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Designers increasingly rely on reusing of Intellectual Property (IP) and on raising the level of abstraction to respect System-on-Chip (SoC) market 

characteristics. However, most hardware and embedded software codes are recoded manually from system level. This recoding step often results 

in new coding errors that must be identified and debugged. Thus, shorter time to market requires automation of the system synthesis from high 

level specifications. In this paper, we propose a design flow intended to reduce the SoC design cost. This design flow unifies hardware and 

software using a single high level language. It integrates hardware/software (HW/SW) generation tools and an automatic interface synthesis 

through a custom library of adapters. We have validated our interface synthesis approach on a hardware producer/consumer case study and on the 

design of a given software radiocommunication application.

Keywords and phrases: System-level synthesis, Hardware-software codesign, Embedded software generation.

1.INTRODUCTION

Technological  evolution  -particularly  shrinking  of  silicon 

fabrication  geometries-  enables  the  integration  of  complex 

platforms in a  single System on  Chip (SoC).  In addition to 

specific hardware subsystems, a modern SoC can also include 

sophisticated interconnects and one or several CPU subsystems 

to  execute software.  New design flows for SoC design have 

become essential in order to manage the system complexity in a 

short  time-to-market.  These flows include hardware/software 

(HW/SW)  generation  tools,  the  reuse  of  pre-designed 

Intellectual  Property  (IP),  and  interface  synthesis 

methodologies which are still open problems requiring further 

research activities [1].

EDA  tools  propose  their  own  solutions  to  HW/SW 

generation.  Some  use  SystemC  as  a  starting  point  for  the 

hardware  design,  like  Cynthesizer  from ForteDesign  [2]  or 

Agility Compiler from Celoxica [3].  Several tools use the C 

language as a starting point  for both hardware and software 

with a custom Application Programming Interface (API)  for 

HW/SW interfaces.  It  is the case of DK Design Suite  from 

Celoxica [3]  with its DSM API and CatapultC from Mentor 

[4].  In SiliconC [5],  structural VHDL is generated for the C 

functions.  Prototypes  of  the  functions  become  the  entities. 

There are other variants which start from Mathlab to produce 

both hardware and software like SPW from CoWare [6]. Many 

design  methodologies  exist  for  the  design  of  embedded 

software [7-9].  Some are  based on code generated  from an 

abstract  model  (UML  [10]),  graphical  finite  state  machine 

design  environments  (e.g  StateCharts  [11]),  DSP  graphical 

programming  environments  (e.g.  Ptolemy  [8]),  or  from 

synchronous  programming  languages  (e.g  Esterel  [12]).  A 

software  generation  from  a  high  level  model  of  operating 

system is  proposed  by several  authors  [13-16].  In  [15],  a 

software generation from SystemC is based on the redefinition 

and overloading of SystemC class library elements. In [13], a 

software-software  communication  synthesis  approach  by 

substituting each SystemC module with an equivalent C struct 

is proposed. It  requires special SystemC modeling styles (i.e. 

with macro definitions and preprocessing switches in addition 

to  the  original  specification  code).  In  [16],  software  is 

generated from SpecC with no restrictions on the description 

of the system model. 

Several approaches have been developed to  deal with IPs 

integration.  Fast  prototyping enables the productive reuse of 

IPs [17]. It  describes how to use an innovative system design 

flow,  that  combines  different  technologies,  such  as  C 

modelling,  emulation,  hard  Virtual  Component  reuse  and 

CoWare tools [6]. Prosilog’s IP creator,  as part of Magillem, 

aims  to  improve  the  integration  and  re-use  of  non-VCI 

compliant IPs by wrapping them into a compatible structure. 

This  tool  allows  the  generation  of  wrappers  from  a  RTL 

VHDL description of the IP interface [18]. The Cosy approach 

is based on the infrastructure and concepts developed in the 

VCC framework [19]; it defines interfaces at multiple levels of 

abstraction.  Most  of  those  approaches  deal  with  low  level 

protocol adaptation in order to integrate RTL level IPs. A few 

approaches provide a ready Network on Chip (NoC)  to allow 

easy  integration  of  communication.  But  these  approaches 

require  that  the  IPs  have  to  be  compliant  with  the  NoC 

interface. Consequently,  the designers have to modify the IPs 

codes.

All these approaches deals with system level synthesis which 

is widely considered as the solution for closing the productivity 

gap in system design. System level models are developed for 

early  design  exploration.  The  system  specification  of  an 

embedded system is made of a hierarchical set of modules (or 

processes) interconnected by channels. They are described in a 

system level  language  as  a  set  of  behaviours,  channel and 

interface declarations. Those behaviours mapped onto general 

or  application-specific microprocessors  are then implemented 

as embedded software and hardware. The predominant system 

level languages are C/C++ extensions [13,  20].  We consider 

here the SystemC language but an other language can be used. 

