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Abstract

Current critical systems commonly use a lot of floating-pom-
putations, and thus the testing or static analysis of progreon-
taining floating-point operators has become a priority. Eaosv,
correctly defining the semantics of common implementatiohs
floating-point is tricky, because semantics may change mihy
factors beyond source-code level, such as choices madentyileo

ers. We here give concrete examples of problems that caraappe

and solutions to implement in analysis software.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Program Verification—formal methods, validation, asser
tion checkers; D.3.1Hrogramming Languagés Formal Def-
initions and Theory—semantics; F.3.Lofgics and Meanings
of Program$. Specifying and Verifying and Reasoning about
Programs—Mechanical verification, assertions, invasian®.1.0
[Mathematics of ComputifigNumerical analysis—Computer arith-
metic, Interval arithmetic; G.4 Mathematics of Computifig
Mathematical software—Certification and testing, Algamit de-
sign and analysis

General Terms Experimentation, Reliability, Standardisation,
Verification

Keywords Abstract interpretation, Static analysis, Program test-

ing, Verification, Floating point, Embedded software, $afe
Critical Software, x87, 1A32, AMD64, PowerPC, FPU, Rourglin
IEEE-754

1. Introduction

In the past, critical applications often used fixed-poinmnpaota-
tions. However, with the wide availability of processorghhard-
ware floating-point units, many current critical applicais (say,
for controlling automotive or aerospace systems) use figgibint
operations. Such applications have to undergo stringestintgge
or validation. In this paper, we show how the particulasitief
floating-point implementations can hinder testing methaogies,
and have to be cared for in static analysis.

It has been known for a long time that it was erroneous to

compute with floating-point numbers and operations as thoey
were on the real field. There exist entire treatises disngssie
topic of stability in numerical algorithms from the pointwiew of
the applied mathematician: whether or not some algorithhenw

[copyright notice will appear here]

implemented with floating-point, will give “good” approxations

of the real result; we will not discuss such issues in thisepap
The purpose of this paper is to show the kind of difficultieatth
floating-point computations pose for static analysis ara@mm
testing methods: both for defining the semantics of the rogr

to be analysed, and for defining and implementing the arglysi
techniques.

For the sake of a better understanding, in 9dct. 2, we rdwll t
bases of IEEE-754 arithmetics. For a wider perspective sueis
related to floating-point computations, see the papers bijawi
Kahan.

A naive approach to floating-point issues is that since atexu
commonplace platforms claim to support IEEE-754, theraugho
not be problems for analysing or simulating the computatioh
one platform on another platform. In fact, there are subifferd
ences between hardware or software floating-point unit&J§yP
and compilers tend not to implement exact IEEE-754 singie- o
double-precision semantics [VCVI97]. Differences betwband-
ware platforms are one reason why, for instance, implenmgmtb
Java found it difficult to implement consistent floating4tcacross
various systems, since the semantics of Java programs \as su
posed to be the same whatever the platforg.well-known is-
sue is the 80-bit internal floating-point registers on thlliplat-
form. [Sun0O1, Appendix D] In Sectidd 3, we shall expand orhsuc
issues and show, for instance, how low-level issues sucbgister
allocation [AG9Y, chapter 11] and the insertion of loggingtruc-
tions with no “apparent” computational effects can chamgsfinal
results of computations. In Sectibnl.1 we shall discussesper-
taining to the PowerPC architecture.

An important factor throughout the discussion is that it n
the hardware platform that matters in itself, but its corakion
with the software context, including the compiler, libesj and
possible runtime environment. Compatibility has to be apiated
at the level of the application writer — whether code writtesing
types mapped to IEEE normalised types will effectively hehas
though all atomic floating-point operations (say, —, x, /) will

1Java’s early floating-point model was a strict subset of IE15E [GISI5,
§4.2.3]: essentially, strict IEEE-754 single and doubleegsion arithmetics
without the exception traps (overflow, invalid operatiar.and without
rounding modes other than round-to-nearest. Howevect stampatibil-
ity with IEEE-754 single- and double-precision operatiaadifficult to
achieve on certain widely used platforms, such as the |A&2 [(x86); on
all but the latest processors, it incurs a performance htaAonsequence
requests were made so that strict compatibility would bexeal in order to
get better performance, particularly for scientific conmmitapplications.
The possibility of giving up Java’s deterministic, poreaemantics was re-
quested by some [KD98], but controversial for othérs [PhrnB@ally, the
Java language specification was altefed IGJ$BO@. 3]: runtime comput-
ing in extra precision (single-extended and double-exddnidrmats) was
allowed for classes and methods not carrying the sewictfp modifier
[GJSBOD,§15.4]. TheBorneoproject introduces full IEEE-754 features.
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go according to the standardised definition. [IEIJ89, THEA5]]
Indeed, the standard recalls [TECB9. IEE85.1]:

It is the environment the programmer or user of the system
sees that conforms or fails to conform to this standard. Mema
components that require software support to conform shatllbe
said to conform apart from such software.

IEEE-754 normalises a few basic operations; however, many
programs use functions such as sine, cosine, ..., whichare n
specified by this norm and are generally not strictly spetifie
the system documentation. In Seci]4.2, we shall exploreesom
difficulties with respect to mathematical libraries. In @ith to
issues related to certain floating-point implementati@ngertain
mathematical libraries, there are issues more partigutathted to
the C programming language, its compilers and librariest. BE3
explores such system dependencies. §edt. 4.4 explores iastin
input and output of floating point values.

A commonly held opinion is that whatever the discrepancies,
they will be negligible enough and should not have noticeabl
consequences. In Sectibh 5, we give a complete example af som
seemingly innocuous floating-point code fragment basedeah r
life industrial code. We illustrate how the floating-poimddities”
that we explained in the preceding sections can lead to raae a
extremely hard to diagnose runtime errors.

In Sectior® we analyse the consequences of these issues on a
stract interpretation-based static analysis and othétatidn tech-
niques, and show how to obtain sound results. The statigsinal
techniques that we describe are implemented in ther&E static
analyser{[BCC 02,|BCC'03,|CCF 05].

We shall be particularly interested in programs writtenhia t
C programming language, because this language is oftenredo
for embedded systems. We shall in particular discuss sorpk-im
cations of the most recent norm of that language, “CB9”[19]09

2. |EEE-754: a reminder

All current general-purpose microprocessors, and manyomdr-
trollers, implement hardware floating-point as a varianhofm
ANSI/IEEE-754 [IEE85], later adopted as internationalnsizrd
IEC-60559 [IEC8B]. We thus begin by an overview of this stan-
dard.

2.1 Numbers
IEEE floating point numbers are of the following kinds:

Zeroes There exist both a-0 and a—0. The difference between
the two has practical importance only if one extracts tha sig
bit from the number, or if one divides a nonzero number by a
zero (the sign of the zero determines whethew or —co is
returned).

Infinities Infinities are generated by divisions by zero ordwer-
flow (computations of numbers of such a large magnitude that
they cannot be represented).

NaNs The special valueklot a Numbei(NaN) represent the result
of operations that cannot have a meaningful result in terins o
an finite number or infinity. Such is for instance the case of
(+00) — (+00),0/0 or /—1.

