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Propagation of haos and Poinaré inequalities for a system ofpartiles interating through their dfB.Jourdain∗ F. Malrieu†January 30, 2007
AbstratIn this paper, in the partiular ase of a onave �ux funtion, we are interested inthe long time behaviour of the nonlinear proess assoiated in [8℄ to the one-dimensionalvisous salar onservation law. We also onsider the partile system obtained by replaingthe umulative distribution funtion in the drift oe�ient of this nonlinear proess by theempirial umulative distribution funtion. We �rst obtain a trajetorial propagation ofhaos estimate whih strengthens the weak onvergene result obtained in [8℄ without anyonvexity assumption on the �ux funtion. Then Poinaré inequalities are used to get expliitestimates onerning the long time behaviour of both the nonlinear proess and the partilesystem.Mathematis Subjet Classi�ation 2000 : 65C35, 60K35, 60E15, 35K15, 46N30keywords : Visous salar onservation law, nonlinear proess, partile system, propagationof haos, Poinaré inequality, long time behaviourIntrodutionIn this paper, we are interested in the visous salar onservation law with C1 �ux funtion −A

∂tFt(x) =
σ2

2
∂xxFt(x) + ∂x(A(Ft(x)), F0(x) = H ∗m(x). (0.1)where m is a probability measure on the real line and H(x) = 1{x≥0} denotes the Heavisidefuntion. Sine A appears in this equation through its derivative, we suppose without restritionthat A(0) = 0. Aording to [8℄, one may assoiate the following nonlinear proess with theonservation law:

{

Xt = X0 + σBt −
∫ t
0 A

′(H ∗ Ps(Xs))ds,

∀t ≥ 0, the law of Xt is Pt. (0.2)where (Bt)t≥0 is a real Brownian motion independent from the initial random variable X0 withlaw m and σ a positive onstant. More preisely, aording to [8℄, this nonlinear stohastidi�erential equation admits a unique weak solution. Moreover, H ∗ Pt(x) is the unique bounded
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weak solution of (0.1). For t > 0, by Girsanov theorem, Pt admits a density pt with respet tothe Lebesgue measure on the real line.We want to address the long time behaviour of the nonlinear proess solving (0.2) by studyingonvergene of the density pt. Sine the umulative distribution funtion x → H ∗ Ps(x) whihappears in the drift oe�ient is non-dereasing, onvexity of A is a natural assumption in orderto ensure ergodiity. Then the �ux funtion −A in the onservation law (0.1) is onave.In the �rst setion of the paper, after realling results obtained in [8℄, we show that trajetorialuniqueness holds for (0.2) under onvexity of A. Then we introdue a simulable system of npartiles obtained by replaing in the drift oe�ient the umulative distribution funtion byits empirial version and the derivative A′ by a suitable �nite di�erene approximation. When
A is onvex, existene and trajetorial uniqueness hold for this system. Moreover, we prove atrajetorial estimation of propagation of haos whih strengthens the weak onvergene resultobtained in [8℄. Unfortunately, beause the empirial umulative distribution funtion is a stepfuntion and therefore not an inreasing one, this estimation is not uniform in time.The seond and main setion deals with the long time behaviour of both the nonlinear proessand the partile system. In order to ensure that |E(Xt)| does not go to in�nity with t, onehas to assume A(1) = 0. We address the onvergene of the density pt of Xt by �rst studyingthe onvergene of the assoiated solution H ∗ pt of (0.1) to the solution F∞ with the sameexpetation of the stationary equation σ2

2 ∂xxF∞(x) + ∂x(A(F∞(x)) = 0 obtained by removingthe time derivative in (0.1). For this result, no onvexity hypothesis is made on A. Instead, oneassumes A(u) < 0 for u ∈ (0, 1), A′(0) < 0 and A′(1) > 0. In ontrast, to prove exponentialonvergene of the density of the partile system uniform in the number n of partiles, wesuppose that the funtion A is uniformly onvex. The key step in the proof onsists in obtaininga Poinaré inequality for the stationary density of the partile system uniform in n. This densityhas exponential-like tails and does not satisfy a logarithmi Sobolev inequality. So the derivationof the Poinaré inequality annot rely on the urvature riterion, used for instane by Malrieu[12℄ [13℄ when dealing with the granular media equation. Instead we make a diret estimation ofthe Poinaré onstant using the spei� analyti form of the invariant density. To our knowledge,our study provides the �rst example of a partile system, for whih a Poinaré inequality but nologarithmi Sobolev inequality holds uniformly in the number n of partiles.Assumption : In the whole paper, we assume that A is a C1 funtion on [0, 1] s.t. A(0) = 0.Aknowledgment : We warmly thank Tony Lelièvre (CERMICS) for fruitful disussions on-erning the analysis of the long time behaviour of the nonlinear proess.1 Propagation of haos1.1 The nonlinear proessLet us �rst state existene and uniqueness for the nonlinear stohasti di�erential equation (0.2).Theorem 1.1 The nonlinear stohasti di�erential equation (0.2) admits a unique weak solution
((Xt, Pt))t≥0. For t > 0, Pt admits a density pt with respet to the Lebesgue measure on R. Thefuntion (t, x) 7→ H ∗Pt(x) is the unique bounded weak solution of the visous salar onservationlaw (0.1). Moreover,

∀t ≥ 0, Xt −X0 is integrable and E(Xt −X0) = −A(1)t. (1.1)2



Last, if the funtion A is onvex on [0, 1], (0.2) admits a unique strong solution.Proof . The �rst and third statements are onsequenes of Proposition 1.2 and Theorem 2.1[8℄ (uniqueness follows from uniqueness for (0.1) and existene is obtained by a propagation ofhaos result).Aording to Yamada-Watanabe's theorem, to dedue the last statement, it is enough to hekthat when A is onvex, then trajetorial uniqueness holds for the standard stohasti di�erentialequation
dXt = σdBt −A′(H ∗Qt(Xt))dtwhere (Qt)t≥0 is the �ow of time-marginals of a probability measure Q on C([0,+∞),R). Sinefor eah t ≥ 0 the funtion x 7→ A′(H ∗ Qt(x)) is non-dereasing, if (Xt)t≥0 and (Yt)t≥0 bothsolve this standard SDE, one has

|Xt − Yt| = |X0 − Y0| +
∫ t

0
sign(Xs − Ys)(A

′(H ∗Qs(Ys)) −A′(H ∗Qs(Xs)))ds ≤ |X0 − Y0|.Existene of the density pt for t > 0, follows from the boundedness of the drift oe�ient andGirsanov theorem. To prove (1.1), one �rst remarks that by boundedness of the drift oe�ient,for eah t ≥ 0, the random variable Xt −X0 is integrable and
E(Xt −X0) = −

∫ t

0
E(A′(H ∗ Ps(Xs)))ds = −

∫ t

0

∫

R

A′
(
∫ x

−∞
Ps(dy)

)

Ps(dx)ds.For s > 0, sine by Girsanov theorem Ps does not weight points,
∫

R

A′
(∫ x

−∞
Ps(dy)

)

Ps(dx) = [A(H ∗ Ps(x))]+∞
−∞ = A(1).

Corollary 1.2 Assume that A is C2 on [0, 1]. Then the funtion H∗Pt(x) is C1,2 on (0,+∞)×Rand solves (0.1) in the lassial sense on this domain.Proof . By Girsanov theorem, for t0 > 0, the law Pt0 of Xt0 admits a density with respet tothe Lebesgue measure on R. Hene (t, x) 7→ H ∗ Pt(x) is a ontinuous funtion on (0,+∞) × Rwith values in [0, 1]. Aording to [11℄ Theorem 8.1 p. 495, Remark 8.1 p.495 and Theorem 2.5p. 18, there exists a funtion u with values in [0, 1], ontinuous on [0,+∞) × R and C1,2 on
(0,+∞) × R suh that

∀x ∈ R, u0(x) = H ∗ Pt0(x) and ∀t > 0, ∂tu(t, x) =
σ2

2
∂xxu(t, x) + ∂x(A(u(t, x)).By the uniqueness result for bounded weak solutions of this visous salar onservation lawrealled in Theorem 1.1, ∀t ≥ t0, H ∗ Pt(x) = u(t − t0, x). The onlusion follows sine t0 isarbitrary.
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1.2 Study of the partile systemFor n ∈ N
∗, let (an(i))1≤i≤n be a sequene of real numbers. In this setion, we are interested inthe n-dimensional stohasti di�erential equation

dXi,n
t = σdBi

t − an

( n
∑

j=1

1{Xj,n
t ≤Xi,n

t }

)

dt, Xi,n
0 = Xi

0, 1 ≤ i ≤ n (1.2)where (Bi)i≥1 are independent standard Brownian motions independent from the sequene
(Xi

