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Abstract : In certain applications, for instance biomechanics, turbulence, finance, or Internet traffic, it seems
suitable to model the data by a generalization of a fractional Brownian motion for which the Hurst parameter H
is depending on the frequency as a piece-wise constant function. These processes are called multiscale fractional
Brownian motions. In this contribution, we provide a statistical study of the multiscale fractional Brownian mo-
tions. We develop a method based on wavelet analysis. By using this method, we find initially the frequency
changes, then we estimate the different parameters and afterwards we test the goodness-of-fit. Lastly, we give the

numerical algorithm. Biomechanical data are then studied with these new tools.
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1 Introduction

Fractional Brownian Motion (F.B.M.) was introduced in 1940 by Kolmogorov as a way to generate Gaussian
"spirals” in a Hilbert space. But the seminal paper of Mandelbrot and Van Ness (1968) emphasizes the rel-
evance of F.B.M. to model natural phenomena: hydrology, finance... Formally, a fractional Brownian motion
Bp = (Bu(t), t € IRy) could be defined as a real centered Gaussian process with stationary increments such that
By (0)=0and E |Bg(s) — Bu(t)]> = 02|t —s|?H, for all pair (s,t) € IRy x IRy where H €]0,1[ and o > 0. This
process is characterized by two parameters : the Hurst index H and the scale parameter 0. We lay the emphasis
on the fact that the same parameter H is linked to different properties of the F.B.M. as the smoothness of the

sample paths, the long range dependence of its increments and the self-similarity.

During the decades 1970’s and 1980’s, the statistical study of F.B.M. was developed, to look at for instance
the historical notes in Samorodnitsky & Taqqu (1994), [, chap.14] and the references therein. Modelling by a
F.B.M. became more and more widespread during the last decade (traffic Internet, turbulence, image processing...).
Nevertheless, in many applications the real data does not fit exactly F.B.M. Thus, the F.B.M. must be regarded
only as an ideal mathematical model. Therefore, various generalizations of F.B.M. have been proposed these last
years to fill the gap between the mathematical modelling and real data. In one hand, Gaussian processes where
the Hurst parameter H has been replaced by a function depending on the time were studied, see for instance
Peltier and Lévy Vehel (1996), Benassi, Jaffard and Roux (1997), Ayache and Lévy Vehel (1999). However, this
dependence of time implies the loss of the stationarity of the increments. In other hand, non Gaussian processes,
mainly « stable (0 < a < 2) infinite variance processes, were considered, see for example the study of telecom

processes in Pipiras and Taqgqu (2002).

Here, we are concerned with Gaussian processes having stationary increments and a Hurst index changing with
the frequencies. To our knowledge, these kinds of processes were introduced implicitly in biomechanics by Collins
and de Luca (1993), in finance by Rogers (1997) and Cheridito (2003) and explicitly by Benassi and Deguy (1999)
for image analysis or image synthesis. In any case, the probabilistic properties of these processes have not been
thoroughly established and no rigorous statistical studies have been done. Both Collins and de Luca (1993) and
Benassi and Deguy (1999) propose a model with two different Hurst indices corresponding respectively to the high
and the low frequencies separated by one change point at the frequency w.. They use the log variogram to estimate
these two Hurst indices. Indeed, in this case, the log variogram considered as a function of the logarithm of the scale
presents two asymptotic directions with slopes being twice the Hurst index at low (respectively high) frequencies.
The change point w, is then estimated as the abscise of the intersection of the these two straight lines. Numerically,
this method is not robust. Moreover it could not be adapted in the case of more than one change point. Let us
stress that it is not a question of a theoretical refinement, but one that corresponds precisely to the true situations.
Indeed, in applications, we consider only finite frequency bands, therefore we should use a statistical method based
on the information included in finite frequency bands. Wavelet analysis seems the tool had hoc, when the Fourier

transform of the associated wavelet is compactly supported.

