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This paper deals with intensity images, that is to say image mappings defined on a spatial support D in the Euclidean space R 2 and valued into a gray tone range, which is a positive real numbers interval.

The first occurrence of a specific and/or important term will appear in italics.

Introduction

The Adaptive Neighborhood (AN) paradigm allows the building of new image processing transformations using context-dependent analysis. Such transforms are no longer spatially invariant, but vary over the whole image with ANs as adaptive operational windows, taking intrinsically into account the local image features. This AN concept is largely extended [START_REF] Debayle | General Adaptive Neighborhood Image Processing -Part I: Introduction and Theoretical Aspects[END_REF], using welldefined mathematical concepts, to that of General Adaptive Neighborhood (GAN) in two main ways.Firstly, an analyzing criterion is added within the definition of the ANs in order to consider the radiometric, morphological or geometrical characteristics of the image, allowing a more significant spatial analysis. Secondly general linear image processing (GLIP) frameworks are introduced in the GAN approach, using concepts of abstract linear algebra, so as to develop operators that are consistent with the physical and/or physiological settings of the image to be processed. The so-called General Adaptive Neighborhood Image Processing (GANIP) approach is more particularly studied [START_REF] Debayle | General Adaptive Neighborhood Image Processing -Part I: Introduction and Theoretical Aspects[END_REF] in the context of Mathematical Morphology (MM). The structuring elements, required for MM, are substituted by GAN-based structuring elements, fitting to the local contextual details of the studied image. The resulting transformations perform a really spatially-adaptive image processing, in an intrinsic manner, that is to say without a priori knowledge of the image structures. Moreover, in several important and practical cases, the GANIP-based morphological operators are connected, which is an overwhelming advantage compared to the usual ones which fail to this property. The theoretical aspects of the General Adaptive Neighborhood Image Processing (GANIP) approach are presented in [START_REF] Debayle | General Adaptive Neighborhood Image Processing -Part I: Introduction and Theoretical Aspects[END_REF].

In this paper, GANIP-based practical application examples, and more particularly in the context of MM, are successively exposed in image filtering, image segmentation, and image enhancement.

In order to evaluate the proposed approach, a comparative study is as far as possible proposed between the adaptive and usual morphological operators. The results achieved from GANbased morphological operators take into account specified and appropriate general adaptive neighborhood sets.

Image Filtering

Most of the time, image filtering is a necessary preliminary step in image pre-processing, such as denoising, restoration, pre-segmentation, enhancement, sharpening, brightness correction, . . . [START_REF] Gonzalez | Digital Image Processing[END_REF]. GANIP-based filtering [START_REF] Debayle | General Adaptive Neighborhood Image Processing[END_REF] allows such transformations to be defined. More particularly, Section 2 addresses image filtering in the respective noise-free and noisy conditions, highlighting the generalized aspect of the GANIP approach. Thereafter, Sections 3. and 4. show respectively the advantages of the GAN-based morphological filters in image pre-segmentation and image enhancement.

Noise-free image filtering

An illustration of GANIP-based filtering using adaptive opening-closings (Eq. 53 in [START_REF] Debayle | General Adaptive Neighborhood Image Processing -Part I: Introduction and Theoretical Aspects[END_REF]) is exposed in Figure 1 on a part of the 'Moon' image. The process is performed within the CLIP, MHIP, LRIP and LIP frameworks (Subsection 2.4 in [START_REF] Debayle | General Adaptive Neighborhood Image Processing -Part I: Introduction and Theoretical Aspects[END_REF]) selected for the space of criterion mappings, denoted respectively C CLIP , C M HIP , C LRIP and C LIP . These spaces will be shortly named criterion spaces in the following. The homogeneity tolerance m , used as parameter in the ASEs (Paragraph 4.3.1 in [START_REF] Debayle | General Adaptive Neighborhood Image Processing -Part I: Introduction and Theoretical Aspects[END_REF]), is valued within C CLIP from a positive real value m. In order to generalize this parameter to any GLIP framework, the value of the homogeneity tolerance, denoted m , is obtained from m ∈ R + added up to the real value corresponding to the neutral element 0 of the considered framework:

m = 0 + m (1) 
However, the value m ∈ R + should be chosen such as 0 + m belongs to the positive intensity value range E + (Tab.I in [START_REF] Debayle | General Adaptive Neighborhood Image Processing -Part I: Introduction and Theoretical Aspects[END_REF]). In this way, the homogeneity tolerance given in the CLIP, MHIP, LRIP or LIP framework is respectively valued as:

C CLIP : m = 0 + m (2) C M HIP : m = 1 + m (3) C LRIP : m ♦ = M 2 + m (4) 
C LIP : m △ = 0 + m (5) 
Two positive real values are considered, in Figure 1, for the homogeneity tolerance: m = 1 and m = 20. From this point, the equivalent corresponding values within the spaces C CLIP , C M HIP , C LRIP and C LIP of criterion mappings, are inferred from Equations ( 2)-( 5).