SystemC is mainly used to  model and to  simulate designs at 
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system  level.  However,  dedicated  powerful  hardware 

description  languages  like VHDL and  Verilog  are  used  for 

RTL.  Embedded  software  languages  like  C  with  static 

scheduling  or  POSIX  RTOS  are  used  for  embedded 

processors.  This  leads  to  a  decoupling  of  behavioral 

descriptions and implementable descriptions.  This decoupling 

usually  requires  the  recoding  of  the  design  from  its 

specification simulation,  in order  to  meet  the  very different 

requirements of the final generated  code.  The recoding step 

often results in new coding errors that must be identified and 

debugged. The derivation of embedded software and hardware 

from system specifications described in a system level language 

requires  to  implement  all  language  elements  (e.g.  modules, 

processes,  channels  and  port  mappings).  It  is  known  that 

SystemC allows the refinement for hardware synthesis, but up 

to now, SystemC has not been used as an embedded software 

language. Considering the limited memory space and execution 

power of embedded processors, the SystemC overhead makes 

the direct  compilation to  produce the binary code for target 

embedded microprocessors  highly inefficient.  Obviously, it is 

due to the large SystemC kernel included in the compiled code. 

This kernel introduces an overhead to support the system level 

features  (e.g  hierarchy,  concurrency,  communication),  but 

these  features  are  not  necessary  to  the  target  embedded 

software  code.  In  addition  to  direct  SystemC  compilation 

inefficiency, some cross  compilers  for  embedded  processors 

may only support  the C language.  Thus,  SystemC has to  be 

translated to C code.

To address system level synthesis, we propose in this paper 

a top-down methodology. Our challenge is to automate the co-

design  flow  generating  the  final  code  for  both  embedded 

processors and hardware from a unifying high level language 

(SystemC). In our methodology, we have developed methods 

to  make the co-design flow smooth, efficient and automated. 

These methods allow two improvements: a rapid integration of 

communication and a fast  software generation for embedded 

processors with an efficient interface synthesis. The proposed 

methodology includes several parsing steps  and intermediate 

models. The first main step is the communication integration 

based on a custom library of interface adapters that uses the 

Virtual  Component  Interface  (VCI)  standard  from  VSIA 

consortium [21].  This  library aims to  perform the  interface 

synthesis.  It  allows heterogeneous  IPs  to  communicate  in a 

plug-and-play fashion in the  same system. The second main 

step is the generation of embedded C code from the system 

specification written in SystemC.  Our approach proposes the 

use of static scheduling and POSIX based RTOS models. It 

enables also an automatic refinement,  while [14]  requires its 

own  proprietary  simulation  engine  and  needs  manual 

refinement to get the software code. Our method also differs 

from [13-16] in that our high level SystemC code is translated 

to a C code with optimized interface synthesis. Optimization is 

performed according to the processors busses and the NoC as 

well as according to the SystemC parallel programming model 

(c.f. 3.4). Other recent propositions have been published in that 

direction [22]. 

The paper is organized as follows: in Section 2 we describe 

the  main features  of  our  proposed  design  flow.  The  main 

innovative parts of the design flow are detailed in the next two 

sections. The first one presents our hardware interface library 

and  our  integration  methodology  of  functional  IPs,  with 

implementation  results  from  a  simple  design  example.  The 

second  one  describes  the  translation  process  of  SystemC 

elements to  C code.  This C code targets  either a RTOS for 

dynamic scheduling or a standalone solution with a generated 

static  scheduling.  This  translation  process  is  validated  in 

Section 5 with implementation results of a producer/consumer 

and  a  Code  Division  Multiple  Access (CDMA)  radio-

communication  applications.  This  work  is  the  result  of  a 

project started in 2001 [23][24].

2.DESIGN FLOW

SoC design requires the elaboration and the use of radically 

new design methodologies. The main parts of a typical system 

level design flow are: the specification model, the partition into 

HW/SW elements and the implementation of the models for 

each element. In Figure 1 we describe the proposed top-down 

methodology  of  automatic  generation  of  binary  files  from 

SystemC to both embedded software and hardware. The design 

flow starts  with a high level model described in a high level 

programming language  (SystemC).  The  system is  described 

either through direct programmation or through IP reuse. We 

use Celoxica tools to  develop, simulate, analyze and validate 

the SystemC code (step 1). The first SystemC description is at 

the  functional  level.  The  system is  a  set  of  functional  IPs 

including  functional  models  of  architectural  IPs  for  fast 

simulation.  The  communication  between  IPs  uses  SystemC 

channel mechanisms like sc_signal or  sc_fifo with read() and 

write() primitive functions.  From the Celoxica graphical tool, 

we select the IPs which are associated with the hardware side 

(the  architectural  IPs  substituted  by  their  already  VCI-

compliant version), and the IPs which are associated with the 

software  side  (the  monitoring   IPs,  stimulating  IPs,  host 

IPs…). The remaining IPs of the system are targeted to the co-

design side, as we need to optimise and well-balance hardware 

and  embedded  software  to  meet  several  stringent  design 

constraints  simultaneously:  hard  real-time  performance,  low 

power consumption and low resources.

Considering the software side (step 2), the SystemC IPs are 

directly compiled to  become binary files targeted to  the host 

processor. This set of software tasks communicate with the 
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FIGURE 1: Top Down design flow

remaining IPs contained in the FPGA platform through the PCI 

bus.  Because  software  components  run  on  processors,  the 

SystemC  abstract  communication  needed  to  describe  the 

interconnection  between  the  software  and  hardware 

components is totally different from the existing abstraction of 

wires between hardware components as well as the function 

calls abstraction that describes the software communication. In 

this part,  the  communication is abstracted  as  an API which 

calls PCI bus drivers through an operating system layer. The 

API  hides  hardware  details  such as  interrupt  controllers  or 

memory and input/output  subsystems. We have implemented 

the  Message  Passing  Interface  (MPI-2)  library on  the  host 

processor  and on  the  embedded processors  of  our  platform 

[25]. MPI-2 is our HW/SW interface API.

