
HAL Id: hal-00127973
https://hal.science/hal-00127973v1

Submitted on 5 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generation of embedded Hardware/Software from
SystemC

Dominique Houzet, Salim Ouadjaout

To cite this version:
Dominique Houzet, Salim Ouadjaout. Generation of embedded Hardware/Software from SystemC.
EURASIP Journal on Embedded Systems, 2006, 2006, pp.ID18526. �10.1155/ES/2006/18526�. �hal-
00127973�

https://hal.science/hal-00127973v1
https://hal.archives-ouvertes.fr

 Salim Ouadjaout, Dominique Houzet
Institut of Electronics and Telecommunications of Rennes (IETR) (UMR CNRS 6164), INSA, 20 avenue des Buttes de Coësmes, 35043 Rennes Cedex, France

Email : salim.ouadjaout@insa-rennes.fr, houzet@insa-rennes.fr

Designers increasingly rely on reusing of Intellectual Property (IP) and on raising the level of abstraction to respect System-on-Chip (SoC) market

characteristics. However, most hardware and embedded software codes are recoded manually from system level. This recoding step often results

in new coding errors that must be identified and debugged. Thus, shorter time to market requires automation of the system synthesis from high

level specifications. In this paper, we propose a design flow intended to reduce the SoC design cost. This design flow unifies hardware and

software using a single high level language. It integrates hardware/software (HW/SW) generation tools and an automatic interface synthesis

through a custom library of adapters. We have validated our interface synthesis approach on a hardware producer/consumer case study and on the

design of a given software radiocommunication application.

Keywords and phrases: System-level synthesis, Hardware-software codesign, Embedded software generation.

1.INTRODUCTION

Technological evolution -particularly shrinking of silicon

fabrication geometries- enables the integration of complex

platforms in a single System on Chip (SoC). In addition to

specific hardware subsystems, a modern SoC can also include

sophisticated interconnects and one or several CPU subsystems

to execute software. New design flows for SoC design have

become essential in order to manage the system complexity in a

short time-to-market. These flows include hardware/software

(HW/SW) generation tools, the reuse of pre-designed

Intellectual Property (IP), and interface synthesis

methodologies which are still open problems requiring further

research activities [1].

EDA tools propose their own solutions to HW/SW

generation. Some use SystemC as a starting point for the

hardware design, like Cynthesizer from ForteDesign [2] or

Agility Compiler from Celoxica [3]. Several tools use the C

language as a starting point for both hardware and software

with a custom Application Programming Interface (API) for

HW/SW interfaces. It is the case of DK Design Suite from

Celoxica [3] with its DSM API and CatapultC from Mentor

[4]. In SiliconC [5], structural VHDL is generated for the C

functions. Prototypes of the functions become the entities.

There are other variants which start from Mathlab to produce

both hardware and software like SPW from CoWare [6]. Many

design methodologies exist for the design of embedded

software [7-9]. Some are based on code generated from an

abstract model (UML [10]), graphical finite state machine

design environments (e.g StateCharts [11]), DSP graphical

programming environments (e.g. Ptolemy [8]), or from

synchronous programming languages (e.g Esterel [12]). A

software generation from a high level model of operating

system is proposed by several authors [13-16]. In [15], a

software generation from SystemC is based on the redefinition

and overloading of SystemC class library elements. In [13], a

software-software communication synthesis approach by

substituting each SystemC module with an equivalent C struct

is proposed. It requires special SystemC modeling styles (i.e.

with macro definitions and preprocessing switches in addition

to the original specification code). In [16], software is

generated from SpecC with no restrictions on the description

of the system model.

Several approaches have been developed to deal with IPs

integration. Fast prototyping enables the productive reuse of

IPs [17]. It describes how to use an innovative system design

flow, that combines different technologies, such as C

modelling, emulation, hard Virtual Component reuse and

CoWare tools [6]. Prosilog’s IP creator, as part of Magillem,

aims to improve the integration and re-use of non-VCI

compliant IPs by wrapping them into a compatible structure.

This tool allows the generation of wrappers from a RTL

VHDL description of the IP interface [18]. The Cosy approach

is based on the infrastructure and concepts developed in the

VCC framework [19]; it defines interfaces at multiple levels of

abstraction. Most of those approaches deal with low level

protocol adaptation in order to integrate RTL level IPs. A few

approaches provide a ready Network on Chip (NoC) to allow

easy integration of communication. But these approaches

require that the IPs have to be compliant with the NoC

interface. Consequently, the designers have to modify the IPs

codes.

All these approaches deals with system level synthesis which

is widely considered as the solution for closing the productivity

gap in system design. System level models are developed for

early design exploration. The system specification of an

embedded system is made of a hierarchical set of modules (or

processes) interconnected by channels. They are described in a

system level language as a set of behaviours, channel and

interface declarations. Those behaviours mapped onto general

or application-specific microprocessors are then implemented

as embedded software and hardware. The predominant system

level languages are C/C++ extensions [13, 20]. We consider

here the SystemC language but an other language can be used.

SystemC is mainly used to model and to simulate designs at

Generation of Embedded
Hardware/Software From SystemC

1

system level. However, dedicated powerful hardware

description languages like VHDL and Verilog are used for

RTL. Embedded software languages like C with static

scheduling or POSIX RTOS are used for embedded

processors. This leads to a decoupling of behavioral

descriptions and implementable descriptions. This decoupling

usually requires the recoding of the design from its

specification simulation, in order to meet the very different

requirements of the final generated code. The recoding step

often results in new coding errors that must be identified and

debugged. The derivation of embedded software and hardware

from system specifications described in a system level language

requires to implement all language elements (e.g. modules,

processes, channels and port mappings). It is known that

SystemC allows the refinement for hardware synthesis, but up

to now, SystemC has not been used as an embedded software

language. Considering the limited memory space and execution

power of embedded processors, the SystemC overhead makes

the direct compilation to produce the binary code for target

embedded microprocessors highly inefficient. Obviously, it is

due to the large SystemC kernel included in the compiled code.