0)i≥1 of initial random variables.In the next setion devoted to the approximation of the nonlinear stohasti di�erential equation(0.2), we will hoose an(i) equal to the �nite di�erene approximation n(A(i/n) − A((i − 1)/n)of A′( in). For this partiular hoie, the non-dereasing assumption made in the following propo-sition is implied by onvexity of A.Proposition 1.3 Assume that the sequene (an(i))1≤i≤n is non-dereasing. Then the stohastidi�erential equation (1.2) has a unique strong solution. Let (Y 1,n
t , . . . , Y n,n

t ) denote anothersolution starting from (Y 1
0 , . . . , Y

n
0 ) and driven by the same Brownian motion (B1, . . . , Bn). Then

a.s., ∀t ≥ 0,
n
∑

i=1

(Xi,n
t − Y i,n

t )2 ≤
n
∑

i=1

(Xi
0 − Y i

0 )2. (1.3)In addition, if the initial onditions (X1
0 , . . . ,X

n
0 ) and (Y 1

0 , . . . , Y
n
0 ) are suh that a.s., ∀i ∈

{1, . . . , n}, Xi
0 < Y i

0 (resp. Xi
0 ≤ Y i

0 ) then
a.s., ∀t ≥ 0, ∀i ∈ {1, . . . , n}, Xi,n

t < Y i,n
t (resp. Xi,n

t ≤ Y i,n
t ). (1.4)Existene of a weak solution to (1.2) is a onsequene of Girsanov theorem. Therefore, aordingto Yamada-Watanabe's theorem, it is enough to prove (1.3) whih implies trajetorial uniquenessto obtain existene of a unique strong solution. To do so, we will need the following Lemma.Lemma 1.4 Let (a(i))1≤i≤n and (b(i))1≤i≤n denote two non-dereasing sequenes of real num-bers. Then for any permutation τ ∈ Sn, ∑n

i=1 a(i)b(τ(i)) ≤
∑n

i=1 a(i)b(i).Proof . For n = 2, the result is an easy onsequene of the inequality
(a(2) − a(1))(b(2) − b(1)) ≥ 0.For n > 2, we de�ne τ1 as τ if τ(1) = 1 and as τ omposed with the transposition between

1 and τ−1(1) otherwise. This way, τ1(1) = 1. In addition, using the result for n = 2, we get
∑n

i=1 a(i)b(τ(i)) ≤
∑n

i=1 a(i)b(τ1(i)).For 2 ≤ j ≤ n− 1, we de�ne indutively τj as τj−1 if τj−1(j) = j and to τj−1 omposed with thetransposition between j and τ−1
j−1(j) otherwise. This way, for 1 ≤ i ≤ j, τj(i) = i. Again by theresult for n = 2, one has

n
∑

i=1

a(i)b(τ(i)) ≤
n
∑

i=1

a(i)b(τ1(i)) ≤
n
∑

i=1

a(i)b(τ2(i)) ≤ . . . ≤
n
∑

i=1

a(i)b(τn−1(i)).4



We onlude by remarking that τn−1 is the identity.We are now ready to omplete the proof of Proposition 1.3.Proof of Proposition 1.3. Let (X1,n, . . . ,Xn,n) and (Y 1,n, . . . , Y n,n) denote two solutions.The di�erene
n
∑

i=1

(Xi,n
t − Y i,n

t )2 −
n
∑

i=1

(Xi
0 − Y i

0 )2is equal to
2

∫ t

0

n
∑

i=1

(Xi,n
s − Y i,n

s )

(

an

( n
∑

j=1

1{Y j,n
s ≤Y i,n

s }

)

− an

( n
∑

j=1

1{Xj,n
s ≤Xi,n

s }

))

ds. (1.5)By Girsanov theorem, for any s > 0 the distributions of (X1,n
s , . . . ,Xn,n

s ) and (Y 1,n
s , . . . , Y n,n

s )admit densities w.r.t. the Lebesgue measure on R
n and therefore dP ⊗ ds a.e. the positions

X1,n
s , . . . ,Xn,n

s (resp. Y 1,n
s , . . . , Y n,n

s ) are distint and there is a unique permutation τXs ∈ Sn(resp. τYs ∈ Sn) suh that XτX
s (1),n
s < X

τX
s (2),n
s < . . . < X

τX
s (n),n
s (resp. Y τY

s (1),n
s < Y

τY
s (2),n

s <

. . . < Y
τY
s (n),n

s ). Therefore dP ⊗ ds a.e.,
n
∑

i=1

(Xi,n
s − Y i,n

s )

(

an

( n
∑

j=1

1{Y j,n
s ≤Y i,n

s }

)

− an

( n
∑

j=1

1{Xj,n
s ≤Xi,n

s }

))is equal to
n
∑

i=1

an(i)
(

(XτY
s (i),n
s − Y τY

s (i),n
s ) − (XτX

s (i),n
s − Y τX

s (i),n
s )

)

.The sequene (an(i))1≤i≤n is non-dereasing. Applying Lemma 1.4 with b(i) = X
τX
s (i),n
s and

τ = (τXs )−1 ◦ τYs then with b(i) = Y
τY
s (i),n

s and τ = (τYs )−1 ◦ τXs , one obtains that the integrandin the right-hand-side of (1.5) is non-positive dP ⊗ ds a.e.. Hene (1.3) holds.Let us now suppose that a.s. ∀i ∈ {1, . . . , n}, Xi
0 < Y i

0 and de�ne ν = inf{t > 0 : ∃i ∈
{1, . . . , n},Xi,n

t ≥ Y i,n
t } with the onvention inf ∅ = +∞. From now on, we restrit ourselvesto the event {ν < +∞}. Let i ∈ {1, . . . , n} be suh that Y i,n

ν = Xi,n
ν . There is an inreasingsequene (sk)k≥1 of positive times with limit ν suh that ∀k ≥ 1, an

(

∑n
j=1 1{Xj,n

sk
≤Xi,n

sk
}

)

<

an

(

∑n
j=1 1{Y j,n

sk
≤Y i,n

sk
}

). Sine (an(i))1≤i≤n is non-dereasing, by extrating a subsequene stilldenoted by (sk)k for simpliity, one dedues the existene of j ∈ {1, . . . , n} with j 6= i suh that
∀k ≥ 1, Xi,n

sk
< Xj,n

sk
and Y j,n

sk
≤ Y i,n

sk
. Sine sk < ν, Xi,n

sk
< Xj,n

sk
< Y j,n

sk
≤ Y i,n

sk
. By ontinuityof the paths, one obtains Xi,n

ν = Xj,n
ν = Y j,nν = Y i,n

ν . Now sine
P

(

∃i1, i2, i3 distint in {1, . . . , n}, ∃t > 0, Xi1
0 + σBi1

t = Xi2
0 + σBi2

t = Xi3
0 + σBi3

t

)

= 0,Girsanov theorem implies that a.s. ∀l ∈ {1, . . . , n} \ {i, j}, X l,n
ν 6= Xi,n

ν = Xj,n
ν . In the sameway, Y l,n

ν 6= Y i,n
ν = Y j,n

ν . By ontinuity of the paths and de�nition of ν one dedues that for klarge enough,
∀t ∈ [sk, ν],

n
∑

l=1
l 6=i,j

1{Y l,n
t ≤Y i,n

t } ≤
n
∑

l=1
l 6=i,j

1{Xl,n
t ≤Xi,n

t } and n
∑

l=1
l 6=i,j

1{Y l,n
t ≤Y j,n

t } ≤
n
∑

l=1
l 6=i,j

1{Xl,n
t ≤Xj,n

t }.5



Sine a.s. dt a.e., Y i,n
t 6= Y j,n

t and (an(i))1≤i≤n is non-dereasing, one obtains that a.s. dt a.e.on [sk, ν],
an

(

n
∑

l=1

1{Y l,n
t ≤Y i,n

t }

)

+an

(

n
∑

l=1

1{Y l,n
t ≤Y i,n

t }

)

≤ an

(

n
∑

l=1

1{Xl,n
t ≤Xi,n

t }

)

+an

(

n
∑

l=1

1{Xl,n
t ≤Xi,n

t }

)

.By integration with respet to t on [sk, ν], this implies that a.s. Y i,n
ν − Xi,n

ν + Y j,n
ν − Xj,n

ν ≥
Y i,n
sk

−Xi,n
sk

+ Y j,n
sk

−Xj,n
sk

> 0. Therefore P(ν < +∞) = 0.When a.s. for i ∈ {1, . . . , n}, Xi
0 ≤ Y i

0 , one obtains that for ε > 0 the solution (Y 1,n,ε
t , . . . , Y n,n,ε

t )to (1.2) starting from (Y 1
0 + ε, . . . , Y n

0 + ε) is suh that
a.s., ∀t ≥ 0, ∀i ∈ {1, . . . , n}, Xi,n

t < Y i,n,ε
t .Sine by (1.3), Y i,n,εt ≤ Y i,n

t +
√
nε, one easily onludes by letting ε→ 0.1.3 Trajetorial propagation of haosFrom now on, we set

∀n ∈ N
∗, ∀i ∈ {1, . . . , n}, an(i) = n

(

A

(

i

n

)

−A

(

i− 1

n

)) (1.6)and assume that the initial positions (Xi
0)i≥1 of the partiles are independent and identiallydistributed aording to m.In the present setion, we also suppose that A is a onvex funtion on [0, 1]. By Theorem 0.2,for eah i ≥ 1, the nonlinear stohasti di�erential equation

{

Xi
t = Xi

0 + σBi
t −

∫ t
0 A

′(H ∗ Ps(Xi
s))ds,

∀t ≥ 0, the law of Xi
t is Pt.has a unique solution and for all t ≥ 0, the law Pt of Xi

t does not depend on i. Under a Lipshitzregularity assumption on A′, we obtain the following trajetorial propagation of haos estimation.Theorem 1.5 If A : [0, 1] → R is onvex and A′ is Lipshitz ontinuous with onstant K then
∀n ≥ 1, ∀1 ≤ i ≤ n, ∀t ≥ 0, E

(

sup
s∈[0,t]

(Xi,n
s −Xi

s)
2

)

≤ K2t2

6n
.Proof . One has

n
∑

i=1

(Xi,n
t −Xi

t)
2 = 2

∫ t

0

n
∑

i=1

(Xi,n
s −Xi

s)

(

an

( n
∑

j=1

1{Xj
s≤Xi

s}

)

− an

( n
∑

j=1

1{Xj,n
s ≤Xi,n

s }

))

ds

+ 2

∫ t

0

n
∑

i=1

(Xi,n
s −Xi

s)C(s,X1
s , . . . ,X

n
s ) dswhere C(s,X1

s , . . . ,X
n
s ) is equal to

A′(H ∗ Ps(Xi
s)) − n

(

A

(

1

n

n
∑

j=1

1{Xj
s≤Xi

s}

)