Concerning the second parameter of the ASEs, the analyzing criterion is the 'luminance'. The filtering process performs a smoothing all the more strong so the value of the parameter m increases. The original 'Moon' image f (Figure 1.a) is already damaged for m = 1 (Figure 1.c) within the criterion space C M HIP , whose IP framework, MHIP, is consequently not adapted. Next, C CLIP and C CLIP generate several drawbacks, removing (Figure 1.f,h) over quickly significant details such as the 'crater' located in the left-center of the original image. Finally, the LIP framework appears to be the most appropriate to this filtering process, allowing the original image to be smoothed without damaging its features (Figure 1.i).

a. original f b. OC f 1 (f ) in CCLIP c. OC f 1 (f ) in CMHIP d. OC f 1 ♦ (f ) in CLRIP e. OC f 1 △ (f ) in CLIP f. OC f 20 (f ) in CCLIP g. OC f 20 (f ) in CMHIP h. OC f 20 ♦ (f ) in CLRIP i. OC f 20 △ (f ) in CLIP

Noisy image filtering

The adaptive filters using the elementary GANs work well if the processed images are noise free or a bit corrupted (Fig. 1). In the presence of impulse noise, such as 'salt and pepper' noise, the GANs need to be combined to provide efficient filtering operators. Indeed, the elementary GAN of a corrupted point by such a noise does not generally fit to the 'true' region of which it belongs, for any homogeneity tolerance m . Consequently, a specific kind of GANs, the Combined General Adaptive Neighborhoods (C-GANs) denoted Z f m (.), are introduced to enable images corrupted by such a noise to be restored. They are built by combination (with the set union) of the W-GANs {V f m (y)} y∈D using the luminance criterion. Explicitly, the C-GANs are defined as following:

Definition 1 (Combined General Adaptive Neighborhoods). ∀(m , f, x) ∈ E + × I × D Z f m (x) =      y∈B 1 (x) {V f m (y)} if A(V f m (x)) ≤ π * q 2 V f m (x) otherwise (6) 
where B 1 (x) refers to the disk of radius 1 centered to x, and A(X) to the area of X, and q to a real number.

The value of the parameter q has been visually tuned to 0.6. A specific study should be lead so as to find an automatic way of picking this parameter (probably linked to the percentage of damaged points in the image). These C-GANs allow to detect the 'true' neighborhood of a corrupted point x, with the help of the area of its W-GAN V f m (x). Remark 2. It is obviously possible to introduce other combined GANs relating to the specific kind of noise to be removed.

Several operators, based on these C-GANs, could be introduced. Figure 2 illustrates a restoration process using median filtering [START_REF] Gonzalez | Digital Image Processing[END_REF]. When performing median filtering, the output value of each image point to be processed is determined by the median value of all points in a selected neighborhood (isotropic centered disk, GAN, . . . ). The median value q of a neighboring population (set of points in a neighborhood) is this value for which half of the population has smaller values than q, and the other half has larger values than q. The classical median filter, denoted M ed r , using a disk of radius r and the adaptive filters using W-GANs (V -M ed g 20 (.)) and C-GANs (Z-M ed g 20 (.)), with the luminance criterion and the parameter 20 as homogeneity tolerance in the CLIP framework, are applied on the 'Lena' image g, which is corrupted by a salt and pepper noise.

The results show the necessity to combine the W-GANs to perform a significant filtering. In addition, the median filter (using the C-GANs) supplies a better result than the usual median filter (using an isotropic disk). Indeed, the edges are damaged with the classical approach (blur occurs around the eyes and the hairs), contrary to the GANIP one. The GANIP-based morphological filters are then used as preliminary processes generally required in image segmentation.

