding modes are set. For this reason, the C norm introduces
#pragma STDC FENV_ACCESS ON/OFF [ISO99,§7.6.1]:

The FENV ACCESS pragma provides a means to inform the
implementation when a program might access the floating-point
environment to test floating-point status flags or run under non-
default floating-point control modes. [. . . ] If part of a program tests
floating-point status flags, sets floating-point control modes, or
runs under non-default mode settings, but was translated with the
state for theFENV ACCESS pragma off, the behaviour is undefined.
The default state ( on or off) for the pragma is implementation-
defined. [. . . ] The purpose of theFENV ACCESS pragma is to al-
low certain optimisations that could subvert flag tests and mode
changes (e.g., global common subexpression elimination, code mo-
tion, and constant folding). In general, if the state ofFENV ACCESS

is off, the translator can assume that default modes are in effect and
the flags are not tested.

Another effect of this pragma is to change how much the com-
piler can evaluate at compile time regarding constant initialisations
ON. [ISO99, F.7.4, F.7.5]. If it is set toOFF, the compiler can eval-
uate floating-point constants at compile time, whereas if they had
been evaluated at runtime, they would have resulted in different
values (because of different rounding modes) or floating-point ex-
ception. If it is set toON, the compiler may do so only for static
constants — which are generally all evaluated at compile time and
stored as a block of constants in the binary code of the program.

Unfortunately, as per the preceding pragma, most compilersdo
not recognise this pragma. There may, though, be some compilation
options that have some of the same effect. The norm discusses
which optimisations may or may not be applied [ISO99, F.8].

4.4 Input/output issues

Another possible compilation issue is how compilers interpret con-
stants in source code. The C norm states:

For decimal floating constants, and also for hexadecimal float-
ing constants whenFLT RADIX12 is not a power of 2, the result is
either the nearest representable value, or the larger or smaller rep-
resentable value immediately adjacent to the nearest representable
value, chosen in an implementation-defined manner. For hexadeci-
mal floating constants whenFLT RADIX is a power of 2, the result
is correctly rounded.

This means that two compilers on the same platform may well in-
terpret the same floating-point decimal literal in the source code as
different floating-point value. (And that is even if both compilers
follow C99 closely, which few current compilers do.) Similar lim-
itations apply to the behaviour of the C library when converting
from decimal representations to floating-point variables [ISO99,
§7.20.1.3].

There exist few guarantees as to the precision of results printed
in decimal in the C norm [ISO99,§7.19.6.1, F.5]. IEEE-754, how-
ever, mandates some guarantees [IEC89, IEE85,§5.6], such that
printing and reading back the values should yield the same num-
bers, withing certain bounds. However, we have seen that thestan-
dard C libraries of certain systems are somewhat unreliable; thus,
one may prefer not to trust them on accuracy issues. Printingout

12FLT RADIX is the radix of floating-point computations, thus 2 on IEEE-
754 systems. There currently exist few systems with other radixes.
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exact values and reading them is important for replaying exact
test cases. Again, we stress that reading and printing floating-point
numbers accurately is a non-trivial issue if the printing base (here,
10) is not a power of the computation base (binary in the case of
IEEE-754) [Cli90, SW90].

In order to alleviate this, we suggest the use of hexadecimal
floating-point constants, which are interpreted exactly; unfortu-
nately, many older compilers do not support these; also, in order
to print floating-point values as hexadecimal easily,printf and
associated functions have to support%a and%A, which is not yet
the case of all current C libraries.

5. Example
Arguably, many of the examples we gave in the preceding sections,
though correct, are somewhat contrived: they discuss smalldiscrep-
ancies, often happening with very large or very small inputs. In this
section, we give a complete and realistic example of semantic prob-
lems related to differences between floating-point implementations
(even, dependent on compilation options!). It consists of two parts:

1. an algorithm for computing a modulo (such as mapping an
angle into[−180, 180] degrees), inspired by an algorithm found
in an embedded system;

2. possible implementations of tabulated functions.

The composition of the two give seemingly innocuous implemen-
tations of angular periodic functions... which crash for certain spe-
cific values of the inputs on certain platforms.