Normalised numbers This is the most common kind of nonzero
representable reals.

Denormalised numbersThese represent some values very close
to zero. They pose special issues regarding rounding errors

Floating point numbers are represented as follaws: +s.m
wherel < m < 2 is themantissawhich has a fixed number
of bits, ands = 2° the scaling factor(Emin < ¢ < Emnax IS the

exponent The difference introduced by changing the last binary
digit of the mantissa ists.cjast Whereejast = 2~ @~V the unit in

the last placeor ulp. For Any nonzero number can be represented
uniquely in this way if we impose that the leftmost digit ofeth
mantissa is — this is called anormalised representatiorfExcept

in the case of numbers of very small magnitude, IEEE-754 ydwa
works with normalised representations.

The IEEE-754single precisiontype, associated to C8loat
type [ISO99, F.2], hap = 24, Emin = —126, Emax = +127.
The IEEE-754ingle precisiortype, associated to C8ouble, has
p =53, Emin = —1022, Enax = +1023.

We thus obtain a floating-point representation of the form:

We note[vvv]2 the representation of a number in terms of binary
digits vow.

SMp_1]y.2°

2.2 Rounding

Let us notex the result of an operation between two non-NaN,
non-infinity floating point numbers in the real field. Eachdbeeal

x is mapped to a floating-point valuéx) by a uniquely defined
rounding function; the choice of this function is deternuniy
the rounding mode IEEE-754 mandates four standard rounding

k;‘nodes:

e round-to-oo: r(z) is the least floating point value greater than
or equal tac;

e round-to—oo: r(x) is the greatest floating point value smaller
than or equal ta;

¢ round-tod: r(z) is the floating-point value of the same sign as
z such that|r(z)| is the greatest floating point value smaller
than or equal tgz|;

¢ round-to-nearestr(z) is the floating-point value closest to
with the usual distance (see below for details); this is the d
fault.

Depending on the rounding mode, the erfor= r(z) — x
committed on normalised floating-point results (see belonade-
normalised and underflow results) is constrained as follaws
round-to+oco mode,0 < § < s.epst iN round-to—oco mode,
—S.€last < 0 < 0; in round-to® mode, —s.cast < 0 < S.Elast,
in round-to-nearest mode;s.ciast/2 < § < s.€last/2.

We can bound the maximal error:

)

and|d| < |z|.clast/2 in round-to-nearest modg| < z.cjastin other
modes. If we do not assume a specific rounding mode, we should
takeerel = clast. Thus, whatever the rounding mode, for anguch
thatr(z) does not result in underfloly — r(z)| < erel.|z|.

Because the exponent of floating-point numbers is bounded
(emin < e < emax), there exists a minimal positive representable
floating-point numbelaps (in IEEE-754 double precision arith-
metics, it is27'°7 ~ 5 x 107%**). When|z| < eaps depending
on rounding conditions;(x) may be rounded te-eapsor to0. The
generation of a zero floating-point result for a nonzero resllt is
known asunderflow

In addition to normalised numbers, IEEE floating-point eepr
sentations allow fodenormalnumbers’ These are numbers very
close to zero and are of the form:

z=%£[0.m1...mp_1],.2°mn

|z|.last/2 < |s].€last < |x|.Elast

®)

2Note, however, that certain floating-point units such as S8E allow
disabling the use of denormals for efficiency reasons (set [B8). We
still can accommodate this case by choosings to be the least positive
normalisednumber, that is2émin—®@=1)
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It follows that eaps = 2°=i»~(P~Y We can bound the maximal
error: |§] < eaps/2 in round-to-nearest modéj| < eapsin other
modes. The generation of denormal numbers is also conditbgre
IEEE-754 to be an underfloi/ [TECBY, IEE8%].4] — especially
since they may incur an “extraordinary” absolute loss otjsien,
while normalised results incur a relative loss of precision

2.3 Operations

IEEE-754 normalises 5 operations: addition (which we shate
@ in order to distinguish it from the operation over the reals)
subtraction ¢), multiplication (®), division (©), and also square
root.

IEEE-754 specifiegxact roundindgiGol91, §1.5]: the result of
a floating-point operation is the same as if the operation peas
formed on the reals with the given inputs, then rounded alicgr
to the rules in the preceding section. Thusg y is defined as
r(z + y), with z andy taken as elements & U {—oco, +o00}; the
same applies for the other operators.

From the inequalities derived [n2.1, we obtain

(4)

|z — r(z)| < max(erel.|z|, £abs)
Thus alsoa fortiori:
®)
It is well-known that floating-point operations anet associa-
tive (.9(10*° ® 1) ©10*° = 0 # 1 = (10*° ©10*°) @ 1).
Many symbolic computation techniques, used in static aeaty
or in compiler optimisers, assume some good algebraic piepe
of the arithmetics in order to be sound. In S&ci] 6.1, we shall

plain how it is possible to make such methods sound with &spe
to floating-point.

|z — r(z)] < erel.|z| + cavs

3. 1A32, AMD64 and ET64 architectures

The IA32 architecture, originating from Intel, encompasgmoces-
sors such as the i386, i486 and the various Pentium variaigtsas

of 2005, the most common architecture for micro-compuféEng
AMDG64 and ET64 architectures are 64-bit extensions of 1A32.
I1A32 offers almost complete ascending compatibility frohe t
8086 processor, first released in 1978; it features a floguangt
unit, often nicknamed x87, mostly upwardly compatible wtitle
8087 co-processor, first released in 1980. However, latethar
floating-point unit, known as SSE, was added to the architect

3.1 x87 floating-point unit

Processors of the 1A32 architecture (Intel 386, 486, Pemnitc.
and compatibles) feature a floating-point unit often knoven a
“x87” [Int05] chapter 8].

It supports the floating-point, integer, and packed BCDgete
data types and the floating-point processing algorithms exaép-
tion handling architecture defined in the IEEE Standard 764 f
Binary Floating-Point Arithmetic.

This unit has 80-bit registers internally in “extended delifiormat
(64-bit mantissa and 15-bit exponent), often associatéluetbong
double C type; it can read and write data to memory in this 80-hit
format or in standard IEEE-754 single and double precidyrde-
fault, all operations performed on CPU registers are dortie 64-
bit precision, but it is possible to reduce precision to #4dame as
IEEE single precision) and 53-bit (same as IEEE double pi@u)
mantissas by setting some bits in the unit’s control reg[Ei05,
£8.1.5.2] Note, however, that these precision settings daffect
the range of exponents available, and only affect a limitetiver
of operations (containing all operations specified in IEEE).

The most usual way of generating code for the IA32 is to hold
temporaries — and, in optimised code, program variables thdn

x87 registers. Doing so yields more compact and efficienecod
than always storing register values into memory and retgadi
them. However, it is not always possible to do everythindgdes
registers, and compilers then generally store extra teanpealues
to main memory using the type of the value per the typing rafes
the language. This means thhe final result of the computations
depend on how the compiler allocates registasiace temporaries
(and possibly variables) will incur or not incur rounding&ther or
not they are spilt to main memory.