Image Segmentation

The segmentation of an intensity image can be defined as its partition (in fact the partition of the spatial support D) into different connected regions, each having certain properties. From a mathematical point of view, the segmentation is well-defined as follow: the segmentation [START_REF] Gonzalez | Digital Image Processing[END_REF] of an image f ∈ I is a partition of its definition domain D into n disjoint nonempty subsets R 1 , . . . , R n , called regions, such that the union of all subsets equals D:

(D = ∪ n i=1 R i ) and (∀i = j R i ∩ R j = ∅) (7) 
In this paper, the segmentation process is based on a morphological transformation called watershed [START_REF] Beucher | Use of watersheds in contour detection[END_REF] and a GANIP-based decomposition process [START_REF] Debayle | General Adaptive Neighborhood Image Processing -Part I: Introduction and Theoretical Aspects[END_REF].

Recalls on watershed

The watershed transformation is now well recognized as being a fundamental step in many powerful morphological segmentation processes [START_REF] Beucher | The morphological approcah to segmentation: the watershed transformation[END_REF][START_REF] Meyer | Morphological Segmentation[END_REF]. It has been made computationally practical thanks to a fast technique presented by Vincent and Soille [106]. Watershed analysis (Fig. 3) subdivides the image, considered as a topographic surface, into low-gradient catchment basins surrounded by high-gradient watersheds. A catchment basin consist of an homogeneous set of points that are all connected, through a path, to the same minimun altitude point. The watersheds are made up of connected points exhibiting local maxima in gradient magnitude; to achieve a final segmentation, these points are typically absorbed into adjacent catchment basins. In order to produce a segmentation into meaningful regions, the input image is generally transformed to output a so-called segmentation function, on which the watershed transformation is applied. In practice, the gradient image is often used as segmentation function, since the catchment basins should theoretically correspond to the homogeneous gray level regions of the image, and the watersheds to the discontinuities of the image.

Usefulness of GANIP-based Filtering

Nevertheless, a direct computation of the watershed on the gradient image generally creates an over-segmentation which is due to the presence of spurious minima. This problem is overcome by a GANIP-based decomposition process to decrease the number of minima, and consequently the number of segmented regions. Indeed, the GAN filters enable to smooth the image without damaging the transitions, thanks to their connectivity property [START_REF] Debayle | General Adaptive Neighborhood Image Processing -Part I: Introduction and Theoretical Aspects[END_REF].

In the following of this section, four examples will be exposed and illustrated.

Pyramidal Segmentation with Alternating Sequential Filters

The aim of this first application example (Fig. 4) is to produce a multiscale segmentation of the 'Lena' image, based on a decomposition process using GAN-based and non-adaptive pyramidal operators [START_REF] Serra | Connected Operators and Pyramids[END_REF] whose definition is below-mentioned.

Definition 3 (Pyramid of Operators).

A pyramid of operators {ψ λ } λ∈N from I into I, is a collection depending on a positive parameter λ ∈ N, called the level, so that:

∀(λ, µ) ∈ N 2 λ ≥ µ ≥ 0 ∃ν ∈ N | ν ≥ µ ⇒ ψ ν ψ µ = ψ λ (8) 
This pyramid of operators generates a pyramidal decomposition (Def. 4) of any image f ∈ I.

Definition 4 (Pyramidal Decomposition).

A pyramidal decomposition of an image f ∈ I consists in a collection {ψ λ (f )} λ∈N of images belonging to I, decomposed at different resolution levels λ ∈ N, using a 'pyramid of operators' {ψ λ } λ∈N .

In Figure 4, the considered pyramid of operators, applied on the original 'Lena' image, is a family of Alternating Sequential Filters (ASF), which satisfy the property [START_REF] Buzuloiu | Adaptive-Neighborhood Histogram Equalization of Color Images[END_REF]. These operators then generate a pyramidal decomposition, filtering the original image to avoid an over-segmentation (Fig. 4.e.). Indeed, the original image is smoothed all the more strong so the ASF order increases. In this way, the number of minima of the segmentation function, and consequently the number of regions of the resulting segmentation, decreases.

At each pyramid level λ ∈ N, the process of the considered pyramidal segmentation (Fig. 4) is achieved in three consecutive steps:

1. the original image f is morphologically filtered with an ASF of order λ, 2. the morphological gradient, denoted M G, is computed on the resulting filtered image, 3. finally, the watershed transformation, denoted W at, is completed on this segmentation function.