For these reasons, we put forward in Bardet and Bertrand (2003) a model of generalized F.B.M. including the
cases with more than one frequency change point. We called it (M) multiscale fractional Brownian motion where
K denote the number of frequency change points. More precisely, a (M) multiscale fractional Brownian motion
is a Gaussian process with stationary increments where the Hurst parameter H is replaced by a piecewise constant
function of the frequency £ — H (&) in the harmonizable representation, see Formula (E) below. The main proba-
bilistic properties of this model were studied in Bardet and Bertrand (2003). In this work, we treat the statistical

study of the multiscale F.B.M. and we focus on its application to biomechanics.
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The remainder of the paper is organized as follows: in Section 2, we describe the biomechanical data and the
corresponding statistical problem. In section 3, we recall the initial definition of the partial Brownian motion and
its principal probabilistic properties. Then, we show that the variogram method is not suitable for the estimation
of the various parameters of a (Mg )-F.B.M. We then develop a statistical estimation framework, based on wavelet
analysis. We investigate the discretization of the wavelet coefficient and we state a functional Central Limit The-
orem for the empirical wavelet coefficients. In Section 4, we first estimate the different frequency change points
and Hurst parameters. Then, we propose a goodness of fit test and derive an estimator of the number of frequency
changes. The numerical algorithm is detailed at the end of this section. Finally, in Section 5, the biomechanical
data are studied with the tools developed in Section 4. The proof of the results of Sections 3 and 4 are given in

appendix.

2 The Biomechanical Problem

One of the motivations of this work is to model biomechanical data corresponding to the regulation of the upright
position of the human being. By using a force platform, the position of the center of pressure (C.O.P.) during
quiet postural stance is determined. This position is usually measured at a frequency of 100 Hz for the one minute
period, which yields a data set of 6000 observations. The experimental conditions are formed to the standards of
the Association Francaise de Posturologie (AFP), for instance the feet position (angle and clearance), the open or

closed eyes.

Position following Y axis

Position following X axis

Figure 1 : An example ! of the trajectory of the C.O.P. during 60s at 100Hz (in mm)

The X axis of the platform corresponds to the fore-aft direction and the Y axis corresponds to the medio-lateral
direction. During the 1970’s, these data were analyzed as a set of points, i.e. without taking into account their
temporal order. During the following decade some studies considered them as a process, and Collins and de Luca
(1993) introduced the use of F.B.M. to model these data. In fact, they used a generalization of F.B.M. More
precisely, let the position X; of the C.O.P. be observed at times ¢; = iA fori =1,..., N (A =0.01 s). The study

of Collins and de Luca is based on the empirical variogram

N—-§ )
(X(i+6)a — Xia) (1)

i=1

Vn(0) = (N%é)

Ithese experimental data were realized by A. Mouzat and are used in [B]
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where 6 € IN*. For a F.B.M., we have EVy(§) = 02 A% x §2H and after plotting the log-log graph of the
variogram as a function of the time lag , i.e. (logd,logVn(d)), a linear regression provides the slope 2H. Typically,
one gets the following type of figure (see Figure 2). It is considered by Collins and de Luca to be a ?F.B.M.” with
two regimes : with slope 2H (short term) and with slope 2H; (long term) separated by a critical time lag §. and

these parameters are estimated graphically :

4

Logarithms of the Variogram

Logarithms of the scales

Figure 2 : An example of the log-log graph of the variogram for the previous trajectories X (-.) and Y (-).

They found Hy > 0.5, H; < 0.5 and a critical time lag 0. ~ 1 s. These results were interpreted as corre-
sponding to two different kinds of regulation of the human stance : in the long term H; < 0.5 and the process is
anti-persistent, in the short term Hy > 0.5 and the process is persistent. This method was employed several times
in biomechanics under the various experimental conditions (opened eyes versus closed eyes, different feet angles,...).
But, a lack of mathematical models and of statistical studies has made impossible to obtain confidence intervals

on the two slopes 2Hy, 2H; and the critical time lag d..

3 The multiscale fractional Brownian motion and its statistical study

based on wavelet analysis

3.1 Description of the model

A fractional Brownian motion By = {Bg(t), t € IR} of parameters (H, o) is a real centered Gaussian process with
stationary increments and E |By(s) — Bu(t)|* = 02|t — s|*H, for all (s,t) € IR? where H €]0,1[ and o > 0. The
fractional Brownian motion (F.B.M.) has been proposed by Kolmogorov (1940) who defined it by the harmonizable

representation :