As an example, the following program compiled wgitc 4.0.1
[Eré] under Linux will print10°°® (1E308):

double v 1E308;
double x = (v * v) / v;
printf("%g %d\n", x, x==v);

How is that possible? * v done in double precision will over-
flow, and thus yield+oo, and the final result should beco.
However, since all computations are performed in extended p
cision, the computations do not overflow. However, if we use t
-ffloat-store option, which forcegcc to store floating-point
variables in memory, we obtaiico.

The result of computations can actually depend on comeiiati
options or compiler versions, or anything that affects pgagion.
With the same compiler and system, the following programtpri
10%%® (when compiled in optimised modeq), while it prints+oo
when compiled in default mode.

double foo(double v) {
double y = v * v;
return (y / v);
}
main() { printf("%g\n", foo(1E308));}

Examination of the assembly code shows that when optimitiireg
compiler reuses the value gfstored in a register, while it saves
and reloads to and from main memory in non-optimised mode.

A common optimisation iflining — that is, replacing a call to
a function by the expansion of the code of the function at tiatp
of call. For simple functions (such as small arithmetic apiens,
e.g.z — z?), this can increase performance significantly, since
function calls induce costs (saving registers, passingrpaters,
performing the call, handling return values).[CTIS(098,7.4] and
C++ have aninline keyword in order to pinpoint functions that
should be inlined (however, compilers are free to inline of to
inline such functions; they may also inline other functiomsen
it is safe to do so). However, on x87, whether or not inliniag i
performed may change the semantics of the code!

Consider whagcc 4.0.1 on 1A32 does with the following pro-
gram, depending on whether the optimisation switghs passed:

static inline double f(double x) {
return x/1E308;

double square(double x) { return x*x; }
int main(void) {

printf ("%g\n", f(square(1E308)));
}

gee does not inline functions when optimisation is turned off.
The square function returns aouble, but the calling convention

is to return floating point value into a x87 register — thus in
long double format. Thus, whersquare is called, it returns
approximatelyl07'%, which fits inlong double but notdouble
format. But whent is called, the parameter is passed on the stack
— thus as alouble, +00. The program therefore printsoo. In
comparison, if the program is compiled with optimisation oris
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inlined; no parameter passing takes place, thus no coovetsi
double before division, and thus the final result printed §8°%.

It is somewhat common for programmers to add a comparison
check to0 before computing a division, in order to avoid possible
division-by-zero exceptions or the generation of infingsuits. A
first objection to this practise is that, anyway, computing: for
x very close to zero will generate very large numbers that will
result in overflows later. Another objection is that it mayuadly
not work, depending on what the compiler does.

Consider the following source code:

void do_nothing(double *x) { }
int main(void) {

double x = 0x1p-1022, y = 0x1p100, z;
do_nothing(&y) ;
z=x/17y;

if (z '=0) {
do_nothing(&z);
assert(z !'= 0);
}
}

This program exhibits different behaviours depending am va
ous factors, even when one uses the same compjéer \(ersion
4.0.2 on IA32):

e If it is compiled without optimisationx / y is computed as a
long double then converted into a IEEE-754 double precision
number () in order to be saved into memory variakleTheif
statement is thus not taken.

If it is compiled as a single source code with optimisatigeg
performs some kind of global analysis which understands tha
do_nothing does nothing. Then, it does constant propagation,
sees that is 0, thus that theif statement is not taken, and
finally thatmain() performs no side effect. It then effectively
compilesnain() as a “no operation”.

If it is compiled as two source codes (one for each function),
gcc cannot do constant propagation. Thel= 0 is performed

on a nonzerdong double quantity and thus is taken. How-
ever, after the secontb_nothing() call, z is reloaded from
main memory as the valué (because conversion to double-
precision flushed it t®). As a consequence, the printed result
IS +00.

do_nothing() call, the program detects an assertion failure
and aborts. Note that cursory program analysis, optinaisati
or naive static analysis may well conclude that the assertio
z 1= 0istrue throughout théf branch.

One should therefore be extra careful with strict compasgsbe-
cause these may be performed on the extended precision type.

We are surprised of these discrepancies. After all, the Cifspe
cation says[[ISO99, 5.1.2.rogram executiofg12, ex. 4]:

Implementations employing wide registers have to take tcare
honor appropriate semantics. Values are independent othehe
they are represented in a register or in memory. For examgute,
implicit spilling of a register is not permitted to alter thelue.
Also, an explicit store and load is required to round to thegision
of the storage type.

399 introduces hexadecimal floating-point literals in sewrode [[ISO99,
86.4.4.2] Their syntax is as followsOxmmmmmm.mmmmp+ee where
mmmmmm. mmmm 1S @ mantissa in hexadecimal, possibly containing a point,
and ee is n exponent possibly preceded by a sign. They are integbras
[mmmmmm. mmmm]16 x 2°¢. See also Sedi4.4.

However, this paragraph, being an example, is not normgty©99,
foreword, §6].

Let us note, finally, that common debugging practises that, a
parently, should not change the computational semantiag attu-
ally alter the result of computations. Adding a logging staént in
the middle of a computation may alter the scheduling of tegss
for instance by forcing some value to be spilt into main mgmor
and thus undergo additional rounding. As an example, sinmply
serting aprintf ("%g\n", y); call after the computation of in
the abovefoo function forcesy to be flushed to memory, and thus
the final result then becomes~o regardless of optimisation.

Also, it is commonplace to disable optimisation when one in-
tends to use a software debugger, because in optimised ttade,
compiled code corresponding to distinct statements magrbec
fused, variables may not reside in a well-defined locatitm How-
ever, as we have seen, simply disabling or enabling opttioisa
may change computational results.

3.2 Double rounding

In some circumstances, floating-point results are roundecet
in a row, first to a typeA then to a typeB. Surprisingly, such
double roundingcan yield different results from direct rounding
to the destination typ&.Such is the case, for instance, of results
computed in thelong double 80-bit type of the x87 floating-
point registers, then rounded to the IEEE double precisipa for
storage in memory. In round-t@-round-to-+occ and round-to-oco
modes, this is not a problem provided that the values reptakie
by type B are a subset of those representable by typelowever,
in round-to-nearest mode, there exist some borderlinescakere
differences are exhibited.

In order to define the round-to-nearest mode, one has to de-
fine arbitrarily how to round a real exactly in the middle beém
the nearest floating-point values. IEEE-754 chooses roonglen
[IEC8Y,IEES5,54.1]°

In this mode, the representable value nearest to the inffnite
precise result shall be delivered; if the two nearest repréable
values are equally near, the one with its least significahequal
to zero shall be delivered.

This definition makes it possible for double rounding to diel
different results than single rounding to the destinatiget Con-
sider a floating-point typd3 where two consecutive values arg
and zo + 45, and another floating-typel containing all values
in B and alsoxo + dp/2. There exists)4 such that all reals in

If, with the same compilation setup, one removes the second the intervall =|zo + 65/2 — 64/2, 20 + 6/2[ get rounded to

zo + 0 /2 when mapped tod. We shall suppose that the man-
tissa ofz, finished by al. If x € I, then indirect rounding yields:
x —a o+ dB/2 —B xo + dp and direct rounding yields:
X —B To.