The operator denoted Seg designates the two last steps of this segmentation process, therefore denoted W at • M G, i.e. the morphological gradient followed by the watershed transformation.

In this application example, multiscale segmentation processes, using GAN-based and classical ASFs, are compared. Note that ASFCO m,r (resp. ASFCO f m,n (Eq. 64 in [START_REF] Debayle | General Adaptive Neighborhood Image Processing -Part I: Introduction and Theoretical Aspects[END_REF])) represents the usual (resp. adaptive) alternating (closing-opening) sequential filter of order n using the disk of radius r centered in x, denoted B r (x), as usual SE (resp. using the ASEs {N f m (x)} x∈D (Eq. 34 in [START_REF] Debayle | General Adaptive Neighborhood Image Processing -Part I: Introduction and Theoretical Aspects[END_REF]), computed with the 'luminance' criterion in the CLIP framework). About the spatial parameter r and the intensity-based parameter m, they are fixed to r = 1 for the disk radius of usual SEs, and m = 5 for the homogeneity tolerance of adaptive SEs. For n, three filtering orders are used both for GAN-based and usual ASFs: n = 4, 7, 10, in order to show different levels of the pyramidal segmentation. Therefore, Figure 4 shows that the GANMM-based approach overcomes the non-adaptive MMbased one. Indeed 'Lena' is all the more distinguishing with the segmentation achieved by the adaptive filters so the filtering order n increases, while it's entirely impossible with the classical corresponding approach. Thus, these results highlight the importance of connectivity of the GANMM-based operators f → ASFCO f m,n (f ) (Rem. 20 in [START_REF] Debayle | General Adaptive Neighborhood Image Processing -Part I: Introduction and Theoretical Aspects[END_REF]). It is an overwhelming advantage, contrary to the corresponding non-adaptive ones f → ASFCO m,n (f ) that fail to this property. The 'Lena' image is simplified in producing flat zones while preserving the contour information. Moreover, the level of the pyramid is intrinsically dependent on the local structures of the image. Consequently, the GANIP-based operators perform a more significant decomposition than the usual ones, taking into account the multiscale topological characteristics.

Hierarchical Pyramidal Segmentation with Adaptive Sequential Closings

This subsection introduces a multiscale segmentation illustrated on Figure 5, using a pyramid of connected operators, applied on the 'Tools' test image (Fig. 5.a). Such a pyramid of connected operators generates a hierarchical pyramidal decomposition:

Definition 5 (Hierarchical Pyramidal Decomposition).

A hierarchical pyramidal decomposition of an image f ∈ I is a collection {ψ λ (f )} λ∈N of images belonging to I, decomposed at different resolution levels λ ∈ N, using a pyramid of connected operators {ψ λ } λ∈N .

The resulting hierarchical pyramidal segmentation is more relevant than a pyramidal segmentation (Subsection 3.3). Indeed, if the set of connected operators {ψ λ } creates a pyramid satisfying the property (8), then the flat zones of ψ λ increase with the parameter λ [START_REF] Serra | Connected Operators and Pyramids[END_REF]. It means that the flat zones are merged. It enables the structures of image to be more suitably analyzed and linked across levels of the pyramid.

In this example, the pyramid is generated with a set of GAN filters: the adaptive sequential closings {C f m,p } p (Eq. 59 in [START_REF] Debayle | General Adaptive Neighborhood Image Processing -Part I: Introduction and Theoretical Aspects[END_REF]) using the adaptive SEs N f m (x) (Eq. 34 in [START_REF] Debayle | General Adaptive Neighborhood Image Processing -Part I: Introduction and Theoretical Aspects[END_REF]) computed with the 'luminance' criterion in the CLIP framework. These filters are connected and satisfy the property [START_REF] Buzuloiu | Adaptive-Neighborhood Histogram Equalization of Color Images[END_REF], since it is a size distribution [START_REF] Debayle | General Adaptive Neighborhood Image Processing -Part I: Introduction and Theoretical Aspects[END_REF]. Consequently, the collection of adaptive sequential closings {C f m,p } p defines a pyramid of connected operators, necessary to perform a hierarchical pyramidal segmentation.

In this way, at each level p of the pyramid, the segmentation process is achieved in three consecutive steps:

1. the original image is filtered with an adaptive sequential closing of order p, 2. the morphological gradient, denoted M G, is computed on the filtered image, 3. finally, the watershed transformation, denoted W at, is completed on this segmentation function.

