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PROPAGATION OF CHAOS AND POINCARE INEQUALITIES
FOR A SYSTEM OF PARTICLES INTERACTING
THROUGH THEIR CDF

By BENJAMIN JOURDAIN AND FLORENT MALRIEU

Ecole des Ponts and Université Rennes 1

In this paper, in the particular case of a concave flux function, we
are interested in the long time behavior of the nonlinear process as-
sociated in [Methodol. Comput. Appl. Probab. 2 (2000) 69-91] to the
one-dimensional viscous scalar conservation law. We also consider
the particle system obtained by replacing the cumulative distribu-
tion function in the drift coefficient of this nonlinear process by the
empirical cumulative distribution function. We first obtain a trajec-
torial propagation of chaos estimate which strengthens the weak con-
vergence result obtained in [8] without any convexity assumption on
the flux function. Then Poincaré inequalities are used to get explicit
estimates concerning the long time behavior of both the nonlinear
process and the particle system.

Introduction. In this paper, we are interested in the viscous scalar con-
servation law with C! flux function —A

0.2
1) GF(2) = 50w li(2) + Ou(A(F(2)),  Fo(z)=H +m(z),

where m is a probability measure on the real line and H(z) = 1y,>0) denotes
the Heaviside function. As a consequence, H % m is the cumulative distribu-
tion function of the probability measure m. Since A appears in this equa-
tion through its derivative, we suppose without restriction that A(0) = 0.
According to [8], one may associate the following nonlinear process with the
conservation law:

t
(2) Xt:X(]—l-O'Bt—/O A/(H*PS(XS))dS,
YVt > 0,the law of X; is P,
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where (B¢)¢>0 is a real Brownian motion independent from the initial random
variable Xy with law m and o a positive constant. The process X is said
to be nonlinear in the sense that the drift term of the SDE depends on the
entire law P, of X;. More precisely, according to [8], this nonlinear stochastic
differential equation admits a unique weak solution. Moreover, H * P;(x) is
the unique bounded weak solution of (1). For ¢ > 0, by the Girsanov theorem,
P, admits a density p; with respect to the Lebesgue measure on the real line.

We want to address the long time behavior of the nonlinear process solv-
ing (2) by studying convergence of the density p; (see [2] and [3] for a simi-
lar study in a different setting). Since the cumulative distribution function
x — H * Ps(x) which appears in the drift coefficient is nondecreasing, con-
vexity of A is a natural assumption in order to ensure ergodicity. Then the
flux function —A in the conservation law (1) is concave.

In the first section of the paper, after recalling results obtained in [8],
we show that trajectorial uniqueness holds for (2) under convexity of A.
Then we introduce a simulable system of n particles obtained by replacing
in the drift coefficient the cumulative distribution function by its empirical
version and the derivative A’ by a suitable finite difference approximation.
When A is convex, existence and trajectorial uniqueness hold for this system.
Moreover, we prove a trajectorial estimation of propagation of chaos which
strengthens the weak convergence result obtained in [8]. Unfortunately, be-
cause the empirical cumulative distribution function is a step function and
therefore not an increasing one, this estimation is not uniform in time.

The second and main section deals with the long time behavior of both
the nonlinear process and the particle system. We address the convergence
of the density p; of X; by first studying the convergence of the associated
solution H x p; of (1) to the solution F,, with the same expectation of the
stationary equation U—;amFoo(a:) + 02(A(Foso(x)) = 0 obtained by removing
the time derivative in (1). For this result, no convexity hypothesis is made
on A. Instead, one assumes A(u) <0 for u € (0,1), A'(0) <0, A(1) =0 and
A’(1) > 0. In contrast, to prove exponential convergence of the density of
the particle system uniform in the number n of particles, we suppose that
the function A is uniformly convex. This hypothesis ensures the existence
of an invariant distribution for the particle system. In [14], a necessary and
sufficient condition on the drift sequence is established for existence of the
invariant measure and convergence in total variation norm for the law of
the particle system at time ¢ to this measure. In the present paper, the key
step to derive quantitative convergence to equilibrium consists in obtaining a
Poincaré inequality for the stationary density of the particle system uniform
in n. This density has exponential-like tails and therefore does not satisfy a
logarithmic Sobolev inequality. So the derivation of the Poincaré inequality
cannot rely on the curvature criterion, used, for instance, in [5, 6, 12] or [13]
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for the granular media equation. Instead we make a direct estimation of the
Poincaré constant using the specific analytic form of the invariant density.
To our knowledge, our study provides the first example of a particle system,
for which a Poincaré inequality but no logarithmic Sobolev inequality holds
uniformly in the number n of particles.

ASSUMPTION. Throughout the paper, we assume that A is a C'* function
on [0,1] s.t. A(0) =0.

1. Propagation of chaos.

1.1. The nonlinear process. Let us first state existence and uniqueness
for the nonlinear stochastic differential equation (2).

THEOREM 1.1.  The nonlinear stochastic differential equation (2) admits
a unique weak solution ((Xy¢, Py))i>0. For t >0, P, admits a density p; with
respect to the Lebesque measure on R. The function (t,z)— H % Py(x) is
the unique bounded weak solution of the viscous scalar conservation law (1).
Moreover,

(3) Vt>0 X — Xo is integrable and E(X; — Xo) = —A(1)t.

Last, if the function A is convex on [0,1], (2) admits a unique strong solu-
tion.

ProOOF. The first and third statements are consequences of Proposition
1.2 and Theorem 2.1 of [8] [uniqueness follows from uniqueness for (1) and
existence is obtained by a propagation of chaos result].

According to the Yamada—Watanabe theorem, to deduce the last state-
ment, it is enough to check that when A is convex, then trajectorial unique-
ness holds for the standard stochastic differential equation

dXt = O'dBt — A,(H * Qt(Xt)) dt

where (Q¢)¢>0 is the flow of time-marginals of a probability measure @) on
C([0,400),R). Since for each t > 0 the function x — A’(H % Q¢(x)) is nonde-
creasing, if (X;)¢>0 and (Y;);>0 both solve this standard SDE, then | X; — Y|
is bounded by

t
X0 = Yol + [ sign(X, = Yo (A'(H = Qu(Y) — A'(H + Qu(X,) ds.
0
and then by | Xy — Y| which concludes the proof of trajectorial uniqueness.

Existence of the density p; for ¢t > 0 follows from the boundedness of the
drift coefficient and the Girsanov theorem. To prove (3), one first remarks
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that by boundedness of the drift coefficient, for each ¢ > 0, the random
variable X; — X is integrable and

E(X, — Xo) = — /OtE(A’(H « Py(X,))) ds

— _/Ot/RA’</_moo Ps(dy)>Ps(dx) ds.

For s > 0, since by the Girsanov theorem P; does not weight points,
/ A ( / Ps(dy))Ps(dx) — AH # Py(a))[ T = A1), -
R —00

COROLLARY 1.2.  Assume that A is C* on [0,1]. Then the function H *
Py(z) is C%2 on (0,+00) x R and solves (1) in the classical sense on this
domain.

ProOOF. By the Girsanov theorem, for ¢y > 0, the law P, of X}, admits a
density with respect to the Lebesgue measure on R. Hence (¢, ) — H % Py(x)
is a continuous function on (0,400) x R with values in [0, 1]. According to
[11], Theorem 8.1, page 495, Remark 8.1, page 495 and Theorem 2.5, page
18, there exists a function u with values in [0, 1], continuous on [0, +00) X R
and C1? on (0,+0c) x R such that

Vx e R, u(0,z) =H >|<2Pto (x),
{V(t,x) € (0,+0) xR, Opu(t,x) = %amu(t,x) + 0z (A(u(t,z))).