This kernel introduces an overhead to support the system level

features (e.g hierarchy, concurrency, communication), but

these features are not necessary to the target embedded

software code. In addition to direct SystemC compilation

inefficiency, some cross compilers for embedded processors

may only support the C language. Thus, SystemC has to be

translated to C code.

To address system level synthesis, we propose in this paper

a top-down methodology. Our challenge is to automate the co-

design flow generating the final code for both embedded

processors and hardware from a unifying high level language

(SystemC). In our methodology, we have developed methods

to make the co-design flow smooth, efficient and automated.

These methods allow two improvements: a rapid integration of

communication and a fast software generation for embedded

processors with an efficient interface synthesis. The proposed

methodology includes several parsing steps and intermediate

models. The first main step is the communication integration

based on a custom library of interface adapters that uses the

Virtual Component Interface (VCI) standard from VSIA

consortium [21]. This library aims to perform the interface

synthesis. It allows heterogeneous IPs to communicate in a

plug-and-play fashion in the same system. The second main

step is the generation of embedded C code from the system

specification written in SystemC. Our approach proposes the

use of static scheduling and POSIX based RTOS models. It

enables also an automatic refinement, while [14] requires its

own proprietary simulation engine and needs manual

refinement to get the software code. Our method also differs

from [13-16] in that our high level SystemC code is translated

to a C code with optimized interface synthesis. Optimization is

performed according to the processors busses and the NoC as

well as according to the SystemC parallel programming model

(c.f. 3.4). Other recent propositions have been published in that

direction [22].

The paper is organized as follows: in Section 2 we describe

the main features of our proposed design flow. The main

innovative parts of the design flow are detailed in the next two

sections. The first one presents our hardware interface library

and our integration methodology of functional IPs, with

implementation results from a simple design example. The

second one describes the translation process of SystemC

elements to C code. This C code targets either a RTOS for

dynamic scheduling or a standalone solution with a generated

static scheduling. This translation process is validated in

Section 5 with implementation results of a producer/consumer

and a Code Division Multiple Access (CDMA) radio-

communication applications. This work is the result of a

project started in 2001 [23][24].

2.DESIGN FLOW

SoC design requires the elaboration and the use of radically

new design methodologies. The main parts of a typical system

level design flow are: the specification model, the partition into

HW/SW elements and the implementation of the models for

each element. In Figure 1 we describe the proposed top-down

methodology of automatic generation of binary files from

SystemC to both embedded software and hardware. The design

flow starts with a high level model described in a high level

programming language (SystemC). The system is described

either through direct programmation or through IP reuse. We

use Celoxica tools to develop, simulate, analyze and validate

the SystemC code (step 1). The first SystemC description is at

the functional level. The system is a set of functional IPs

including functional models of architectural IPs for fast

simulation. The communication between IPs uses SystemC

channel mechanisms like sc_signal or sc_fifo with read() and

write() primitive functions. From the Celoxica graphical tool,

we select the IPs which are associated with the hardware side

(the architectural IPs substituted by their already VCI-

compliant version), and the IPs which are associated with the

software side (the monitoring IPs, stimulating IPs, host

IPs…). The remaining IPs of the system are targeted to the co-

design side, as we need to optimise and well-balance hardware

and embedded software to meet several stringent design

constraints simultaneously: hard real-time performance, low

power consumption and low resources.

Considering the software side (step 2), the SystemC IPs are

directly compiled to become binary files targeted to the host

processor. This set of software tasks communicate with the

2

FIGURE 1: Top Down design flow

remaining IPs contained in the FPGA platform through the PCI

bus. Because software components run on processors, the

SystemC abstract communication needed to describe the

interconnection between the software and hardware

components is totally different from the existing abstraction of

wires between hardware components as well as the function

calls abstraction that describes the software communication. In

this part, the communication is abstracted as an API which

calls PCI bus drivers through an operating system layer. The

API hides hardware details such as interrupt controllers or

memory and input/output subsystems. We have implemented

the Message Passing Interface (MPI-2) library on the host

processor and on the embedded processors of our platform

[25]. MPI-2 is our HW/SW interface API.

The step 3 is the performing of our SCXML parser tool

which allows to convert a given SystemC source code into an

XML intermediate representation. The XML format is a subset

of the standardized SPIRIT 2.0 format [26]. The system is

interpreted as a set of XML files. Each XML file contains the

most important characteristics of a SystemC IP, such as:

- name, type and size of each in/out ports, name and type of

processes declared in the constructor and also the sensitivity

list of each process.

- name and type of IPs building a hierarchical IP, the names

of connections between the sub-IPs, and the binding with the

IP ports.

Both XML files and profiling reports from Celoxica tool are

treated by our HW/SW partitioning tool (step 4) in order to

partition IPs as hardware or software according to the

architecture parameters and constraints. After this step we use

SynDEx tool (step 5) to perform an automatic mapping,

routing and static scheduling of IPs on the software and

hardware architecture based on a predefined NoC topology

[27]. The different SynDEx inputs are:

- a hierarchical conditioned data-flow graph of computing

operations and input/output operations. The operations are just

specified by the type and size of input/output data and

execution time of the IPs. The XML files and profiling reports

are parsed to produce these inputs. We need also to provide

manually information on the non-exclusive execution of IPs in

order to help Syndex optimize parallelism.

- specification of the heterogeneous architecture as a graph

composed of software processors and hardware processors,

interconnected through communication medias. Processors

characteristics are: supported tasks, their execution duration,

worst case transfer duration for each type of data on the

interconnect. The profiling reports and architecture parameters

are parsed to produce these inputs.