The operator denoted Seg designates the two last steps of this segmentation process, therefore denoted W at • M G, i.e. the morphological gradient followed by the watershed transformation.

Concerning the parameter p of the GAN filters, three filtering orders have been used, p = 5, 15, 25, in order to show different levels of the resulting hierarchical pyramid. About m, it has been selected to the real value 4 by tuning these techniques so that they produce resulting segmented images that are visually the most satisfying. This characteristic should be studied, promising relevant topological properties.

Moreover, the resulting hierarchical segmentation, where flat zones are nested, is achieved without any operators by reconstruction [START_REF] Crespo | Theoretical aspects of morphological filters by reconstruction[END_REF] that are generally used in classical methods. Remark 6. The filters by reconstruction require geodesic transformations to define connected operators, which are traditionally used for this kind of multiscale segmentation [START_REF] Salembier | Flat zones filtering, connected operators, and filters by reconstruction[END_REF][START_REF] Serra | Connected Operators and Pyramids[END_REF]103]. So, the connectivity characteristic of the GANMM-based operators [START_REF] Debayle | General Adaptive Neighborhood Image Processing -Part I: Introduction and Theoretical Aspects[END_REF] is an overwhelming advantage: all operators built by composition or combination with the supremum and the infimum of the adaptive dilation and erosion, thus define connected operators.

Segmentation with Alternating Filters

A real example in image segmentation is here presented (Fig. 6) on a metallurgic grain boundary image. The goal of the application is to detect the boundaries of the grains. It will allow metallurgists to get a quantitative analysis of the grains. Several methods, addressing this problem, have ever been exposed. For example, Chazallon and Pinoli [START_REF] Chazallon | An Automatic Morphological Method for Aluminium Grain Segmentation in Complex Grey Level Images[END_REF] proposed an efficient approach based on the residues of alternating sequential filters. Nevertheless, the method still presents few drawbacks for complex images: its inability to remove some artifacts and to preserve disconnected grain boundaries. On the whole, the published methods need most of the time advanced processes and metallographically relevant and tractable a priori knowledges, requiring expert intervention.

In this application example, a simple segmentation method resulting from two steps is proposed:

1. a decomposition process, through non-adaptative MM-based and GANMM-based closingopenings, is applied on the original image, 2. the watershed transformation is then computed on these segmentation functions.

This approach does not require a gradient operator. Indeed, seeing that the crest lines of the original image fit with the narrow grain boundaries, the watershed transformation, denoted W at, is directly computed on filtered images (processed with closing-openings) in order to avoid an over-segmentation seen in Figure 6.e. The segmentation function is then the filtered image, without using any gradient operators.

A comparison between the GANMM-based approach [START_REF] Debayle | General Adaptive Neighborhood Image Processing -Part I: Introduction and Theoretical Aspects[END_REF] and the corresponding MM-based one is performed through the filtering process. Note that CO r (resp. CO f m ) represents the usual closing-opening (resp. the adaptive closingopening (Eq. 54 in [START_REF] Debayle | General Adaptive Neighborhood Image Processing -Part I: Introduction and Theoretical Aspects[END_REF])) using the disk of radius r centered in x, denoted B r (x), as usual SE (resp. using the ASEs {N f m (x)} x∈D (Eq. 34 in [START_REF] Debayle | General Adaptive Neighborhood Image Processing -Part I: Introduction and Theoretical Aspects[END_REF]), computed with the 'luminance' criterion in the CLIP framework). For each approach, three parameters have been fixed: r = 1, 2, 3 for the radius of the usual SEs, and m = 10, 20, 30 for the homogeneity tolerance of the adaptive SEs. The adaptive GANMM-based approach overcomes the usual non-adaptive MM-based one, achieving a much better segmentation of the original image, with the visually expected result reached for m = 20. Indeed, these connected GAN filters do not damage the grain boundaries and well smooth the image inside the grains, contrary to those usual non-adaptive ones.

a. original f b. CO1(f ) c. CO2(f ) d. CO3(f ) e. W at(f ) f. W at(CO1(f )) g. W at(CO2(f )) h. W at(CO3(f )) i. CO f 10 (f ) j. CO f 20 (f ) k. CO f 30 (f ) l. W at(CO f 10 (f )) m. W at(CO f 20 (f )) n. W at(CO f 30 (f ))
Remark 7. Therefore, the minima of the adaptively filtered image provide significant markers, necessary to the watershed process.