The step  3 is the performing of our  SCXML parser  tool 

which allows to convert a given SystemC source code into an 

XML intermediate representation. The XML format is a subset 

of  the  standardized SPIRIT  2.0  format  [26].  The system is 

interpreted as a set of XML files. Each XML file contains the 

most important characteristics of a SystemC IP, such as:

- name, type and size of each in/out ports, name and type of 

processes declared in the constructor  and also the sensitivity 

list of each process.

- name and type of IPs building a hierarchical IP, the names 

of connections between the sub-IPs, and the binding with the 

IP ports.

Both XML files and profiling reports from Celoxica tool are 

treated by our HW/SW partitioning tool (step 4) in order to 

partition  IPs  as  hardware  or  software  according  to  the 

architecture parameters and constraints. After this step we use 

SynDEx  tool  (step  5)  to  perform  an  automatic  mapping, 

routing  and  static  scheduling  of  IPs  on  the  software  and 

hardware  architecture  based on  a  predefined NoC topology 

[27]. The different SynDEx inputs are:

-  a hierarchical conditioned data-flow graph of computing 

operations and input/output operations. The operations are just 

specified  by  the  type  and  size  of  input/output  data  and 

execution time of the IPs. The XML files and profiling reports 

are parsed to  produce these inputs. We need also to provide 

manually information on the non-exclusive execution of IPs in 

order to help Syndex optimize parallelism.

- specification of the heterogeneous architecture as a graph 

composed  of  software  processors  and  hardware  processors, 

interconnected  through  communication  medias.  Processors 

characteristics are:  supported  tasks,  their execution duration, 

worst  case  transfer  duration  for  each  type  of  data  on  the 

interconnect. The profiling reports and architecture parameters 

are parsed to produce these inputs. 

SynDex  implements  the  IPs  onto  the  multicomponent 

architecture  through  a  heuristic  mapping,  routing  and 

scheduling. After the implementation, a timing diagram gives 

the mapping of the different IPs on the components and the 

real time predicted behavior of the system. The communication 

links  are  represented  in  order  to  show  all  the  exchanges 
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between  processors;  they  are  taken  into  account  in  the 

execution time of IPs. The mapping/routing code generated by 

Syndex tool is then parsed (step 6) in order to manage the NoC 

configuration and to switch software IPs to the XML/C parser. 

This parser translates the XML mark-ups to C code with either 

RTOS calls or  a static scheduling provided by SynDex tool. 

With  our  SCXML  and  XML/C  parsers,  we  obtain  an 

embedded C generation tool (SCEmbed) from SystemC.  This 

SCEmbed tool has about 5000 C++ and JAVA code lines. This 

tool and its XML format can be easily adapted to a different 

RTOS.

The embedded C code is then treated in step 7 with the Gcc 

compiler  in  order  to  obtain  binary  executables  for  the 

embedded processors.  As the C software IPs are mapped on 

several  heterogeneous  processors,  they  need  to  use  a 

communication library (MPI-2).

In  the  communication  integration  (step  8),  the  identified 

SystemC hardware IPs are completed with our SystemC VCI 

adapter  library.  This point  is detailed in the  section  below. 

Then  point-to-point  communication  are  established  between 

the new VCI-compliant IPs and the VCI hardware IPs through 

the VCI NoC.  We use SynDex configuration information to 

initialize the VCI adapters, plug the IPs on the NoC, and load 

the  binary code  of  the  software  IPs  on  their  corresponding 

processor  memory.  Once  all  the  SystemC  architecture  is 

produced, we can either simulate it back in the Celoxica tool 

for  evaluation.  After  validation,  we  continue  with  the 

implementation step. 

The last hardware synthesis step plays a very important role 

in the methodology described above. There have been various 

research efforts  to  come up with a good  hardware compiler 

which  can  generate  a  synthesizable  HDL  from  high  level 

C/SystemC specifications. The Agility compiler from Celoxica 

can help the generation of synthesizable VHDL from SystemC. 

The final product  of the design flow is a  set  of binary files 

representing  programs  for  the  host  processor,  LEON  and 

Microblaze (Xilinx) processors and FPGAs. These files can be 

loaded  onto  the  respective  components  of  the  prototyping 

platform (FPGA boards), to build a prototype with a real-time 

communication system.

3.HW/SW INTERFACE CODESIGN

3.1. Introduction

A SoC can include specific hardware subsystems and one or 

several CPU subsystems to  execute  the software tasks.  The 

SoC  architecture  includes  hardware  adapters  (bridges  or 

communication coprocessors) to connect the CPU subsystems 

to  other subsystems.  The HW/SW interface abstraction must 

hide the CPU. On the software side, the abstraction hides the 

CPU  under  a  low  level  software  layer  ranging  from basic 

drivers and I/O functionality to sophisticated operating system. 

On the hardware side, the interface abstraction hides CPU bus 

details through a hardware adaptation layer generally called the 

CPU  interface.  This  can  range  from  simple  registers  to 

sophisticated I/O  peripherals including direct  memory access 

queues and complex data conversion and buffering systems.

3.2. Hardware to Hardware interface synthesis : VCI  
Adaptation Methodology

We show in Figure 2 the way to  establish a communication 

between IPs with different abstraction levels. We consider here 

functional IPs and architectural IPs.