A practical example is withey = 1 4+ 2752, § = 2752 and
r = xo + y wherey = §/2(1 — 27'1). Bothzo andy are exactly
representable in IEEE-754 double precisidt) (

double x0 = 0x1.0000000000001p0;

double y = Ox1p-53 * (1. - Oxlp-11);

double z1 = x0 + y;

double z2 = (long double) x0 + (long double) y;

printf("%a %a\n", z1, z2);

We see that; = xo and thatzo = zo + 27°2. In order to get
true IEEE-754 computations on tleuble type, we execute the
single- and double- precision computations on the SSE sei (
Sect[3B) of an AMD64 or Pentium 4 processor. Note that & thi

4This problem has been known for a long tifie.JFdIC00, chagfiSda 1,
4.2]

5[Gold1, 1.5] explains a rationale for this.
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program is executed on an 1A32 processor, it is likely that=
22 = x0 + 2752, as seen on Linuxgcc-4.0.1: the computations
on double will be actually performed in th@ong double type
inside the processor, then converted to IEEE double pretisi

A similar problem occurs with rounding behaviour near infini
ties:

However, an infinitely precise result with magnitude at teas
2Fmax(2 — 27P) shall round toco with no change in sign.

For IEEE double-precisionFmax = 1023 and p 53; let us
takex, to be the greatest representable rédoue = 2°m(2 —
2-P=Y) andy = 2°7°(1 — 27'1). With a similar program as
above,r o + y gets rounded ta;, zo in IEEE double
precision, but gets rounded26™(2—277) in extended precision.
As a result, the subsequent conversion into IEEE doublegioec
will yield +oo.

Double rounding can also cause some subtle differencegfgr v
small numbers that are rounded into denormal double-pogcis
values if computed in IEEE-754 double precision: if one uses
the “double-precision” mode of the x87 FPU, these numbers
will be rounded into normalised values inside the FPU regis-
ter, because of a wider range of negative exponents; thgn the
will be rounded again into double-precision denormals when
written to memory. This is known adouble-rounding on un-
derflow [Sur, §10.4.3.1]. Working around double-rounding on
underflow is extremely tedious and incurs significant efficie
penalties (however, the phenomenon is exhibited>xbyand /,
not by + and —). [Pan98] A concrete example : taking
0x1.8000000000001p-1018 (=~ 5.34018 x 1073°7) andy
0x1.0000000000001p+56 (=~ 7.20576 x 10'6), thenx @ y =
0x0.0000000000001p-1022 in IEEE-754 double precision and
x @y = 0x0.0000000000002p-1022 with the x87 in “double
precision mode”.

3.3 SSE floating-point unit

Intel introduced in the Pentium Il processor the SSE flgapoint
unit [Inf05, chapter 10], then the SSE2 extension in theiBent
[Int05, chapter 11]. These extensions to the x86 instraci&t con-
tain, respectively, IEEE-compatible single-precisiord atouble-
precision instructions.

One can makegcc generate code for the SSE subsystem
with the -fpmath=sse option; since SSE is only available for
certain processors, it is also necessary to specify, fdanmee,
-march=pentium4. On AMDG64, -fpmath=sse is the default.

Note the implication: the same program may give different
results when compiled on 32-bit and 64-bit “PCs” (or even the

bounds on the errors of floating point computations by assgmi
that operands are offset by an amount of at mpggmin—(P—1)
before being computed upon. However, techniques basecace e
replays of instruction sequences will have to replay thaieege

with the same value of the flag.

3.4 Problems and solutions

The problems of running programs written with strict IEEE-
754 compliance in mind on theearly compatiblex87 floating-
point unit have long been recognised. For this reages, has a
-ffloat-store option, flushing floating-point variables to mem-
ory. |[Eré] Indeed, thgcc manual [Erk] says:

On 68000 and x86 systems, for instance, you can get paradox-
ical results if you test the precise values of floating poimtnbers.
For example, you can find that a floating point value which isano
NaN is not equal to itself. This results from the fact thatfibat-
ing point registers hold a few more bits of precision thanfitai
doudblein memory. Compiled code moves values between memory
and floating point registers at its convenience, and movirgnt
into memory truncates them. You can partially avoid thisoppm
by using the-ffloat-store option.

The manual refers to the following option:

-ffloat-store Do not store floating point variables in regis-
ters, and inhibit other options that might change whetheoatfhg
point value is taken from a register or memory.

This option prevents undesirable excess precision on meshi
[...] where the floating registers [...] keep more precisitran a
‘double’ is supposed to have. Similarly for the x86 arcHitee.

For most programs, the excess precision does only good, but a
few programs rely on the precise definition of IEEE floatingnpo
Use ‘-ffloat-store for such programs, after modifying them to
store all pertinent intermediate computations into vatesh

Note that this option does not force unnamed temporarieto b

flushed to memory, as shown by experiments. To our knowledge,

compiler offers the choice to always flush temporaries to orgm
or to flush temporaries tbong double memory, which would at
least remove the worst problem, which is the non-reprodlitgib
of results depending on factors independent of the comipatat
code (register allocation differences caused by comppé&ons or
debugging code, etc.).

Unfortunately, the above precautions do not reconstityéete
IEEE-754 behaviour in round-to-nearest mode, becauseafdb-
ble rounding problem[{312). In addition, this option is diffit to
use: to get IEEE-754 behaviour, the programmer would have to

same machine, depending on whether one compiles in 32-bit or rewyrite all program formulae to store temporaries in vdgabThis

64-bit mode) because of the difference in the default flgagiaint
subsystem used.

In addition, the SSE unit offers some non-IEEE-754 compli-
ant modes for better efficiency: with tlikish-to-zerdflag [InfOZ,
§10.2.3.3] on, denormals are not generated and are replgcest b
roes; this is more efficient. As we noted in SEct] 2.1, thissduom
hamper obtaining good bounds on the errors introduced bijrfpa
point computations; also, we can assume the worst-cas#isitu
and suppose that this flag is on when we derive error bounds.

does not seem to be reasonable for human-written code, but ma
be possible with automatically generated code — it is fregtieat
control/command applications are implemented in a higktian-
guage such as Simulink, the compiled into C.

Another possibility is to force the floating-point unit talit
precision to IEEE-754 standard precisiériBhis mostlysolves the
double-rounding problem. However, there is no way to ceirstr

the range of the exponents, and thus these modes do not abiaiv e
simulation of IEEE computations when overflows are possibde

The flush-to-zero flag, however, has another notable conse-nstance, the programs of SEC3.1, which result in overftowsso

quencex©y = 0is no longer equivalent to = y. As an example,
if =271 andy = 1.5 x 27922 theny © = = 27'°*® in nor-
mal mode, and © x = 0 in flush-to-zero mode. Analysers should
therefore be careful when replacing comparisons by “edgma
comparisons.

In addition, there exists alenormals-are-zerdlag [InfOg,
§10.2.3.4]: if it is on, all denormal operands are consideied
be zero, which improves performance. It is still possibl@btain

if run under strict IEEE-754 compliant arithmetics, do nesult
in overflows if run with the x87 in double precision mode. Lst u
note, however, that if a computation never results in ovedlawhen
done with IEEE-754 double-precision (resp. single-) anithics, it

6This is the default setting on FreeBSD 4, presumably in orerchieve
closer IEEE-754 compatibility.
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can be exactly simulated with the x87 in double-precisi@sr
single)?