(-1 5
where W (dz) is a Brownian measure and W(dﬁ) its Fourier transform (namely for any function f € L2(IR)
one has almost surely, [, f(x)W(dz) = [, F(&) W (d¢), with the convention that f(£) = Jpe " f(z) dz when
f € LY(R)N L*(IR)). We refer to Samorodnitsky and Taqqu (1994) for the question of the equivalence of the
different representations of the F.B.M. From the harmonizable representation, a natural generalization is the

multiscale fractional Brownian motion with a Hurst index depending on the frequency. More precisely, we define :
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Definition 3.1 For K € IN, a (Mg)-multiscale fractional Brownian motion X = {X(t),t € IR} (simplify by
(Mk)-F.B.M.) is a process such as

K Wit ets 1 )X
X(t)ZQZ/ UjW W(d¢) foral te R (3)
7=0"%i ’
with wg =0 < w1 < -+ <wg < Wk41 = 00 by convention, o; > and H; €]0,1[ for i€ {0,1,--- ,K}.

The (Mk)-F.B.M. was notably introduced in order to relax the self-similarity property of F.B.M. Indeed, the
self-similarity is a form of invariance with respect to changes of time scale [@] and it links the behavior to the high
frequencies with the behavior to the low frequencies. In Bardet and Bertrand (2003), the main properties of these
processes are provided : X is a Gaussian centered process with stationary increments, its trajectories are a.s. of
Holder regularity a, for every 0 < o < Hg and its increments form a long-memory process (except if the different
parameters satisfy a particular relationship, i.e., if its spectral density is a continuous function with 0 < H; < 1/2
fori=0,1,---, K).

3.2 The question of the choice of the estimator

In the remainder of this paper, we suggest a statistical study of such a model based on wavelet analysis. In this

subsection, we explain the reason of this choice.

To begin with, we will describe the statistical framework precisely. Let X = {X(¢),t € Ry} be a (Mg )-F.B.M.
defined by (ff). We observe one path of the process X on the interval [0, 7] at the discrete times ; =i - Ay for
i=1,...,N with Ty = N - Ay. Therefore,

(X(An), X(2AN), ..., X(NAy)) is known,

and we consider the asymptotic N — oo, Ay — 0 and Ty — oco. We want to estimate the parameters of the
(Mk)-F.B.M. that are (Ho, H1,...,Hg), (00,01,...,0k) and (w1, ...,wk).

Even if the model is defined as a parametric one, we prefer to use a semi-parametric statistics based on the
wavelet analysis. This choice is justified by the following reasons. First, the spectral density of X is not continuous
in the general case. Thus, one cannot use the classical results on the consistency of the maximum likelihood or
Whittle maximum likelihood estimators for long memory processes (see Fox and Taqqu, 1986, Dahlhaus, 1989 or
Giraitis and Surgailis, 1990). Moreover, this is not a classical time series parametric estimation : indeed, we con-
sider (X(An), X(2AnN),..., X(NAy)) instead of (X (1), X(2),...,X(V)) and therefore this is also an estimation
problem of the parameters of a continuous stochastic process. Secondly, the following semi-parametric statistics are
more robust than a parametric one if the model is misspecified. Consider the example where the function H () is a
not exactly a piece-wise constant function, but instead a constant function on several intervals and some unknown
function on the other intervals. In this case, a parametric estimator could not work while the semi-parametric

method based on the wavelet analysis will remain efficient.

Another semi-parametric method was developed from the seminal paper of Istas and Lang (1997). This method
of estimation is derived from the variogram and provides good results in the case of F.B.M. (see Bardet, 2000)
or of multifractional F.B.M. (see Benassi et al., 1998). However, one faces difficulties in identifying the model
(Mg)-F.B.M. with this kind of method. Indeed, one can easily satisfy that for § > 0 :

dwit1 (1 — cosv)

VE) =B (Xa+d) - X)) = ademer [T Egea n

wj
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The principle of the variogram’s method ensues from the writing of log (V(é)) as an affine function of logd. For a

— cosv)

(1
(Mg)-F.B.M., with C(H;) = / ( STl dv for i =0,1,..., K, two cases could provide such a relation :
0 D

1. for § — oo, log (V(&)) = 2H, - log § + log (4 - 03 - C(Hy)) + O(52H0);

2. for § — 0, log (V((S)) =2H -logé +log (4 0% - C(Hg)) + O(6°21x)