SynDex implements the IPs onto the multicomponent

architecture through a heuristic mapping, routing and

scheduling. After the implementation, a timing diagram gives

the mapping of the different IPs on the components and the

real time predicted behavior of the system. The communication

links are represented in order to show all the exchanges

3

HW/SW partitioning
Mapping/scheduling/routing

Celoxica GUI tools

Specification SystemC System level model

SystemC IPs SystemC Programmation

SystemC Simulation and profiling

(Functional or Architectural)

SystemC

VCI IPs

Gcc +

Communication integration

 (VCI Adapters + NoC connexion)

SystemC VCI IPs & NoC

C Soft-IP

SystemC

Hard-IP

MPI2

SystemC/XML Parser

XML/C Parser Architecture

parameters

Full System

Architecture

Software

Functional

Sub-system

Hardware

Functional

Sub-system

Constraints

OK

SystemC

Files

C++ compiler
+

PCI

Binary

Files

HDL IP Synthesis

(Celoxica)

or HDL substitution

FPGAs

Hard IPs

VCI NoC
LEONs

µblazesVCI/PCI
Bridge

HDL Synthesis Tool

MPI2+PCI

drivers

SystemC

Files

Binary

Files

SystemC code

Our contribution

HW/SW Functional

Sub-system

IPs
 SystemC

IPs
SystemC IPs

VCI

interface

 ADAPT ADAPT

 ADAPT

NoCNoC

FPGA
VV

CC

II

--

AA

GG

EE

NN

TT

VV

CC

II

--

AA

GG

EE

NN

TT

VCI

interface

IPs

interfaces

between processors; they are taken into account in the

execution time of IPs. The mapping/routing code generated by

Syndex tool is then parsed (step 6) in order to manage the NoC

configuration and to switch software IPs to the XML/C parser.

This parser translates the XML mark-ups to C code with either

RTOS calls or a static scheduling provided by SynDex tool.

With our SCXML and XML/C parsers, we obtain an

embedded C generation tool (SCEmbed) from SystemC. This

SCEmbed tool has about 5000 C++ and JAVA code lines. This

tool and its XML format can be easily adapted to a different

RTOS.

The embedded C code is then treated in step 7 with the Gcc

compiler in order to obtain binary executables for the

embedded processors. As the C software IPs are mapped on

several heterogeneous processors, they need to use a

communication library (MPI-2).

In the communication integration (step 8), the identified

SystemC hardware IPs are completed with our SystemC VCI

adapter library. This point is detailed in the section below.

Then point-to-point communication are established between

the new VCI-compliant IPs and the VCI hardware IPs through

the VCI NoC. We use SynDex configuration information to

initialize the VCI adapters, plug the IPs on the NoC, and load

the binary code of the software IPs on their corresponding

processor memory. Once all the SystemC architecture is

produced, we can either simulate it back in the Celoxica tool

for evaluation. After validation, we continue with the

implementation step.

The last hardware synthesis step plays a very important role

in the methodology described above. There have been various

research efforts to come up with a good hardware compiler

which can generate a synthesizable HDL from high level

C/SystemC specifications. The Agility compiler from Celoxica

can help the generation of synthesizable VHDL from SystemC.

The final product of the design flow is a set of binary files

representing programs for the host processor, LEON and

Microblaze (Xilinx) processors and FPGAs. These files can be

loaded onto the respective components of the prototyping

platform (FPGA boards), to build a prototype with a real-time

communication system.

3.HW/SW INTERFACE CODESIGN

3.1. Introduction

A SoC can include specific hardware subsystems and one or

several CPU subsystems to execute the software tasks. The

SoC architecture includes hardware adapters (bridges or

communication coprocessors) to connect the CPU subsystems

to other subsystems. The HW/SW interface abstraction must

hide the CPU. On the software side, the abstraction hides the

CPU under a low level software layer ranging from basic

drivers and I/O functionality to sophisticated operating system.

On the hardware side, the interface abstraction hides CPU bus

details through a hardware adaptation layer generally called the

CPU interface. This can range from simple registers to

sophisticated I/O peripherals including direct memory access

queues and complex data conversion and buffering systems.

3.2. Hardware to Hardware interface synthesis : VCI
Adaptation Methodology

We show in Figure 2 the way to establish a communication

between IPs with different abstraction levels. We consider here

functional IPs and architectural IPs.

FIGURE 2 : VCI connections of non VCI IPs through VCI adapters

The connection can be through wires or through a NoC. The

VCI adapters library aims to simplify the (re)use of functional

IPs (non VCI compliant) in any SoC based on the VCI

protocol. This adapter library is designed in order to change

neither the IP cores nor their interface description.

FIGURE 3 : Layers between heterogeneous interfaces of two sets of IPs

The generic architecture shown in Figure 3 helps to clarify

the relationship between two hardware IPs connected through

a sophisticated VCI NoC. The communication between

heterogeneous component interfaces imposes the existence of a

wrapper on each side of the communication media (bus or

NoC). This wrapper behaves like a bridge which translates the

RTL interface between the media and the component. These

wrappers (agents) have to be compatible with VCI interface to

build a standard media. Thus, an initiator wrapper is connected

to VCI initiator ports of a master IP and a target wrapper is

connected to VCI target ports of a slave IP.