Givenx, m andM (m < M ), we want to computer such that
r − x is an integer multiple ofM − m andm ≤ r ≤ M . The
following algorithm, adapted from code found in a real-lifecritical
system, is correct if implemented over the real numbers:

double modulo(double x, double mini, double maxi) {
double delta = maxi-mini;
double decl = x-mini;
return x - floor(decl/delta)*delta;

}

int main() {
double m = 180.;
double r = modulo(nextafter(m, 0.), -m, m);

}

We recall thatfloor(x ) is the greatest integer less thanx , and that
nextafter(a, b ) is the next representabledouble value froma

in the direction ofb .
The above program, compiled bygcc 3.3 with optimization for

the x87 target, yields an outputr ≃ 179.99999999999997158. In
such a mode, variableq is cached in a extended precision register;
q = 1 − ǫ with ǫ ≃ 7.893.10−17 . However, if the program
compiled without optimization,decl and q are saved to, then
reloaded from, main memory as a double precision variable; in
the process,q is rounded to1. The program then returnsr ≃
−180.00000000000002842 outside the specified bounds.

Simply rewriting the code as follows makes the problem disap-
pear (because the compiler holds the value in a register):

double modulo(double x, double mini, double maxi) {
double delta = maxi-mini;
return x - floor((x-mini)/delta)*delta;

}

This is especially troubling since that code and the above look
semantically equivalent at first sight.

If we simply add a logging statement (printf()) after the
computation ofdecl, even if optimisation is turned on, then the

return value is also outside the specified bounds. This is dueto the
forced flushing of the floating-point registers into main memory
with less precision.

Interestingly enough, the ASTRÉE static analyser gives a lower
bound slightly lower than -180. on such code, and thus signals to
the user some suspicious behaviour. This is because, as described
in 6.1, it estimates error bounds according to IEEE-754 worst-case
behaviour. In comparison, simply performing unit testing on a IA32
PC will not discover the problem.

Now, one could argue that the odds of landing exactly on
nextafter(180., 0.) are very rare. Assuming an embedded
control routine executed at 100 kHz, 24 hours a day, and a uni-
form distribution of values in the[−180, 180] interval, such a value
should happen once every4000 years or so on a single unit.13 How-
ever, in the case of a mass-produced system (an automobile model,
for instance), this argument does not hold. If hundreds of thousands
of systems featuring a buggy component are manufactured every
year, there will be real failures happening when the systemsare de-
ployed — and they will be very difficult to recreate and diagnose.
If the system is implemented in single precision, the odds are con-
siderably higher with the same probabilistic assumptions:a single
100 Hz system would break down twice a day.

Now, it seems that a slight error such as this should be of no
consequence: the return value is only extremely slightly outside the
bounds. However, let us consider a typical application of comput-
ing modulos: computing some kind of periodic function, for in-
stance depending on an angle. Such a function is likely to contain
trigonometric operators and other operations costly and complex to
compute; they are often evaluated by looking them up a table.

One implementation sometimes found is to have some big array
of constants, perhaps computed using some external application,
and lookup the array at various offsets:

val = bigTable[r + 180 + FUNCTION_F_OFFSET];

This means an implicit truncation ofr+180+FUNCTION_F_OFFSET
to 0; if r is a little below−180, then this truncation will evaluate to
FUNCTION F OFFSET−1. The table lookup can then yield whatever
value is at this point in memory, possibly totally out of the expected
range.

Another example is a table lookup with interpolation:

double periodicFunction(double r) {
double biased = r+180;
double low = floor(biased);
double delta = biased-low;
int index = (int) low;
return ( table[index]*(1-delta)

+ table[index+1]*delta );
}

If r is slightly below0, the value return will depend ontable[-1],
that is, whatever is in memory beforetable. This can result in a
segmentation fault (access to a unallocated memory location), or,
more annoyingly, in reading whatever is at that location, including
special values such asNaN or ±∞, or even simply very large
values. Withtable[-1] = 10308 andtable[0] = 0, the above
program outputs approximately2.8 × 10294 — a value probably
too large for many algorithms to follow.

Such kinds of problems is that they are extremely difficult
to reproduce if they are found in practise — they may result in
program crashes or nondeterministic behaviour for very rare input
values. Furthermore, they are not likely to be elicited by random

13For 180, the unit at the last position isδ = 2−45; all reals in]180 −
3/2δ, 180−1/2δ[ are rounded to180−δ, thus the probability of rounding
a random real in[−180, 180] to this number is360/δ.
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testing.14 Finally, the problem may disappear if the program is
tested with another compiler, compilation options, or execution
platform.

6. Implications for program verification
Program analysis, verification, testing and proving techniques all
rely on having a somewhat well-defined concrete execution model.
Thus, the issues discussed in the preceding sections may have a
negative impact on such techniques; if handled improperly,these
techniques may fail to discover real-life problems in compiled
code. We shall distinguish the case of analysers based on abstract
numerical domains [Min04b] and the case of testing or, more gen-
erally, analysis techniques based on exact replays of executions.

