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Abstract. This paper aims to outline the General Adaptive Neighbor-
hood Image Processing (GANIP) approach [1–3], which has been recently
introduced. An intensity image is represented with a set of local neighbor-
hoods defined for each point of the image to be studied. These so-called
General Adaptive Neighborhoods (GANs) are simultaneously adaptive
with the spatial structures, the analyzing scales and the physical set-
tings of the image to be addressed and/or the human visual system.
After a brief theoretical introductory survey, the GANIP approach will
be successfully applied on real application examples in image restoration,
enhancement and segmentation.

1 The General Adaptive Neighborhood (GAN) Paradigm

This paper deals with 2D intensity images, that is to say image mappings defined
on a spatial support D in the Euclidean space R

2 and valued into a gray tone
range, which is a real numbers interval. The General Adaptive Neighborhood
paradigm has been introduced in order to propose an original image represen-
tation for adaptive processing and analysis. The central idea is the notion of
adaptivity which is simultaneously associated to the analyzing scales, the spa-
tial structures and the intensity values of the image to be addressed.

1.1 Adaptivity with Analyzing Scales

A multiscale image representation such as wavelet decomposition [4] or isotropic
scale-space [5], generally takes into account analyzing scales which are global and
a priori defined, that is to say extrinsic scales. This kind of multiscale analysis
presents a main drawback since a priori knowledge, relating to the features of the
studied image, is consequently required. On the contrary, an intrinsic multiscale
representation such as anisotropic scale-space [6], takes advantage of scales which
are self-determined by the local image structures. Such a decomposition does not
need any a priori information.



1.2 Adaptivity with Spatial Structures

The image processing techniques using spatially invariant transformations, with
fixed operational windows, give efficient and compact computing structures, in
the sense where data and operators are independant. Nevertheless, they con-
sequently have several drawbacks such as creating artificial patterns, changing
the detailed parts of large objects, damaging transitions or removing significant
details. Alternative approaches towards context depend processing have been
proposed [7]. A spatially adaptive image processing implies that operators are
no longer spatially invariant, but must vary over the whole image with adaptive
windows, taking locally into account the image context.

1.3 Adaptivity with Intensity Values

In order to develop powerful image processing operators, it is necessary to rep-
resent intensity images within mathematical frameworks (most of the time of
a vectorial nature) based on a physically and/or psychophysically relevant im-
age formation process. In addition, their mathematical structures and operations
(the vector addition and then the scalar multiplication) have to be consistent
with the physical nature of the images and/or the human visual system, and
computationally effective. Thus, although the Classical Linear Image Process-
ing Framework (CLIP), i.e. with the usual vectorial operations, has played a
central role in image processing, it is not necessarily the best choice. Indeed,
it was shown [8] that the usual addition is not a satisfactory solution in some
non-linear physical settings, such as that based on multiplicative or convolutive
image formation model. The reasons are that the classical addition operation and
consequently the usual scalar multiplication are not consistent with the combi-
nation and amplification laws to which such physical settings obey. However,
using the power of abstract linear algebra, it is possible to go up to the abstract
level and to explore General Linear Image Processing (GLIP) frameworks [9,
10], in order to include situations in which signals or images are combined by
processes other than the usual vector addition. Consequently, operators based
on such intensity-based image processing frameworks should be consistent with
the physical and/or physiological settings of the images to be processed. For
instance, the Logarithmic Image Processing (LIP) framework of intensity images
(f, g, . . . ) has been introduced [11, 12] with its vector addition +△ , its vector
subtraction −△ and its scalar multiplication ×△ defined respectively as following:

f +△g = f + g −
fg

M
(1)

f −△g = M

(

f − g

M − g

)

(2)

α ×△f = M − M

(

1 −
f

M

)α

, α ∈ R (3)

where M ∈ R denotes the upper bound of the range where intensity images are
digitized and stored.



The LIP framework has been proved to be consistent with the transmittance
image formation model, the multiplicative reflectance image formation model,
the multiplicative transmittance image formation model, and with several laws
and characteristics of human brightness perception [10, 13].