Segmentation in Uneven Illumination Conditions

The main aim of this subsection is to practically put in evidence the physical irrelevance of the CLIP framework. It is illustrated on the previous metallurgic image where the segmentation in uneven illumination conditions is not robustly achieved within the CLIP framework. Precisely, image segmentation in presence of a locally small change in scene illumination is robustly addressed by the LIP approach, contrary to the CLIP one (Fig. 8). To simulate the small change in scene illumination, the original image f has been modified in three steps, to produce f (Fig. 7):

1. the original image f is first inverted: f = Mf , where M is the supremum of the range where images are digitized and stored, 2. f is then lightened gradually from left to right using a multiplicative lightening function I lt [START_REF] Deng | Differentiation-Based Detection Using the Logarithmic Image Processing Model[END_REF] defined by:

∀(x, y) ∈ D I lt (x, y) = 1 -0.8 1 -cos π 2 × x 256 (9) 
where (x, y) denotes the point coordinates. So, g = I lt × f , 3. the image g is finally inverted to produce the resulting image: f = g = Mg.

The transformation g = I lt × f is in accordance with the multiplicative reflectance and transmittance image formation models [START_REF] Pinoli | A General Comparative Study of the Multiplicative Homomorphic, Log-Ratio and Logarithmic Image Processing Approaches[END_REF][START_REF] Jourlin | Logarithmic Image Processing : The Mathematical and Physical Framework for the Representation and Processing of Transmitted Images[END_REF].

In practice, the original image and the non-uniformly lightened image are exposed in Figure 7. The segmentation (the same process applied in the precedent subsection 3.5) of the image f is compared from ASEs (Eq. 34 in [START_REF] Debayle | General Adaptive Neighborhood Image Processing -Part I: Introduction and Theoretical Aspects[END_REF]) built in the CLIP and LIP frameworks [START_REF] Debayle | General Adaptive Neighborhood Image Processing -Part I: Introduction and Theoretical Aspects[END_REF] selected for the space of criterion mappings, denoted respectively C CLIP and C LIP .

The resulting segmentation generated within the LIP framework is far better. Indeed, the process fails to detect boundaries in the overlighted areas of the lightened image within the CLIP framework. The process W at(CO f 23 △ ( f )) in C LIP supplies, from a visual inspection, the expected segmentation. This experimental results highlight the LIP approach since it is physically connected to the human visual system and the perceptual notions of contrast [START_REF] Jourlin | A model for logarithmic image processing[END_REF][START_REF] Pinoli | The Logarithmic Image Processing Model : Connections with Human Brightness Perception and Contrast Estimators[END_REF]. 

Image Enhancement

Image enhancement is the improvement of image quality, wanted e.g. for visual inspection or for machine analysis. Physiological experiments have shown that very small changes in luminance are recognized by the human visual system in regions of continuous gray tones, and not at all seen in regions of some discontinuities [100]. Therefore, a design goal for image enhancement is often to smooth images in more uniform regions, but to preserve edges. On the other hand, it has also been shown that somehow degraded images with enhancement of certain features, e.g. edges, can simplify image interpretation both for a human observer and for machine recognition [100]. A second design goal, therefore, is image sharpening [START_REF] Gonzalez | Digital Image Processing[END_REF].

In this paper, the considered image enhancement process is edge sharpening: the approach is similar with unsharp masking [START_REF] Ramponi | Nonlinear Unsharp Masking Methods for Image-Contrast Enhancement[END_REF] type enhancement where a highpass portion is added to the original image. The contrast enhancement process is realized through the toggle contrast [START_REF] Soille | Morphological Image Analysis[END_REF], whose operator κ r is defined as following:

Definition 8 (Toggle Contrast). ∀(f, x, r) ∈ I × D × R + κ r (f )(x) = Dr(f )(x) if Dr(f )(x) -f (x) < f (x) -Er(f )(x) Er(f )(x) otherwise (10) 
where Dr and Er denote respectively the classical dilation and erosion (Eq. 29 and 30 in [START_REF] Debayle | General Adaptive Neighborhood Image Processing -Part I: Introduction and Theoretical Aspects[END_REF]), using a disk of radius r as SE.