If one wants semantics almost exactly faithful to IEEE-7564 i
round-to-nearest mode, including with respect to overflondi-
tion, one can use, at the same time, limitation of precisimhap-
tions and programming style that force operands to be sygtem
cally written to memory between floating-point operationkis is
incurs some performance loss. Furthermore, there is stilaep-
ancy due to double rounding of numbers with very small alisolu
values A simpler solution in current machines is simply t@éthe
compiler to use the SSE unit for computations on IEEE-754&dyp

4. Otherissues

While the 80-bit internal precision of the x87 may cause ificemt
semantic problems, they are not the only such features., Mere
explore how the PowerPC architecture has some similar @nad!
and how floating-point libraries are often poorly tested.

4.1 PowerPC architecture

The floating point operations implemented in the PowerPC ar-
chitecture are compatible with IEEE-754 [FreD$h,2.2.3,§3.2].
However, [Fre01b§4.2.2] also points out that:

The architecture supports the IEEE-754 floating-point stan
dard, but requires software support to conform with thahstard.

The PowerPC architecture features floating-point multguid
instructions|[Ere01b54.2.2.2]. These perforrtu, b, ¢) — +a.b £
¢ computations in one instruction — with obvious benefits for
computations such as matrix computations [CLIR$®6.1], dot
products, or Horner's rule for evaluating polynomials_[QA0R
§32.1]. Note, however, that they are not semantically edemnta
to performing separate addition, multiplication and optibnegate
IEEE-compatible instructions; in fact, intermediate ttessare com-
puted with extra precisiorl_[Fre0ilb, D.2]. Whether thesérins
tions are used or not depends on the compiler, optimisatmn o
tions, and also how the compiler subdivides instructiors. iR-
stance,gcc 3.3 compiles the following code using the multiply-
add instruction if optimisation-Q) is turned on, but without it if
optimisation is off, yielding different semantiés:

double dotProduct(double al, double bi,
double a2, double b2) {
return alxbl + a2xb2;

In addition, thefpscr control register has 8I bit, which, if
on, possibly enables implementation-dependent semadiffes-
ent from IEEE-754 semanticd. [Fre014?.1.4]. For instance, on
the MPC750 family, such non-compliant behaviour encomgmss
flushing denormal results to zero, rounding denormal omkran
to zero, and treating NaNs differently_[FreD1§2.2.4]. Similar
caveats apply as in SeEf.B.3.

4.2 Mathematical functions

Many operations related to floating-point are not impleredrinh
hardware; most programs using floating-point will thus rely

7 Let us consider the round-to-nearest casgr|If< Mgouple then the x87
in double-precision mode rounds exactly like IEEE-754 dewdrecision
arithmetics. If Mgouple < || < 2Fmax(2 — 27P), then, according to
the round-to-nearest rules (including “round-to-ever’ fo= 2&max(2 —
27P)), ris rounded tat MyounieOn the x87, which is correct with respect to
IEEE-754. If|r| < 2Emax(2 —27P), then rounding results in an overflow.
The cases for the other rounding modes are simpler.

8gcc has an optiorrmno-fused-madd to turn off the use of this instruc-
tion.

suitable support libraries. Our purpose, in this sectisnndt to
list comprehensively bugs in current floating-point lilkear it is
to illustrate, using examples from common operating systend
runtime environments, the kind of problems that may happen.

4.2.1 Transcendental functions

A first remark is that, though IEEE-754 specifies the behavidu
elementary operations, —, x, / and,/, it does not specify the
behaviour of other functions, including the popular trigoretric
functions. These are generally supplied by a system libcaga-
sionally by the hardware.

As an example, consider the sine function. On the x87, it is
implemented in hardware; on Linux 1A32, the GNU libc functio
sin() is just a wrapper around the hardware call, or, depending
on compilation options, can be replaced by inline assefhbitel
[Int05, §8.3.10] and AMD [[Adv05,§6.5.5] claim that their tran-
scendental instructions (on recent processors) comnotseless
than 1 ulp in round-to-nearest mode; however it is to be wsided
that this is after the operands of the trigonometric funttiare re-
duced modul@r, which is done currently using a 66-bit approxi-
mation for. [Inf05, §8.3.8] However, the AMD-K5 used a 512-bit
value®®

One obtains different results fein (0x1969869861.p+0) on
PCs running Linux. The Intel Pentium 4, AMD Athlon64 and
AMD Opteron processors, and GNU libc running in 32-bit mode
on IA32 or AMDG64 all yield-0x1.95b011554d4b5p-1, However,
Mathematica, Sun Sparc under Solaris and Linux, and GNUblibc
AMDG64 (in 64-bit mode) yield-0x1.95b0115490ca6p-1.

A more striking example of discrepanciessia(p) wherep =
14885392687. This value was chosen so thah(p) is close to0,
in order to demonstrate the impact of imprecise reductiodutm
271! Both the Pentium 4 x87 and Mathematica yield a result
sin(p) ~ 1.671 x 10™'°. However, GNU libc on AMDG64 yields
sin(p) =~ 1.4798 x 10, about 11.5% off!

Note, also, that different processors within the same techire
can implement the same transcendental functions withrdifteac-
curacies. We already noted the difference between the ANBD-K
and the K6 and following processors with respect to angeldine-
tion. Intel also notes that the algorithms’ precision wagriaved
between the 80387 / i486DX processors and the Pentium proces
sors. [Ini97 §7.5.10]

With the Intel486 processor and Intel 387 math coproces-
sor, the worst-case, transcendental function error is dgjyy 3
or 3.5 ulps, but is sometimes as large as 4.5 ulps.

There thus may be floating-point discrepancies betweenutnerd
Intel embedded processors (based on i386 /i387) and therdurr
Pentium workstation processors.

To summarise, one should not expect consistent behaviour on
transcendental functions across libraries, processoufaeturers
or models.

9The latter behaviour is triggered by optiorffast-math. The doc-
umentation for this function says can result in incorrect output for
programs which depend on an exact implementation of IEEES® |
rules/specifications for math functians

10personal communication.

11| et us now consider a rational approximationmgfi.e. integersy andgq
such thap/q ~ = (such an approximation can be obtained by a continued
fraction development of [Wel]). sin(p) = sin(gm) = 0. If p/, the result

of reduction modul® of p, is imprecise by a margin of 3k p’ — p =

e + 2km), thensin(p’) — sin(p) =~ € (sin(z) ~ =z close t00). Such
inputs are thus good candidates to illustrate possibledépkecision in the
algorithm for reduction modul@r.
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4.2.2 Non-standard rounding modes

We also have found that floating-point libraries are ofteorfyo
tested in “uncommon” usage conditions, such as roundingesiod
different from “round-to-nearest”. This is especially nférest for
implementors of static analysers (Sdcfl 6.1), since soma fif
interval arithmetic will almost certainly be used.