By the uniqueness result for bounded weak solutions of this viscous scalar
conservation law recalled in Theorem 1.1, Vt > tg, H % P;(x) = u(t — to, x).
The conclusion follows since tg is arbitrary. [

1.2. Study of the particle system. For n € N*, let (a,(i));<;~, be a se-
quence of real numbers. In this section, we are interested in the n-dimensional
stochastic differential equation

n
(4) dth,n =o0dB} — ay <]Zl 1{X,{'"SXZ’"}> dt, Xé’" =X, 1<i<mn,
where (B?);>1 are independent standard Brownian motions independent
from the sequence (X();>1 of initial random variables.

In the next section devoted to the approximation of the nonlinear stochas-
tic differential equation (2), we will choose a,,(7) equal to the finite difference
approximation n(A(i/n) — A((i —1)/n)) of A'(%). For this particular choice,
the nondecreasing assumption made in the following proposition is implied
by convexity of A.
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PROPOSITION 1.3. Assume that the sequence (an(i))i<i<n is nonde-
creasing. Then the stochastic differential equation (4) has a unique strong so-
lution. Let (Y;"™,..., Y™™ denote another solution starting from (Y{,..., Y
and driven by the same Brownian motion (B',...  B"). Then

n n
(5) as,VE>0 Y (X" V)2 <Y (X - YE)?

i=1 i=1
In addition, if the initial conditions (X&,...',Xg) and (Y3, ...,YJ") are s.t.
a.s., Vie{l,...,n}, X§ <Yy (resp. X <Yy), then

(6) as,Vt>0Vie{l,...,n} X<V (resp. X" <YM,

Existence of a weak solution to (4) is a consequence of the Girsanov the-
orem. Therefore, according to the Yamada—Watanabe theorem, it is enough
to prove (5) which implies trajectorial uniqueness to obtain existence of a
unique strong solution. To do so, we will need the following lemma.

LeEMMA 1.4.  Let (a(i))i<i<n and (b(i))1<i<n denote two nondecreasing
sequences of real numbers. Then for any permutation T € S,
n

(7) a(i)b(r(i)) <) a(i)b(i).
i=1

1=1

PrROOF. For n =2, the result is an easy consequence of the inequality

(a(2) = a(1))(b(2) = b(1)) = 0.
For n > 2, we define 71 as 7 if 7(1) =1 and as 7 composed with the trans-
position between 1 and 77!(1) otherwise. This way, 71(1) = 1. In addition,
using the result for n =2, we get > i ; a(i)b(7(7)) < > i a(i)b(T1(7)).

For 2 <j <n —1, we define inductively 7; as 7;_1 if 7;_1(j) =j and as
7j—1 composed with the transposition between j and 7']-__11 (j) otherwise. This
way, for 1 <i <j, 7;(i) =14. Again by the result for n =2, one has
n

a(@)b(r(i)) < D a(D)b(r1(i)) < Y _a(@)b(r2(i) < --- < Y a(i)b(7a-1(7).

1 1=1 =1 i=1

n
1=

We conclude by remarking that 7,,_; is the identity. [
We are now ready to complete the proof of Proposition 1.3.

PROOF OF PROPOSITION 1.3. Let (X7 ..., X™") and (Y17, ..., Y™")

denote two solutions. The difference
n n

DX YR =S (X - V)

i=1 i=1
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is equal to

) e

J_
By the Girsanov theorem, for any s > 0 the distributions of (X17,..., X™")
and (Y,'",...,Y™") admit densities w.r.t. the Lebesgue measure on R” and
therefore dP ® ds a.e. the positions X", ..., X™" (resp. Y.I", ..., Y"") are
distinct and there is a unique permutation 7 € S,, (vesp. 7Y € S,,) such
X X X Y Y
that X;—s (1)7n < X;—s (2)7n < . < X;—s (TL),TL (resp‘ Y'STS (1)7n < Y'STS (2)7n < e <
Y
Yy® (")’"). Therefore dP ® ds a.e.,

> (X" =Y (an <Z 1{Y£’”§Y;’”}> — <Zl 1{X£’”§X§’"}>>
i=

i=1 j=1

is equal to
Zan XTS Y(@i)yn Y*STSY(Z),n) - (X;'S,X(z),n - Y*STSX(Z),n))

The sequence (ay,(%))1<i<n is nondecreasing. Applylng Lemma 1.4 with b()

X;g(i)’" and 7 = (7)1 o7 then with b(i) = Y™ YOM and 1= (T torX,
one obtains that the integrand in (8) is nonpositive dPP ® ds a.e. Hence 5)
holds.

Let us now suppose that a.s. Vi € {1,...,n}, X{ <Yy and define v =
inf{t>0:3ie{1,...,n}, X" >Y""} with the convention inf @ = +o0. From
now on, we restrict ourselves to the event {v < 4oo}. Let i € {1,...,n} be
such that Y,fv" = X,’/" There is an increasing sequence (sk) k>1 of
positive times with limit v such that Vk > 1,a,(3°}_ 11{Xjn<Xin}) <
an(37-1 1 fvim <Ysi,;”})' Since (an(i))1<i<n is nondecreasing, by extracting a
subsequence still denoted by (sg)x for simplicity, one deduces the existence
of j€{1,...,n} with j #i such that Vk >1,X5" < XJ™ and YJ" <YS"
Since s < v, ngl Xj” Yj" Yi” By continuity of the paths, one
obtains X" = XJn = YJ e YZ o Now since the probability of the event

iy, i9,i3 dist. in {1,...,n}, It >0 X +oB = X2 +0B)? = X +0B}?

is equal to 0, the Girsanov theorem implies that a.s. VI € {1,...,n}\ {7, j},
Xbn £ Xin = X" In the same way, Y)" # Y™ = YJ". By continuity of
the paths and definition of v one deduces that for k large enough, and for
every t € [sg, V],
n n n

Z 1{Yl n<Yz n S Z Xl 7L<XZ n}, Z ].{Yl 7L<Y] n} S Z ].{Xi,nSXg,n}.

=1 = = =1
I#i,j l#w l#w I#i,g
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Since a.s. dt a.e., Y;"" # Y™ and (a,(i))1<i<n is nondecreasing, one obtains
that a.s. dt a.e. on [sg,v],

n n
an <Z 1{Ytl,nS)/tz,n}> + an (Z 1{Ytl,nSYt],n}>
=1

=1

n n
San <Z 1{Xi,nSXg,n}> +an <Z 1{Xi,nSXz,n}>
=1 =1

By integration with respect to ¢ on [sy, ], this implies that a.s. Y,»" — X"+
YIm = XPn 2 YEr = Xgt + Y4 — XL > 0. Therefore P(r < 400) =0.
When a.s. for ¢ € {1,...,n}, Xj <Y{, one obtains that for € > 0 the
solution (Y;"™¢, ..., Y""™) to (4) starting from (Y +¢,..., Y +¢) is such
that
as,Vt>0Vie{l,....n} X<y e

Since by (5), Y;”LE < th + /ne, one easily concludes by letting e — 0. O
1.3. Trajectorial propagation of chaos. From now on, we set

)  VneN.Vie{l,....n} an(i):n<A<1)_A<z—1>)

n n

and assume that the initial positions (Xé)izl of the particles are independent
and identically distributed according to m. We prefer to define a, (i) with
the above finite difference approximation of the choice A’(i/n) made in [8]
because the sum Y7 ; a, (i) which plays a role in the long time behavior of
the particle system is then simply equal to nA(1). One could also obtain
trajectorial propagation of chaos estimates similar to Theorem 1.5 below for
the choice a, (i) = A'(i/n).