2 GANs Sets

In the so-called General Adaptive Neighborhood Image Processing (GANIP)
approach [1–3], a set of General Adaptive Neighborhoods (GANs set) is identified
about each point in the image to be analyzed. A GAN is a subset of the spatial
support constituted by connected points whose measurement values, in relation
to a selected criterion (such as luminance, contrast, thickness, . . . ), fit within a
specified homogeneity tolerance. These GANs are used as adaptive windows for
image transformations or quantitative image analysis.

The space of image (resp. criterion) mappings, defined on the spatial support
D and valued in a real numbers interval Ẽ (resp. E), is represented in a GLIP
framework, denoted I (resp. C). The GLIP framework I (resp. C) is then supplied
with an ordered vectorial structure, using the formal vector addition +̃7 (resp.
+7), the formal scalar multiplication ×̃7 (resp. ×7) and the classical total order
relation ≥ defined directly from those of real numbers:

∀(f, g) ∈ I
2 or C

2 f ≥ g ⇔ (∀x ∈ D f(x) ≥ g(x)) (4)

There exists several GANs sets, whose each collection satisfies specific prop-
erties [1]. This paper presents the most elementary kind of these ones, denoted
V h

m7
(x). For each point x ∈ D and for an image f ∈ I, the GANs V h

m7
(x) are

included as subsets in D. They are built upon a criterion mapping h ∈ C (based
on a local measurement such as luminance, contrast, thickness, . . . related to f),
in relation with an homogeneity tolerance m7 belonging to the positive inten-
sity value range E

+7 . More precisely, V h
m7

(x) is a subset of D which fulfills two

conditions :

1. its points have a measurement value close to that of the point x : ∀y ∈
V h

m7
(x) |h(y) −7h(x)|

7
≤ m7, where −7 and |.|7 denote the considered

GLIP subtraction and GLIP modulus, respectively,
2. the set is path-connected (with the usual Euclidean topology on D ⊆ R

2).

The GANs are thus defined as following:

∀(m7, h, x) ∈ E+ × C × D V h
m7

(x) = Ch−1([h(x) −7m7,h(x) +7m7])(x) (5)

where CX(x) denotes the path-connected component (with the usual Euclidean
topology on D ⊆ R

2) of X ⊆ D containing x ∈ D.
Figure 1 gives a visual impression, on a 1-D example, of the computation of

a GAN in the LIP framework (i.e. with the +△ vector addition (1) and the −△
vector subtraction (2)).
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[h(x) −△m△, h(x) +△m△] V h
m△
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Fig. 1. One-dimensional computation of an adaptive neighborhood set V h
m△

(x) in the
LIP framework. For a point x, a tube of tolerance m7 is first computed around h(x).
Secondly, the inverse map of this interval gives a subset of the 1-D spatial support.
Finally, the path-connected component holding x provides the GAN V h

m△
(x).

3 GAN Mean and Rank Filtering

Usual image to image transformations generally work on fixed-size and fixed-
shape operational windows, either they are convolution filters (mean, . . . ) or rank
operators (min, max, median, . . . ). This kind of operators removes thin details
and displaces contours. In the GANIP approach, adaptive filters are introduced
in substituting the usual disks Br(.) of radius r as isotropic operational windows
by the anisotropic GANs V h

m7
(.) (Fig. 2).
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Fig. 2. Example of adaptive V h
m

7
(.) and non-adaptive Br(.) operational windows with

three values both for the homogeneity tolerance parameter m7, and for the disks radius
r. The shape of Br(x1) and Br(x2) are identical and {Br(x)}r is a family of homothetic
sets for each point x ∈ D. On the contrary, the shape of V h

m
7

(x3) and V h
m

7
(x4) are

dissimilar and {V h
m

7
(x)}m is not a family of homothetic sets.