FreeBSD 4.4 provides thepsetround () function to set the
rounding mode of the processor. However, préntf () standard
printing function of the C library does not work properly He
processor is set in round-teeo mode: when one attempts to print
very large values (such 483°®), one can get garbage output (such
as a semicolon in a location where a digit should be, s2¢307).

On GNU libc 2.2.93 on IA32 processors, tfiesetround()
function only changed the rounding mode of the x87 FPU, while
thegcc compiler also offered the possibility of compiling for SSE.

On GNU libc 2.3.3 on AMD64, computing? using thepow ()
function in round-to+oo mode can result in a segmentation vio-
lation for certain values of andy, e.g.x = 0x1.3d4027p+6 and
y = 0x1.555p-2. As for theexp () exponential function, it gives
a result close t@°°? on input1, and a negative result on input
0x1.75p+0. The problems were corrected in version 2.3.5.

4.3 Compilerissues

The C standard, by default, allows the compiler some sutiatan
leeway in the way that floating-point expressions may beuarat.
While outright simplifications based on operator assodigtiare
not permitted, since these can be very unsound on floatiimg-po
types [ISO9D§5.1.2.3 #13], the compiler is for instance permitted
to replace a complex expression by a simpler one, for instasing
compound operators (e.g. the fused multiply-and-add in. B€¥)
[ISO94Y, 6.5]:
A floating expression may be contracted, that is, evaluated
as though it were an atomic operation, thereby omitting sbun
ing errors implied by the source code and the expressionueval
ation method. [...] This license is specifically intendedatiow
implementations to exploit fast machine instructions twhbine
multiple C operators. As contractions potentially underenpre-
dictability, and can even decrease accuracy for contairergres-
sions, their use needs to be well-defined and clearly doctaden

While some desirable properties of contracted expres§iSaod,
§F.6] are requested, but no precise behaviour is made coorguls
Because of the inconveniences that discrepancies carecreat

the standard also mandates a special directWABAGMA STDC
FP_CONTRACT [ISQ99Y, §7.12.2], for controlling whether or not
such contractions can be performed. Unfortunately, whinyn
compiler will contract expressions if they can, few comgslen-
plement this pragma. As of 200g¢cc (v4.0) ignores the pragma
with a warning, and Microsoft's Visual C++ handles it as aerc
addition.

floating-point exceptions. [...] The implementation sldoplo-
duce a diagnostic message for each translation-time flggbimint
exception, other than inexact; the implementation shduah toro-
ceed with the translation of the program.

In addition, compilers may test or change the floating-point
status or operating modes using library functions, or ewding
assembly. If the compiler performs code reorganisatiohen t
some results may end up being computed before the applicable
rounding modes are set. For this reason, the C norm intreduce
#pragma STDC FENV_ACCESS ON/OFF [ISO9Y,§7.6.1]:

The FENV_ACCESS pragma provides a means to inform the
implementation when a program might access the floatingtpoi
environment to test floating-point status flags or run unden-n
default floating-point control modes. [. . . ] If part of a pn@gn tests
floating-point status flags, sets floating-point control emdor
runs under non-default mode settings, but was translat¢d the
state for theFENV_ACCESS pragma off, the behaviour is undefined.
The default state ( on or off) for the pragma is implementatio
defined. [...] The purpose of theENV_ACCESS pragma is to al-
low certain optimisations that could subvert flag tests armten
changes (e.g., global common subexpression eliminataie mo-
tion, and constant folding). In general, if the stateFaiV/_ACCESS
is off, the translator can assume that default modes ardéteénd
the flags are not tested.

Another effect of this pragma is to change how much the com-
piler can evaluate at compile time regarding constantalittions
ON. [ISO99, F.7.4, F.7.5]. If it is set tOFF, the compiler can eval-
uate floating-point constants at compile time, whereaseiy thad
been evaluated at runtime, they would have resulted inrdiffe
values (because of different rounding modes) or floatinigtpex-
ception. If it is set toON, the compiler may do so only for static
constants — which are generally all evaluated at compile tmd
stored as a block of constants in the binary code of the pnogra

Unfortunately, as per the preceding pragma, most compilers
not recognise this pragma. There may, though, be some catiopil
options that have some of the same effect. The norm discusses
which optimisations may or may not be applied [IS099, F.8].

4.4

Another possible compilation issue is how compilers interrpon-
stants in source code. The C norm states:

Input/output issues

For decimal floating constants, and also for hexadecimaltfloa
ing constants wheALT_RADIX'? is not a power of 2, the result is
either the nearest representable value, or the larger orlEmeep-
resentable value immediately adjacent to the nearest sgmtable
value, chosen in an implementation-defined manner. Fordeota
mal floating constants whefL T_RADIX is a power of 2, the result
is correctly rounded.

This means that two compilers on the same platform may well in

We have explained how, on certain processors such as the x87terpret the same floating-point decimal literal in the sewrade as

(Sect[31), it was possible to change the precision of tedyl
setting special flags — while no access to such flags is mathdate
by the C norm, the possibility of various precision modesads a
knowledged by the norni_[ISOBR9, F.7.2]. Furthermore, IEEE-7
mandates the availability of various rounding modes (€&i); in
addition, some processors offer further flags that changeb#éx
haviour of floating-point computations.

different floating-point value. (And that is even if both cpihers
follow C99 closely, which few current compilers do.) Similan-
itations apply to the behaviour of the C library when conwgrt
from decimal representations to floating-point variab[E3099,
§7.20.1.3].

There exist few guarantees as to the precision of resutisepki
in decimal in the C norn[IS09%7.19.6.1, F.5]. IEEE-754, how-

Al changes of modes are done through library functions (or ever, mandates some guarantdes [[EC89. IEEB®], such that
inline assembly) executed at runtime; at the same time, the C printing and reading back the values should yield the sanme-nu

compiler may do some computations at compile time, wherethes
modes are not reflected.

During translation the IEC 60559 default modes are in effect
The rounding direction mode is rounding to nearest. The dsun
ing precision mode (if supported) is set so that results ase n
shortened. Trapping or stopping (if supported) is disabedall

bers, withing certain bounds. However, we have seen thatéme
dard C libraries of certain systems are somewhat unreliailes,
one may prefer not to trust them on accuracy issues. Priotitng

12FLT_RADIX is the radix of floating-point computations, thus 2 on IEEE-
754 systems. There currently exist few systems with ottdires.
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exact values and reading them is important for replayingctexa
test cases. Again, we stress that reading and printingritpguibint
numbers accurately is a non-trivial issue if the printingédéhere,
10) is not a power of the computation base (binary in the cése o
IEEE-754) [ClI90[ SWID].

return value is also outside the specified bounds. This idaltle
forced flushing of the floating-point registers into main nogyn
with less precision.

Interestingly enough, the #TREE static analyser gives a lower
bound slightly lower than -180. on such code, and thus sigtual

In order to alleviate this, we suggest the use of hexadecimal the user some suspicious behaviour. This is because, asbeelsc

floating-point constants, which are interpreted exactiyfortu-

nately, many older compilers do not support these; alsordero
to print floating-point values as hexadecimal eagityintf and

associated functions have to suppiatand %A, which is not yet
the case of all current C libraries.