Considering that these two VCI wrappers are available, the

interface synthesis of SystemC functional IPs is a set of steps to

replace a primitive channel with a refined channel in order to

connect it to the wrappers. A refined channel will often have a

more complex interface (e.g VCI) than the primitive channel

previously used. The main step in the refining of the interfaces

is to create adapters that connect the original modules to the

refined channel. Adapters can help to convert the interfaces of

the IPs instances into VCI interfaces. The interface refinement

4

IP ports

VCI interface

SystemC

Functional

IP

Architectural IP

"VCI compliant"
VCI

Adapter

µblaze

SystemC
Functional

IPs

RAM

MPEG2

SystemC
Functional

IP

VCI
Adapter

NetWork on NetWork on

ChipChip

FFT

 (a) “wire” point-to-point connection

(b) NoC connection

can be made more manageable if new interfaces are developed

without making changes to their associated module. The adapter

translates the transaction-oriented interface consisting of methods

such as write(data) into VCI RTL level interface for hardware IPs.

Figure 3 depicts the use of adapters to connect functional IPs to

the NoC VCI agents. Hook arrow boxes indicate the interface

provided by the adapters while the rightleftarrows square boxes

represent ports. Our contribution consists in the design of VCI

master adapters and VCI slave adapters which manage the VCI

initiator and VCI target interfaces respectively. We have chosen a

convention that each SystemC output port is an initiating port of

transaction and each input port is a target port. Thus, the release of

a transaction results in a non blocking write of data on the output

port for a sc_signal and in a blocking write for a sc_fifo. This

corresponds to the semantics of the SystemC sc_signal and sc_fifo

primitive channels. Thus, initiating ports of functional IPs are

connected to a master adapter and target ports are connected to a

slave adapter. In this cas, several IPs may be connected to the

same adapter.

The adaptation methodology approach is implemented using

a micro–network stack paradigm, which is an adaptation of the

OSI protocol stack. Thus the electrical, logical, and functional

properties of the interconnection scheme can be abstracted.

3.2.1.Application layer
This layer describes the functional behaviour of a complex

system. A system is a set of functional IPs with behavioural

models, not architectural IPs such as processors or memories.

The communication mechanism is performed with classical

read(data) and write(data) SystemC primitives without

additional parameters and no protocol implementation.

3.2.2.VCI adapter layer
The VCI adapter layer is responsible for converting an IP

interface towards a lower level interface. A VCI adapter core

can manage different ports of different non VCI-compliant IPs.

Functional hardware IP ports are implemented as a memory

segment accessed through its VCI adapter. They are directly

connected to a VCI adapter dedicated to functional hardware

IPs with a DMA inside it. The VCI adapter layer is composed

of the following sub-layers:

a)Presentation layer: This layer is responsible for translating

an abstract data type port towards a SystemC synthesizable

data type port.

b)Session layer: The session layer generates a single VCI

address between two ports connected to each other in the

system level description. This address is divided in two fields,

the most significant bits (MSB) identify the destination

wrapper, and the least significant bits (LSB) identify the local

offset at destination. Each agent of the NoC needs to be

configured in order to know the separation position between

MSB and LSB, and thus be able to perform address translation

to correctly route the data to be sent.

The LSB field is itself divided first according to the target IP

port addressed among the different IP ports connected to the

same VCI adapter, and second according to the local address

segment managed by the transport layer. VCI adapter address

is finally divided in three fields:

Field-1: Agent number is the address field

decoded/generated by the NoC agents and routed in the NoC.

Each VCI adapter is connected to a NoC agent and all the

NoC agents are numbered from 0 to N.

Field-2: Port number is the address field

decoded/generated by the VCI adapter to switch data to the

corresponding IP port.

Field-3: Word number is the address field

decoded/generated by the transport layer. It represents the

address in the memory segment of the selected port.

The address translation of each VCI adapter is configured

during its connection to the NoC with its NoC agent number

and its port number. Already VCI-compliant IPs have to

provide configurability of addresses in order to communicate

to any IP on the NoC. This configuration of IP VCI adapters is

performed during VCI adapter integration step based on

Syndex mapping/routing information. For already VCI-

compliant IPs, addresses are provided manually as it is IP

dependant. This is the second of the very few non fully

automated parts of the flow.

c)Transport layer: The basic function of the transport layer is

multiple: it accepts data from the IP ports, splits them into

smaller units (segments) according to the VCI master adapter

data bus size, passes them to the network layer, and ensures

that the pieces all arrive correctly at the other end. In addition,

the transport layer is responsible of the generation of the

segment number which constitutes the third field of VCI

address. This layer also resequences and reassembles the

messages at the destination (Slave adapter).

d)Network layer: This layer is responsible for the identification

of the initiating port. In the case of a multiport master adapter,

the network layer launches an arbiter to solve the conflicts and

ensures that only one port can have an access to the resource

(media). The second treatment is the operation of transfers

multiplexing and de-multiplexing. Multiple connections have to

be scheduled in time to use the common physical VCI

interface. The priority management of the different connections

depends on the application constraints, provided statically or

dynamically as quality of service requests (QoS).

e)DataLink layer: The data Link layer defines the format of

data on the interface and the communication protocol. It is

responsible for VCI transactions.

3.2.3.Physical Layer
The physical layer is the physical way of communication. Wires

are used for point-to-point connection between VCs. A NoC is

used for sophisticated communications.

We have synthesized an example of a simple

producer/consumer on the Xilinx FPGA technology. We have

5

used the PVCI master/slave adapters with an 8-bit data bus and

a 5-bit address bus on both IPs. Each adapter unit allows two

IP data bus connections of 64-bit and 32-bit size respectively

with a static IP port priority management. This implementation

was performed with Xilinx Virtex II xc2v3000-6 technology.

We present here the post placed/routed results. We have

obtained a master adapter cost of 489 units of 4-entries logic

and 136 flipflop units, with a 100 MHz clock frequency. So, it

occupies 1.7 % of the FPGA. The slave adapter requires 144

4-entries logic units and 204 flipflop units with the same clock

frequency. It needs 0.46% of the FPGA resources. A master

adapter is four times larger than a slave adapter.