−A

(

1

n

n
∑

j=1

1{Xj
s≤Xi

s}
− 1

n

))

.6



Like in the proof of trajetorial uniqueness for (1.2), beause of the onvexity of A, the �rst termof the r.h.s. is non-positive. Moreover, by Lipshitz ontinuity of A′,
(

A′(H ∗ Ps(Xi
s)) − n

(

A

(

1

n

n
∑

j=1

1{Xj
s≤Xi

s}

)

−A

(

1

n

n
∑

j=1

1{Xj
s≤Xi

s}
− 1

n

)))2

=

(
∫ 1

0
A′(H ∗ Ps(Xi

s)) −A′
(

1

n

n
∑

j=1

1{Xj
s≤Xi

s}
+
θ − 1

n

)

dθ

)2

≤ K2

n2

∫ 1

0

(

∑

j 6=i
(H ∗ Ps(Xi

s) − 1{Xj
s≤Xi

s}
) + (H ∗ Ps(Xi

s) − θ)

)2

dθ.For s > 0, as the variables Xi
s are i.i.d. with ommon law Ps whih does not weight points and

H ∗ Ps(Xi
s) is uniformly distributed on [0, 1],
∫ 1

0
E

((

∑

j 6=i
(H ∗ Ps(Xi

s) − 1{Xj
s≤Xi

s}
) + (H ∗ Ps(Xi

s) − θ)

)2)

dθ

=
∑

j 6=i
E((H ∗ Ps(Xi

s) − 1{Xj
s≤Xi

s}
)2) +

∫ 1

0
E((H ∗ Ps(Xi

s) − θ)2)dθ

= (n− 1)E

(

(H ∗ Ps(Xi
s)(1 −H ∗ Ps(Xi

s))

)

+ 1/6

= n/6.Using Cauhy-Shwarz inequality, one obtains
E

(

sup
s∈[0,t]

n
∑

i=1

(Xi,n
s −Xi

s)
2

)

≤ 2

∫ t

0

√

√

√

√

K2

6n
E

(( n
∑

i=1

(Xi,n
s −Xi

s)

)2)

ds

≤ 2K√
6

∫ t

0

√

√

√

√E

(

sup
u∈[0,s]

n
∑

i=1

(Xi,n
u −Xi

u)
2

)

ds.By omparison with the ordinary di�erential equation α′(t) = 2K

√

α(t)
6 , one onludes that

∀t ≥ 0, E

(

sup
s∈[0,t]

n
∑

i=1

(Xi,n
s −Xi

s)
2

)

≤ K2t2

6
.Exhangeability of the ouples (Xi,n,Xi), i ∈ {1, . . . , n} ompletes the proof.Remark 1.6 One ould think that assuming that A is uniformly onvex:

∃α > 0, ∀0 ≤ x ≤ y ≤ 1, A′(y) −A′(x) ≥ α(y − x) (1.7)would lead to a better estimation. Indeed, then
∀i ∈ {1, . . . , n − 1}, an(i+ 1) − an(i) = n

∫ (i+1)/n

i/n

[

A′(x) −A′
(

x− 1

n

)]

dx ≥ α

n
.But sine even in this situation, the non-positive term

n
∑

i=1

(Xi,n
s −Xi

s)

(

an

( n
∑

j=1

1{Xj
s≤Xi

s}

)

− an

( n
∑

j=1

1{Xj,n
s ≤Xi,n

s }

))7



vanishes as soon as the order between the oordinates of (X1,n
s , . . . ,Xn,n

s ) is the same as the orderbetween the oordinates of (X1
s , . . . ,X

n
s ), we were not able so far to improve the estimation.Corollary 1.7 Under the hypotheses of Theorem 1.5, let m̃ be a probability measure on R suhthat ∀x ∈ R, H ∗m̃(x) ≤ H ∗m(x). If for some random variable U1 uniform on [0, 1] independentfrom (Bi)i≥1, X1

0 = inf{x : H ∗m(x) ≥ U1} and (Y 1
t )t≥0 denotes the solution of the nonlinearstohasti di�erential equation

{

Y 1
t = Y 1

0 + σB1
t −

∫ t
0 A

′(H ∗ P̃s(Y 1
s ))ds,

∀t ≥ 0, the law of Y 1
t is P̃t. (1.8)with Y 1

0 = inf{x : H ∗ m̃(x) ≥ U1}, then
P(∀t ≥ 0, X1

t ≤ Y 1
t ) = 1.Moreover ∀t ≥ 0, ∀x ∈ R, H ∗ P̃t(x) ≤ H ∗Pt(x). Last, the funtion t 7→ E|Y 1

t −X1
t | is onstant.Remark 1.8 At least when m and m̃ do not weight points, one has a.s. A′(H ∗ P0(X

1
0 )) =

A′(H∗P̃0(Y
1
0 )) sine H∗m(X1

0 ) = H∗m̃(Y 1
0 ) = U1. Therefore a.s. d(Y 1−X1)0 = 0 and one maywonder whether a.s. Y 1

t −X1
t does not depend on t. If this property holds, neessarily, a.s. dt a.e.

A′(H ∗Pt(X1
t )) = A′(H ∗ P̃t(Y 1

t )). If A′ is inreasing, a.s. for all t > 0, H ∗pt(X1
t ) = H ∗ p̃t(Y 1

t )with pt and p̃t denoting the respetive densities of Pt and P̃t. If A is C2, the Brownian ontributionin d(H ∗ Pt(X1
t ) −H ∗ P̃t(Y 1

t )
) given by It�'s formula vanishes i.e. pt(X1

t ) = p̃t(Y
1
t ) and ∀u ∈

]0, 1[, pt((H ∗ pt)−1(u)) = p̃t((H ∗ p̃t)−1(u)) or equivalently ((H ∗ pt)−1)′(u) = ((H ∗ p̃t)−1)′(u).Hene Y 1
t = X1

t + c for a deterministi onstant c whih does not depend on t aording to (1.1).Letting t → 0, one obtains Y 1
0 = X1

0 + c. This neessary ondition turns out to be su�ientas (X1
t + c)t≥0 obviously solves the nonlinear stohasti di�erential equation (0.2) starting from

X1
0 + c.Proof . For (Ui)i≥2 a sequene of independent uniform random variables independent from

(U1, (B
i)i≥1)), we set

∀i ≥ 2, Xi
0 = inf{x : H ∗m(x) ≥ Ui} and Y i0 = inf{x : H ∗ m̃(x) ≥ Ui}.Sine H ∗ m̃ ≤ H ∗ m, a.s. ∀i ≥ 1, Y i

0 ≥ Xi
0. From Proposition 1.3, one dedues that thesolutions (X1,n

t , . . . ,Xn,n
t ) and (Y 1,n

t , . . . , Y n,n
t ) to (1.2) respetively starting from (X1

0 , . . . ,X
n
0 )and (Y 1

0 , . . . , Y
n
0 ) are suh that

a.s., ∀n ≥ 1, ∀i ∈ {1, . . . , n}, ∀t ≥ 0, Y i,n
t ≥ Xi,n

t .Sine, by Theorem 1.5, for �xed t ≥ 0, one may extrat from (X1,n
t , Y 1,n

t )n≥1 a subsequenealmost surely onverging to (X1
t , Y

1
t ), one easily dedue that P(∀t ≥ 0, X1

t ≤ Y 1
t ) = 1. Hene

∀t ≥ 0, ∀x ∈ R, H ∗ P̃t(x) = P(Y 1
t ≤ x) ≤ P(X1

t ≤ x) = H ∗ Pt(x).Sine |Y 1
t −X1

t | − |Y 1
0 −X1

0 | = Y 1
t − Y 1

0 − (X1
t −X1

0 ), (1.1) ensures that E|Y 1
t −X1

t | ∈ [0,+∞]does not depend on t. 8



2 Long time behaviourIn this setion we are interested in the long time behaviour of both the nonlinear proess and thepartile system. Aording to (1.1) and the equality ∑n
i=1 an(i) = nA(1), we have to suppose

A(1) = 0 in order to obtain onvergene of the densities as t tends to in�nity. We address theonvergene of the density pt of Xt by �rst studying the onvergene of the assoiated umulativedistribution funtion Ft. Then, in addition to the weak ondition A(u) < 0 for u ∈ (0, 1), it isenough to make assumptions on the behaviour of A near the boundaries 0 and 1 of the interval
[0, 1] (namely A′(0) < 0 and A′(1) > 0) that determine the spatial behaviour at in�nity of thedrift oe�ient in (0.2).To prove exponential onvergene of the density of the partile system uniform in the number n ofpartiles, we make the stronger assumption of uniform onvexity on A. The key step in the proofis to obtain a Poinaré inequality uniform in n for the stationary density of the partile system.This density has exponential-like tails and does not satisfy a logarithmi Sobolev inequality. Sothe derivation of the Poinaré inequality annot rely on the urvature riterion, used for instaneby Malrieu [12℄ [13℄ when dealing with the granular media equation. Instead, we take advantageof the following nie feature : up to reordering of the oordinates, the stationary density is thedensity of the image by a linear transformation of a vetor of independent exponential variables.And it turns out that the ontrol of the onstant in the n-dimensional Poinaré inequality relies onthe Hardy inequality stated in Lemma 2.16 whih is a one-dimensional Poinaré-like inequality.To our knowledge, our study provides the �rst example of a partile system, for whih a Poinaréinequality but no logarithmi Sobolev inequality holds uniformly in the number n of partiles.2.1 The nonlinear proessIn this setion, we are �rst going to obtain neessary and su�ient onditions on the funtion
A ensuring existene for the stationary Fokker-Plank equation obtained by removing the time-derivative in the nonlinear Fokker-Plank equation