The resulting GANIP-based operators perform consistent image processing,
such as adaptive mean, median or morphological filters which are introduced in
the following. Mean and rank filtering are simple, intuitive and easy to implement
methods for smoothing images, i.e. reducing the amount of intensity variation
between one pixel and the next. They are often used to reduce noise effects in
images [14].
The idea of mean filtering consists in replacing the gray tone of every point in
an image with the mean (’average’) gray tone of its neighbors, including itself.
This has the effect of eliminating point values which are unrepresentative of their
surroundings. Mean filtering is usually thought of as a convolution filter. Like
other convolutions it is based around a kernel, which represents the shape and
size of the neighborhood to be sampled when calculating the mean. Often an
isotropic kernel is used, as a disk of radius 1, although larger kernels (e.g. disk
of radius 2) can be used for more severe smoothing. (Note that a small kernel
can be applied more than once in order to produce a similar - but not identical
- effect as a single pass with a large kernel).
Rank filters in image processing sort (rank) the gray tones in some neighborhood
of every point in ascending order, and replace the seed point by some value k in
the sorted list of gray tones. When performing the well-known median filtering
[14], each point to be processed is determined by the median value of all points
in the selected neighborhood. The median value k of a population (set of points
in a neighborhood) is that value for which half of the population has smaller
values than k, and the other half has larger values than k.
So, the GANs mean and rank filters are introduced by substituting the isotropic
neighborhoods, generally used for this kind of filtering, with the (anisotropic)
general adaptive neighborhoods (GANs).

4 GAN Mathematical Morphology

Mathematical Morphology (MM) [15] is an important and nowadays a traditional
theory in image processing. Its development leads to several image processing
tools that are extremely useful in image enhancement, image segmentation and
classification, pattern recognition, texture analysis and synthesis. The elemen-
tary morphological operators of dilation and erosion use an operational window
named Structuring Element (SE). Generally, the SEs are extrinsically defined
and have consequently fixed shape and size.

4.1 Adaptive Structuring Elements

The basic idea in the General Adaptive Neighborhood Mathematical Morphology
(GANMM) is to replace the usual SEs by GANs, providing adaptive operators
and filters. More precisely the Adaptive Structuring Elements (ASEs), denoted
Rh

m7
(x), are defined as following:

∀(m7, h, x) ∈ E
+7 × C × D Rh

m7
(x) =

⋃

z∈D

{V h
m7

(z)|x ∈ V h
m7

(z)} (6)



The GANs V h
m7

(x) are not directly used as ASEs, because they do not satisfy

the symmetry property contrary to the Rh
m7

(x): x ∈ Rh
m7

(y) ⇔ y ∈ Rh
m7

(x).

This symmetry condition is relevant for visual, topological, morphological and
practical reasons as explained in [3].

4.2 Adaptive Morphological Operators

The elementary dual operators of adaptive dilation and adaptive erosion are de-
fined accordingly to the ASEs:

∀(m7, h, f) ∈ E
+7 × C × I

D
h
m7

(f) :







D → Ẽ

x 7→ sup
w∈Rh

m
7

(x)

f(w) (7)

E
h
m7

(f) :







D → Ẽ

x 7→ inf
w∈Rh

m
7

(x)
f(w) (8)

Then, several adaptive morphological filters can be defined by combination
of these two elementary adaptive morphological operators, in particular:

– adaptive closing: Ch
m7

(f) = Eh
m7

◦ Dh
m7

(f)

– adaptive opening: Oh
m7

(f) = Dh
m7

◦ Eh
m7

(f)

– adaptive closing-opening: COh
m7

(f) = Ch
m7

◦ Oh
m7

(f)

– adaptive opening-closing: COh
m7

(f) = Ch
m7

◦ Oh
m7

(f)

Those resulting GAN morphological operators perform a really spatially-
adaptive image processing and notably, in several and important practical cases,
are connected [3, 1], which is a great advantage compared to the usual ones that
fail to this property.

5 Practical Application Examples

Most of the time, image filtering is a necessary step in image pre-processing,
such as restoration, pre-segmentation, enhancement, sharpening, brightness cor-
rection, . . . The GAN-based filtering allows such transformations to be defined
[16, 2]. Three results are here exposed in image restoration, image enhancement
and image segmentation.