At each point x, the output value of this filter toggles between the value of the dilation of f by B (i.e., the maximum of f inside the operational window B centered) at x and the value of its erosion by B (i.e., the minimum of f within the same window) according to which is closer to the input value f (x). This non-adaptive toggle contrast is extended through the GANIP approach with adaptive dilation and erosion (Eq. 35-38 in [20]). Using a 'contrast' criterion within the definition of ASEs, which is naturally adapted to that edge sharpening transformation, it leads to the adaptive toggle contrast (Def. 10). This transformation requires a 'contrast' definition introduced in the digital setting of the LIP framework [START_REF] Jourlin | Contrast definition and contour detection for logarithmic images[END_REF] (see [START_REF] Pinoli | A contrast definition for logarithmic images in the continuous setting[END_REF][START_REF] Pinoli | Modélisation et traitement des images logarithmiques: Théorie et applications fondamentales[END_REF] for the continuous setting):

Definition 9 (LIP Contrast).

The LIP contrast at a point x ∈ D of an image f ∈ I, denoted C(f )(x), is defined with the help of its neighbors included in a disk V (x) of radius 1, centered in x:

C(f )(x) = 1 #V (x) × △ + △ y∈V (x) (max(f (x), f (y)) - △ min(f (x), f (y))) (11) 
where + △ and # denote the sum in the LIP sense, and the cardinal symbol, respectively.

Consequently, the so-called adaptive toggle contrast is the transformation κ

C(f )
m △ , where C(f ) and m △ denotes respectively the 'contrast' criterion mapping and the homogeneity tolerance within the LIP framework (required for the GANs definition): 35-38 in [20]) denote respectively the adaptive dilation and adaptive erosion, using ASEs computed on the criterion mapping C(f ) with the homogeneity tolerance m △ (Eq. 5). This image enhancement example confirms that the GANIP-based operators are more effective than the corresponding usual ones. Indeed, the adaptive toggle LIP contrast performs a locally accurate image enhancement, taking into account the notion of contrast within spatial structures of the image. Consequently, only the transitions are sharpened while preserving the homogeneous regions. On the contrary, the usual toggle contrast enhances the image in a uniform way. Thus, the spatial zones around transitions are rapidly damaged as soon as the filtering becomes too strong.

Definition 10 (Adaptive Toggle Contrast). ∀(f, x, m △ ) ∈ I CLIP × D × E m △ κ C(f ) m △ (f )(x) = D C(f ) m △ (f )(x) if D C(f ) m △ (f )(x) -f (x) < f (x) -E C(f ) m △ (f )(x) E C(f ) m △ (f )(x) otherwise (12) where D C(f ) m and E C(f ) m (Eq.

Conclusion and Prospects

This Part II aimed to present some practical application examples of the General Adaptive Neighborhood Image Processing (GANIP) approach, whose theoretical aspects have been exposed in [START_REF] Debayle | General Adaptive Neighborhood Image Processing -Part I: Introduction and Theoretical Aspects[END_REF]. Several fields of image processing have been investigated, such as image filtering, image segmentation and image enhancement. In this paper, the GANIP approach has been more particularly used in the context of Mathematical Morphology (MM). In several and practical cases, it supplies connected operators, which is of great morphological and topological importance. The resulting adaptive morphological operators perform a significant spatially-adaptive processing, taking into account the local characteristics of the image, thanks to the analyzing criterion. For instance, the notion of contrast allows efficient image enhancement (Section 4). In addition, the use of general linear image processing frameworks enables a connection with the physical and/or physiological image settings. For example, the LIP framework has been necessary in uneven illumination conditions (Section 3.6).

Finally, the General Adaptive Neighborhood Image Processing approach opens new pathways that promise large prospects in several fields of image processing. The authors are interested in putting into practice processes based on other analyzing criteria, such as curvature, thickness, orientation, . . . Moreover, the application of topological concepts and tools, using the GAN paradigm, should allow image features to be more significantly analyzed.
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 1 Figure 1. GANIP-based filtering using adaptive opening-closings CO f m on a part of the 'Moon' [a] image f . The processing is illustrated within the CLIP (first column except image [a]), MHIP (second column), LRIP (third column) and LIP (fourth column) frameworks selected for the space of criterion mappings. Two distinct values (in their respective framework) of the homogeneity tolerance, m = 1 (second line) and m = 20 (third line), are exposed to point out the effects induced by this intensity-based parameter.
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 2 Figure 2. Image restoration. Image [a] is corrupted with a 10% salt and pepper noise [b]. Median filtering is used to filter the noisy image: usual filtered image [c] with a disk of radius 1 as operational window, adaptive median filtered image [d] with V g 20 (.) GANs and adaptive filtered image [e] with Z f 20 (.). The most efficient denoising is supplied by the C-GANs filter.