3.3. Software to Software interface synthesis

For embedded software, the SystemC read(data) and

write(data) are implemented with POSIX elements in the case

of dynamic scheduling with a RTOS and Message Passing

Interface (MPI) elements in the case of static scheduling. We

have used the POSIX compliant Real-Time Embedded

Multiprocessor Scheduler (RTEMS) as RTOS.

For RTEMS, the read and write primitive functions are

replaced with the rtems_message_queue_receive() function

and the rtems_message_queue_send() function respectively.

The sc_fifo blocking read() function is implemented with the

RTEMS_WAIT option set in rtems_message_queue_receive().

The non blocking sc_signal functions are implemented for

RTEMS through message queues which are flushed before

each data write. The non blocking read is implemented with the

option RTEMS_NO_WAIT.

For a RTOS-less solution, the SystemC read(data) and

write(data) are implemented as one-sided Remote Memory

Access (RMA) with the MPI MPI_put(data) primitive only.

The blocking mechanism for sc_fifo is implemented with the

MPI_wait() primitive which waits for an acknowledgment.

3.4. Software to Hardware interface synthesis

For software IP on embedded CPUs, communication with the

NoC VCI agent is managed with dual-ported memory buffers

and DMA from its VCI adapter (dedicated to the CPUs)

directly connected to this dual-ported memory. The DMA is

controlled by software driver subroutines overloading MPI or

RTEMS message queues.

In the case of host processor, the read(data) and write(data)

SystemC primitives are overloaded in order to call the PCI

driver services through MPI calls. This software driver

configures the hardware DMA which manages the data

transactions between host memory and the NoC on the

prototyping board through the VCI/PCI bridge.

Using one-sided RMA is an efficient implementation solution

of MPI [25][28] and the SystemC programming model is also

very well suited to RMA implementation as sc_signal reads and

writes are not correlated. In practice, efficiency of HW/SW

interfaces is obtained with a direct integration of SystemC high

level communication library in hardware, that is by a joint

optimisation of the implementation of the SystemC

programming model with the MPI_put() and MPI_wait()

primitives (RMA model) as well as with the underlying NoC

design. The RMA mechanism is limited to write-only transfers

between IPs allowing the design of a specific NoC optimised

for those transfers with DMA. This approach is similar to the

joint optimisation of compilers and microarchitectures of

microprocessors.

We have designed optimised network interfaces for two

custom NoC [29] with write-only communications, connected

to Microblazes, LEONs and PowerPCs processors through

their dedicated ports. The MPI_put() primitive needs two I/O

access to configure the DMA of the network interface and to

launch the DMA transfer in the NoC. Thus the MPI_put()

takes only 8 processor clock cycles : 6 clock cycles to prepare

the DMA configuration and 2 clock cycles for I/O access. In

that case the result for the SystemC sc_signal write() primitive

is 25 clock cycles of overhead comprising two MPI_put()

executions (one for the control and one for the data), that is 16

clock cycles, and 9 clock cycles to prepare the data to be

transferred. Also there is no overhead for the SystemC

sc_signal read() which is only a local variable access due to the

RMA mechanism.

For comparison, the main differences between MPI RMA

subset and DSM API from Celoxica presented in Table 1 is

that the MPI_put is a non blocking mechanism which in

conjunction with MPI_Wait can implement a blocking

mechanism, compared to the DsmWrite and DsmRead which

are only blocking mechanisms. Also the DSM API is a two-

sided communication compared to the one-sided RMA subset.

TABLE 1 : DSM AND RMA MPI SUBSET COMPARISON

DSM MPI

DsmInit() MPI_Init()

DsmExit() MPI_Finalize()

DsmWrite() & DsmRead() MPI_Put() & MPI_Wait()

DsmPortS2HOpen() --

-- MPI_Barrier()

4.GENERATION OF EMBEDDED C CODE

In modern complex SoCs, the software as an integral part of

the SoC is gaining more and more importance. At the system

level, the system is composed of a set of hierarchical behaviors

connected together through channels. However, for the

implementation, many designers use a task-based approach,

where the tasks are scheduled by a real time kernel. A whole

system design is composed of a set of globally

asynchronous/locally synchronous reactive processes that

concurrently perform the system functionalities.

Inside the SystemC process code, only wait() primitives are

allowed and processes lack a sensitivity list except for one

signal which is considered as a clock. Therefore, a process will

only block when it reaches a wait(). These restrictions that we

have required are only for the code involved in the embedded

HW/SW partitioning process. They help our SCEmbed tool to

generate the embedded C code [30]. These restrictions on

SystemC coding are also required by Celoxica tools for the

SystemC synthesis.

The XML format used by the XML/C parser is easily

adaptable for a new target RTOS. The main idea behind is to

redefine the SystemC class library elements for the new target

RTOS. The original code of these IPs calls the SystemC kernel

6

functions to support process concurrency and communication.

The new code calls the embedded RTOS functions that

implement the equivalent functionality. Thus, SystemC kernel

functions are replaced either by typical RTOS functions or

through direct generation of a statically scheduled code. The

functional behavior is not modified during the hardware,

software and interfaces generation.

We illustrate the C generation process for the RTOS target

with a Producer/Consumer example. The SystemC main code

named sc_main() is converted to the RTEMS RTOS main code

“init”. The channels are implemented with message queues for

blocking sc_fifo channels and shared variables for non blocking

sc_signal channels. The clock in the SystemC code is

converted into a task sending an event value broadcasted on a

message queue. All the tasks read this clock message queue for

there synchronization.