∂tpt =
σ2

2
∂xxpt + ∂x(A

′(H ∗ pt)pt) (2.1)satis�ed by the density of the solution of (0.2). Under a slightly stronger ondition, the solutionssatisfy a Poinaré inequality.Lemma 2.1 A neessary and su�ient ondition for the existene of a probability measure µsolving the stationary Fokker-Plank equation σ2

2 ∂xxµ+∂x(A
′(H ∗µ(x))µ) = 0 in the distributionsense is A(1) = 0 and A(u) < 0 for all u ∈ (0, 1). Under that ondition, all the solutions are thespatial translations of a probability measure with a C1 density f whih satis�es

∀x ∈ R, f(x) = − 2

σ2
A(H ∗ f(x)) and f ′(x) = − 2

σ2
A′(H ∗ f(x))f(x). (2.2)If A′(0) < 0 and A′(1) > 0, thenwhen x→ −∞when x→ +∞ , f(x) ∼

{

−2A′(0)
σ2

∫ x
−∞ f(y)dy

2A′(1)
σ2

∫ +∞
x f(y)dy

and ∫ x

0

dy

f(y)
∼
{ −σ2

2A′(0)f(x)
σ2

2A′(1)f(x)

, (2.3)and all the solutions satisfy a Poinaré inequality and have a �nite expetation. Last, if thefuntion A is C2 on [0, 1], then f is C2 and satis�es
f ′′(x) = − 2

σ2
A′′(H ∗ f(x))f2(x) +

f ′2(x)
f(x)

. (2.4)9



Proof . Let µ be a probability measure on R solving the stationary Fokker-Plank equation.The equality σ2

2 ∂xxµ = −∂x(A′(H ∗ µ(x))µ) ensures that µ does not weight points. Hene thestationary equation is equivalent to ∂xx(σ2

2 µ+A(H ∗ µ(x))) = 0. One dedues that µ possessesa C1 density f suh that
∀x ∈ R, f(x) = − 2

σ2
A(H ∗ f(x)) + αx+ β, (2.5)for some onstants α and β. Sine A(0) = 0, letting x→ −∞ then x→ +∞ in the last equality,one obtains α = β = A(1) = 0. For u ∈ (0, 1), sine u = H ∗ f(x) for some x ∈ R and H ∗ fis not onstant and equal to u, the Cauhy-Lipshitz theorem and (2.5) imply that A(u) 6= 0.Sine f is non-negative, A(u) < 0. Hene A(1) = 0 and A(u) < 0 for all u ∈ (0, 1) is a neessaryondition.Under that ondition, a probability measure µ solves the stationary Fokker-Plank equation i�its umulative distribution funtion H ∗ µ(x) is a C2 solution to the di�erential equation

ϕ′(x) = − 2

σ2
A(ϕ(x)), x ∈ R. (2.6)By the Cauhy-Lipshitz theorem, for eah v ∈ [0, 1] this equation admits a unique solution ϕvwith values in [0, 1] suh that ϕv(0) = v. Moreover, as A(0) = A(1) = 0, ϕ0 ≡ 0 and ϕ1 ≡ 1 and

∀v ∈ (0, 1), ∀x ∈ R, 0 < ϕv(x) < 1. (2.7)For v ∈ (0, 1), sine ϕv is non-dereasing and ϕv(x) = v − 2
σ2

∫ x
0 A

′(ϕv(y))dy, neessarily
limy→+∞ ϕv(y) = 1. In the same way, limy→−∞ ϕv(y) = 0 and ϕv is an inreasing funtionfrom R to (0, 1) with inverse denoted by ϕ−1

v . The uniqueness result for (2.6) implies that
∀v ∈ (0, 1), ∀x ∈ R, ϕv(x) = ϕ 1

2
(x+ ϕ−1

1
2

(v)). Therefore the solutions to the stationary Fokker-Plank equation are the probability measures obtained by spatial translation of the probabilitymeasure with density f(x) = ϕ′
1
2

(x) whih satis�es (2.2) aording to (2.6).Let us now suppose that A′(0) < 0 and A′(1) > 0. When x→ +∞,
f(x) = − 2

σ2
A

(

1 −
∫ +∞

x
f(y)dy

)

∼ 2A′(1)
σ2

∫ +∞

x
f(y)dy.By (2.2), f ′(x)f(x) = (log f(x))′ = − 2

σ2A
′(ϕ 1

2
(x)) onverges to −2A′(1)

σ2 as x→ +∞. This implies that
log(f(x))

x onverges to −2A′(1)
σ2 and that xf(x)1{x≥0} is integrable. Moreover, sine ∫ +∞

0
dy
f(y) =

+∞, ∫ x0 dy
f(y) ∼ σ2

2A′(1)

∫ x
0 − f ′(y)

f2(y)
dy ∼ σ2

2A′(1)f(x) , as x → +∞. In the same way, one obtains theequivalents given in (2.3) when x→ −∞ and heks the integrability of the funtion xf(x)1{x≤0}.From (2.3), one has
lim

x→−∞

∫ x

−∞
f(y)dy

∫ 0

x

dy

f(y)
=

σ4

4(A′(0))2
and lim

x→+∞

∫ +∞

x
f(y)dy

∫ x

0

dy

f(y)
=

σ4

4(A′(1))2
.By Theorem 6.2.2 p.99 [1℄, one onludes that the measure with density f satis�es a Poinaréinequality.By (2.2), the funtion f is C2 as soon as the funtion A is C2 on [0, 1]. Moreover, f ′′(x) =

− 2
σ2A

′′(H ∗ f(x))f2(x) − 2
σ2A

′(H ∗ f(x))f ′(x) whih ombined with (2.2) implies (2.4).10



Remark 2.2 When A is a C1 onvex funtion on [0, 1] suh that A(0) = A(1) = 0 and A′(u) <
0 for some u ∈ (0, 1), then the neessary and su�ient ondition in Lemma 2.1 is obviouslysatis�ed. Moreover, sine (2.5) with α = β = 0 implies

(log f(x))′′ =

(

f ′(x)
f(x)

)′
=

(

− 2
σ2A

′(H ∗ f(x))f(x)

f(x)

)′

= − 2

σ2
A′′(H ∗ f(x))f(x) ≤ 0,the probability measures solving the stationary Fokker-Plank equation admit log-onave densitieswith respet to the Lebesgue measure.Example . The following three hoies for A lead to exat omputations and di�erent tails forthe stationary densities:

• if A(x) = 1
2x(x− 1), one gets log

(

F 1
2
(x)

1−F 1
2
(x)

)

= x/σ2 i.e.
F 1

2
(x) =

ex/σ
2

1 + ex/σ
2 and F ′

1
2

(x) =
1

4σ2 cosh2(x/2σ2)
;

• if A(x) = x3 − x = x(x− 1)(x+ 1),
F 1

2
(x) =

1
√

1 + e−4x/σ2
and F ′

1
2

(x) =
2e−4x/σ2

σ2(1 + e−4x/σ2)3/2
;

• if A(x) = (1 − x) log(1 − x) and σ2 = 2, one gets log
(

log(1−F (x))
log(1−F (0))

)

= 2x
σ2 i.e.

F 1
2
(x) = 1 − exp

(

− log(2)e2x/σ
2
) and F ′

1
2
(x) = log(2) exp

(

2x/σ2 − log(2)e2x/σ
2
)

.In the third example, the C1 assumption on A is relaxed and one remarks that when the derivative
A′ is in�nite at 0 or 1, then the orresponding tail of the invariant densities an be really small.When A(1) = 0 and A(u) < 0 for all u ∈ (0, 1), a natural question is how to link the translationparameter of the andidate long time limit of the marginal Pt solving the stationary Fokker-Plank equation to the initial marginal m. When ∫

R
|x|m(dx) < +∞, by (1.1), for all t ≥ 0,

E(X1
t ) = E(X1

0 ). Therefore the translation parameter is hosen in order to ensure that theinvariant measure has the same mean as the initial measure m.Let us denote by pt the density of Pt and by Ft = H ∗ Pt its umulative distribution funtion.Theorem 2.3 Let A be C2 on [0, 1] and suh that A(1) = 0, ∀u ∈ (0, 1), A(u) < 0, A′(0) <
0 and A′(1) > 0. Assume that m admits a density p0 suh that ∫

R
|x|p0(x)dx < +∞ and

∫

R

(p0−p∞)2

p∞
is small enough where p∞ denotes the stationary distribution with same expetationas p0. Last, we suppose that A and p0 are suh that p is a smooth solution of (2.1). Then

∫

R

(pt−p∞)2

p∞
onverges to 0 exponentially fast as t→ +∞.By a smooth solution of (2.1), we mean that p possesses enough regularity and integrability sothat the formal omputations made in the proof below are justi�ed.11



Example . When A(x) = 1
2 (x2 − x), one easily heks that φ(t, x) = −Ft(x + t

2) solves theBurgers equation
∂tφ =

σ2

2
∂xxφ− 1

2
∂xφ

2, φ(0, x) = −F0(x).Aording to the Cole-Hopf transformation, ψ(t, x) = exp
(

− 1
σ2

∫ x
−∞ φ(t, y)dy

) solves the heatequation
∂tψ =

σ2

2
∂xxψ, ψ(0, x) = exp

(

1

σ2

∫ x

−∞
F0(y)dy

)

.Sine Ft(x) = σ2 ∂xψ
ψ (t, x− t

2 ), one dedues that
Ft(x) =

∫

R
e−

(x− t
2−y)2

2σ2t F0(y)ψ(0, y) dy

σ
√

2πt

∫

R
e−

(x− t
2−y)2

2σ2t ψ(0, y) dy

σ
√

2πt

. (2.8)If x̄ denotes the expetation assoiated with the umulative distribution funtion F0, one has
∫ x̄
−∞ F0(z)dz =