(the proof of such expansions is in the proof of Lemma [A.T]). In those cases, if one can show that there is a conver-
gent estimator Viy(d) of V(0), then a log-log regression of log (VN (5)) onto log é could provide an estimation of the
different parameters. Nevertheless, such a method would have a lot of drawbacks. On one hand, the estimation
of "intermediate” parameters (H;)1<j<x—1 and (O’?)lg j<K—1 requires very specific asymptotic properties between
all the frequency changes (w;)1<;j<k—1. This implies a lack of generality of the methods based on the variogram.
Moreover, concretely, the frequency changes are fixed and one obtains rough approximation instead of asymptotic
properties. For instance, numerical simulations show that in some cases the log-log plot of the variogram does not
exhibit any intermediate linear part. On the other hand, when the model is misspecified the variogram model could
lead to inadequate results. For example the following picture gives the case of a (M2)-F.B.M. where the variogram
method would detect only one frequency change and could not precisely estimate its value. Finally, the variogram’s
method could perhaps be applied in the two first previous situations 1. and 2., i.e. for the estimation of (Hp, 03)
or (Hg,0%) with ¢ will have to be a function of N (number of data). But this choice of function will depend on
the unknown parameters Hy or Hy for obtaining central limit theorems for log (VN (5)) ... (see the same kind of
problem in Abry et al., 2002).

_10 . . . . .
6 —q —2 o 2 4 6

log(d)
Figure 3: An example of a theoretical variogram for a (Mz)-f.B.m, with Hy = 0.9, H; = 0.2, H, = 0.5, and
oo = 01 = 02 = 5 and w; = 0.05, we = 0.5 (in solid, the theoretical variogram, in dot-dashed, its theoretical

asymptotes for § — 0 and § — o0).

We deduce from the definition of the model and the previous discussion that a wavelet analysis could be an
interesting semi-parametric method for estimating the parameters of a (Mg )-F.B.M. Indeed, such a method is
based on the change of scales (or frequencies). Therefore, as it is developed below, a wavelet analysis is able to

detect the different spectral domain of self-similarity and then estimate the different parameters of the model.
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3.3 A statistical study based on wavelet analysis

This method has been introduced by Flandrin (1992) and was developed by Abry et al. (2002) and Bardet et al.
(2000). We also use in the following similar results on wavelet analysis for (Mg )-F.B.M. obtained in Bardet and
Bertrand (2003). Let 1 be a wavelet satisfying the following assumption :

Assumption (Al): ¢ : R+— IR is a C* function satisfying :

o forallm e IR, / [t (t)| dt < oo;
R

e its Fourier transform @(E) is an even function compactly supported on [—83, —a] U [a, f] with 0 < o < S5.

We stress these conditions are sufficiently mild and are satisfied in particular by the Lemarié-Meyer “mother”

wavelet. The admissibility property, i.e. / Y(t)dt = 0, is a consequence of the second one and more generally, for
R

all m e IN,

/ £ (t)dt = 0, (5)
R

Note that it is not necessary to choose 1 to be a "mother” wavelet associated to a multiresolution analysis of
IL?(IR). The whole theory can be developed without resorting to this assumption. The choice of 9 is then very

large.

1 t

Let (a,b) € IR% x IR and denote A = (a,b). Then define the family of functions 5 by ¥\ (t) = 7 ) (— - b>.
a a

Parameters a and b are so-called the scale and the shift of the wavelet transform. Let us underline that we consider

a continuous wavelet transform. Let dx(a,b) be the wavelet coefficient of the process X for the scale a and the

shift b, with

1 t
d b) = — - —b)X)dt = X >0 .
x(a,b) \/a/Rw(a )X (t) <Pa, X >r2(R)

If ¢ satisfies Assumption (Al) and X is a (Mg)-F.B.M., the family of wavelet coefficients verifies the following
properties (see Bardet and Bertrand, 2003) :

1. for a > 0, (dx(a,b))scr is a stationary centered Gaussian process such as :

B (@(0.)) = Tu(e) = a [ ) pu)du ©)
. . . a B
2. foralli=0,1,---, K, if the scale a is such as [—, =] C [w;,wi+1], then
a’a
2
2 2H,+1 2 . ‘1/’(“)‘
E (d%(a,.)) = a1 07 Ky, (¢), with Ky(¢) = IRWTHdu. (7)

Property (ﬂ) means that the logarithm of the variance of the wavelet coefficient is an affine function of the logarithm
of the scale with slope 2H; + 1 and intercept log o2 + log K, (1). This property is the key tool for estimating the
parameters of X. Indeed, if we consider a convergent estimator of log (E (d?)((a, ))), it provides a linear model
in loga and logo?. Before specifying such an estimator, let us stress that one only observes a discretized path
(X(0),X(AN),..., X(NAy)) instead of a continuous-time path.