In the present section, we also suppose that A is a convex function on
[0,1]. By Theorem 1.1, for each ¢ > 1, the nonlinear stochastic differential
equation

t .
Xg’:X3+aBg—/ A'(H * P,(XY)) ds,
(10) 0
vVt > 0,the law of X} is P,

has a unique solution and for all t > 0, the law P; of X} does not depend on
1. Under a Lipschitz regularity assumption on A’, we obtain the following
trajectorial propagation of chaos estimation.

THEOREM 1.5. If A:[0,1] = R is convex and A’ is Lipschitz continuous
with constant K, then

<

K322
)_ 6n

Vn>1,¥1<i<n,Vt>0 E( sup (X0m — X1)?
s€[0,t]
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PROOF. Let us write >0 1 (X" — X})? a
/ ZXZ’/L XZ (an<21 X]<X1 ) _an<zl{Xg,nSX;,n}>>d8
j=1

+2/ZX”‘ XHC(s, XL,..., XM ds
where C(s, X!,..., X") is equal to

7 1 Y 1
A'(H * Py(XY)) ( < E:l{XJ<Xz>—A<E§:1{Xﬁ<xg}_g>>'
=1

Like in the proof of trajectorial uniqueness for (4), because of the convex-
ity of A, the first term of the r.h.s. is nonpositive. Moreover, by Lipschitz
continuity of A,

n n ?
(A/(H*P (XZ < (%Z {XI<Xxi} ) _A<%21{X£<X§} _%>>>
=1 J=1

1 ; b 2
:</0 A'(H + Py(X1)) - ( 21{X1<X1}+ n )Cw)

2

K2 1 . .

< poll A <Z <H>k Py(X?) — 1{X§§X§}> + (H * Py(X?) — 9)) de.
J#

For s > 0, as the variables X; are i.i.d. with common law P, which does not

weight points and H * P(X!) is uniformly distributed on [0, 1],

1 . . 2
/0 E((Z(H*PS(X;) ~Lpiexy) + (B * (X)) —9)> )d@
i
= S R((H = P.OC) Ly )+ [ B(H » XD — 0)%) 0
J#
= (n — DE((H = Py(X2))(1 — H x Ps(X))) +1/6
=n/6.

Using the Cauchy—Schwarz inequality, one obtains
n n 2
E(Sup Z(X”L X2 <2/ Xﬁn X;)) )ds
s€[0,t] j—1

2
[
Sup - X5)2> ds.
uE[O s]i— 1

S\N
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By comparison with the ordinary differential equation o/ (t) = 2K ﬂ, one

6
concludes that

n . . K?¢?
vt >0 E( sup » (XU — X;)2> < :
s€[0,t] i=1 6

Exchangeability of the couples ((X*", Xi))ie{l,...,n} completes the proof. [

REMARK 1.6. One could think that assuming that A is uniformly con-
vex:

(11) Ja>0Y0<z<y<1l Ay —A(z)>aly—x)
would lead to a better estimation. Indeed, then for every i € {1,...,n— 1},
(i+1)/n 1
an(z'—l—l)—an(z'):n[ {A’(@-A/(x—;ﬂd:pz%.

But since even in this situation, the nonpositive term

2 (X3 = X)) (a" <Zl 1{X§<X;’}> —n <Zl 1{X§’"<X§'"}>>
j= j=

i=1
vanishes as soon as the order between the coordinates of (X127, ..., X™") is
the same as the order between the coordinates of (X]!,..., X), we were not

able so far to improve the estimation.

COROLLARY 1.7. Under the hypotheses of Theorem 1.5, let m be a
probability measure on R such that Vo € R, H x m(x) < H x m(x). If for
some random variable Uy uniform on [0,1] independent from (B%);>1, X¢ =
inf{z: H x m(z) > U1} and (Y,!)i>0 denotes the solution of the nonlinear
stochastic differential equation

t -
V! =Y} +oB} —/ A'(H + P,(Y})) ds,
(12) o B
vt >0, the law of Y}! is P,
with Y = inf{z: H * m(z) > Uy}, then
P(vt>0,X} <V =1.
Moreover ¥t >0, Yz € R, H * P,(z) < H * Py(x). Last, the function t —

E|Y,! — X}| is constant.

REMARK 1.8. At least when m and m do not weight points, one has
a.s. A'(H x Py(X})) = A'(H % Py(Yy)) since H xm(X}) = H »m(Yy) = Uj.
Therefore a.s. d(Y' — X!)y =0 and one may wonder whether a.s. Y} —
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X} does not depend on t. If this property holds, necessarily, a.s. dt a.e.
A'(H * P(X})) = A'(H * P,(Y}Y)). If A’ is increasing, a.s. for all t >0, H *
pe(X}) = H = p,(Y;}) with p, and p; denoting the respective densities of P,
and P;. If A is C?, the Brownian contribution in d(H * p;(X}) — H x5 (Y,!))
given by Itd’s formula vanishes, that is, p;(X}) = p:(¥}}) and Vu €]0,1],
pe((H p)~ () = pu((H # 5o) () or equivalently ((H +pi) ) (u) = ((H +
pt) 1) (u). Hence Y;! = X} + ¢ for a deterministic constant ¢ which does not
depend on t according to (3). Letting ¢ — 0, one obtains Y = X} + ¢. This
necessary condition turns out to be sufficient as (X} + ¢);>¢ obviously solves
the nonlinear stochastic differential equation (2) starting from X@ + c.

PROOF OF COROLLARY 1.7. For (U;);>2 a sequence of independent uni-
form random variables independent from (Uy, (B%);>1), we set

Vi>2 Xt =inf{z:H+m(x)>U;} and Y =inf{z:H xm(z)>U;}.

Since H*xm < Hx*m, a.s. Vi > 1, Yoi > Xé. From Proposition 1.3, one deduces
that the solutions (X",...,X/"") and (Y;"",...,Y™™) to (4) respectively
starting from (X¢,..., X§) and (Yy,...,YJ") are such that

as,Vn>1¥ie{l,... n}¥t>0 ¥ >Xp"

Since, by Theorem 1.5, for fixed ¢ > 0, one may extract from (X;"", Y;l’")nzl
a subsequence almost surely converging to (X}, Y;!), one easily deduces that
P(Vt >0, X} <Y;')=1. Hence

Vt>0,Vz eR Hx Py(z) =P(Y}! <) <P(X} <z)=H * P(x).

Since |V} — X} - |Yg — X} =V, =Y — (X} — X1), (3) ensures that E|Y,! —
X} €[0,+00] does not depend on t. [

2. Long time behavior. In this section we are interested in the long time
behavior of both the nonlinear process and the particle system. According
to (3) and the equality >°1; a,(i) = nA(1) which follows from (9), we have
to suppose A(1) =0 in order to obtain convergence of the densities as ¢
tends to infinity. We address the convergence of the density p; of X; by first
studying the convergence of the associated cumulative distribution function
F; under the following hypothesis denoted by (H) in the sequel:

A(0)=A(1) =0, A(0) <0,

(1) ,
A'(1)>0 and Vue(0,1) A(u) <O0.

These assumptions determine the spatial behavior at infinity of the drift
coefficient in (2).