5. Example

Arguably, many of the examples we gave in the preceding@esti
though correct, are somewhat contrived: they discuss slisaliep-
ancies, often happening with very large or very small inpltshis
section, we give a complete and realistic example of semprib-
lems related to differences between floating-point impletaigons
(even, dependent on compilation options!). It consistsvofparts:

1. an algorithm for computing a modulo (such as mapping an
angle into]—180, 180] degrees), inspired by an algorithm found
in an embedded system;

2. possible implementations of tabulated functions.

The composition of the two give seemingly innocuous impleme
tations of angular periodic functions... which crash fataiea spe-
cific values of the inputs on certain platforms.

Givenxz, m andM (m < M), we want to compute such that
r — x is an integer multiple o/ — m andm < r < M. The
following algorithm, adapted from code found in a real-Lféical
system, is correct if implemented over the real numbers:

double modulo(double x, double mini, double maxi) {
double delta = maxi-mini;
double decl = x-mini;
return x - floor(decl/delta)*delta;

}

int main() {
double m
double r =
}

We recall thatloor (z ) is the greatest integer less thapand that
nextafter(a, b) isthe nextrepresentablieuble value froma
in the direction ofb .

The above program, compiled lgyc 3.3 with optimization for
the x87 target, yields an output~ 179.99999999999997158. In
such a mode, variablgis cached in a extended precision register;
q = 1 — e with e ~ 7.893.107'7. However, if the program
compiled without optimizationdecl and q are saved to, then
reloaded from, main memory as a double precision variable; i
the processgq is rounded tol. The program then returns ~
—180.00000000000002842 outside the specified bounds.

Simply rewriting the code as follows makes the problem disap
pear (because the compiler holds the value in a register):

180.;
modulo (nextafter(m, 0.), -m, m);

double modulo(double x, double mini, double maxi) {
double delta = maxi-mini;
return x - floor((x-mini)/delta)*delta;

}

This is especially troubling since that code and the abowk lo
semantically equivalent at first sight.

If we simply add a logging statemenpr(intf()) after the
computation ofdecl, even if optimisation is turned on, then the

in[61, it estimates error bounds according to IEEE-754 taoase
behaviour. In comparison, simply performing unit testimgpd A32
PC will not discover the problem.

Now, one could argue that the odds of landing exactly on
nextafter(180., 0.) are very rare. Assuming an embedded
control routine executed at 100 kHz, 24 hours a day, and a uni-
form distribution of values in thg—180, 180] interval, such a value
should happen once evet§00 years or so on a single urtit How-
ever, in the case of a mass-produced system (an automokilelmo
for instance), this argument does not hold. If hundredsadfishnds
of systems featuring a buggy component are manufacturay eve
year, there will be real failures happening when the systmasle-
ployed — and they will be very difficult to recreate and diaggo
If the system is implemented in single precision, the oddscan-
siderably higher with the same probabilistic assumptiansingle
100 Hz system would break down twice a day.

Now, it seems that a slight error such as this should be of no
consequence: the return value is only extremely slighttgide the
bounds. However, let us consider a typical application ofgat-
ing modulos: computing some kind of periodic function, for i
stance depending on an angle. Such a function is likely ttagon
trigonometric operators and other operations costly antpbex to
compute; they are often evaluated by looking them up a table.

One implementation sometimes found is to have some big array
of constants, perhaps computed using some external aplica
and lookup the array at various offsets:

val = bigTable[r + 180 + FUNCTION_F_OFFSET];

This means an implicit truncation ef180+FUNCTION_F_OFFSET
to 0; if r is a little below—180, then this truncation will evaluate to
FUNCTION_F_OFFSET—1. The table lookup can then yield whatever
value is at this point in memory, possibly totally out of thgpected
range.

Another example is a table lookup with interpolation:

double periodicFunction(double r) {
double biased = r+180;

double low = floor(biased);
double delta = biased-low;
int index = (int) low;

return ( table[index]*(1-delta)
+ table[index+1]*delta );
}

If r is slightly below0, the value return will depend arable [-1],
that is, whatever is in memory befotable. This can result in a
segmentation fault (access to a unallocated memory logatio,
more annoyingly, in reading whatever is at that locationluding
special values such dsaN or +oo, or even simply very large
values. Withtable[-1] = 10°*® andtable[0] = 0, the above
program outputs approximate8 x 10?** — a value probably
too large for many algorithms to follow.

Such kinds of problems is that they are extremely difficult
to reproduce if they are found in practise — they may result in
program crashes or nondeterministic behaviour for very iaput
values. Furthermore, they are not likely to be elicited hydam

13For 180, the unit at the last position & = 2-45; all reals in]180 —
3/26,180 —1/24[ are rounded ta80 — 4, thus the probability of rounding
arandom real if—180, 180] to this number i8360/4.
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testing’* Finally, the problem may disappear if the program is do not point where precision is lost in the concrete companat

tested with another compiler, compilation options, or exen which is a more ambitious tasks requiring specific abswasti

platform. [Gou031,[Mar0Zb{"MarOZa]. In this case, one has to care whethe
the semantics of introduced error fits reality, including tjuirks

6. Implications for program verification of the various implementations.

Program analysis, verification, testing and proving teghes all
rely on having a somewhat well-defined concrete executiotiaihno
Thus, the issues discussed in the preceding sections mayahav The most basic domain for the analysis of floating-point peots
negative impact on such techniques; if handled impropénse is the interval domair [BCC02Z,[Min04a[ Min04b]: to each quan-
techniques may fail to discover real-life problems in caexgpi tity « in the program, attach an intervah, M,] such that in any
code. We shall distinguish the case of analysers based ¢raetbs  concrete execution; € [m., M,]. Such interval§m., M.] can
numerical domaind [Min0Zb] and the case of testing or, mereg  be computed efficiently in a static analyser for softwarening on

6.1.2 Intervals

erally, analysis techniques based on exact replays of égaesu a IEEE-754 machine if one runs the analyser on a IEEE-754 ma-
chine, by doing interval arithmetics on the same data typesad

6.1 Static analysers based on abstract interpretation in the concrete system, or smaller ones.

Let us recall that static analysis consists in deriving ltesabout Let us note floating-point addition (with given types, roinyl

possible program executions without actually running tteggam. and precision) asp. Fixing z, y — « @ y is monotonic. It

In this section, we are only interestedsoundanalysis methods, IS therefore tempting, when implementing interval arithios to

that is, methods that will never claim that some propertyeg-v ~ approximate(a,b] & [a’,b'] by [a & a’,b & ¥]. Unfortunately,
fied whereas some possible program executions do not véwfy t  this is not advisable unless one is really sure that comiputat

property. We focus on methods basedatistract interpretationa in the program to be analysed are really done with the inténde
generic framework for giving anver-approximatiorof the set of precision (no extended precision temporary values, as @non
possible program execution§, [CG92] Abstract domairis a set ~ X87 [21), do not suffer from double rounding effects (E€8),3.2
of possible symbolic constraints with which to analyse paogs and do not use compound operations instead of atomic elenyent
(for instance, thectagon abstract domailin01] represents con-  arithmetic operations. It is much safer to compute uppentjellug]
straints of the formtz + y < C wherez andy are program vari-  found-to-+oo mode, and lower bounds in round-tesoc mode:
ables and” is a number). This is what we do in ATREE [CCET05]. Note, however, that
on some systems, rounding-modes other than round-tostese
6.1.1 Generalissues poorly tested and may fail to work properly (see SECI_ %212

implementors of analysers should therefore pay extra @auti
that respect.
Another area where one should exercise caution is strict com
parisons. A simple solution for abstracting the outcomexfaf
x <y, wherex € [mg,M;] andy € [my, M,], is to take
h M, = min(M,, my), as if one abstracted <= y. Unfortunately,
this is not sufficient to deal with programs that use speaialtiihg-
point values as markers (say,is a special value meaning “end
of table”). One can thus tak&f, = min(M,, predm,)) where
predz) is the largest floating-point number less thaim the exact
floating-point type usefivhich may be very difficult for optimised
code on the x87, because of the unpredictable schedulingref c
versions fromlLong double).