 

FIGURE 2 : VCI connections of non VCI IPs through VCI adapters

The connection can be through wires or through a NoC. The 

VCI adapters library aims to simplify the (re)use of functional 

IPs  (non  VCI  compliant)  in  any  SoC  based  on  the  VCI 

protocol.  This adapter  library is designed in order to  change 

neither the IP cores nor their interface description. 

FIGURE 3 : Layers between heterogeneous interfaces of two sets of IPs

The generic architecture shown in Figure 3 helps to clarify 

the relationship between two hardware IPs connected through 

a  sophisticated  VCI  NoC. The  communication  between 

heterogeneous component interfaces imposes the existence of a 

wrapper  on  each side of  the  communication media (bus  or 

NoC). This wrapper behaves like a bridge which translates the 

RTL interface between the media and the component.  These 

wrappers (agents) have to be compatible with VCI interface to 

build a standard media. Thus, an initiator wrapper is connected 

to VCI initiator ports of a master IP and a target  wrapper is 

connected to VCI target ports of a slave IP.

Considering that these two VCI wrappers  are available, the 

interface synthesis of SystemC functional IPs is a set of steps to 

replace  a  primitive channel with  a  refined  channel in  order  to 

connect it to the wrappers.  A refined channel will often have a 

more  complex  interface  (e.g  VCI)  than  the  primitive  channel 

previously used.  The main step in the refining of the interfaces 

is to create adapters that connect the original modules to the 

refined channel. Adapters can help to convert the interfaces of 

the IPs instances into VCI interfaces. The interface refinement 
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can be made more manageable if new interfaces are developed 

without making changes to their associated module. The adapter 

translates the transaction-oriented interface consisting of methods 

such as write(data) into VCI RTL level interface for hardware IPs. 

Figure 3 depicts the use of adapters to connect functional IPs to 

the  NoC VCI agents.  Hook arrow boxes  indicate  the  interface 

provided by the adapters  while the rightleftarrows square  boxes 

represent ports.  Our  contribution consists  in the design of VCI 

master adapters and VCI slave adapters which manage the VCI 

initiator and VCI target interfaces respectively. We have chosen a 

convention that each SystemC output port  is an initiating port of 

transaction and each input port is a target port. Thus, the release of 

a transaction results in a non blocking write of data on the output 

port for a sc_signal and in a blocking write for a sc_fifo. This 

corresponds to the semantics of the SystemC sc_signal and sc_fifo 

primitive  channels.  Thus,  initiating  ports  of  functional  IPs  are 

connected to a master adapter and target ports are connected to a 

slave adapter.  In this cas,  several IPs  may be connected to the 

same adapter. 

The adaptation methodology approach is implemented using 

a micro–network stack paradigm, which is an adaptation of the 

OSI protocol stack. Thus the electrical, logical, and functional 

properties of the interconnection scheme can be abstracted.

3.2.1.Application layer
This  layer  describes  the  functional  behaviour  of  a  complex 

system. A system is a set  of functional IPs with behavioural 

models, not architectural IPs such as processors or memories. 

The  communication  mechanism is  performed  with  classical 

read(data)  and  write(data)  SystemC  primitives  without 

additional parameters and no protocol implementation.

3.2.2.VCI adapter layer
The  VCI  adapter  layer  is  responsible for  converting  an  IP 

interface towards a lower level interface. A VCI adapter core 

can manage different ports of different non VCI-compliant IPs. 

Functional hardware IP  ports  are  implemented as a  memory 

segment accessed through its VCI adapter.  They are directly 

connected to a VCI adapter dedicated to functional hardware 

IPs with a DMA inside it. The VCI adapter layer is composed 

of the following sub-layers:

a)Presentation layer: This layer is responsible for translating 

an abstract  data  type port  towards  a  SystemC synthesizable 

data type port.

b)Session  layer:  The  session  layer  generates  a  single  VCI 

address  between two  ports  connected  to  each other  in the 

system level description. This address is divided in two fields, 

the  most  significant  bits  (MSB)  identify  the  destination 

wrapper, and the least significant bits (LSB) identify the local 

offset  at  destination.  Each  agent  of  the  NoC  needs  to  be 

configured in order to  know the separation position between 

MSB and LSB, and thus be able to perform address translation 

to correctly route the data to be sent. 

The LSB field is itself divided first according to the target IP 

port  addressed among the different IP ports connected to the 

same VCI adapter, and second according to the local address 

segment managed by the transport layer. VCI adapter address 

is finally divided in three fields:

Field-1:  Agent  number  is  the  address  field 

decoded/generated by the NoC agents and routed in the NoC. 

Each VCI adapter  is connected to  a  NoC agent  and all the 

NoC agents are numbered from 0 to N.

Field-2:  Port  number  is  the  address  field 

decoded/generated by the VCI adapter  to  switch data to  the 

corresponding IP port.

Field-3:  Word  number  is  the  address  field 

decoded/generated  by the  transport  layer.  It  represents  the 

address in the memory segment of the selected port.