To prove exponential convergence of the density of the particle system
uniform in the number n of particles, we make the stronger assumption of
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uniform convexity on A. The key step in the proof is to obtain a Poincaré in-
equality uniform in n for the stationary density of the particle system. This
density has exponential-like tails and therefore does not satisfy a logarith-
mic Sobolev inequality. So the derivation of the Poincaré inequality cannot
rely on the curvature criterion, used, for instance, by Malrieu [12, 13] when
dealing with the granular media equation. Instead, we take advantage of the
following nice feature: up to reordering of the coordinates, the stationary
density is the density of the image by a linear transformation of a vector
of independent exponential variables. And it turns out that the control of
the constant in the n-dimensional Poincaré inequality relies on the Hardy
inequality stated in Lemma 2.18 which is a one-dimensional Poincaré-like
inequality. To our knowledge, our study provides the first example of a par-
ticle system, for which a Poincaré inequality but no logarithmic Sobolev
inequality holds uniformly in the number n of particles.

2.1. The nonlinear process. In this section, we are first going to obtain
necessary and sufficient conditions on the function A ensuring existence
for the stationary Fokker—Planck equation obtained by removing the time-
derivative in the nonlinear Fokker—Planck equation

2

(13) Oupr = = O + 0o A'(H % po)p)

satisfied by the density of the solution of (2). Under a slightly stronger
condition, the solutions satisfy a Poincaré inequality.

LEMMA 2.1. A necessary and sufficient condition for the existence of a
probability measure p solving the stationary Fokker—Planck equation

2

Dbt + 0u (A (H % () 1) = 0

in the distribution sense is A(1) =0 and A(u) <0 for all ue (0,1). Under
that condition, all the solutions are the translations of a probability measure
with a C' density f which satisfies

2

Vx eR flz)= —;A(H x f(x)) and

(14) )
@) = —— A'(H * f(2))f (z).

If A(0) <0 and A’(1) >0, then
~24'(0)

/ fly)dy, when x — —o0,

2
f(l') ~ /U 00
24(1) /+ f(y)dy, when x — 400,

o2
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(15) )
. L, when x — —00,
/ céy) N 2A’(0)2f(:1:)
o fly o
W’ when X — +OO,

and all the solutions satisfy a Poincaré inequality and have a finite expecta-
tion. Last, if the function A is C? on [0,1], then f is C? and satisfies
f*(x)

fl@)

(16) F() =~ A"(H = £ () f(x) +

PrROOF. Let p be a probability measure on R solving the stationary
Fokker—Planck equation. The equality U—;am = —0,(A'(Hx*p(x))p) ensures
that p does not weight points. Hence the stationary equation is equivalent
to 8xx(0—22u + A(H * pu(x))) = 0. One deduces that p possesses a C'! density
f such that

(17) Vr eR f(x):—%A(H*f(x))—i-aa;—Fﬂ,

for some constants « and (. Since A(0) =0, letting x — —oo then = —
+0o in the last equality, one obtains o= = A(1) = 0. For u € (0,1), since
u=H x f(z) for some z € R and H * f is not constant and equal to wu,
the Cauchy-Lipschitz theorem and (17) imply that A(u) # 0. Since f is
nonnegative, A(u) < 0. Hence A(1) =0 and A(u) <0 for all u € (0,1) is a
necessary condition.
Under that condition, a probability measure j solves the stationary Fokker—

Planck equation if and only if its cumulative distribution function H * u(x)
is a C? solution to the differential equation

(18) #(z)=—=Alp(), wER.

By the Cauchy-Lipschitz theorem, for each v € [0,1] this equation admits
a unique solution ¢, defined on R with values in [0, 1] such that ¢,(0) = v.
Moreover, as A(0) = A(1) =0, po =0 and ¢; =1 and

(19) Vv e (0,1),Vx eR 0 < py(x) <1

For v € (0,1), since ¢, is nondecreasing and ¢,(z) =v — 2 [ A(pu(y)) dy,
necessarily limy_, o ¢,(y) = 1. In the same way, lim,_,_~ ¢, (y) =0 and ¢,
is an increasing function from R to (0,1) with inverse denoted by ¢, . The
uniqueness result for (18) implies that Vv € (0,1),Vz € R, ¢, (z) = ¢y /2(z +
901_/12 (v)). Therefore the solutions to the stationary Fokker—Planck equation
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are the probability measures obtained by spatial translation of the proba-
bility measure with density f(z)= ¢} /2 (z) which satisfies (14) according to
(18).

Let us now suppose that A’(0) <0 and A’(1) > 0. When z — +o0,

s =-2a(1- [ swan)~ 220 [ ) ay

xT

xT

By (14), f@) (log f(x)) = =2 A'(p1/2(x)) converges to —% as xr —

f(x)
~+o00. This implies that M converges to —%Q(L) and that xf(x )1{x>0} is
+oo d
integrable. Moreover, since | f(Z) = fo f(y ~ 3 A, fo }Cz(é

ij(m), as £ — +o00. In the same way, one obtains the equlvalents given in

(15) when  — —o0 and checks the integrability of the function z f (7)1 <0y
From (15), one has

0 dy
1 y)d =
and
+oo T dy ot
lim fy)dy = .
A ), SO 5y = e

By Theorem 6.2.2, page 99 of [1], one concludes that the measure with
density f satisfies a Poincaré inequality.

By (14), the function f is C? as soon as the function A is C? on [0, 1].
Moreover, f"(z) = -2 A"(Hx f(x)) f*(x) — Z A'(H * f (2)) f'(x) which com-
bined with (14) implies (16). O

REMARK 2.2.  When A is a C! convex function on [0, 1] such that A(0) =
A(1) =0 and A’(u) <0 for some u € (0,1), then the necessary and sufficient
condition in Lemma 2.1 is obviously satisfied. Since (14) implies

bt - () - (2 )

= DA () f () <O,

the probability measures solving the stationary Fokker—Planck equation
admit log-concave densities with respect to the Lebesgue measure. Log-
concavity is a property stronger than the existence of a Poincaré inequality
(see [7]).

EXAMPLE 2.3. Using (18) and (19), the following two choices for A lead
to exact computations and different tails for the stationary densities:
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o if A(z)=21z(z—1), one gets log(m) =1x/0?, that is,

3 1—p1/2(z)
z/o? 1
e
=——— and o) ,(2)= '
(101/2 (:E) 1+ ew/cr2 an (701/2(33) 402 COShz(ﬂj/2O-2) ’
o if A(z) =2 —z=x(x—1)(z +1),
1 26—4(2/0'2

—_— , P
¥ 1/2@)— \/W and cp\/m(x)— 02(1+e—4x/02)3/2'

When A(1) =0 and A(u) <0 for all uw e (0,1), a natural question is how
to link the translation parameter of the candidate long time limit of the
marginal P, solving the stationary Fokker—Planck equation to the initial
marginal m. When [ |z|m(dz) < +o0, by (3), for all t >0, E(X}) =E(X}).
Therefore the translation parameter is chosen in order to ensure that the
invariant measure has the same mean as the initial measure m.

Let us denote by p; the density of P; and by F; = H % P; its cumulative
distribution function.

THEOREM 2.4. Let A be C? on [0,1] satisfying (H). Assume that m

2
admits a density py such that [g |z|po(z)dx < +o00 and fR%dx
18 small enough where ps, denotes the stationary distribution with same

expectation as pg. Last, we suppose that A and pg are such that p is a smooth

solution of (13). Then [ W(i/m converges to 0 exponentially fast
as t — +o00.

By a smooth solution of (13), we mean that p possesses enough regularity
and integrability so that the formal computations made in the proof below
are justified.