∫ +∞
x̄ (1 − F0(z))dz. Sine
∫ x

−∞
F0(z)dz =

∫ x̄

−∞
F0(z)dz −

∫ x

x̄
(1 − F0(z))dz + (x− x̄),one dedues that the funtion ψ̃(0, x) = e−

x−x̄

σ2 ψ(0, x) (resp. ψ(0, x)) is bounded on R+ (resp.
R−) and onverges to 1 as x tends to +∞ (resp. −∞).Let us dedue the limit of Ft(x) as t → +∞. Writing the integral for y ∈ R as the sum of theintegrals for y ∈ R− and for y ∈ R+, and making the hange of variables z =

y−x+ t
2

σ
√
t

(resp.
z =

y−x− t
2

σ
√
t
) in the �rst (resp. seond) integral, one obtains

∫

R

e−
(y−x+ t

2 )2

2σ2t F0(y)ψ(0, y)
dy

σ
√

2πt

=

∫

R

e−
z2

2 1{z≤
√

t
2σ

− x

σ
√

t
}F0(σ

√
tz + x− t

2
)ψ(0, σ

√
tz + x− t

2
)
dz√
2π

+ e
x−x̄

σ2

∫

R

e−
z2

2 1{z≥−
√

t
2σ

− x

σ
√

t
}F0(σ

√
tz + x+

t

2
)ψ̃(0, σ

√
tz + x+

t

2
)
dz√
2π
.By Lebesgue theorem, the �rst term of the right-hand-side onverges to 0 whereas the seondterm onverges to ex−x̄

σ2 . Replaing F0 by 1 in the above omputation, one obtains that thedenominator in (2.8), onverges to 1 + e
x−x̄

σ2 . Therefore
∀x ∈ R, lim

x→+∞
Ft(x) =

e
x−x̄

σ2

1 + e
x−x̄

σ2

.Notie that in the same way, one may also obtain the limit of the density
pt(x) =

∫

R

y+ t
2
−x

σ2t e−
(x− t

2−y)2

2σ2t F0(y)ψ(0, y) dy

σ
√

2πt

∫

R
e−

(x− t
2−y)2

2σ2t ψ(0, y) dy

σ
√

2πt

− 1

σ2







∫

R
e−

(x− t
2−y)2

2σ2t F0(y)ψ(0, y) dy

σ
√

2πt

∫

R
e−

(x− t
2−y)2

2σ2t ψ(0, y) dy

σ
√

2πt







2

.
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One easily heks
∀x ∈ R, lim

t→+∞
pt(x) =

1

σ2







e
x−x̄

σ2

1 + e
x−x̄

σ2

− e
2(x−x̄)

σ2

(

1 + e
x−x̄

σ2

)2






=

1

4σ2 cosh2(x−x̄
2σ2 )

.

In order to prove Theorem 2.3, we are �rst going to hek exponential onvergene of Ft to theumulative distribution funtion F∞ of p∞. Let Gt = Ft − F∞. Sine for a random variable Xwith umulative distribution funtion F , E(X) =
∫ +∞
0 (1 − F (x))dx −

∫ 0
−∞ F (x)dx the equalityof the expetations assoiated to Ft and F∞ writes ∫

R
Gt = 0. This very onvenient expressionof the link between pt and p∞ is one main reason for �rst onsidering the onvergene of Gt to

0. In order to prove this onvergene, we need the following result.Lemma 2.4 One has
∫

R

G2
t

p∞
≤ c

∫

R

(

Gt
p∞

)′2
p∞ (2.9)where c denotes the onstant in the Poinaré inequality satis�ed by p∞. Moreover

∫

R

(pt − p∞)2

p∞
=

∫

R

(

Gt
p∞

)′2
p∞ +

2

σ2

∫

R

G2
tA

′′(F∞) (2.10)and ∫
R

G2
t

p∞
≤ c̃

∫

R

(pt − p∞)2

p∞
. (2.11)Remark 2.5 When A is onvex, (2.11) is a onsequene of (2.10) and (2.9).Proof . As ∫

R
Gt = 0, (2.9) is nothing but the Poinaré inequality satis�ed by p∞ written forthe funtion Gt/p∞.Sine ( Gt

p∞

)′
=

G′
t

p∞
− Gtp′∞

p2∞
, one has

∫

R

(

Gt
p∞

)′2
p∞ =

∫

R

(pt − p∞)2

p∞
−
∫

R

G2
t
′
p′∞

p2∞
+

∫

R

G2
t p

′
∞

2

p3∞

=

∫

R

(pt − p∞)2

p∞
+

∫

R

G2
t p

′′
∞

p2∞
−
∫

R

G2
t p

′
∞

2

p3∞
.Sine p∞ solves (2.4), one easily dedues (2.10).Writing G2

t (y) = 2
(

1{y≤0}
∫ y
−∞Gt(pt − p∞)(x)dx− 1{y>0}

∫ +∞
y Gt(pt − p∞)(x)dx

), one obtains
∫

R

G2
t

p∞
= −2

∫

R

Gt(pt − p∞)(x)

∫ x

0

1

p∞(y)
dydx. (2.12)By (2.3), and sine 1

p∞
is bounded from below and above on eah ompat subset of the real line,

∃C > 0,∀x ∈ R,

∣

∣

∣

∣

∫ x

0

1

p∞(y)
dy

∣

∣

∣

∣

≤ C

p∞(x)
.13



Using Cauhy-Shwarz inequality in (2.12), and inserting the latter bound, one obtains
∫

R

G2
t

p∞
≤ 2C

(
∫

R

G2
t

p∞

)1/2(∫

R

(pt − p∞)2

p∞

)1/2

.One easily dedues (2.11).Aording to (2.11), the exponential onvergene of ∫
R

(pt−p∞)2

p∞
to zero is a stronger result thanthe exponential onvergene stated in the next Lemma.Lemma 2.6 There is a positive onstant C suh that if ∫

R

G2
0

p∞
is small enough, then ∀t ≥

0,
∫

R

G2
t

p∞
≤ e−Ct

C

∫

R

G2
0

p∞
.Proof . Aording to (2.2), one has σ2

2 F
′′
∞ + (A(F∞))′ = 0 whih also writes p′∞

p∞
= − 2

σ2A
′(F∞).Combining these equations with (0.1), then using Young's inequality, one easily obtains for ε > 0,

1

2

d

dt

∫

R

G2
t

p∞
= −σ

2

2

∫

R

(

Gt
p∞

)′2
p∞ −

∫

R

(A(Ft) −A(F∞) −A′(F∞)Gt)

(

Gt
p∞

)′

≤ (ε− σ2

2
)

∫

R

(

Gt
p∞

)′2
p∞ +

‖A′′‖2
∞

16ε

∫

R

G4
t

p∞
. (2.13)Sine

‖Gt‖2
∞ ≤

(
∫

R

|pt − p∞|√
p∞

√
p∞

)2

≤
∫

R

(pt − p∞)2

p∞
, (2.14)

|Gt| is bounded by 1 and p∞A′′(F∞) = − 2
σ2A × A′′(F∞) is bounded, one dedues from (2.10)that

‖Gt‖2
∞ ≤ 4

σ4
‖AA′′‖∞

∫

R

G2
t

p∞
+

(

1 ∧
∫

R

(

Gt
p∞

)′2
p∞

)

.Inserting this bound in (2.13) and using Young's inequality, one dedues that for η > 0,
1

2

d

dt

∫

R

G2
t

p∞
≤ (ε− σ2

2
)

∫

R

(

Gt
p∞

)′2
p∞ +

‖AA′′‖∞‖A′′‖2
∞

4εσ4

(∫

R

G2
t

p∞

)2

+ η

(

1 ∧
∫

R

(

Gt
p∞

)′2
p∞

)2

+
‖A′′‖4

∞
1024ε2η

(∫

R

G2
t

p∞

)2

≤ (ε+ η − σ2

2
)

∫

R

(

Gt
p∞

)′2
p∞ +

(‖AA′′‖∞‖A′′‖2
∞

4εσ4
+

‖A′′‖4
∞

1024ε2η

)(∫

R

G2
t

p∞

)2

.One easily onludes with (2.9) and Lemma 2.8 below.Remark 2.7 • After reading this proof, one may wonder whether one ould replae theupper-bound in (2.13) by
(ε− σ2

2
)

∫

R

(

Gt
p∞

)′2
p∞ +

‖A′′‖2
∞

16ε

∫

R

G2
t

p∞14



using ‖Gt‖∞ ≤ 1. If the onstant c in the Poinaré inequality (2.9) was smaller than
σ4

‖A′′‖2
∞
, one ould dedue exponential onvergene of ∫ G2

t

p∞
to 0 even for large values of

∫ G2
0

p∞
. In ase A(x) = 1

2(x2 − x), one has ‖A′′‖∞ = 1 and
c ≥

∫

R

x2p∞ −
(
∫

R

xp∞

)2

=

∫ +∞

0

x2

2σ2 cosh2( x
2σ2 )

> 4σ4

∫ +∞

0
y2e−2y = σ4 =

σ4

‖A′′‖2∞and this approah does not work.
• Convexity of A implies non-negativity of the term A(Ft)−A(F∞)−A′(F∞)Gt whih appearsin the right-hand-side of the �rst displayed equality in the proof. One may wonder if oneould exploit this property to obtain exponential onvergene of pt to p∞ even if p0 is notlose to p∞. We have not been able to do so.Proof of Theorem 2.3. By (2.2), p′∞ = − 2

σ2A
′(F∞)p∞ and ‖p∞‖∞ ≤ 2‖A‖∞

σ2 . Using moreoverthe Fokker-Plank equation (2.1) for pt then Young's inequality and (2.14), one easily heks thatfor ε, η > 0,
1