The address translation of each VCI adapter  is configured 

during its connection to the NoC with its NoC agent number 

and  its  port  number.  Already  VCI-compliant  IPs  have  to 

provide configurability of addresses in order to  communicate 

to any IP on the NoC. This configuration of IP VCI adapters is 

performed  during  VCI  adapter  integration  step  based  on 

Syndex  mapping/routing  information.  For  already  VCI-

compliant  IPs,  addresses  are  provided  manually as  it  is  IP 

dependant.  This  is  the  second  of  the  very  few  non  fully 

automated parts of the flow.

c)Transport layer: The basic function of the transport layer is 

multiple: it  accepts  data  from the  IP  ports,  splits  them into 

smaller units (segments) according to the VCI master adapter 

data bus size, passes them to the network layer, and ensures 

that the pieces all arrive correctly at the other end. In addition, 

the  transport  layer  is  responsible  of  the  generation  of  the 

segment  number  which  constitutes  the  third  field  of  VCI 

address.  This  layer  also  resequences  and  reassembles  the 

messages at the destination (Slave adapter). 

d)Network layer: This layer is responsible for the identification 

of the initiating port. In the case of a multiport master adapter, 

the network layer launches an arbiter to solve the conflicts and 

ensures that only one port can have an access to the resource 

(media).  The second  treatment  is the  operation  of  transfers 

multiplexing and de-multiplexing. Multiple connections have to 

be  scheduled  in  time  to  use  the  common  physical  VCI 

interface. The priority management of the different connections 

depends on the application constraints,  provided statically or 

dynamically as quality of service requests (QoS).

e)DataLink layer:  The data Link layer defines the format of 

data  on  the  interface and the  communication protocol.  It  is 

responsible for VCI transactions.

3.2.3.Physical Layer
The physical layer is the physical way of communication. Wires 

are used for point-to-point connection between VCs. A NoC is 

used for sophisticated communications.

We  have  synthesized  an  example  of  a  simple 

producer/consumer on the Xilinx FPGA technology. We have 
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used the PVCI master/slave adapters with an 8-bit data bus and 

a 5-bit address bus on both IPs. Each adapter unit allows two 

IP data bus connections of 64-bit and 32-bit size respectively 

with a static IP port priority management. This implementation 

was performed with Xilinx Virtex II xc2v3000-6 technology. 

We  present  here  the  post  placed/routed  results.  We  have 

obtained a master adapter cost of 489 units of 4-entries logic 

and 136 flipflop units, with a 100 MHz clock frequency. So, it 

occupies 1.7 % of the FPGA. The slave adapter requires 144 

4-entries logic units and 204 flipflop units with the same clock 

frequency. It  needs 0.46% of the FPGA resources. A master 

adapter is four times larger than a slave adapter.

3.3. Software to Software interface synthesis

For  embedded  software,  the  SystemC  read(data)  and 

write(data) are implemented with POSIX elements in the case 

of  dynamic scheduling with  a  RTOS  and  Message  Passing 

Interface (MPI) elements in the case of static scheduling. We 

have  used  the  POSIX  compliant  Real-Time  Embedded 

Multiprocessor Scheduler (RTEMS) as RTOS. 

For  RTEMS,  the  read  and  write  primitive  functions  are 

replaced  with  the  rtems_message_queue_receive()  function 

and  the  rtems_message_queue_send()  function  respectively. 

The sc_fifo blocking read()  function is implemented with the 

RTEMS_WAIT option set in rtems_message_queue_receive(). 

The  non  blocking  sc_signal  functions  are  implemented  for 

RTEMS  through  message  queues  which are  flushed  before 

each data write. The non blocking read is implemented with the 

option RTEMS_NO_WAIT.

For  a  RTOS-less  solution,  the  SystemC  read(data)  and 

write(data)  are  implemented  as  one-sided  Remote  Memory 

Access (RMA) with the MPI MPI_put(data)  primitive only. 

The blocking mechanism for sc_fifo is implemented with the 

MPI_wait() primitive which waits for an acknowledgment. 

3.4. Software to Hardware interface synthesis

For software IP on embedded CPUs, communication with the 

NoC VCI agent is managed with dual-ported memory buffers 

and  DMA  from  its  VCI  adapter  (dedicated  to  the  CPUs) 

directly connected to  this dual-ported memory. The DMA is 

controlled by software driver subroutines overloading MPI or 

RTEMS message queues. 

In the case of host processor, the read(data) and write(data) 

SystemC primitives are  overloaded in order  to  call the  PCI 

driver  services  through  MPI  calls.  This  software  driver 

configures  the  hardware  DMA  which  manages  the  data 

transactions  between  host  memory  and  the  NoC  on  the 

prototyping board through the VCI/PCI bridge.

Using one-sided RMA is an efficient implementation solution 

of MPI [25][28] and the SystemC programming model is also 

very well suited to RMA implementation as sc_signal reads and 

writes  are  not  correlated.  In practice,  efficiency of  HW/SW 

interfaces is obtained with a direct integration of SystemC high 

level communication  library in hardware,  that  is  by a  joint 

optimisation  of  the  implementation  of  the  SystemC 

programming  model  with  the  MPI_put()  and  MPI_wait() 

primitives (RMA model) as well as with the underlying NoC 

design. The RMA mechanism is limited to write-only transfers 

between IPs allowing the design of a specific NoC optimised 

for those transfers with DMA. This approach is similar to the 

joint  optimisation  of  compilers  and  microarchitectures  of 

microprocessors. 