EXAMPLE 2.5. When A(z) = (m2 — x), one easily checks that the func-
tion ¢(t,x) = —F(z + &) solves Burgers equation

o? 1 9
8t¢ = 7amm¢ - §am¢ > ¢(0733) = —Fo(ﬂj‘).

By the Cole-Hopf transformation, 9 (¢,x) = eXp(—o—l2 ¥ o(t,y)dy) solves
the heat equation

Oy =

Since Fy(z) =

O s, (0,) —exp(; [ Falw)dy).

=2 (t,x — %), one deduces that

Jp e @20 R ()4 (0, y) dy/ (0/2nt)
Jw e @mt202 25500, ) dy /(o v/ 2mt)

(20) Fi(x) =
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If z denotes the expectation associated with the cumulative distribution
function Fy, one has [*__ Fy(2)dz = [°°(1 — Fy(z)) dz. Since

/_mOOFO(Z)dZZ/_iOFO(Z)dZ—/:(1—F0(2))d2+(a:—x),

one deduces that the function $(0,z) = e~ @2/ (0, z) [resp. 1(0,)] is
bounded on R (resp. R_) and converges to 1 as x tends to +00 (resp. —00).

Let us deduce the limit of Fy(z) as t — +oo. Writing the integral for
y € R as the sum of the integrals for y € R_ and for y € R, and making the

change of variables z = % (resp. z = %\;/2) in the first (resp. second)
integral, one obtains
—(y—a+t/2)?/(202t) dy
e F{ 0,
~/R O(y)w( y) 0\/2—71'15

_ —22/2
= /R ¢ T < i/ (20) 2/ (0D}

><F0<J tz+x—%)¢<0,0\/fz+x—%>\j2z_ﬂ

(x—7z)/0? —22/2
te /Re Yz vi/(20) 2/ (o)}

t\ - t\ dz
F{ t — t — | —.
X 0(0 z—i—x—l—z)w(o,a\fz—l—x—i—z)m

By the Lebesgue theorem, the first term of the right-hand side converges to
0 whereas the second term converges to e(*—%)/ a Replacing Fj by 1 in the
above computation, one obtains that the denominator in (20) converges to
1+ e@=2)/9"  Therefore

oz—2)/0”

veeR o Im B =

Notice that in the same way, one may also obtain the limit of the density

_ Jel+1/2 = 2)/(0?t))e” 20/ By (4) (0, y) dy/ (0 V/2r)
Jeem @30 @0y (0,y) dy/ (0/2mE)

B i (J"R e—(w—t/2_y)2/(202t)F0(y)w(uy) dy/(a 27Tt)>2
o2 Jp e~ @=t/2=0)2/2021)9)(0, y) dy (o\/27t) ‘

pr()

One easily checks

1 e(w—f)/cr2 e2(w—f)/02

<1 + el@—)/0? (1+ e(m—f)/02)2>
B 1
402 cosh?((x — ) /202)

Ve eR tl}gloopt(:n) ==
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In order to prove Theorem 2.4, we are first going to check exponential
convergence of F; to the cumulative distribution function F, of po. Let
Gy = F; — F4. Since for a random variable X with cumulative distribution
function F, E(X) = [;F*(1 — F(z))dr — ffoo F(z)dx, the equality of the
expectations associated to Fy and Fu, writes [p G¢(x)dz = 0. This very con-
venient expression of the link between p; and p, is one main reason for first
considering the convergence of Gy to 0. In order to prove this convergence,
we need the following result.

LEMMA 2.6. Under the assumptions of Theorem 2.4, one has

@ fiZ e [ (23) retores

where ¢ denotes the constant in the Poincaré inequality satisfied by peo.
Moreover

/ () = Poo(®))?
R

(22) p“’(;)( W 2
:/R (poo(x)> Poo(@) dz + ;/RGt(x)zA”(Foo)(:E) dx
and
Gi(2)* [ (pel@) = poo())?
%) /R o) ESE /R G

REMARK 2.7.  When A is convex, (23) is a consequence of (22) and (21).

PROOF OF LEMMA 2.6. As [p Gi(x)dx =0, (21) is the Poincaré inequal-

ity satisfied by peo written for the function Gt/pu.
Gt(z) ) = Gi(@) _ Gi(@)pl(2)
Poc (@) Poo() Poc (2)?

L) pmtere= [ 00 [ G
o[ e
- [ e [ R
0
-

Since poo solves (16), one easily deduces (22).

Since ( , one has
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Writing G7(y) as
Yy “+00
2<1{y§0} / Gi(pt — poo) () dx — 1{y>0} Gi(pt — Poo) () d:L'>,
oo y
one obtains

r 1
(24) RIE :—Z/Gt )/0 mdydm.

By (15), and since To is bounded from below and above on each compact

subset of the real line,
z 1 C
dy‘ < .
/0 Poo (y) poo(x)

Using the Cauchy—Schwarz inequality in (24), and inserting the latter bound,
one obtains

A%(x) dx < 20 (/R f_j(x) d:c) 12 (/R (pt(:vi);é;o;(x)ﬂ da:) 1/2.
One easily deduces (23). O

3C >0,V e R

_ 2
According to (23), the exponential convergence of [ W dx to
zero is a stronger result than the exponential convergence stated in the next

lemma.

LEmMA 2.8.  Under the assumptz'ons of Theorem 2./, there is a positive

constant C such that if fR x)dx is small enough, then
G2 —Ct G2
Vt>0 /—txda:g / z)dx.
R Poo ( ) C R Poo ( )

PROOF. According to (14), one has U—;F” + (A(Fx))" = 0 which also
writes i x = —gA’ (Fs). Combining these equations with (1), then using
Young S 1nequahty, one easily obtains for € > 0,

G?
d
2 dt ~/R Poo (x) v
2 2
_U_ (Gt(x)> poo(:E)dﬂi
2 Jr poo(x)
(25)

- [ - ) - aEoGoE (S50 )

<(e-%) [ (o) mars 155l [ e
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G2 _</ Ipil@) = P (@)] p°° N e dx)

(pe(z) — poo(x))2
= /]R poo(x) e

|G| is bounded by 1 and poA”(Fux) = —2% A x A”(Fy) is bounded, one
deduces from (22) that

G, < 51447 | / [ ZL(a)da+ (11 /(f;u))apm(:c)dm).

Inserting this bound in (25) and using Young’s inequality, one deduces that
for n >0,

Since

(26)

)

Gt
2 dt R Poo

(- 9) (G0 i

" 2 2 2
L A4 ol A” = ([ % yac)
R

et Doo

+ 77(1 A / (%(m)>/2poo(a:) dx)2 + 1”62:1!%077 ( A f—j(m) da:>2
(eor-2) () i

[ e 2 O > </ G} >2
i < Aeod 102422 ) s poe (@)dw) .

One easily concludes with (21) and Lemma 2.10 below. O

x)dx

REMARK 2.9. (i) After reading this proof, one may wonder whether one
could replace the upper bound in (25) by

(z—:—%)/ <foi(x)) (z)dﬁ%/ﬂj—j(@d:p

using HGt loo < 1. If the constant ¢ in the Poincaré inequality (21) was smaller
than T A”||2 , one could deduce exponential convergence of fR ( )dx to 0

even for large values of [ p—: (z)dz. In case A(z) = 3(2? — z) (see Example
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2.5), one has ||[A”||cc =1 and

cz /Rgg2poo(x)da: - (/R TPoo () dx)2 = /0+OO 5 coshg;(za:/@a?)) dx

4

+0o0o o
> 404/ e Wdy=0t=——
0 A3,

and this approach does not work.