2

d

dt

∫

R

(pt − p∞)2

p∞
= −σ

2

2

∫

R

(

pt
p∞

)′2
p∞ −

∫

R

(A′(Ft) −A′(F∞))(pt − p∞)

(

pt
p∞

)′

−
∫

R

(A′(Ft) −A′(F∞))p∞

(

pt
p∞

)′

≤ (η + ε− σ2

2
)

∫

R

(

pt
p∞

)′2
p∞ +

1

4ε

∫

R

(A′(Ft) −A′(F∞))2
(pt − p∞)2

p∞

+
1

4η

∫

R

(A′(Ft) −A′(F∞))2p∞

≤ (η + ε− σ2

2
)

∫

R

(

pt
p∞

)′2
+

‖A′′‖2
∞

4ε

(
∫

R

(pt − p∞)2

p∞

)2

+
‖A′′‖2

∞
4η

× 4‖A‖2
∞

σ4

∫

R

G2
t

p∞
.By (2.11) and Lemma 2.6, for ∫

R

(p0−p∞)2

p∞
small enough, the last term of the r.h.s. is smallerthan c̃e−Ct

C

∫

R

(p0−p∞)2

p∞
. Sine ∫

R

(

pt

p∞

)′2
p∞ ≥ 1

c

∫

R

(pt−p∞)2

p∞
, one easily onludes by Lemma 2.8below.Lemma 2.8 Assume that u : R+ → R+ satis�es

∀t ≥ 0,
du

dt
(t) ≤ βu(t)(u(t) − α) + γe−δtfor some onstants α, β, δ > 0 and γ ≥ 0.If γ = 0 and u(0) < α then ∀t ≥ 0, u(t) ≤ αu(0)e−αβt

α+ u(0)(e−αβt − 1)
.If u(0) < α

2 and γ < βα2

4 then u(t) onverges to 0 exponentially fast as t→ +∞.Proof . When γ = 0, as long as u(t) ∈ (0, α), one has du
dt (t)

(

1
u(t) + 1

α−u(t)

)

≤ −αβ and after15



integration one obtains the desired estimation. Sine the upper-bound is not greater than u(0)and u(t) = 0 ⇒ ∀s ≥ t, u(s) = 0 one easily onludes.Now when γ ∈ (0, βα
2

4 ), one has βa(α − a) = γ for some a ∈ (0, α2 ) and
d

dt
(u(t) ∧ α

2
− a)+ = 1{a<u(t)<α

2
}
du

dt
(t) ≤ 0.Hene when u(0) < α

2 , ∀t ≥ 0, u(t) ≤ u(0) ∨ a and
du

dt
(t) ≤ −β(α− u(0) ∨ a)u(t) + γe−δt.For v(t) = eβ(α−u(0)∨a)tu(t) one dedues

dv

dt
(t) ≤ γe(β(α−u(0)∨a)−δ)tand one onludes by integration of this inequality that u(t) ≤ Ce−[(β(α−u(0)∨a))∧δ]t .2.2 The partile systemLet us suppose that A(1) = 0 and that the �rst order moment assoiated with the initial probabil-ity measure m is de�ned and equal to x̄. As in the ase of the granular media equation onsideredby Malrieu [12℄ [13℄, the diretion (v, v, . . . , v) is quite singular for the partile system. Indeed,

d(X1,N
t + . . .+XN,N

t ) = σ

n
∑

i=1

dBi
t,whih prevents the law of (X1,N

t , . . . ,XN,N
t ) from onverging as t→ +∞. Following [12℄ [13℄, oneintrodues the hyperplane Mn = {y = (y1, . . . , yn) ∈ R

n : y1 + . . .+yn = nx̄} orthogonal to thissingular diretion and denotes by P̄ the orthogonal projetion on Mn and by P the orthogonalprojetion on {y = (y1, . . . , yn) ∈ R
n : y1+. . .+yn = 0}. Sine∑n

i=1 an(i) = n(A(1)−A(0)) = 0,the orthogonal projetion (Y i,n
t = x̄+Xi,n

t − 1
n

∑n
j=1X

j,n
t )1≤i≤n of the original partile systemon Mn is a di�usion on this hyperplane solving

dY i,n
t = σ

n− 1

n
dBi

t −
σ

n

∑

j 6=i
dBj

t − an

( n
∑

j=1

1{Y j,n
t ≤Y i,n

t }

)

dt. (2.15)Propagation of haos for the projeted system is a onsequene of the following estimate.Proposition 2.9 Assume that A is onvex, suh that A′ is Lipshitz ontinuous with onstant
K and A(1) = 0 and that the initial measure m has a �nite seond order moment. Then

∀i ∈ {1, . . . , n}, ∀t ≥ 0,

E

(

(Xi
t − Y i,n

t )2
)

≤ 1

n

(

K2t2

6
+ E((X0 − x̄)2) + σ2t+ 2

∫ t

0

∫

R

A(Fs(x))dxds

)

.Proof . Denoting
Xn

1 (t) = (X1
t , . . . ,X

n
t ), Xn,n

1 (t) = (X1,n
t , . . . ,Xn,n

t ) and Y n,n
1 (t) = (Y 1,n

t , . . . , Y n,n
t ),16



one has
|Xn

1 (t) − Y n,n
1 (t)|2 = |Xn

1 (t) − P̄Xn,n
1 (t)|2 = |Xn

1 (t) − P̄Xn
1 (t)|2 + |P̄Xn

1 (t) − P̄Xn,n
1 (t)|2

≤ 1

n

(

n
∑

i=1

(Xi
t − x̄)

)2

+

n
∑

i=1

(Xi
t −Xi,n

t )2. (2.16)Sine (Xt − x̄)2 ≤ 3
(

(X0 − x̄)2 + σ2B2
t + ‖A′‖2

∞t
2
), the variable Xt is square integrable. As

∀x > 0, |(x− x̄)A(Ft(x))| ≤ ‖A′‖∞(1 − Ft(x))(x + |x̄|) ≤ ‖A′‖∞
(

E(X2
t )

x
+ |x̄|(1 − Ft(x))

)

,one has limx→+∞(x− x̄)A(Ft(x)) = 0. Similarly (x− x̄)A(Ft(x)) also vanishes as x→ −∞ and
∫

R
(x− x̄)A′(Ft(x))pt(x)dx = −

∫

R
A(Ft(x))dx. Computing (Xt− x̄)2 by It�'s formula and takingexpetations, one dedues that

E((Xt − x̄)2) = E((X0 − x̄)2) + σ2t+ 2

∫ t

0

∫

R

A(Fs(x))dxds.Moreover, by (1.1), E(Xt − x̄) = −A(1)t = 0. One onludes by taking expetations in (2.16)then using Theorem 1.5 and exhangeability of the partiles.Let us now study the long time behaviour of the projeted partile system.Theorem 2.10 Assume that the funtion A is uniformly onvex on [0, 1] with onstant α (see(1.7)) and suh that A(1) = 0. Then, the probability measure with density
pn∞(y) =

1

Zn
e−

2
σ2

∑n
i=1 an(i)y(i)with respet to the Lebesgue measure dy on Mn is invariant for the projeted dynamis. Here

y(1) ≤ y(2) ≤ . . . ≤ y(n) denotes the inreasing reordering of the oordinates of y = (y1, . . . , yn)and Zn =
∫

Mn
e−

2
σ2

∑n
i=1 an(i)y(i)dy.Moreover, if (Y 1,n

0 , . . . , Y n,n
0 ) admits a symmetri density pn0 (y) with respet to the Lebesguemeasure on Mn, then for all t ≥ 0 (Y 1,n

t , . . . , Y n,n
t ) admits a symmetri density pnt (y) whih issuh that

∀t ≥ 0,

∫

Mn

(

pnt
pn∞

− 1

)2

pn∞dy ≤ e−λnt

∫

Mn

(

pn0
pn∞

− 1

)2

pn∞dy (2.17)where the sequene (λn)n is bounded from below by α2

123σ2 .In order to dedue long time properties of the nonlinear proess from long time properties of theprojeted system, the symmetry hypothesis on pn0 is not restritive. But the lak of uniformityin time of the estimation given in Proposition 2.9 is a real problem.Remark 2.11 In ase n = 2, the proess Zt = Y 2,2
t − Y 1,2

t solves the stohasti di�erentialequation
dYt = σ(dB2

t − dB1
t ) − sgn(Yt)(a2(2) − a2(1))dtand the density of Yt onverges exponentially to a2(2)−a2(1)

2σ2 e−
a2(2)−a2(1)

σ2 |y| when the density of Y0is lose enough to this limit. As (Y 1,2
t , Y 2,2

t ) = 1
2(−Zt, Zt), one easily dedues exponential onver-gene of the density of (Y 1,2

T , Y 2,2
T ) on the straight line M2 to a2(2)−a2(1)√

2σ2
e−

a2(2)

σ2 2y(2)e
a2(1)

σ2 (−2y(1)).17



The proof of Theorem 2.10 relies on the following Poinaré inequality.Proposition 2.12 Under the assumptions of Theorem 2.10, the density
p̃n∞(y) =

n!1{y1≤y2≤...≤yn}
Zn

e−
2

σ2

∑n
i=1 an(i)yion Mn is suh that for f : R

n → R regular enough,
∫

Mn

(

f(y) −
∫

Mn

f(y)p̃n∞(y)dy

)2

p̃n∞(y)dy ≤ σ2

λn

∫

Mn

P |∇f(y)|2p̃n∞(y)dy (2.18)where the sequene (λn)n is bounded from below by α2

123σ2 .Proof of Theorem 2.10. Let us �rst hek the following Green formula: for f : R
n → R and

u : R
n → R

n regular enough,
∫

Mn

f∇ · Pu(y)dy = −
∫

Mn

P∇f · Pu(y)dy. (2.19)Let 1 ∈ R
n denote the vetor with all oordinates equal to 1. For ϕ : R → R and v : R

n → R
n,one has

∫

R

ϕ(
√
nz)