We  have  designed  optimised  network  interfaces  for  two 

custom NoC [29] with write-only communications, connected 

to  Microblazes,  LEONs  and  PowerPCs  processors  through 

their dedicated ports. The MPI_put() primitive needs two I/O 

access to configure the DMA of the network interface and to 

launch the  DMA transfer  in the  NoC.  Thus  the  MPI_put() 

takes only 8 processor clock cycles : 6 clock cycles to prepare 

the DMA configuration and 2 clock cycles for I/O access. In 

that case the result for the SystemC sc_signal write() primitive 

is  25  clock  cycles  of  overhead  comprising  two  MPI_put() 

executions (one for the control and one for the data), that is 16 

clock  cycles,  and  9  clock  cycles to  prepare  the  data  to  be 

transferred.  Also  there  is  no  overhead  for  the  SystemC 

sc_signal read() which is only a local variable access due to the 

RMA mechanism.

For  comparison,  the  main differences between MPI  RMA 

subset  and DSM API from Celoxica presented in Table 1 is 

that  the  MPI_put  is  a  non  blocking  mechanism which  in 

conjunction  with  MPI_Wait  can  implement  a  blocking 

mechanism, compared to  the DsmWrite and DsmRead which 

are only blocking mechanisms. Also the DSM API is a two-

sided communication compared to the one-sided RMA subset.

TABLE 1 : DSM AND RMA MPI SUBSET COMPARISON

DSM MPI

DsmInit() MPI_Init()

DsmExit() MPI_Finalize()

DsmWrite() & DsmRead() MPI_Put() & MPI_Wait()

DsmPortS2HOpen() --

-- MPI_Barrier()

4.GENERATION OF EMBEDDED C CODE

In modern complex SoCs, the software as an integral part of 

the SoC is gaining more and more importance.  At the system 

level, the system is composed of a set of hierarchical behaviors 

connected  together  through  channels.  However,  for  the 

implementation,  many designers  use  a  task-based  approach, 

where the tasks are scheduled by a real time kernel.  A whole 

system  design  is  composed  of  a  set  of  globally 

asynchronous/locally  synchronous  reactive  processes  that 

concurrently perform the system functionalities. 

Inside the SystemC process code, only wait() primitives are 

allowed and  processes  lack a  sensitivity list  except  for  one 

signal which is considered as a clock. Therefore, a process will 

only block when it reaches a wait(). These restrictions that we 

have required are only for the code involved in the embedded 

HW/SW partitioning process. They help our SCEmbed tool to 

generate  the  embedded  C  code  [30].  These  restrictions  on 

SystemC coding are also required by Celoxica tools for  the 

SystemC synthesis. 

The  XML  format  used  by  the  XML/C  parser  is  easily 

adaptable for a new target RTOS. The main idea behind is to 

redefine the SystemC class library elements for the new target 

RTOS. The original code of these IPs calls the SystemC kernel 
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functions to support process concurrency and communication. 

The  new  code  calls  the  embedded  RTOS  functions  that 

implement the equivalent functionality. Thus, SystemC kernel 

functions  are  replaced  either  by typical  RTOS  functions  or 

through direct generation of a statically scheduled code.  The 

functional  behavior  is  not  modified  during  the  hardware, 

software and interfaces generation. 

We illustrate the C generation process for the RTOS target 

with a Producer/Consumer example. The SystemC main code 

named sc_main() is converted to the RTEMS RTOS main code 

“init”. The channels are implemented with message queues for 

blocking sc_fifo channels and shared variables for non blocking 

sc_signal  channels.  The  clock  in  the  SystemC  code  is 

converted into a task sending an event value broadcasted on a 

message queue. All the tasks read this clock message queue for 

there synchronization. 

FIGURE 4: from SystemC main code to RTEMS code

SystemC concurrent  processes  need  to  be converted  into 

RTOS-based tasks. We instantiate the child tasks in a parent 

one  corresponding  to  the  SC_MODULE  in  the  system 

specification. This step is illustrated by our example in Figure 

4. The producer and the consumer instances are converted into 

Tprod and Tcons parent tasks.  In RTEMS, each parent task 

(SC_MODULE  in  systemC)  launches  the  child  tasks 

(processes  in  SystemC)  and  an  additional  task  which  is 

responsible  for  inter-process  communication.  This  task  is 

created to manage sc_out ports writing delay corresponding to 

the behavioral delay of the SystemC write function (the data 

are  validated  after  the  wait  event).  The  RTEMS equivalent 

code of the SystemC Producer is shown in Figure 5.

At  the system level, synchronization is implemented using 

channels or  SystemC events.  During the generation process, 

the  RTOS model provides  routines to  replace  the  SystemC 

synchronization primitives.

FIGURE 5: Producer RTEMS code

In the case of POSIX generation, synchronization between 

tasks is managed by semaphores for sc_signal implementation 

with global shared variables. A special clock management task 

is generated  which schedules the two-step  signal assignment 

process in order to  respect the semantic of sc_signal. All the 

signal assignments are performed simultaneously after all the 

processes  are  stopped  on  a  wait()  instruction.  The  wait() 

instruction  is  implemented  by a  semaphore  synchronization. 

The clock task is waiting for all the tasks which are sensitive to 

the same clock to stop on a wait instruction. Then the second 

step  is  performed  by  this  clock  management  task,  which 

corresponds to the assignment of all the shared global variables 

with the temporary variables assigned by the different blocked 

tasks.  These  blocked tasks  are  then freed  and can read  the 

shared  global  variables  which  are  now  updated.  This 

mechanism is  generated  for  each  independent  clock  in  the 

whole system. When different tasks are mapped on different 

processors,  we  assume  that  they  communicate  through 

asynchronous  sc_fifo  channels.  Otherwise,  the  clock 

management  tasks  of  the  different  processors  have  to  be 

synchronized  before  the  assignment  of  the  shared  global 

variables.