(ii) Convexity of A implies nonnegativity of the term A(F;) — A(Fx) —
A'(Fy )Gy which appears in the right-hand side of the first displayed equality
in the proof. One may wonder if one could exploit this property to obtain
exponential convergence of p; to po even if pg is not close to ps. We have
not been able to do so.

PROOF OF THEOREM 2.4. By (14), pl, = —Z A’ (Fao)poo and [|poolloc <
2”‘;‘#. The Fokker—Planck equation (13) for p; ensures that

Ld [ (pa) = poo(x))?
T At

=2 (20) ety

— (A (F) = 2 () @) e~ po)a) (ﬁ@;))’dx

Poo

() — A (F) @) (Po(a)) e
A (7o)

e e}

Then, using Young’s inequality and (26), one easily checks that for €, > 0,

}i/ (Pe(w) = Poo())?
R

2dt Poo()
<(n+e-%2) [ (%(z))'zpm@) &z
bk [ - AE ) L) g,
+ 1 [AE) )~ AP @) psla) da

< (n+e- %) / (%(z))’2pm<x> da

=)
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L1475 4HAH /
41)

By (23) and Lemma 2.8, for [ W dz small enough, the last term

of the r.h.s. is smaller than 565& Jr (po(@) @) 7 Gince Jr (%(x))’2pm(:p) dx

Poo(2)
W dzx, one easily concludes by Lemma 2.10 be-

is greater than 2 [
low. O

LEMMA 2.10. Assume that v:Ry — R satisfies

du _
VE20 () < But)(u(t) — a) + e
for some constants o, 3,0 >0 and v > 0.

If v=0 and u(0) < a, then

au(0)e= bt
vi20 u(t) = a+u(0)(e=Bt —1)°

If u(0) < § and v < 572‘2, then u(t) converges to 0 exponentially fast as
t — +00.

PrROOF. When v =0, as long as u(t) € (0,«), one has

Z_Z;(t) (u(lt) + a —1u(t)> S

and after integration one obtains the desired estimation. Since the upper
bound is not greater than «(0) and u(t) =0 = Vs > t,u(s) =0 one easily
concludes. ,

Now when ~v € (0, ﬁ%), one has fa(a —a) =~y for some a € (0, §) and

d o + du
pr (U(t) Ny~ a) = Lfacu(t)<a/2} E(t) <0.

Hence when u(0) < §, Vt >0, u(t) <u(0) Va and

du
—(t) <
() <

For v(t) = e#(e=wOVa)ty(t) one deduces

—B(a —u(0) V a)u(t) +ve o

dv
< (B(a—u(0)Va)—d)t
7 () <7e

and one concludes by integration of this inequality that u(t) is bounded by
C (1 + t)e~[(Bla—u(@Va)Adlt
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2.2. The particle system (4). Let us suppose that A(1) =0 and that
the first-order moment associated with the initial probability measure m
is defined and equal to Z. As in the case of the granular media equation
considered by Malrieu [12, 13], the direction (1,1,...,1) is quite singular for
the particle system. Indeed,

n
d(X;" 4+ X[ =0y dB,

i=1
which prevents the law of (X 1",...,Xt"’n) from converging as t — +o00.
Following [12, 13], one introduces the hyperplane M,, = {y = (y1,...,yn) €
R™:y; + -+ y, =nz} orthogonal to this singular direction and denotes by
P the orthogonal projection on M, and by P the orthogonal projection
on {y=(y1,---,yn) €ER":91 +--- +y, = 0}. Since Z" 1an( ) =n(A(1) -
A(0)) =0, the orthogonal projectlon Y/ "=z+ X" — P X" N<icn
of the original particle system on M, is a diffusion on this hyperplane solving

(27) d}/t’hn — " dBt - — Z dBt Ay, <Z 1{Yg n<Yz n}> dt.
J?ﬁz

Propagation of chaos for the projected system is a consequence of the
following estimate.

PROPOSITION 2.11. Assume that A is convez, such that A’ is Lipschitz
continuous with constant K and A(1) =0 and that the initial measure m
has a finite second order moment. Then, Vi€ {1,...,n},Vt >0,

. , 1 [ K22
E[(X] - Y,"™")? < -

t
+E[(Xo — 2)7] +02t+2/ /A(Fs(x))dxds ,
0 JR
where X* is solution of (10).
PROOF. Denoting X7(t) = (X},..., X)), XI"™(t) = (X;",..., X"™) and
Y () = (V"L Y™™, one has
(28) |XT() =YY" = |XT (1) = PX7" (1))
= |XT(t) = PXT ()] +[PXT(t) = PX7"(1)[

(29) gi(iX’—i) +ZX’ XM
i=1

Since (X; —7)? <3((Xo — )% +0%B? + HA’HgOtQ), the variable X; is square
integrable. As

Vo >0 |z —2)AF(2))] < | Alo (1 = Fe(2)) (2 + |2])

2
<140 (B 4 j211 - R ),

xT
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one has lim, (2 — 2)A(F;(z)) = 0. Similarly (z — z)A(F;(z)) also van-
ishes as ¢ — —oo and [p(z — Z)A'(Fy(x))pi(z) de = — [z A(Fy(z))dz. Com-
puting (X; —7)? by Ito’s formula and taking expectations, one deduces that

E((Xt—x)z):E((Xo—x)2)+02t+2/0t/RA(Fs(x))dxds.

Moreover, by (3), E(X; —z) = —A(1)t = 0. One concludes by taking expec-
tations in (29) then using Theorem 1.5 and exchangeability of the particles.
O

Let us now study the long time behavior of the projected particle system.

THEOREM 2.12. Assume that the function A is uniformly convexr on
[0,1] with constant « [see (11)] and such that A(1) = 0. Then, the probability
measure with density

1 n .
Poo(y) = Z_e_2/"2 2imr an(Dye)
n
with respect to the Lebesgue measure dy on M., is invariant for the projected
dynamics (27). Here Y1) SY@2) < - <Y denotes the increasing reorder-
2 n .

ing of the coordinates of y = (y1,...,yn) and Zp, = [y, € 7% 2 i1 an (D)) dy.
Moreover, if (Yol’", L YUY admits a symmetric density p(y) with respect
to the Lebesque measure on M., then for all t >0, (Y;"™,...,Y"") admits
a symmetric density pi'(y) which is such that

vVt >0 / (57?(33) — 1) 2p20(x) dx
30 e
v <t [ (B 1) b o

P
where the sequence (Ap)y, is bounded from below by %

In order to deduce long time properties of the nonlinear process from
long time properties of the projected system, it is not restrictive to assume
that py is symmetric (see Remark 2.15 to get some intuition about this
hypothesis). But the lack of uniformity in time of the estimation given in
Proposition 2.11 is a real problem.

REMARK 2.13. In case n = 2, the process Y; = }/}2’2 — }/}1’2 solves the
stochastic differential equation

dY; = o(dB? — dB) — sgn(Y;)(as(2) — as(1)) dt
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and the density of Y; converges exponentially to %e(_(@ (2)—az(1))/o)lyl
when the density of Yy is close enough to this limit. As (3@1’2, Yf’z) =
T+ %(—Zt, Zy), one easily deduces exponential convergence of the density of

—ay
202
The proof of Theorem 2.12 relies on the following Poincaré inequality.

PROPOSITION 2.14. Under the assumptions of Theorem 2.12, the den-
sity

() = P /) T anliw

n

on M,, is such that for f:R"™ — R regqular enough,

[ (10~ [ s w) o

2

4 ~n
<+ | IPVf (W)* (y) dy
n Mn

where the sequence (Ap)y, is bounded from below by %

PROOF OF THEOREM 2.12. Let us first check the following Green for-
mula: for f:R” — R and u:R"™ — R" regular enough,

(32 . 1V Po@dy == [ PYL-(Puw) dy.