∫

Mn

∇ · Pv
(

y +
z1√
n

)

dydz =

∫

Rn

ϕ(x1 + . . . + xn − nx̄)∇ · Pv(x)dx

= −
∫

Rn

ϕ′(x1 + . . .+ xn − nx̄)1 · Pv(x)dx = 0.The funtion ϕ being arbitrary, one dedues that ∫Mn
∇ · Pv(y)dy = 0. Sine ∇ · P (fu) =

∇f · Pu+ f∇ · Pu = P∇f · Pu+ f∇ · Pu, (2.19) follows for the hoie v = fu.By weak uniqueness for (2.15), when (Y 1,n
0 , . . . , Y n,n

0 ) has a symmetri density pn0 with respetto the Lebesgue measure on Mn, the partiles Y i,n, i ∈ {1, . . . , n} are exhangeable and for eah
t ≥ 0, (Y 1,n

t , . . . , Y n,n
t ) has a symmetri density pnt . By omposition with the projetion P̄ , oneobtains an extension of pnt on R

n that we still denote by pnt . Sine∑n
i=1 an(i) = n(A(1)−A(0)) =

0, setting
b(y) =

∑

τ∈Sn

1{yτ(1)≤yτ(2)≤...≤yτ(n)}











an(τ
−1(1))

an(τ
−1(2))...

an(τ
−1(n))











,one has Pb = b and the in�nitesimal generator assoiated with (2.15) is Lψ = σ2

2 ∇·(P∇ψ)−Pb ·
∇ψ. Computing dψ(Y 1,n

t , . . . , Y n,n
t ) by It�'s formula and taking expetations then using (2.19),one obtains

∫

Mn

ψ∂tp
n
t dy =

∫

Mn

Lψpnt dy =

∫

Mn

ψ∇ · P
(

σ2

2
∇pnt + bpnt

)

dy.Hene the densities solve the Fokker-Plank equation ∂tpnt = ∇ · P
(

σ2

2 ∇pnt + bpnt

). Now using
18



(2.19) and b = −σ2∇pn
∞

2pn∞
, one dedues

∂t

∫

Mn

(

pnt
pn∞

− 1

)2

pn∞dy = 2

∫

Mn

pnt
pn∞

∇ · P
(

σ2

2
∇pnt + bpnt

)

dy

= −σ2

∫

Mn

P∇ pnt
pn∞

· P∇pnt +
2bpn

t

σ2

pn∞
pn∞dy

= −σ2

∫

Mn

∣

∣

∣

∣

P∇ pnt
pn∞

∣

∣

∣

∣

2

pn∞dy. (2.20)By symmetry of the funtion pn
t

pn
∞

and (2.18),
σ2

∫

Mn

∣

∣

∣

∣

P∇ pnt
pn∞

∣

∣

∣

∣

2

pn∞dy = σ2

∫

Mn

∣

∣

∣

∣

P∇ pnt
pn∞

∣

∣

∣

∣

2

p̃n∞dy

≥ λn

∫

Mn

(

pnt
pn∞

− 1

)2

p̃n∞dy = λn

∫

Mn

(

pnt
pn∞

− 1

)2

pn∞dyand the onlusion follows.Notie that the omputation in (2.20) is formal and an only be justi�ed when pnt is a smoothsolution of the Fokker-Plank equation.Remark 2.13 Let us denote by Y (1),n
t ≤ . . . ≤ Y

(n),n
t the inreasing reordering of the randomvariables (Y 1,n

t , . . . , Y n,n
t ). Aording to [9℄, the reordered system is a di�usion proess normallyre�eted at the boundary of the losed onvex set {y ∈ Mn : y1 ≤ y2 ≤ . . . ≤ yn}. More preisely,











dY
(i),n
t = σdβit − an(i)dt + (γit − γi+1

t )d|K|t
(
∫ t
0 (γis − γi+1

s )d|K|s, 1 ≤ i ≤ n)t≥0 is a ontinuous proess with �nite variation equal to |K|t
γ1 ≡ γn+1 ≡ 0 and d|K|t a.e. ,∀2 ≤ i ≤ n, γit ≥ 0 and γit(Y (i),n

t − Y
(i−1),n
t ) = 0 (2.21)where (β1, . . . , βn) is a Brownian motion suh that <βi,βj>t

t = 1{i=j} − σ2

n .If the initial ondition (Y
(1),n
0 ≤ . . . ≤ Y

(n),n
0 ) admits a density p̃n0 with respet to the Lebesguemeasure on Mn, then the law of (Y

(1),n
t , . . . , Y

(n),n
t ) is the image of the symmetri law of thesolution (Y 1,n

t , . . . , Y n,n
t ) to (2.15) starting from (Y 1,n

0 , . . . , Y n,n
0 ) with density pn0 obtained bysymmetrization of p̃n0 . Therefore (Y

(1),n
t , . . . , Y

(n),n
t ) has the density p̃nt (y) = n!pnt (y)1{y1≤...≤yn}and (2.17) holds with pn replaed by p̃n.In order to prove Proposition 2.12, we take advantage of the spei� form of the density p̃n∞.Remarking that p̃n∞ is the density of the image of a vetor of independent exponential randomvariables by a linear transformation, one �rst obtains the following result.Lemma 2.14 The Poinaré inequality (2.18) holds with the onstant λn greater than α2

4σ2 multi-plied by the the smallest eigenvalue λ̃n of the (n−1)×(n−1) matrix Qn de�ned by ∀1 ≤ i, j ≤ n−1,
19



Qnij = bn(i)L
n
ijbn(j) where
bn(i) =

i(n− i)

n
and Ln =























2 −1 0 . . . . . . . . . 0
−1 2 −1 0 . . . . . . 0
0 −1 2 −1 0 . . . 0... ... ... ... ... ... ...
0 . . . 0 −1 2 −1 0
0 . . . . . . 0 −1 2 −1
0 . . . . . . . . . 0 −1 2























.

The last statement in Proposition 2.12 then follows from the next lemma whih is obtained byinterpreting Qn as a �nite element rigidity matrix assoiated with the operator −x(1−x)∂xx(x(1−
x).) ating on funtions on (0, 1). The Hardy inequality stated in Lemma 2.16, ensures that itis enough to bound the smallest eigenvalue of the orresponding mass matrix from below. Theresort to this one-dimensional Poinaré-like inequality in order to estimate the onstant in the
n-dimensional Poinaré inequality (2.18) is striking.Lemma 2.15 The sequene (λ̃n)n is bounded from below by 1/(16 × 27).Proof of Lemma 2.14. Let f be suh that ∫Mn

f(y)p̃n∞(y)dy = 0. Sine the left-hand-side inthe Poinaré inequality (2.18) only depends on the restrition of f to Mn, one may assume that
∀x ∈ R

n, f(x) = f(P̄ x), whih ensures that for (x1, . . . , xn) ∈ R
n suh that x1 + . . . + xn = 0,

f(x̄+x1, . . . , x̄+xn) = f(x1, . . . , xn) and P∇f(x̄+x1, . . . , x̄+xn) = ∇f(x1, . . . , xn). Thereforethe Poinaré inequality (2.18) is equivalent to I(f) ≤ σ2

λn
I(|∇f |) where

I(g) =

∫

Rn−1

g2p̃n∞(−(x2 + . . .+ xn), x
n
2 )dxn2 with xn2 = (x2, . . . , xn).To integrate the oordinates over independent domains, we make the hange of variables zn2 =

Mxn2 where
M =



















2 1 1 . . . . . . 1
−1 1 0 . . . . . . 0
0 −1 1 0 . . . 0... ... ... ... ... ...
0 . . . 0 −1 1 0
0 . . . . . . 0 −1 1



















.One easily heks that for 2 ≤ i ≤ n, z2 + . . . + zi = x2 + . . . + xn + xi and dedue that
(n− 1)z2 + (n− 2)z3 + . . .+ 2zn−1 + zn = n(x2 + . . .+ xn). Therefore

M−1 =
1

n



















1 2 − n 3 − n 4 − n . . . −1
1 2 3 − n 4 − n . . . −1
1 2 3 4 − n . . . −1... ... ... ... ... ...
1 2 3 . . . n− 2 −1
1 2 3 . . . . . . n− 1

















and denoting
N =

(

1−n
n

2−n
n . . . − 2

n − 1
n

M−1

)

,20



one has
I(f) =

∫

(R+)n−1

f2(Nzn2 )e−
2

σ2

∑n
i=2 βn(i)zi

dzn2
|M |with βn(i) = 1

n ((i− 1)(an(i) + . . .+ an(n)) − (n+ 1 − i)(an(1) + . . .+ an(i− 1))) positive by
α-onvexity of A. Here |M | denotes the determinant of the matrix M ; it is equal to n by an easyomputation. Tensorizing the Poinaré inequality satis�ed by the one-dimensional exponentialdensity [1℄, one obtains

I(f) ≤
∫

(R+)n−1

n
∑

j=2

σ4

β2
n(j)

(

n
∑

k=1

Nkj−1∂kf(Nzn2 )

)2

e−
2

σ2

∑n
i=2 βn(i)zi

dzn2
|M |

= σ4

∫

Rn−1

n
∑

k,l=1





n
∑

j=2

1

β2
n(j)