6.1 Static analysers based on abstract interpretation

Let us recall that static analysis consists in deriving results about
possible program executions without actually running the program.
In this section, we are only interested insoundanalysis methods,
that is, methods that will never claim that some property is veri-
fied whereas some possible program executions do not verify the
property. We focus on methods based onabstract interpretation, a
generic framework for giving anover-approximationof the set of
possible program executions. [CC92] Anabstract domainis a set
of possible symbolic constraints with which to analyse programs
(for instance, theoctagon abstract domain[Min01] represents con-
straints of the form±x ± y ≤ C wherex andy are program vari-
ables andC is a number).

6.1.1 General issues

A common objection to the analysis of programs containing
floating-point operations is that their behaviour is impossible to
analyse soundly, or requires a human expert. On the one hand,it
is indeed our experience that fine behaviour of floating-point pro-
grams (such as conditions on the least significant bits) is difficult
to check; however, most common programs do not rely on such
fine behaviour in order to work (and arguably they should not,in
general, since such reliance is bad for portability). Also,certain
numerical algorithms, particularly those with stability conditions
such as IIR filters, need specific abstract domains to be properly
analysed. [Fer04].

A naive approach to the concrete semantics of programs running
on “IEEE-754-compatible” platforms is to consider that a+, -, * or
/ sign in the source code, between operands of typefloat (resp.
double), corresponds to a IEEE-754⊕, ⊖, ⊗, ⊘ operation, with
single-precision (resp. double-precision) operands and result. As
we have seen, this does not hold in many common cases, especially
on the x87 (Sect. 3.1).

A second approach is to analyse assembly or object code, and
take the exact processor-specified semantics as the concrete seman-
tics for each operation. This is likely to be more precise, but also
quite cumbersome. In addition, as we have seen, some “advanced”
functions in floating-point units may have been defined differently
in successive generations of processors, so we cannot rule out dis-
crepancies.

A third approach is to encompass all possible semantics of
the source code into the analysis. Static analysis methods based
on abstract interpretations are well-suited for absorbingsuch
“implementation-defined” behaviours while still staying sound.

The abstractions discussed below aim at providing a sound over-
approximation of all possible concrete semantics. However, they

14The example described here actually demonstrates the importance of
non-randomtesting: that is, trying values that “look like they might cause
problems”; that is, typically, values at or close to discontinuities in the
mathematical function implemented, special values, etc.

do not point where precision is lost in the concrete computation,
which is a more ambitious tasks requiring specific abstractions
[Gou01, Mar02b, Mar02a]. In this case, one has to care whether
the semantics of introduced error fits reality, including the quirks
of the various implementations.

6.1.2 Intervals

The most basic domain for the analysis of floating-point programs
is the interval domain [BCC+02, Min04a, Min04b]: to each quan-
tity x in the program, attach an interval[mx, Mx] such that in any
concrete execution,x ∈ [mx, Mx]. Such intervals[mx, Mx] can
be computed efficiently in a static analyser for software running on
a IEEE-754 machine if one runs the analyser on a IEEE-754 ma-
chine, by doing interval arithmetics on the same data types as used
in the concrete system, or smaller ones.

Let us note floating-point addition (with given types, rounding
and precision) as⊕. Fixing x, y 7→ x ⊕ y is monotonic. It
is therefore tempting, when implementing interval arithmetics, to
approximate[a, b] ⊕ [a′, b′] by [a ⊕ a′, b ⊕ b′]. Unfortunately,
this is not advisable unless one is really sure that computations
in the program to be analysed are really done with the intended
precision (no extended precision temporary values, as common on
x87 3.1), do not suffer from double rounding effects (see 3.2),
and do not use compound operations instead of atomic elementary
arithmetic operations. It is much safer to compute upper bounds in
round-to-+∞ mode, and lower bounds in round-to-−∞ mode.15

This is what we do in ASTRÉE [CCF+05]. Note, however, that
on some systems, rounding-modes other than round-to-nearest are
poorly tested and may fail to work properly (see Sect. 4.2.2); the
implementors of analysers should therefore pay extra caution in
that respect.

Another area where one should exercise caution is strict com-
parisons. A simple solution for abstracting the outcome forx of
x < y, where x ∈ [mx, Mx] and y ∈ [my, My], is to take
M ′

x = min(Mx, my), as if one abstractedx <= y. Unfortunately,
this is not sufficient to deal with programs that use special floating-
point values as markers (say,0 is a special value meaning “end
of table”). One can thus takeM ′

x = min(Mx, pred(my)) where
pred(x) is the largest floating-point number less thanx in the exact
floating-point type used(which may be very difficult for optimised
code on the x87, because of the unpredictable scheduling of con-
versions fromlong double).