FIGURE 4: from SystemC main code to RTEMS code

SystemC concurrent processes need to be converted into

RTOS-based tasks. We instantiate the child tasks in a parent

one corresponding to the SC_MODULE in the system

specification. This step is illustrated by our example in Figure

4. The producer and the consumer instances are converted into

Tprod and Tcons parent tasks. In RTEMS, each parent task

(SC_MODULE in systemC) launches the child tasks

(processes in SystemC) and an additional task which is

responsible for inter-process communication. This task is

created to manage sc_out ports writing delay corresponding to

the behavioral delay of the SystemC write function (the data

are validated after the wait event). The RTEMS equivalent

code of the SystemC Producer is shown in Figure 5.

At the system level, synchronization is implemented using

channels or SystemC events. During the generation process,

the RTOS model provides routines to replace the SystemC

synchronization primitives.

FIGURE 5: Producer RTEMS code

In the case of POSIX generation, synchronization between

tasks is managed by semaphores for sc_signal implementation

with global shared variables. A special clock management task

is generated which schedules the two-step signal assignment

process in order to respect the semantic of sc_signal. All the

signal assignments are performed simultaneously after all the

processes are stopped on a wait() instruction. The wait()

instruction is implemented by a semaphore synchronization.

The clock task is waiting for all the tasks which are sensitive to

the same clock to stop on a wait instruction. Then the second

step is performed by this clock management task, which

corresponds to the assignment of all the shared global variables

with the temporary variables assigned by the different blocked

tasks. These blocked tasks are then freed and can read the

shared global variables which are now updated. This

mechanism is generated for each independent clock in the

whole system. When different tasks are mapped on different

processors, we assume that they communicate through

asynchronous sc_fifo channels. Otherwise, the clock

management tasks of the different processors have to be

synchronized before the assignment of the shared global

variables.

The second approach uses a RTOS-less static scheduling. In

this solution, the SystemC scheduler is replaced by our custom

simulation engine optimized for embedded applications. This

scheduler is called from each wait() instruction or from sc_fifo

blocking read() or write() functions. This scheduler also

manages the synchronization of clock sensitive tasks with

barrier primitives.

A channel implementation library is provided for all the

solutions. Up to now, only primitive channels are available

(sc_signal, sc_fifo). There are three versions of implementation

for each channel: SW/SW, HW/HW and SW/HW. SW/SW

channels are direct shared variables or message queues

implementation. HW/HW channels are RTL level NoC

7

int sc_main () {

sc_signal<char> medium;

sc_clock clock("clock");

producer prod_inst("prod");

 prod_inst.out(medium);

 prod_inst.clk(clock);

consumer

cons_inst("Consumer");

 cons_inst.in(medium);

 cons_inst.clk(clock);

sc_start(-1);

return 0;

}

(a) before

// RTEMS declaration part

rtems_task init(rtems_task_argument* unused) {

medium= rtems_build_name('m','e','d','i');

rtems_message_queue_create(medium,…,

&mediumID);

Tclk = rtems_build_name('H','L','G','A');

rtems_task_create(Tclk,…, &TclkID);

clock= rtems_build_name('c','l','o','c');

rtems_message_queue_create(clock,…, &clockID);

Port_clock[0]=clockID;

Tprod= rtems_build_name('p','r','o','d');

rtems_task_create(Tprod,…, &TprodID);

Port_prod_inst[1]=mediumID;

Port_prod_inst[0]=clockID;

Tcons= rtems_build_name('c','o','n','s');

rtems_task_create(Tcons,…, &TconsID);

Port_cons_inst[0]=mediumID;

Port_cons_inst[1]=clockID;

rtems_task_start(TclkID,clock_task, &Port_clock);

rtems_task_start(TprodID,producer,&Port_prod_inst)

;

rtems_task_start(TconsID,consumer,&Port_cons_inst

);

 rtems_task_delete(RTEMS_SELF);

}

(b) after

/*===Myproducer.h File==*/

class producer : public sc_module

{

 public:

 sc_out<char> out;

 sc_in<bool> clk;

int i;

void main();

SC_HAS_PROCESS(producer);

producer(…): sc_module(name){

SC_THREAD(main);

sensitive_pos << clk ;

 }

};

rtems_task producer(rtems_task_argument

*port) {

Tsend = rtems_build_name('F','C','o','m');

Tmain = rtems_build_name('m','a','i','n');

 rtems_task_create(Tsend[0],..., &TsendID);

rtems_task_create(Tmain[1],..., &TmainID);

rtems_task_start(TsendID, ComTask ,&port);

rtems_task_start(TmainID, main, &port);

rtems_task_delete(RTEMS_SELF);

}

rtems_task main(rtems_task_argument *port){

// main code

rtems_task_delete(RTEMS_SELF);

}

// Communication task

rtems_task ComTask (rtems_task_argument

*port)

{

// task code

rtems_task_delete(RTEMS_SELF);

}

wrappers. SW/HW are C drivers for embedded processors

connected to the NoC.

5.APPLICATION EXAMPLE

In order to evaluate the proposed technique, two designs have

been experimented for the SW part in this section. The first

one is a simple consumer/producer case with two SystemC

components linked together. The second one, a more realistic

case, is a CDMA radiocommunication example. The

consumer/producer system description has about 86 SystemC

code lines and the CDMA system description has about 976

SystemC code lines. the CDMA includes 7 modules with 8

concurrent processes. Both examples have been implemented

in a SPARC-based platform that includes 1MB SDRAM and a

LEON2 processor synthesized on one 4Mgate Xilinx FPGA

with 128 KBytes of RAM. The open source POSIX-compliant

RTEMS operating system has been selected as the target

embedded RTOS.

The CDMA system has 7 modules: the top (CDMA), one

module that generates samples, three modules that compute the

QPSK modulation, the THR and the interleaving, one that

models the real environment channel behavior by introducing

noise, and the last ones that do the reverse treatment that is de-

interleaving, ITHR and demodulation. All the modules work in

a pipelined dataflow way. Several channel models have been

implemented with our design flow. The CDMA application

example uses one of them: a non blocking channel (the

sc_signal channel). The proposed channel models have

different implementations depending on the HW/SW partition.