As a consequence, for ¢ > 0 and N € IN*, a natural estimator is the logarithm of the empirical variance of the
wavelet coefficient, that is log I (a) where :

1

In(a) = Bri@l keDzN:(a) a2 (a, kAy), (8)

with :
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e r€]0,1/3[;
e my = [r(N/a)] and My = [(1 —7)(IN/a)] where [z] is the integer part of x € IR;
e Dn(a)={my,mn +1,...,My} and |Dy(a)| is the cardinal of the set Dy (a).

For 0 < amin < Gmaz, & functional central limit theorem for (1og In(a))a,.in<a<ama.. Can be established (see a

similar proof in Bardet and Bertrand, 2003) :

Proposition 3.1 Let X be a (Mg)-F.B.M., 0 < @min < Gmaz and ¢ satisfy Assumption (A1). Then :

VNAN (log In(a) —10gT1(a))y, . cocar. — (2(0))amim<a<ames 9)

N—o0

with (Z(a)) a centered Gaussian process such as for (a1,a2) € [amin, Amaz)?,

2

2ay ap W a1€ ) ( Y(@r©)v(azg) e
A A ulq du. 10
con(Z(a). Z(a2)) = g | (/ Hesreeae | du (10)
Then, if we specify the locations of the change points in terms of scales, i.e. frequencies, we obtain the following:
Corollary 3.1 Leti € {0,1,---, K} and assume that B < Yitl Then,
[0 w;i
V NAN (10g IN(l/f)+(2Hz+1) 10g f*lOg O’?*log KH-L (w))wi/agfgwiJrl/g
D
N:O(Z(l/f))wz'/aﬁfﬁwiJrl/ﬁ (11)
with the centered Gaussian process (Z(.)) such as for (f1, f2) €| Z, wigl]Q,
e’
C2(A ) DE/F)DEL ) 2
Z(1/f), 21 e~ ede | du. 12
o211, 2011) = T Ko o ( = 5) u (12)

For Ay small enough, this result shows that all parameters H; and o? could be estimated by using a linear
regression of log In(1/f;) versus log f;, when the frequencies w; are known. Moreover, this central limit theorem
shows that a graph of (log f, log In(1/f)) for f > 0 exhibits different areas of asymptotic linearity : it suggests

the procedure of the following section to estimate and test the frequency changes (see for instance figures 4 or 6).

3.4 The discretization problem

In the applications, we only observe a finite time series (X (0), X (An), -, X((N —1) x Ay)) and we must derived
the empirical wavelet coefficients from this time series. Since the process X has almost a continuous path but with
a regularity ax < 1 almost surely, we should use the Riemann sum. Thus, for (a,b) € IR} x IR we define the

empirical wavelet coefficient by

Ay Vol pA
N N
ex(a,b)=%;w< — —b) x X(pAy) (13)
and the discretized estimator by
1
JIn(a) = 7=—— e%(a, kAN). 14
N( ) |DN(a)|keDZ() X( N) ( )
N(a
We also define for every k € Dy(a) the error
EN(a,k):eX(a,kAN)—dX(a,k:AN). (15)

Now, it is possible to provide the functional central limit theorem for (log Jn(a))a,.in<a<ama. computed from
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Theorem 3.1 Under assumptions of Proposition @ and with Ax such as NAny — oo and N(AN)2 — 0 when
N — o0o. Then, with the same process Z than in (@),

VNAy (l0g T (a) =108 T1(@))a,,,, <asames . (Z(O)anim<ogana. (16)
) ) L0 wit1
As a particular case, for i € {0,1,--- , K} and if — < , then
o .

(2

V NAN (10g JN(l/f)+(2HZ+1) IOg fﬁlog o-i2710g KH1 (w))wi/agfgwi+1/ﬁ

(B Daijaz <o s (a7)

The convergence rate of the central limit theorem (E) is vV NAp. Thus, the discretization problem implies that

the maximum convergence rate is o(N'/4) from the previous conditions on Ay.