Let 1 € R™ denote the vector with all coordinates equal to 1. For ¢: R — R
and v:R™ — R", one has

/Rgp(\/ﬁz) V- (Pv) (y + i) dydz

\/ﬁ
B /]Rn o(x1 4 -+ + 2 —nZ)V - (Pv)(z) d

Mnp

:—/7l(’0/($1—|—"'—|—l‘n—ni‘)1'(P’U)(l‘)d$:0.

The function ¢ being arbitrary, one deduces that [,, V- (Pv)(y)dy = 0.
Since V- P(fu) =V f-(Pu)+ fV-(Pu)=PVf-(Pu)+ fV - (Pu), (32)
follows for the choice v = fu.

By weak uniqueness for (27), when (Yol’", ..., Yy"") has a symmetric den-
sity pg with respect to the Lebesgue measure on M,,, the particles yin,
i€{l,...,n} are exchangeable and for each t >0, (V;",....Y¥;"™) has a
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symmetric density p’. By composition with the projection P, one obtains
an extension of py' on R™ that we still denote by p}'. Since >.1'; an(i) =
n(A(1) — A(0)) =0, setting

can (771 (1)

an(T7(2))

y) = Z 1{yr(1)SyT(2)S"'SyT(n)} . )
TESn .1

an (177 (n))
one has Pb=>b and the infinitesimal generator associated with (27) is L) =
2V . (PV)) — Pb- V. Computing dip(Y,"", ..., Y;"") by 1t&’s formula and
taking expectations then using (32), one obtains

| vwomiwdy= [ Lo@pr)dy
M Mn

2
= [ w7 P(GVm bt ) ) dy.

M
Hence the densities solve the Fokker—Planck equation

o2
opy =V - P(—Vp? + bp?).

Now using (32) and b= —0;5 2 one deduces
pr ?
o [ (pT@) ~1) B ) dy
52
—2[ P p(Tvm )W)y
My DS 2
(33)

n n /2
— g2 Pth (y) - Pth +(ibpt/0)

2
:—0'2/
n

Pie(y) dy.
By symmetry of the function p—,ﬁ and (31),

o [
n

(y)p5e(y) dy

Dy
PV —
Do @)

2 2

)| Poo(y) dy

s
o ( )21520@» O
.

< > 2p’?.o(y) dy

n

poo

| \/
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and the conclusion follows. [

Notice that the computation in (33) is formal and can only be justified
when p}’ is a smooth solution of the Fokker-Planck equation.

REMARK 2.15. Let us denote by Yt(l)’n << Yt(n)’n the increasing
reordering of (Y;"",...,Y;*™). According to [9], the reordered system is a
diffusion process normally reflected at the boundary of the closed convex set
{y € My 1 <yo < -+ <yy,}. More precisely,

AY{" =0 df} — an(i)dt + (of — i) dIK s
(/ (v =AY d|K |, 1< < n> is a continuous process
0

(34) e - =0
with finite variation equal to |K]|;,
AL = it =, | o |
dIK|, ae. V2 <i<n,~i >0and (V)" — v~ =0,
where (3,...,3") is a Brownian motion such that w =1g—jy — 1/n.
If the initial condition (Yo(l)’n <o < Yo(n)’n) admits a density pg with
respect to the Lebesgue measure on M,,, then the law of (Yt(l)’", .. ,Yt(n)’n)

is the image by increasing reordering of the symmetric law of the solution
(V"™ Y"™) to (27) starting from (Yy™,...,YJ"") with density pf ob-
tained by symmetrization of pjj. Therefore (}/;(1)’", e Y;(")’") has the density
Py (y) =n!pi(y) 1y, <..<y,} and (30) holds with p™ replaced by p".

In order to prove Proposition 2.14, we take advantage of the specific form
of the density pZ . Remarking that p2 is the density of the image of a vector
of independent exponential random variables by a linear transformation, one
first obtains the following result.

LEMMA 2.16. The Poincaré inequality (31) holds with the constant A,
greater than 4%25 multiplied by the smallest eigenvalue A, of the (n — 1) X
(n —1) matriz Q" defined by V1 <i,j <n—1, Q= b, (i) L};bn(j) where

29 -1 0 ... ... ... 0
1 2 -1 0 .. ... 0
0 -1 2 -1 0 0

bn(z):Z(n i) and L"= :
" 0 0 -1 2 -1 0
0 0 -1 2 -1
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The last statement in Proposition 2.14 then follows from the next lemma
which is obtained by interpreting Q™ as a finite element rigidity matrix
associated with the operator —x(1 — x)0y,(x(1 — x).) acting on functions on
(0,1). The Hardy inequality stated in Lemma 2.18 ensures that it is enough
to bound the smallest eigenvalue of the corresponding mass matrix from
below. The resort to this one-dimensional Poincaré-like inequality in order
to estimate the constant in the n-dimensional Poincaré inequality (31) is
striking.

LEMMA 2.17.  The sequence (Ap)n is bounded from below by 1/(16 x 27).

PROOF OF LEMMA 2.16. Let f be such that [y, f(y)ps(y)dy = 0.
Since the left-hand side in the Poincaré inequality (31) only depends on
the restriction of f to M,, one may assume that Vo € R", f(z) = f(Pz),
which ensures that for (xi,...,z,) € R” such that 1 +---+ 2, =0, f(Z+
1y, T+wxy) = f(x1,...,2) and PV f(Z+x1,...,Z4+x,) =V f(21,...,20).
Therefore the Poincaré inequality (31) is equivalent to I(f) < %I (IVfDh
where

1g)= [ (FPF)(—(at - Fan)af) ol with 2§ = (an,...,2.).

To integrate the coordinates over independent domains, we make the change
of variables zj = Mzt where

2 1 1 ... ... 1
-1 1 0 0
0o -1 1 0 0
M= . : : : Co
0 ... 0 -1 1 0
o ... ... 0 -1 1

One easily checks that for 2<i<n, 29+ -+ 2z;=ax2+ -+, + x; and
deduce that (n—1)za+ (n—2)z3+ -+ 22,1+ 2, =n(x2+---+x,). There-
fore

1 2—-—nm 3—n 4—n —1
1 2 3—n 4—n —1
111 2 3 4—n .. -1
Mt==1" . . . .
n :
1 2 3 n—2 -1
1 2 3 n—1

and denoting
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one has

n! 2y o dzD
I(f) = — f2 Nzm)el=2/0 )> o, Buli)zi 22
(f) Zn iy (Nzy) M|

where
) = [ = D{an) + -+ an(n)

— (4 1—=i)(an(l) + - +an(i = 1))]
=-—nA((i—1)/n)>0.

Here | M| denotes the determinant of the matrix M; it is equal to n by an
easy computation. The one-dimensional exponential density with parameter
c satisfies the Poincaré inequality with optimal constant 4/c?. Tensorizing
this inequality (see Chapters 3 and 6 in [1] for further details), one obtains

n 2 n
I(f) < A /( ) Z (Z Nkj—lakf(NZ;)> e(—2/02)zi:2ﬁn(i)zz~dﬁ
R+ n—

k=1 | M|
:/Rnﬂ Z Z 20( )Nkj 1Ny — 10k fOLf Do (— (T2 + -+ -+ xp), h) dy .