Several experiments have been performed with semaphores,

mutex condition variables and signals in order to synchronize

threads with RTEMS.

Table 2 shows the code size of the different codes on the

different operating systems. Table 3 presents there binary size

and Table 4 their average execution time per treatment

iteration.

TABLE 2 : LINE NUMBER OF PROD/CONS AND CDMA SOURCE CODE

SystemC

Linux

POSIX

Linux

RTEMS

LEON

POSIX

LEON

Static C

Linux

Static C

LEON

Prod/Cons 86 130 203 161 - -

CDMA 976 1350 1479 1387 950 950

TABLE 3 : BINARY CODE SIZE OF PROD/CONS AND CDMA

SystemC

Linux

POSIX

Linux

RTEMS

LEON

POSIX

LEON

Static C

Linux

Static C

LEON

Prod/Cons 592 K 14K 106K 83K - -

CDMA 1.8 M 32K 119K 97K 188K 12K

TABLE 4 : EXECUTION TIME OF PROD/CONS AND CDMA

SystemC

Linux

POSIX

Linux

RTEMS

LEON

POSIX

LEON

Static C

Linux

Static C

LEON

Prod/Cons 43 µs 81µs 2.43 ms 1.85 ms - -

CDMA 170 µs 310 µs 12.5 ms 9.2 ms 17 µs 153 µs

In Table 2, the number of lines of the generated embedded C

code is nearly the double for the first simple case which

includes 27% of SystemC primitives. For the CDMA, the

generated code size is nearly half more important with only

13% of SystemC primitives. The size of the embedded C

generated code is directly linked to the number of SystemC

elements included in the original code. As each SystemC

primitive is translated with a set of embedded C instructions, a

large proportion of read(), write(), wait() and others primitives

can result in an important size. However, the increase of the

generated code size remains low. Moreover, this generated C

code is entirely "readable" and can be completed or optimized

manually.

The Table 3, the size of the statically scheduled code for

embedded processor is nearly ten times lower than the RTOS

one. Thus it is more interesting to use our RTOS-less for

embedded processors. For the Linux implementation, the

kernel is not included in the code, thus its size is lower than for

the standalone one which include its own kernel.

In Table 4, the code execution time with static scheduling is

nearly 60 times faster than the RTOS one. We have to consider

here that the CDMA application highly communicates and thus

highly requests RTOS services with context switching for each

communication. Nevertheless we can conclude that RTOS

implementation of SystemC elements is not the best solution

when static scheduling can be used. Secondly, the validation of

the embedded software on a host computer, through direct

POSIX execution, obtains comparable execution times

compared to SystemC execution. It is thus possible to validate

the produced C code before loading it on the target embedded

processor. Also we obtain better execution times for a

dedicated static scheduling that is nearly ten times faster than

pure SystemC execution times. It is thus possible to evaluate

more rapidly the whole SystemC model by parsing it in C and

execute it instead of using pure SystemC simulations. This is

possible only for the functional embedded code.

The results collected in the tables 2, 3 and 4 show the

usability of POSIX and static scheduling as embedded C

modeling solutions.

We have also experimented different multiprocessor

implementations in order to evaluate the impact of HW/SW

interface synthesis in term of time overhead. This overhead

includes software delays from device drivers and hardware

delays due to the NoC crossing. We have experimented several

configurations with 1, 2, 4 and 7 processors connected with a

one-dimension linear NoC with two processors per node. The

speedup obtained is presented on Figure 6. The reduced

overhead of software and hardware interfaces (25 clock cycles

for a write) combined with the NoC crossing time of almost

one clock per NoC node crossed makes the impact of

communication low compared to the execution time of the

CDMA functions on the different processors. We obtain a

speedup of 1.8 with 2 processors and 5 with 7 processors.

These results show the low implications of such a higher level

interface approach.

8

FIGURE 6: speedup of CDMA application

6.CONCLUSION

This paper deals with the idea of unifying the use of SystemC

to implement both hardware and embedded software. This

technique reduces the embedded system design cost with a

platform based HW/SW codesign methodology.

The virtual component interfacing is a key aspect of

HW/SW codesign. We have shown that it improves

significantly the SoC design process by enabling early

verification, reusability, and interoperability. We provide VCI

adapters intended to tackle a number of technical challenges

confronting SoC designers. Each adapter is divided into several

layers and may be connected to several ports and/or several

IPs. Only transport, network and datalink layers can be

implemented as hardware. The presentation and session layers

of the VCI adapters are only used for the functional behaviour

of the system.

The proposed methodology uses the redefinition of SystemC

class library construction elements to generate the embedded

software. A first solution is to replace each SystemC element

by typical RTOS functions and MPI primitives. A second

solution, which is complementary, is to generate a standalone

statically scheduled C code which exhibits better results. This

method is independent of the selected RTOS and

communication API; any of them which is POSIX compliant

can be supported by simply adapting the corresponding library.

Future works concern the full support of the SPIRIT standard

as well as the improvement of Syndex mapping and routing

solution.

REFERENCES

[1] P. Sánchez: "Embedded SW and RTOS," in E. Villar (Ed.):"Design of

HW/SW embedded systems". University of Cantabria. 2001.

[2] Forte Design Systems, “Cynthesizer 3.0”, http://www.forteds.com/

[3] celoxica, “Agility compiler user guide”, Celoxica, 2005.

[4] Mentor Graphics, “CatapultC”, http://www.mentor.com/

[5] C. Scott Ananian. “SiliconC: A hardware backend for SUIF,” http://flex-

compiler.lcs.mit.edu/SiliconC.

[6] CoWare, “SPW and Platform Architect”, http://www.coware.com/

[7] R. K. Gupta. “Co-synthesis of Hardware and Software for Digital

Embedded Systems,” Kluwer. August 1995.