The second approach uses a RTOS-less static scheduling. In 

this solution, the SystemC scheduler is replaced by our custom 

simulation engine optimized for embedded applications.  This 

scheduler is called from each wait() instruction or from sc_fifo 

blocking  read()  or  write()  functions.  This  scheduler  also 

manages  the  synchronization  of  clock  sensitive  tasks  with 

barrier primitives. 

A  channel  implementation  library is  provided  for  all  the 

solutions.  Up  to  now,  only primitive channels are  available 

(sc_signal, sc_fifo). There are three versions of implementation 

for  each channel:  SW/SW,  HW/HW and  SW/HW.  SW/SW 

channels  are  direct  shared  variables  or  message  queues 

implementation.  HW/HW  channels  are  RTL  level  NoC 
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int sc_main () {

sc_signal<char> medium;

sc_clock clock("clock");

producer prod_inst("prod");

    prod_inst.out(medium);

    prod_inst.clk(clock);

consumer  

cons_inst("Consumer");

    cons_inst.in(medium);

    cons_inst.clk(clock);

sc_start(-1);

return 0;

}

(a) before

// RTEMS declaration part

rtems_task init(  rtems_task_argument* unused) { 

medium= rtems_build_name('m','e','d','i');

rtems_message_queue_create(medium,…, 

&mediumID);

Tclk = rtems_build_name('H','L','G','A');

rtems_task_create(Tclk,…, &TclkID);

clock= rtems_build_name('c','l','o','c');

rtems_message_queue_create(clock,…, &clockID);

Port_clock[0]=clockID;

Tprod= rtems_build_name('p','r','o','d');

rtems_task_create(Tprod,…, &TprodID);

Port_prod_inst[1]=mediumID;

Port_prod_inst[0]=clockID;

Tcons= rtems_build_name('c','o','n','s');

rtems_task_create(Tcons,…, &TconsID);

Port_cons_inst[0]=mediumID;

Port_cons_inst[1]=clockID;

rtems_task_start(TclkID,clock_task, &Port_clock);

rtems_task_start(TprodID,producer,&Port_prod_inst)

;

rtems_task_start(TconsID,consumer,&Port_cons_inst

);

 rtems_task_delete( RTEMS_SELF );

}

(b) after

/*===Myproducer.h File==*/

class producer : public sc_module

{

   public:

    sc_out<char> out;

    sc_in<bool> clk;

int i;

void main();

SC_HAS_PROCESS(producer);

producer(…): sc_module(name){

SC_THREAD(main);

sensitive_pos << clk ;

 }

};

rtems_task producer(rtems_task_argument 

*port) { 

Tsend = rtems_build_name('F','C','o','m');

Tmain = rtems_build_name('m','a','i','n');

 rtems_task_create(Tsend[0],..., &TsendID);

rtems_task_create(Tmain[1],..., &TmainID);

rtems_task_start(TsendID, ComTask ,&port);

rtems_task_start(TmainID, main, &port);

rtems_task_delete( RTEMS_SELF );

}

rtems_task main(rtems_task_argument *port){

// main code

rtems_task_delete( RTEMS_SELF );

}

// Communication task

rtems_task ComTask (rtems_task_argument 

*port)

{

// task code

rtems_task_delete( RTEMS_SELF );

}



wrappers.  SW/HW are  C  drivers  for  embedded  processors 

connected to the NoC. 

5.APPLICATION EXAMPLE

In order to evaluate the proposed technique, two designs have 

been experimented for the SW part  in this section. The first 

one  is a  simple consumer/producer  case  with two  SystemC 

components linked together. The second one, a more realistic 

case,  is  a  CDMA  radiocommunication  example.  The 

consumer/producer system description has about 86 SystemC 

code lines and the CDMA system description has about  976 

SystemC code  lines.  the  CDMA includes 7  modules with 8 

concurrent processes. Both examples have been implemented 

in a SPARC-based platform that includes 1MB SDRAM and a 

LEON2 processor  synthesized on one 4Mgate  Xilinx FPGA 

with 128 KBytes of RAM. The open source POSIX-compliant 

RTEMS  operating  system  has  been  selected  as  the  target 

embedded RTOS. 

The CDMA system has 7 modules: the top (CDMA), one 

module that generates samples, three modules that compute the 

QPSK modulation,  the  THR  and  the  interleaving,  one  that 

models the real environment channel behavior by introducing 

noise, and the last ones that do the reverse treatment that is de-

interleaving, ITHR and demodulation. All the modules work in 

a pipelined dataflow way.  Several channel models have been 

implemented  with  our  design flow.  The  CDMA application 

example  uses  one  of  them:  a  non  blocking  channel  (the 

sc_signal  channel).  The  proposed  channel  models  have 

different implementations depending on the HW/SW partition. 

Several  experiments  have been performed with semaphores, 

mutex condition variables and signals in order to synchronize 

threads with RTEMS.

Table 2 shows the code size of the different codes on the 

different operating systems. Table 3 presents there binary size 

and  Table  4  their  average  execution  time  per  treatment 

iteration.