6.1.3 Relational domains

The interval domain, while simple to implement, suffers from not
keeping relations between variables. However, relationalabstract
domains tend to be designed for ideal data structures (ordered
rings, etc.); it is thus necessary to bridge the gap between these
ideal abstract structures and the concrete execution. One successful
avenue in that domain is to consider that the “real” execution
and the floating-point execution differ by a small error, which we
can bound [Min04a, Min04b]. However, in doing so, one must be
careful not to be too optimistic!

Recall that in straight IEEE-754 round-to-nearest mode, itis
possible to bound the error as|x − r(x)| ≤ 1

2
max(εabs, εlast.|x|)

(see 2.3). It is thus tempting to take this bound to analyse floating-
point programs running in round-to-nearest mode (by far themost
common case). However, double rounding, as incurred sometimes
in default compilation modes on x87, can result in slightly large
errors (see 3.2). The other rounding modes are bounded as follows

15Changing the rounding mode may entail significant efficiencypenalties.
A common trick is to set the processor in round-to-+∞ mode permanently,
and replacex ⊕−∞ y by −((−x) ⊕+∞ (−y)) and so on.
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|x − r(x)| ≤ max(εabs, εlast.|x|) ≤ εabs + εlast.|x|; this bound is
thus safe for any mode. This is the bound we use in ASTRÉE.

Other kinds of relational domains propagate pure constraints or
guards. Intuitively, if some arithmetic condition is true on some
variablesx and y, and neitherx nor y are suppressed, then the
condition continues to hold later. However, we have seen in Sect. 3
that one should beware of “hidden” rounding operations, which
may render certain propagated identities invalid. In addition, we
have also seen that certain equivalences such asx ⊖ y = 0 ⇐⇒
x = y are not necessarily valid, depending on whether certain
modes such as flush-to-zero are active.16

6.2 Testing

In the case of embedded system development, the development
platform (typically, a PC running some variant of IA32 or AMD64
processors) is not the same as the target platform (typically, a mi-
crocontroller). Often, the target platform is much slower,thus mak-
ing extensive unit testing time-consuming; or there may be alim-
ited number of them for the development group. As a consequence,
it is tempting to test or debug numerical programs on the devel-
opment platform. We have shown that this can be a risky approach,
even if both the development platform and the target platform claim
to be “IEEE-754 compatible”.

In some cases, even if the testing and the target platform are
identical, the final result may depend on the vagaries of compi-
lation. Even inserting “monitoring” instructions can affect the fi-
nal result, because these can change register allocation, which can
change the results of computations on the x87. This is especially
an issue since it is common to have “debugging-only” statements
excluded from the final version loaded in the system. One should
be particularly cautious on platforms, such as IA32 processors with
the x87 floating-point unit, where the results of computations can
depend on register scheduling. In the case of the x87, it is possible
to limit the discrepancies (but not totally eradicate them)by setting
the floating-point unit to 53-bit mantissa precision, if onecomputes
solely with IEEE-754 double precision numbers.

Static analysis techniques where concrete traces are replayed
inside the analysis face similar problems. One has to have anexact
semantic model of the program to be analysed as it runs on the
target platform.

7. Conclusion
Despite the claims of conformance to standards, common soft-
ware/hardware platforms may exhibit subtle differences infloating-
point computations. These differences pose special problems for
unit testing or debugging, unless one uses exactly the same object
code as the one executed in the target environment — which is dif-
ficult, since, on some platforms, merely adding logging or debug-
ging statements can cause the final results to change, even though
the added statements should not change the result accordingto the
“naive” semantics of the source code.

When one relies on exact predictability and reproducibility of
computations, a norm such as IEEE-754 is of paramount impor-
tance. However, in practise, many processors and compilersad-
vertised as “IEEE-754 compatible” donot implement strict IEEE-
754 semantics — or at least do not implement them by default.
Compiler writers should try to offer compilation options that min-
imise, or even suppress, variations in program outputs caused by
the insertion of logging statements or other issues relatedto regis-
ter scheduling or optimisation.

16There is still the possibility of considering thatx⊖y = 0 =⇒ |x−y| <
2Emin .

These differences, however, are simpler to handle conserva-
tively for abstract-interpretation-based static analysers, because
they can be folded into the abstraction inherent in those approaches.
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A. Miné, D. Monniaux, and X. Rival. A static analyzer for
large safety-critical software. InPLDI, pages 196–207. ACM,
2003.

[CC92] Patrick Cousot and Radhia Cousot. Abstract interpretation and
application to logic programs.J. Logic Prog., 2-3(13):103–
179, 1992.

[CCF+05] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
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