[8] J. L. Pino, S. Ha, E. A. Lee, and J. T. Buck. “Software synthesis for dsp

using ptolemy,” Journal of VLSI Signal Processing, 1995.

[9] F. Baladin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno, C.

Passerone, A. Sangiovanni-Vicentelli, E. Sentovich, K. Suzuki, B.

Tabbara. “Hardware-Software Codesign of Embedded Systems: The

POLIS Approach,” Kluwer. 1997.

[10] Rational. http://www.rational.com/uml/index.html .

[11] D. Harel et al., “Statemate: a working environment for the development

of complex reactive systems,” IEEE Trans. on Software Engineering,

April 1990.

[12] F. Boussinot and R. de Simone. “The ESTEREL Language,”

Proceedings of the IEEE, September 1991.

[13] T. Grötker, S. Liao, G. Martin, and S. Swan. “System Design with

SystemC,” Kluwer Academic Publishers, 2002.

[14] D. Desmet, D. Verkest, and H. D. Man. “Operating system based

software generation for system-on-chip,”. Proceedings of the Design

Automation Conference, June 2000.

[15] F. Herrera, H. Posadas, P. Sanchez, and E. Villar. “Systematic embedded

software generation from systemc,” Proceedings of Design, Automation

and Test in Europe, March 2003.

[16] H. Yu, R. Dömer, D. Gajski, “Embedded Software Generation from

System Level Design Languages,” Proceedings of the Asia and South

Pacific Design Automation Conference, Yokohama, Japan, Jan. 2004.

[17] F. Pogodalla, R. Hersemeule and P. Coulomb, “FastPrototyping: a system

design flow for fast design, prototyping and efficient IP reuse,”

Proceedings of Codes, 1999.

[18] OCP Adoption Adds Value to Prosilog.

www.prosilog.com/Documents/OCP_Newsletter_04-2003.pdf

[19] J. Y. Brunel et al., “Cosy communication IP,” Proceedings of the Design

Automation Conference, 2000.

[20] D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, and S. Zhao. “SpecC:

Specification Language and Methodology,” Kluwer Academic

Publishers, January 2000.

[21] “Virtual Component Interface Standard (OCB 2 1.0),” VSIA On-Chip

Bus Development Working Group, March 14, 2000.

[22] W. Klingauf, “Systematic Transaction Level Modeling of Embedded

Systems with SystemC”, IEEE DATE05 conference, 2005.

[23] S. Ouadjaout, D. Houzet, “Easy SoC Design with VCI SystemC

Adapters”, Euromicro Symposium on Digital System Design, Sep. 2004.

[24] S. Ouadjaout, D. Houzet, “VCI Interface cosynthesis”, IEEE DELTA02

conference, New Zealand, Jan. 2002.

[25] W. Gropp, E. Lusk and R. Thakur, “Using MPI-2 Advanced Features of

the Message Passing Interface”, MIT Press, 1999.

[26] SPIRIT Consortium, “SPIRIT V2.0 Alpha release”, 2006.

[27] C. Sorel and Y. Lavarenne, “From Algorithm and Architecture

Specifications to Automatic Generation of Distributed Real-Time

Executives : a Seamless Flow of Graphs Transformations”, In Formal

Methods and Models for Codesign Conference, France, June 2003.

[28] S.G. Ziavras et all., “coprocessor design to support MPI primitives in

configurable multiprocessors”, Integration, the VLSI journal, 2006.

[29] S. Evain, J. P. Diguet, and D. Houzet. ¹Spider : A CAD Tool for Efficient

NoC Design. In IEEE NORCHIP 2004, 8-9 November 2004.

[30]

Salim Ouadjaout received the M.S. degree in computer science from the

National Institute of Computers (INI), Algeria, in 2000, and the M.S. degree

from INP, ENSEEIHT, Toulouse, France, in 2001. He is a Ph.D candidate in

electrical and computer engineering at the Institute of Electronics and

Telecommunication, Rennes, France. He is also working as a research engineer

at M3Systems Inc. He has been an ACM Student Member. His research

interests include design methodologies, interface synthesis, and micronetworks

for SoC.

Dominique Houzet received the M.S. degree in computer sciences in 1989

from Paul Sabatier University, Toulouse, France, and the Ph.D. degree and

HDR degree in computer architecture in 1992 and 1999 both from INPT,

ENSEEIHT, Toulouse, France. He worked at IRIT Laboratory and ENSEEIHT

Engineering School from 1992 to 2002 as an Assistant Professor and also as a

Digital Design Consultant with SME and large companies. He is an Associate

Professor in the Department of Telecom, the INSA Engineering School, and

IETR Laboratory, Rennes, France, since 2002. He has published a number of

research papers in the area of parallel computer architecture and SoC design

and a book on VHDL principles. His research interests include codesign and

SoC design methodologies applied to image processing and

radiocommunications. He is a Member of the IEEE Computer Society.

9

speedup

Proc. Nb.

http://www.prosilog.com/Documents/OCP_Newsletter_04-2003.pdf
http://www.rational.com/uml/index.html
http://flex-compiler.lcs.mit.edu/SiliconC
http://flex-compiler.lcs.mit.edu/SiliconC
http://www.mentor.com/
http://www.forteds.com/

	1.Introduction
	2.Design flow
	3.HW/SW interface codesign
	3.1.Introduction
	3.2.Hardware to Hardware interface synthesis : VCI Adaptation Methodology
	3.2.1.Application layer
	3.2.2.VCI adapter layer
	3.2.3.Physical Layer

	3.3.Software to Software interface synthesis
	3.4.Software to Hardware interface synthesis

	4.Generation of embedded C code
	5.Application example
	6.Conclusion