4 Identification of the parameters

First, let us describe the method on a heuristic level. From Proposition @, Formula (E), we have

log Jy(1/f) = —(2H; + 1) x log(f) + log (07) + log (K, (1)) + £}, (18)
for the frequencies f which satisfy the condition
log (wi) —log(a) < log (f) < log (wit1) — log(f). (19)

Moreover we have (NAN)1/2 (s(f]]v)) e 2, (Z(1/f;))1<j<m- Formula ([1§) and condition () mean that for
1<j<m N-—oo -

log(f) € [log (w;) — log(a),log (wit+1) —log(B)], we have a linear regression of log Jx(1/f) onto log(f) with slope
—(2H; + 1) and intercept

logo? + log Ky, (v) and for log(f) € [log(wit1) — log(a),log (wit2) —log(B)] a linear regression with slope
—(2H;41 + 1) and intercept logo?,; + log Kp,,,(1). This is a problem of detection of abrupt change on the

parameters of a linear regression, but with a transition zone for log(f) € Jlog (wit+1) — log(8), log (wit+1) — log(a)].

Remark 4.1 Condition ) implies that w41 > ﬁ X w;i. Therefore we could only detect the frequency changes
@
sufficiently spaced. For instance, if we choose the Lemarié-Meyer wavelet, we get 3/a = 4 which leads to the

condition w;y1 > 4 X w;.

In this section, we describe the estimation of the parameters and a goodness of fit test. Both of them are based on

the following assumption :

Assumption (Bg) : The process X is a (My)-multiscale fractional Brownian motion. This process is
characterized by the parameters Q*, H* and o* where * = (Wi, -+ ,w}) with H* = (H{, Hf,...,H};) and
o* = (04,0%,...,0%). Moreover the following conditions are fulfilled
. B v :
® Wiy > X W fori=1,--- K —1;

2 2
. Hf . — H?“) ( * =_k) >0 d
0<igl(%1){( i+l i) T\ %1 — 0 an

e there exists a compact set K CJ0,1[x]0, 00[ such as (H},0}) € K for alli =0,1,---
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4.1 Estimation of the parameters

Let X be a (Mk)-F.B.M. satisfying the assumption (Bg) with K a known integer number. We observe one path
of the process at N discrete times, that (X (0), X(An), -+, X(NAN)). Let [fmin, frmaz], With 0 < fiin < fmaz,
be the chosen frequency band (see section 5, for an example). We discretize a (slightly modified) frequency band

and compute the wavelet coefficients at the frequencies (f;)o<r<ay Where

Jmin
B

For notational convenience , we assume here that NAy is an integer number. By definition, we have fo = fin/0

Fnas 3

fmin «

1/an
fr = (QN)k for k=0, ---,an, qN< > and ay = NAy.

and fon = fmaz/@, then, using the wavelet coefficients at the frequencies (fx)o<k<ay, Wwe could detect all frequency

*

*) included in the band | fmin, fmaz[. To simplify the notations, we use the following assumption :

changes (w}

Assumption (C) : w} €| fmin, frmas| foralli=1,... K.
In this framework, the estimation of the different parameters of X becomes a problem of linear regression with
a known number of changes; thus, we follow the same method as in Bai (1994), Bai and Perron (1998), Lavielle

(1999) or Lavielle and Moulines (2000) and define the estimated parameters (™), A as the couple of vectors

which minimize the quadratic criterion :

K+1 tj+1—7N

QWMN(T, A) Z Z Y; — X;\j|°, and thus

= i=1+t;

(f(N),K(N)) = Argmin{Q(N)(T7 A); T e A%V),A € BK}

with

Y: =log (Jn(1/fi)), Xi = (log fi,1) for i = 0,-- -, an;
[t

log gn

} , where [z] is the integer part of x.

T = (to,t1, - ,tx+1) € A%V) where

A(Iév):{(to,'-' atK—i-l) GWK+2;t0:0,tK+1 :aN+TN,tj+1—tj > TN fOI'j:O,--- ,K};

—(2H; +1)

e A= (N, -+, AK) € Bk where \; = ( log 02 + log K 1. (1))
J i

) and then
BK:{()\O,~~,>\K) with (Hj,02) € K for all ]6{0,1,-~~,K}}.