5.1 Image Restoration

This section addresses the image restoration area with a concrete application
example in visual image denoising. The aim is to suppress noise as much as
possible while preserving image features. Figure 3 exposes results of a denoising



process applied on the Edouard Manet’s painting ’Le Fifre’. It is realized both
with classical mean filters, denoted Meanr, using disks of radius r as classical
operational windows, and with GAN mean filters, denoted Meanf

m△
, using GANs

computed with the luminance criterion in the LIP framework.

(a) original f image (b) Mean1(f) (c) Mean2(f) (d) Mean3(f)

(e) Meanf
10△

(f) (f) Meanf
30△

(f) (g) Meanf
50△

(f)

Fig. 3. Image restoration through usual (b-d) and adaptive (b-d) mean filtering ap-
plied on the original (a) image. The adaptive filters (connected) do not damage edges
contrary to the classical filters which blur the image.

Those adaptive filters using the elementary GANs work well if the processed
images are noise free or a bit corrupted .
In the presence of impulse noise, such as salt and pepper noise, the GANs need to
be combined so as to provide efficient filtering operators [2]. Indeed, the elemen-
tary GAN of a corrupted point by such a noise is generally not representative of
the region of which it belongs, for any homogeneity tolerance value m7.



5.2 Image Enhancement

Image enhancement is the improvement of image quality [14], wanted e.g. for
visual inspection or for machine analysis. Physiological experiments have shown
that very small changes in luminance are recognized by the human visual sys-
tem in regions of continuous gray tones, and not at all seen in regions of some
discontinuities [17]. Therefore, a design goal for image enhancement is often to
smooth images into more uniform regions, while preserving edges. On the other
hand, it has also been shown that somehow degraded images with enhancement
of certain features, e.g. edges, can simplify image interpretation both for a hu-
man observer and for machine recognition [17]. A second design goal, therefore,
is image sharpening [14].

In this paper, the considered image enhancement technique is an edge sharp-
ening process: the approach is similar with unsharp masking [18] type enhance-
ment where a high pass portion is added to the original image. The contrast
enhancement process is realized through the toggle contrast [19], whose operator
κr is defined in the following:

∀(f, x, r) ∈ I × D × R
+

κr(f)(x) =

{

Dr(f)(x) if Dr(f)(x) − f(x) < f(x) − Er(f)(x)

Er(f)(x) otherwise
(9)

where Dr and Er denote the classical dilation and erosion, respectively, using a
disk of radius r as structuring element.

This (non-adaptive) toggle contrast will be compared with the adaptive LIP
toggle contrast, using a ’contrast’ criterion. This transformation requires a ’con-
trast’ definition which is introduced in the digital setting of the LIP framework
[20]: The LIP contrast at a point x ∈ D of an image f ∈ I, denoted C(f)(x), is
defined with the help of the gray values of its neighbors included in a disk V (x)
of radius 1, centered in x:

C(f)(x) =
1

#V (x)
×△

+△
∑

y∈V (x)

(max(f(x), f(y)) −△ min(f(x), f(y))) (10)

where

+△
∑

and # denote the sum in the LIP sense [20], and the cardinal symbol,

respectively.
Consequently, the so-called adaptive toggle LIP contrast is the transforma-

tion κ
C(f)
m△

, where C(f) and m△ represent the criterion mapping and the homo-
geneity tolerance within the LIP framework (required for the GANs definition),
respectively. It is defined as following:

∀(f, x, m△) ∈ I × D × E +△

κC(f)
m△

(f)(x) =

{

D
C(f)
m△

(f)(x) if D
C(f)
m△

(f)(x) − f(x) < f(x) − E
C(f)
m△

(f)(x)

E
C(f)
m△

(f)(x) otherwise
(11)



where D
C(f)
m△

and E
C(f)
m△

denote the adaptive dilation and adaptive erosion, re-
spectively, using ASEs computed on the criterion mapping C(f) with the homo-
geneity tolerance m△.

Figure 4 illustrates an application example of image enhancement through
usual and adaptive toggle contrast, respectively. The process is applied on a real
image acquired on the retina of a human eye.