3
W~

Since A is uniformly convex with constant o and A(0) = A(1) =0,

i) = ~nA((i — 1)/n) > "2 x i1 (Z —l 1) = Zbli— 1),

n n
Therefore
n n—1
Ny N
= > 3 G OO Pl ko ) ) d
Rt = =1
402
< —=—I(IVf])

where )\, denotes the inverse of the largest eigenvalue of the symmetric pos-
itive semidefinite matrix NN* defined by N;; i = bN( - To prove Proposition
2.14 with a possibly modified lower bound, it is enough to check that the
largest eigenvalue is bounded from above uniformly in n. Unfortunately,
the trace of the matrix can be bounded from below by a positive constant
multiplied by log(n). Therefore one has to be more precise.

Let w be an eigenvector associated with the largest eigenvalue: N N*w =
iw. Of course N*w is nonzero and multiplying the previous equality by

N*, one obtains that N*w is an eigenvector of N*N associated with the



28 B. JOURDAIN AND F. MALRIEU

eigenvalue 5% By symmetry, 5% is also the largest eigenvalue of N*NN. We

are going to check that the latter matrix is invertible with inverse equal
to Q™ in order to conclude the proof. Because of the definition of N, it is
enough to check that N*N is invertible with inverse equal to L.

By construction of the matrix N, for the equation Nz} =z where x € R"
to have a solution 2%, it is necessary and sufficient that x; = —(zo+ - -+ x5,)
and then z§ = Mz5.

Now for fixed y € R*7!, let us find 2% € R*~! such that N*z =y where

x=—(zg+ -+ xp,xH). This equation writes
N1y Nii ... Np
(Y le Nm Nm Sy,
Nipn-1 Nip—1 ... Nipaa

One easily checks that the (n — 1) x (n — 1) matrix in the left-hand side is
equal to

1 1 1 ... 1 1 -1 0 0 ... O
0o 1 1 1 O 1 -1 0 ... 0
0 0 1 o : : : :

. . . with inverse R=| - : : :

: : : : : 0o ... O 1 -1 0
o ... 0 1 1 o ... 0 0 1 -1
o ... 0 0 1 o ... 0 0 O 1

Combining x5 = Ry with the solution of the previous problem, one obtains
that the unique solution of the equation N*Nz} =y is 25 = M Ry. One
concludes by checking that the matrix MR is equal to L,. 0O

PrROOF OF LEMMA 2.17. For i€ {l,...,n— 1}, the functions

1 i1
0, ifgce(o,1)\[Z s ]

iln—i)(x—(i—1)/n) . i—1 z'n !

Uz(ll?): \/ﬁx(l—a:) ) 1f33‘€|: n 7;:|7
iln—1)((i+1)/n—2x)
Vvnz(l—x) ’

. [z i+1}
ifxe|—, ,
n

n

are such that

1
Vi,je{l,...,n—1} i :/0 (z(1 — 2)ui(z)) (x(1 — z)uj(z)) da.

By the Hardy inequality stated in Lemma 2.18 below, the smallest eigenvalue
of the matrix Q" is greater than the smallest eigenvalue of the (n—1) x (n—
1) tridiagonal matrix Rj; = fol ui(x)u;(x) dz divided by 16.
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Forie{l,...,n—2}, let r}' = fi(/’:”/" ui(u; — uit1)(z) dr and
1 —1)2 1 1 -1
TZ_1:/ ui_l(:n)dx:u/ —2dx:n—.
(n=1)/n n (n—1)/n T n
Using the change of variables y = 1 — x, one easily checks that
Vie{l,...,n—l} RZ_ Z—l_ Z-ﬁ-lzrin—i_rz—i?

where by convention R}, =R]_

1n = 0. We are going to prove that

vn>3Vie{2,....n—3}  1l'>35,

and that r7 and r7_, are nonnegative. For y € R*~!, one deduces that

n—1 n—2
Yy R"y = Z Rnyz +2 Z Rzz+1yzy2+1
=1 =1
2 o 2 |Z/|2
= Z(RZ — Ry — Ry + Z RE 4 (yi +yir1)” > o7
] i=1

and the conclusion follows.

Let us first suppose that i <[5 | — 1, which ensures that the function
f(x) = 2%(1—2)? is increasing on [i /n (i+1)/n]. Let g(z) = w;(u; —uip1)(x).
One easﬂy checks that

/@Hwn g i%n_@2(1 @+1xn—i—n>

g(x)dr =

i/n n? 3 6i(n — 1)
0, ifi=1,
<> ) 200 02
e Rl T R,
12n4

Since there is some z; € [i/n, (i + 1)/n| such that the function g(x) is non-
negative on [i/n,x;] then nonpositive on [z;, (i 4+ 1)/n], and f is positive and
increasing, one deduces that for all = € [i/n, (i +1)/n], f/n f( ; dy > 0. This
ensures that Vz € [i/n, (i + 1)/n]

d T g(y) o IM r T
agQﬁﬂlnf@V@)—f@”Lnf@y@+9(>2“)'

n_ (i41)/n M 1 (i4+1)/n
T T T e 1O

0, ifi=1,
20 )2
i*(n —1) < e

1
—, ifi>2
126112 —i—12~277 "'®

Therefore

v
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Let us now suppose that i > L"THJ so that the function f is decreasing on

[i/n, (i 4+ 1)/n]. We deduce that

ri > ! /(Hl)/n(fuz)(x) dx

2

F/n) Jin

1 (i+1)/n
- W/z/n (fusuiy1)(x) do
1 i(n — i)

3 6(i+1)(n—i—1)

and the left-hand side is greater than 1/12 for ¢ <n — 3 and nonnegative for
1=n—2.

We still have to deal with the case n odd and i = (n —1)/2. Then, f is
not monotonic on I,, = [i/n, (i +1)/n| =[1/2 —1/2n,1/2 + 1/2n]. But by
symmetry,

. (n—1)2(n+1)2 pY/2+Y20 (1/2 +1/2n — 2)(1 — 2z)
T(n-1)/2 = / 21— dr

16n 1/2—1/2n z*(1—x)

B (n _ 1)2(n + 1)2 /1/2+1/2n (1 _ 233)2 "

- 32n 1/2-1/2n @2(1 —x)?

_1)2 2 1/241/2n 2 _1)2

> (n—1)*(n+1) / (1—22)? do = (n®—1) ,

2n 1/2-1/2n 6nt

which completes the proof. [

LEMMA 2.18.  For all uw € L?(0,1) such that the distribution derivative
(x(1 — z)u(z)) belongs to L?(0,1),

/1 w2 (z) de < 16 /l((:n(l — 2)u(z)))? dx.
0 0

PrOOF. For v a C*° function with compact support on (0,1), by the
integration by parts formula,

x

- 8(/01/2 sz(;) dx) 1/2 (/01/2(?/(95))2 dx) 1/2.

Dealing with the integral on (1/2,1) in a symmetric way, one deduces

v (x
(35) /01 ﬁ dr < 16/01(?/(95))2 dx.
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Now approximating v € H}(0,1) by a sequence of C* functions with com-
pact support converging in the H! norm and almost everywhere, one deduces
with the Fatou lemma that the inequality still holds for v € H}.

For u satisfying the hypotheses in the lemma, v(z) = z(1 — x)u(z) be-
longs to H'(0,1). According to Theorem VIIL.2, page 122 of [4], v admits
a representative continuous on [0,1] still denoted by v. Moreover, since

u(x) = mfl(f)x) belongs to L2(0, 1), necessarily, v(0) = v(1) = 0. By Theorem

VIIL.11, page 133 of [4], v belongs to H{(0,1) and the conclusion follows
from (35). O
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