TABLE 2 : LINE NUMBER OF PROD/CONS AND CDMA SOURCE CODE

SystemC

Linux

POSIX 

Linux

RTEMS

LEON

POSIX 

LEON

Static C

Linux

Static C

LEON

Prod/Cons 86 130 203 161 - -

CDMA 976 1350 1479 1387 950 950

TABLE 3 : BINARY CODE SIZE OF PROD/CONS AND CDMA

SystemC

Linux

POSIX 

Linux

RTEMS

LEON

POSIX 

LEON

Static C

Linux

Static C

LEON

Prod/Cons 592 K 14K 106K 83K - -

CDMA 1.8 M 32K 119K 97K 188K 12K

TABLE 4 : EXECUTION TIME OF PROD/CONS AND CDMA

SystemC

Linux

POSIX 

Linux

RTEMS

LEON

POSIX 

LEON

Static C

Linux

Static C

LEON

Prod/Cons 43 µs 81µs 2.43 ms 1.85 ms - -

CDMA 170 µs 310 µs 12.5 ms 9.2 ms 17 µs 153 µs

In Table 2, the number of lines of the generated embedded C 

code  is  nearly  the  double  for  the  first  simple  case  which 

includes  27%  of  SystemC  primitives.  For  the  CDMA,  the 

generated  code size is nearly half more important  with only 

13%  of  SystemC  primitives.  The  size  of  the  embedded  C 

generated  code is directly linked to  the number of SystemC 

elements  included  in  the  original  code.  As  each  SystemC 

primitive is translated with a set of embedded C instructions, a 

large proportion of read(), write(), wait() and others primitives 

can result in an important size. However, the increase of the 

generated code size remains low. Moreover, this generated C 

code is entirely "readable" and can be completed or optimized 

manually.

The Table 3,  the size of the statically scheduled code for 

embedded processor is nearly ten times lower than the RTOS 

one.  Thus  it  is  more  interesting to  use  our  RTOS-less for 

embedded  processors.  For  the  Linux  implementation,  the 

kernel is not included in the code, thus its size is lower than for 

the standalone one which include its own kernel.

In Table 4, the code execution time with static scheduling is 

nearly 60 times faster than the RTOS one. We have to consider 

here that the CDMA application highly communicates and thus 

highly requests RTOS services with context switching for each 

communication.  Nevertheless  we  can  conclude  that  RTOS 

implementation of SystemC elements is not  the best solution 

when static scheduling can be used. Secondly, the validation of 

the  embedded software  on  a  host  computer,  through direct 

POSIX  execution,  obtains  comparable  execution  times 

compared to SystemC execution. It is thus possible to validate 

the produced C code before loading it on the target embedded 

processor.  Also  we  obtain  better  execution  times  for  a 

dedicated static scheduling that is nearly ten times faster than 

pure SystemC execution times. It  is thus possible to evaluate 

more rapidly the whole SystemC model by parsing it in C and 

execute it instead of using pure SystemC simulations. This is 

possible only for the functional embedded code. 

The  results  collected  in the  tables  2,  3  and  4  show  the 

usability  of  POSIX  and  static  scheduling  as  embedded  C 

modeling solutions.

We  have  also  experimented  different  multiprocessor 

implementations in order  to  evaluate the impact  of HW/SW 

interface synthesis in term of  time overhead.  This overhead 

includes  software  delays  from device  drivers  and  hardware 

delays due to the NoC crossing. We have experimented several 

configurations with 1, 2, 4 and 7 processors connected with a 

one-dimension linear NoC with two processors per node. The 

speedup  obtained  is  presented  on  Figure  6.  The  reduced 

overhead of software and hardware interfaces (25 clock cycles 

for a write) combined with the NoC crossing time of almost 

one  clock  per  NoC  node  crossed  makes  the  impact  of 

communication  low compared  to  the  execution  time of  the 

CDMA functions  on  the  different  processors.  We obtain  a 

speedup of  1.8  with 2  processors  and 5  with 7  processors. 

These results show the low implications of such a higher level 

interface approach.
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FIGURE 6: speedup of CDMA application

6.CONCLUSION

This paper deals with the idea of unifying the use of SystemC 

to  implement  both  hardware  and  embedded  software.  This 

technique reduces  the  embedded  system design cost  with a 

platform based HW/SW codesign methodology. 

The  virtual  component  interfacing  is  a  key  aspect  of 

HW/SW  codesign.  We  have  shown  that  it  improves 

significantly  the  SoC  design  process  by  enabling  early 

verification, reusability, and interoperability. We provide VCI 

adapters  intended to  tackle a number of technical challenges 

confronting SoC designers. Each adapter is divided into several 

layers and may be connected to  several ports  and/or  several 

IPs.  Only  transport,  network  and  datalink  layers  can  be 

implemented as hardware. The presentation and session layers 

of the VCI adapters are only used for the functional behaviour 

of the system. 

The proposed methodology uses the redefinition of SystemC 

class library construction elements to  generate the embedded 

software. A first solution is to replace each SystemC element 

by  typical  RTOS  functions  and  MPI  primitives.  A  second 

solution, which is complementary, is to generate a standalone 

statically scheduled C code which exhibits better results. This 

method  is  independent  of  the  selected  RTOS  and 

communication API; any of them which is POSIX compliant 

can be supported by simply adapting the corresponding library. 

Future works concern the full support of the SPIRIT standard 

as well as the improvement of Syndex mapping and routing 

solution.
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