A common objection to the analysis of programs containing
floating-point operations is that their behaviour is implolgsto
analyse soundly, or requires a human expert. On the one hand,
is indeed our experience that fine behaviour of floating4ppin-
grams (such as conditions on the least significant bits)fialt
to check; however, most common programs do not rely on suc
fine behaviour in order to work (and arguably they should imot,
general, since such reliance is bad for portability). Aleertain
numerical algorithms, particularly those with stabilitgntlitions
such as IIR filters, need specific abstract domains to be fyope
analysed.[[Fer04].

A naive approach to the concrete semantics of programsmgnni
on “IEEE-754-compatible” platforms is to consider that, &, * or
/ sign in the source code, between operands of figext (resp.
double), corresponds to a IEEE-754, ©, ®, @ operation, with 6.1.3 Relational domains

single-precision (resp. double-precision) operands @sdlt. As  The interval domain, while simple to implement, suffersniraot

we have seen, this does not hold in many common cases, djpecia keeping relations between variables. However, relatiabatract

on the x87 (Secl31). _ domains tend to be designed for ideal data structures (ider
A second approach is to analyse assembly or object code, andrings, etc.); it is thus necessary to bridge the gap betwieeset

take the exact processor-specified semantics as the coserein-  jdeal abstract structures and the concrete execution. @uessful

tics for each operation. This is likely to be more precise, also avenue in that domain is to consider that the “real” executio

quite cumbersome. In addition, as we have seen, some “a@¥anc  and the floating-point execution differ by a small error, ghive

functions in floating-point units may have been defined dsfiély can bound[[Min0Z4i,_Min0Zb]. However, in doing so, one must be

in successive generations of processors, so we cannotutitBss careful not to be too optimistic!

crepancies. Recall that in straight IEEE-754 round-to-nearest modés it

A third approach is to encompass all possible semantics of possible to bound the error &8 — ()| < 1 max(cabs Erast |7])

the source code into the analysis. Static analysis methasisdb  (sedZB). It is thus tempting to take this bound to analyssifig-

on abstract interpretations are well-suited for absorbsugh point programs running in round-to-nearest mode (by famtost
“implementation-defined” behaviours while still stayingusid. common case). However, double rounding, as incurred soresti
The abstractions discussed below aim at providing asoued ov i default compilation modes on x87, can result in slightiyge
approximation of all possible concrete semantics. Howetvery errors (seE312). The other rounding modes are boundedlasol
14The example described here actually demonstrates the tiamper of
non-randomtesting: that is, trying values that “look like they mightusa 15Changing the rounding mode may entail significant efficiepepalties.
problems”; that is, typically, values at or close to dis@auties in the A common trick is to set the processor in round4tee mode permanently,
mathematical function implemented, special values, etc. and replacer ®_ oo y by —((—2) @400 (—y)) and so on.
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|z — r(x)|] < max(eaps €last.||) < €abs+ cnst.|z|; this bound is
thus safe for any mode. This is the bound we use $TREE.

Other kinds of relational domains propagate pure conggain
guards. Intuitively, if some arithmetic condition is true eome
variablesz andy, and neitherz nor y are suppressed, then the
condition continues to hold later. However, we have seerett 3
that one should beware of “hidden” rounding operations,cWhi
may render certain propagated identities invalid. In aoldjtwe
have also seen that certain equivalences such@g = 0 <—
xr =

modes such as flush-to-zero are actfve. [AvOS]

6.2 Testing

In the case of embedded system development, the developmen{AG97]
platform (typically, a PC running some variant of IA32 or ANAD
processors) is not the same as the target platform (typicathi-
crocontroller). Often, the target platform is much slovieus mak-

ing extensive unit testing time-consuming; or there may bima

ited number of them for the development group. As a consemjen

it is tempting to test or debug numerical programs on the ldeve
opment platform. We have shown that this can be a risky approa
even if both the development platform and the target platfciaim

to be “IEEE-754 compatible”.

In some cases, even if the testing and the target platform are
identical, the final result may depend on the vagaries of ¢omp
lation. Even inserting “monitoring” instructions can aftehe fi-
nal result, because these can change register allocatiooh wan
change the results of computations on the x87. This is eslheci
an issue since it is common to have “debugging-only” statéme
excluded from the final version loaded in the system. Oneldhou
be particularly cautious on platforms, such as IA32 prooesswith
the x87 floating-point unit, where the results of computaican
depend on register scheduling. In the case of the x87, itdsiple
to limit the discrepancies (but not totally eradicate thém¥etting
the floating-point unit to 53-bit mantissa precision, if moenputes
solely with IEEE-754 double precision numbers.

Static analysis techniques where concrete traces areyezpla
inside the analysis face similar problems. One has to haexart
semantic model of the program to be analysed as it runs on the
target platform.

[cCcoz]

[CCFt05]

[Cli90]
[CLR90]

[FdC00]

. Fer04
7. Conclusion [ ]

Despite the claims of conformance to standards, common soft [Fre]
ware/hardware platforms may exhibit subtle differencédtimting-

point computations. These differences pose special prabfer [Freola)
unit testing or debugging, unless one uses exactly the saipeto
code as the one executed in the target environment — whidh is d [Fre01b]
ficult, since, on some platforms, merely adding logging drude
ging statements can cause the final results to change, eveghh
the added statements should not change the result accaoding [GJIS96]
“naive” semantics of the source code.

When one relies on exact predictability and reproducibitit [GJISBOO]
computations, a horm such as IEEE-754 is of paramount impor-
tance. However, in practise, many processors and compabirs
vertised as “IEEE-754 compatible” dwt implement strict IEEE- [Gol91]
754 semantics — or at least do not implement them by default.
Compiler writers should try to offer compilation optionsathmin-
imise, or even suppress, variations in program outputsechbg [Gou01]
the insertion of logging statements or other issues relatedgis-
ter scheduling or optimisation. [IEC89]
16There is still the possibility of considering thaby = 0 = |z—y| < [|EE85]

2Emin.
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[BCCt02]

[BCCt03]

These differences, however, are simpler to handle conserva
tively for abstract-interpretation-based static analysdecause
they can be folded into the abstraction inherent in thosecgmhes.
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