(a) original image f (b) LIP contrast
mapping C(f)

(c) κ1(f) (d) κ5(f) (e) κ10(f) (f) κ20(f)

(g) κ
C(f)
4△

(f) (h) κ
C(f)
30△

(f) (i) κ
C(f)
50△

(f) (j) κ
C(f)
70△

(f)

Fig. 4. Image enhancement through the toggle contrast process. The operator is applied
on a real (a) image acquired on the retina of a human eye. The enhancement is achieved
with the usual toggle contrast (c-f) and the GANIP-based toggle LIP contrast (g-j).
Using the usual toggle contrast, the edges are disconnected as soon as the filtering
becomes too strong. On the contrary, such structures are preserved and sharpened
with the GAN filters.

This image enhancement application example confirms that the GANIP op-
erators are more effective than the corresponding classical ones. Indeed, the



adaptive toggle LIP contrast performs a locally accurate image enhancement,
taking into account the notion of contrast within spatial structures of the image.
Consequently, only the transitions are sharpened while preserving the homoge-
neous regions. On the contrary, the usual toggle contrast enhances the image in
a uniform way. Thus, the spatial zones around transitions are rapidly damaged
as soon as the filtering becomes too strong.

5.3 Image Segmentation

The segmentation of an intensity image can be defined as its partition (in fact the
partition of the spatial support D) into different connected regions, relating to
an homogeneity condition [14]. In this paper, the segmentation process is based
on a morphological transformation called watershed [21] and a GANIP-based
decomposition process. It will be illustrated on a human corneal endothelial
image provided by the University Hospital Center of Saint-Etienne in France.

The cornea is the transparent surface in the front of the eye. It has a role
of protection of the eye, and with the lens, of focusing light into the retina.
It is constituted of several layers, such as the epithelium (at the front of the
cornea), the stroma and the endothelium (at the back of the cornea). The en-
dothelium contains non-regenerative cells tiled in a monolayer and hexagonal
mosaic. This layer pumps water from the cornea, keeping it clear. A high cell
density and a regular morphometry of this layer characterize the good quality of
a cornea before transplantation, the most common transplantation in the world.
Herein lays the importance of the endothelial control. Ex vivo controls are done
by optical microscopy on corneal button before grafting. That image acquisi-
tion equipment give gray tones images which are segmented, for example by the
SAMBA™ software [22], into regions representing cells. These ones are used to
compute statistics in order to quantify the corneal quality before transplanta-
tion.
The authors proposed a GANIP-based approach to segment the cornea cells.
The process is achieved by a closing-opening morphological filtering using the
GAN sets with the luminance criterion in the CLIP framework, followed by a
watershed transformation, denoted W . A comparison with the results provided
by the SAMBA™ software, whose process is achieved by thresholding, filtering
and skeletonization [22], is proposed (Fig. 5). The parameter m7 of the adap-
tive morphological filter has been tuned to visually provide the best possible
segmentation.

The detection process achieved by the GANIP-based morphological approach
provides better results (from the point of view of ophthalmologists) than the
SAMBA™ software. Those results highlight the spatially-variant adaptivity of
the GANIP-based operators. A more specific study should be investigated for
this promising cells detection process.



(a) original image f (b) SAMBA™ result (c) W (COf
10(f))

Fig. 5. Segmentation of human endothelial cornea cells (a). The process achieved by
the GANIP-based morphological approach (c) provides better results (from the point
of view of ophthalmologists) than the SAMBA™ software [22] (b).

6 Conclusion and Prospects

The General Adaptive Neighborhood Image Processing (GANIP) approach al-
lows efficient image processing operators to be built. The GAN-based represen-
tation of an image is simultaneously adaptive with its analyzing scales, its spatial
structures and its intensity values. In this way, the resulting adaptive operators
are spatially variant, relevant from a physical and/or psychophysical point of
view and are intrinsically multiscale in the sense where processing scales are
locally determined by the image context. These theoretical aspects have been
practically confirmed on real application examples in image restoration, enhance-
ment and segmentation. From a practical point of view, the computation of the
GANs sets increases the running time of the adaptive operators [3]. Currently,
the authors work on GANIP-based topological approaches.
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