The integer 7 corresponds to the number of frequencies in the transition zones and log f;4., = log f; +log(8/a).

Obviously, for j = 0,--- , K, the vector XgN) provides the estimators I;TJ(N) of Hf and 8§N) of o7 by the relation

AN (Qﬁ(N) +1) F T 2N) . . . .
i log (( (N )) ) 4 loquN) () or a given T' € A , each A, is obtained from a linear regression

of (Y;) onto (X;) for i =¢;+1,--- ,t;41 — 7n. Thus, with T = (t;)o<j<r+1 obtained from the minimization in T

of QU)(T, A)7 we define the different estimators of the change frequencies as

V)

o —agg = B2 (220) 7 izt (20)

We have the following convergence :
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Proposition 4.1 Let X satisfy Assumptions (C) and (By ) with a known K, (Xay, -+ ,Xnay) be a discretized
path, and v satisfy Assumption (AI) Let Ay be such as NAy — oo and N(An)? — 0 when N — oo. Assume
that (H; am A(N)) e for alli=0,--- K. Then for all £ > 0, there exists 0 < C < oo such as for all large N,

((NA YL/ ‘AW)

Remark 4.2 The proof of this proposition shows a more general result, i.e. for (p,q) € [3/4,1] x [0,1], for e > 0,

W zc)gs forj=1,- K. (21)

there exists C' > 0 such as
P (a}\;p oM _

J

)<e Jorj=1, K
with ay = (NAN)?. For numerical considerations and convergence rate of the following estimators of the param-

eters, we are going to fix now on p =3/4 and ¢ =1 and then ay = NAy.

For j = 0,---,K, the natural estimates of H; and o3* are given by the regression of (Y;) onto (log f;) for

i€ {E(N = ,/yﬁ — 7n}. But the probability that [EE-N),AEJR —7N] C [t}, ¢}, — 7n] does not increase fast enough
to 1 as N — oo, in order to obtain a sufficiently fast convergence rate for these estimators. We address this
difficulty as follows. We ﬁx an integer number m > 3 and for j = 0,--- , K, we consider [U J(N), f/j(N)] an interval

strictly included in ﬁ-N ot +1 — 7N], such as

F(N) _ §(N) f;ﬂ — EE'N) N 7(N) _ 7(N) E;ﬁ} — E;N) _ ™~
Uj :tj + m——|—1 and ‘/J = tj +m m——i-l (22)

Then we estimate the parameters from a regression onto m points uniformly distributed in [U J(N), f/j(N)]; it provides

the following estimator )\( ) from a regression of (Y;) onto (X;) for

~(N) ~ (N ~ (N /(N% & 7
ie{U; 7 )}Z{UJ— )4 (k—1) ”T]} . By this way, define
1<k<m
- - L) /
AN ( — @A™ +1),logo?;  +log K g (1/;))

(V) _ .
X7 =(ogfi, 1)

- - -1 - i (N) ()
_ ((X](_N))/X(_N)) (X(.N))’Yj(N) with 70 _ i {0 - vy

)

{0 Ny

k/(m+1
WK <fmaac) /( 1) and
fmin

f * k/(m+1)
and for all k =1,--- ,m, define gj(k) = ng" <f ) , g (k) =

aw? k/(m+1)
i+l ;
forall j e {1,.-- K —1},.

*
ot
«

g; (k) =

- ~ (N
We get the following central limit theorems for the corresponding estimators (H j(-N), 02; )

)

Proposition 4.2 Under the same assumptions as in Proposition E, forallj=0,--- | K

7

T(N . D by
(NA)2 (A -x) B NIy (23)
g ! vx -1 * vk vk N -1 . * * * *J
where T'77 = (Xj Xj) X3 X (Xj Xj) , with X5 = (logg; (k) , 1)1§k§m and X5 = (s3])1<k1<m the fol-

lowing matriz :

2
N S N S —(2H; +1) ,—iug g du
/B </ﬂ%1/} (g}‘(kr)> v <g;-‘(l)> |§| ¢
2
(/][] e
R

Remark 4.3 Another possible choice would be to consider the regression for all the available frequencies in the

sl =2 (g;mg0)" (24)

interval [U;N), f/j(N)]. The number of considered frequencies increases then with the rate ay = NAy. However, it

does mot improve significantly the convergence since the remainders of the regression are very strongly dependent.
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4.2 Goodness of fit test