Nkj−1Nlj−1



 ∂kf∂lf p̃
n
∞(−(x2 + . . .+ xn), x

n
2 )dxn2 .By uniform onvexity of A, aording to Remark 1.6,

∀i ∈ {1, . . . , n− 1}, ∀j ∈ {1, . . . , n− i}, an(i+ j) − an(i) ≥ α
j

n
.Therefore, for i ∈ {2, . . . , n},

βn(i) ≥
α

n2



(i− 1)
n
∑

j=i

j − (n+ 1 − i)
i−1
∑

j=1

j



 =
α

n2



(i− 1)
n
∑

j=1

j − n
i−1
∑

j=1

j





=
α

n2

(

(i− 1)
n(n+ 1)

2
− n

(i− 1)i

2

)

= α
(i− 1)(n − (i− 1))

2n
=
α

2
bn(i− 1).Therefore

I(f) ≤ 4σ4

α2

∫

Rn−1

n
∑

k,l=1





n−1
∑

j=1

1

b2n(j)
NkjNlj



 ∂kf∂lf p̃
n
∞(−(x2 + . . .+ xn), x

n
2 )dxn2

≤ 4σ2

α2λ̃n
I(|∇f |)where λ̃n denotes the inverse of the largest eigenvalue of the symmetri non-negative matrix N̄N̄∗de�ned by N̄ij =

Nij

bn(j) . To prove Proposition 2.12 with a possibly modi�ed lower bound, it isenough to hek that the largest eigenvalue is bounded from above uniformly in n. Unfortunately,the trae of the matrix an be bounded from below by a positive onstant multiplied by log(n).Therefore one has to be more preise.Let w be an eigenvetor assoiated with the largest eigenvalue : N̄N̄∗w = 1
λ̃n
w. Of ourse N̄∗wis non-zero and multiplying the previous equality by N̄∗, one obtains that N̄∗w is an eigenvetorof N̄∗N̄ assoiated with the eigenvalue 1

λ̃n
. By symmetry, 1

λ̃n
is also the largest eigenvalue of

N̄∗N̄ . We are going to hek that the latter matrix is invertible with inverse equal to Qn inorder to onlude the proof. Beause of the de�nition of N̄ , it is enough to hek that N∗N isinvertible with inverse equal to Ln.By onstrution of the matrix N , for the equation Nzn2 = x where x ∈ R
n to have a solution zn2 ,it is neessary and su�ient that x1 = −(x2 + . . .+ xn) and then zn2 = Mxn2 .Now for �xed y ∈ R

n−1, let us �nd xn2 ∈ R
n−1 suh that N∗x = y where x = −(x2 + . . .+xn, x

n
2 ).21



Denoting by J ∈ R
(n−1)×(n−1) the matrix with all entries equal to 1, the equation writes











(M−1)∗ −











N11

N12...
N1n−1











J











xn2 = y.One easily heks that the (n− 1) × (n− 1) matrix in the left-hand-side is equal to


















1 1 1 . . . 1
0 1 1 . . . 1
0 0 1 . . . 1... ... ... ... ...
0 . . . 0 1 1
0 . . . 0 0 1



















with inverse R =



















1 −1 0 0 . . . 0
0 1 −1 0 . . . 0... ... ... ... ... ...
0 . . . 0 1 −1 0
0 . . . 0 0 1 −1
0 . . . 0 0 0 1



















.Combining xn2 = Ry with the solution of the previous problem, one obtains that the uniquesolution of the equation N∗Nzn2 = y is zn2 = MRy. One onludes by heking that the matrix
MR is equal to Ln.Proof of Lemma 2.15. The funtions

ui(x) =















0 if x ∈ (0, 1) \ [ i−1
n , i+1

n ]
i(n−i)(x− i−1

n
)√

nx(1−x) if x ∈ [ i−1
n , in ]

i(n−i)( i+1
n

−x)√
nx(1−x) if x ∈ [ in ,

i+1
n ]

, i ∈ {1, . . . , n− 1}are suh that
∀i, j ∈ {1, . . . , n− 1}, Qnij =

∫ 1

0
(x(1 − x)ui(x))

′(x(1 − x)uj(x))
′dx.By the Hardy inequality stated in Lemma 2.16 below, the smallest eigenvalue of the matrix

Qn is greater than the smallest eigenvalue of the (n − 1) × (n − 1) tridiagonal matrix Rnij =
∫ 1
0 ui(x)uj(x)dx divided by 16.For i ∈ {1, . . . , n − 2}, let rni =

∫ (i+1)/n
i/n

ui(ui − ui+1)(x)dx and
rnn−1 =

∫ 1

(n−1)/n
u2
n−1(x)dx =

(n− 1)2

n

∫ 1

(n−1)/n

1

x2
dx =

n− 1

n
.Using the hange of variables y = 1 − x, one easily heks that

∀i ∈ {1, . . . , n− 1}, Rnii −Rnii−1 −Rnii+1 = rni + rnn−iwhere by onvention Rn10 = Rnn−1n = 0. We are going to prove that
∀n ≥ 3,∀i ∈ {2, . . . , n− 3}, rni ≥ 1

27
.and that rn1 and rnn−2 are non-negative. For y ∈ R

n−1, one dedues that
y∗Rny =

n−1
∑

i=1

Rniiy
2
i + 2

n−2
∑

i=1

Rnii+1yiyi+1

=

n−1
∑

i=1

(Rnii −Rnii−1 −Rnii+1)y
2
i +

n−2
∑

i=1

Rnii+1(yi + yi+1)
2 ≥ |y|2

2722



and the onlusion follows.Let us �rst suppose that i ≤ ⌊n2 ⌋ − 1, whih ensures that the funtion f(x) = x2(1 − x)2 isinreasing on [i/n, (i + 1)/n]. Let g(x) = ui(ui − ui+1)(x). One easily heks that
∫ (i+1)/n

i/n
g(x)dx =

i2(n− i)2

n4

(

1

3
− (i+ 1)(n − i− 1)

6i(n − i)

)

≥
{

0 if i = 1,
i2(n−i)2

12n4 if i ≥ 2.Sine there is some xi ∈ [i/n, (i + 1)/n] suh that the funtion g(x) is non-negative on [i/n, xi]then non-positive on [xi, (i + 1)/n], and f is positive and inreasing, one dedues that for all
x ∈ [i/n, (i+ 1)/n], ∫ xi/n g(y)

f(y)dy ≥ 0. This ensures that
∀x ∈ [i/n, (i + 1)/n],

d

dx

(

f(x)

∫ x

i/n

g(y)

f(y)
dy

)

= f ′(x)
∫ x

i/n

g(y)

f(y)
dy + g(x) ≥ g(x).Therefore

rni =

∫ (i+1)/n

i/n

g(y)

f(y)
dy ≥ 1

f((i+ 1)/n)

∫ (i+1)/n

i/n
g(y)dy ≥

{

0 if i = 1,
i2(n−i)2

12(i+1)2(n−i−1)2 ≥ 1
27 if i ≥ 2.Let us now suppose that i ≥ ⌊n+1

2 ⌋ so that the funtion f is dereasing on [i/n, (i + 1)/n]. Wededue that
rni ≥ 1

f(i/n)

∫ (i+1)/n

i/n
fu2

i (x)dx−
1

f((i+ 1)/n)

∫ (i+1)/n

i/n
fuiui+1(x)dx =

1

3
− i(n − i)

6(i+ 1)(n − i− 1)and the left-hand-side is greater than 1/12 for i ≤ n− 3 and non-negative for i = n− 2.We still have to deal with the ase n odd and i = (n − 1)/2. Then, f is not monotoni on
[i/n, (i+ 1)/n] = [1/2 − 1/2n, 1/2 + 1/2n]. But by symmetry,

rn(n−1)/2 =
(n− 1)2(n+ 1)2

16n

∫ 1/2+1/2n

1/2−1/2n

(1/2 + 1/2n − x)(1 − 2x)

x2(1 − x)2
dx

=
(n− 1)2(n+ 1)2

32n

∫ 1/2+1/2n

1/2−1/2n

(1 − 2x)2

x2(1 − x)2
dx

≥ (n− 1)2(n+ 1)2

2n

∫ 1/2+1/2n

1/2−1/2n
(1 − 2x)2dx =

(n2 − 1)2

6n4
.

Lemma 2.16 For all u ∈ L2(0, 1) suh that the distribution derivative (x(1 − x)u(x))′ belongsto L2(0, 1),
∫ 1

0
u2(x)dx ≤ 16

∫ 1

0

(

(x(1 − x)u(x))′
)2
dx.Proof . For v a C∞ funtion with ompat support on (0, 1), by the integration by partsformula,

∫ 1/2

0

v2(x)

x2(1 − x)2
dx ≤ 4

∫ 1/2

0

v2(x)

x2
dx = 8

(

∫ 1/2

0

vv′(x)
x

dx− v2(1/2)

)

≤ 8

(

∫ 1/2

0

v2(x)

x2
dx

)1/2(
∫ 1/2

0
(v′(x))2dx

)1/2

.23



Dealing with the integral on (1/2, 1) in a symmetri way, one dedues
∫ 1

0

v2(x)

x2(1 − x)2
dx ≤ 16

∫ 1

0
(v′(x))2dx. (2.22)Now approximating v ∈ H1

0 (0, 1) by a sequene of C∞ funtions with ompat support onvergingin the H1 norm and almost everywhere, one dedues with Fatou lemma that the inequality stillholds for v ∈ H1
0 .For u satisfying the hypotheses in the Lemma, v(x) = x(1−x)u(x) belongs toH1(0, 1). Aordingto Theorem VIII.2 p.122 [4℄, v admits a representative ontinuous on [0, 1] still denoted by v.Moreover, sine u(x) = v(x)

x(1−x) belongs to L2(0, 1), neessarily, v(0) = v(1) = 0. By TheoremVIII.11 p.133 [4℄, v belongs to H1
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