Figure 3 .

 3 Figure3. Watershed segmentation: considering the image as a topographic surface, the flooding of its regional minima, while preventing the merging of the waters coming from different sources, partitions the image into two different sets: the catchment basins and the watersheds.

Figure 4 .

 4 a. original f b. ASFCO1,4(f ) c. ASFCO1,7(f ) d. ASFCO1,10(f ) e. Seg(f ) f. Seg(ASFCO1,4(f )) g. Seg(ASFCO1,7(f )) h. Seg(ASFCO1,10(f, 0)) i. ASFCO f 5,4 (f ) j. ASFCO f 5,7 (f ) k. ASFCO f 5,10 (f ) l. Seg(ASFCO f 5,4 (f )) m. Seg(ASFCO f 5,7 (f )) n. Seg(ASFCO f 5,10 (f )) Pyramidal segmentation of the 'Lena' [a] image. First, the original image is decomposed using classical [b-d] and adaptive [i-k] alternating sequential filters. Secondly, the morphological gradient followed by the watershed transformation, denoted Seg, is computed on the decomposed images as segmentation functions, achieving respectively the images [f-h] and [l-n], for the non-adaptive MM-based and GANMM-based approach. The original image is decomposed so as to avoid an over-segmentation [e]. The GANIP approach provides a better segmentation taking into account the local multiscale features of the original image.

  Seg(f ) f. Seg(C f 4,5 (f )) g. Seg(C f 4,15 (f )) h. Seg(C f 4,25 (f )) Figure 5. Hierarchical pyramidal segmentation of the 'Tools' [a] image. First, the original image is decomposed using adaptive sequential closing filters [b-d]. Secondly, the morphological gradient followed by the watershed transformation, denoted Seg, is computed on the decomposed images as segmentation functions, achieving the images [f-h]. The original image is decomposed so as to avoid an over-segmentation [e]. The process Seg(C f 4,n (f )) provides a well-accepted segmentation for n ≥ 15 [g,h].The resulting hierarchical segmentation supplies nested partitions of the original image inducing a graph representation[START_REF] Serra | Connected Operators and Pyramids[END_REF] 103]. Thereafter, the process C f 4,n supplies the expected result for n = 15 or n > 15. Indeed, this operator is saturated from this value : ∀n > 15 C

Figure 6 .

 6 Segmentation of a real metallurgic grain boundaries [a] image. Pyramidal segmentation of the original [a] image. First, the original image is decomposed using classical [b-d] and adaptive [i-k] closing-openings. Secondly, the watershed transformation, denoted W at, is computed on the decomposed images as segmentation functions, achieving respectively the images [f-h] and [l-n], for the non-adaptive MM-based and GANIP approach. The original image is decomposed to avoid an over-segmentation [e]. The adaptive approach provides a well-accepted segmentation reached for the homogeneity tolerance m = 20.

Figure 7 .

 7 Figure 7. Simulation of a locally small change in scene illumination: original [a] image, and a non-uniformly lightened [b] image obtained by (8).

Figure 8 .

 8 Figure 8. GANIP-based segmentation of a real metallurgic grain boundaries [a] image in uneven illumination conditions. The original image is first decomposed with adaptive closing-openings performed in CCLIP [c-e] and CLIP [i-k] frameworks selected for the space of criterion mappings. Finally, the watershed transform, denoted W at is completed on this segmentation function, achieving the images [f-h] and [l-n], for the respective CLIP and LIP approaches. The LIP technique robustly achieves the segmentation, in the sense that the process W at(CO f 23 ( f )) generates almost the same partition as W at(CO f 20 (f )) in standard illumination conditions (Fig. 6).

Figure 9 Figure 9 .

 99 Figure9illustrates a one-dimensional example of the toggle contrast operator.

Figure 10 Figure 10 .

 1010 Figure10exposes two illustration examples of image enhancement using respectively classical and adaptive toggle contrast. The process is both applied on the 'Lena' image, and on a real image acquired on the retina of a human eye.
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