It is also possible to estimate parameters H} and o} from an feasible (or estimated) generalized least squares
estimation (for more details, see Amemiya, chap. 6.3, 1985). Indeed, we can identify the asymptotic covariance
matrix X7 for j = 0,---, K : this matrix has the form X% = %(H},w},wj, ) and, from the previous limit theorems,
§]§N) =X(H j(N),®§N),®§_]:z) converges in probability to ¥7. Thus, it is possible to construct an estimator ASN) of

A7 with a feasible generalized least squares (F.G.L.S.) regression i.e. by minimizing

) _ My 2 ) gy (ST ) g
1577 = X5 A g = (77 = X570 (EM) @ =%y,

/
(—HM +1).10g %™ +10g K yov (1)

) — -1
- (V) () ! (V) (V) () (V)
(0 (EY) &) @y (E)

First, we give asymptotic behavior of A;N

Proposition 4.3 Under the same assumptions as in Proposition @, forallj=0,--- K,

Va2 (A=) Ny (25)
. S * )~ 1 yx -1
with Ty = (X7 (=)' x;)
For 7 =0,---, K, the vectors %(N) and X}N)AgN) are two different estimators of the vector
(—(QH;‘ + 1) log f; + log a?* +log Kp» (w))ie{U(N) Dy It suggests to define the following goodness of fit test.

The test statistic TI((N) is defined as the sum of the squared distances between these two estimators for all K + 1

frequency ranges:
K
N o (N S(N)\ (N
T = (NAN) - [ S0 7Y = XA 2,
=0 !

This distance is the F.G.L.S. distance between points (log f;, ;)

F.G.L.S. regression lines. As a consequence, we get

ie{[j;N)ﬁ_“’"}.j(N)} for j =0, ---,K and the (K + 1)

Proposition 4.4 Under assumptions of Proposition B, we have

T 2 UK+ 1)(m - 2). (26)

Remark 4.4 Proposition may be explained with heuristic arguments. Remainders are turned white, thus it
is only natural for the sum of the second regression remainder squares to asymptotically form a x? process. The
number of degrees of freedom is (K 4+ 1)(m — 2) because one loses two degrees of freedom after the twice estimation

of the (K + 1) vectors A} (we also show that these vectors are asymptotically independent).

4.3 Estimation of the number of frequency changes

Throughout the previous study, the number of frequency change, K, is assumed to be known. But the previous test
provides a way for estimating K. In fact, it can be recursively done by beginning with K = 0 and continuing till
the assumption “X is a (Mg)-F.B.M.” is accepted. The following applications in biomechanics provide different
examples of the power of discrimination of such a procedure. However, this estimation of the number of frequency
changes must be carefully applied : from numerical and heuristic arguments, it does not seem reasonable to work
with K > 2.
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4.4

Estimation procedure and on the choice of parameters

Thus, for identifying a (Mg )-multiscale fractional (with K unknown) from a time series (Xo, XAy, -, XnAy) We

suggest the following procedure:

1.

Begin with K = 0.

Choose a mother wavelet ¢ (and thus « and (), a frequency band [fmin, fmaz] and m (see below for these

different choices).

Compute the different frequencies (f;)o<i<ay -

Compute the vector (Y;)o<i<an = (log In(1/fi))o<i<an-

Minimize Q¥)(T, A) and thus compute the different values of @](-N) forj=1,---,K.

Compute the different regression moments {U;N), I \N/j(N)} and then the estimators X;N) (forj=0,---,K).

(V)

Compute the different matrices EAIJ- and then A;N) (for j=0,---,K).

. Compute TI((N) and compare its value to the 95%-quantile of a x?((K + 1)(m — 2)). If the test is rejected
then go back to step 2. with K = K + 1.

How to chose the function ¢ and the parameters fin, fimez and m 7

1

. Choice of ¢ : The mother wavelet 1) has to satisfy Assumptions (Al) but as we say previously it is not
mandatory to associate this function to orthogonality properties. However, the Lemarié-Meyer wavelet is
a natural choice with good numerical properties of asymptotic decreasing but a too large ratio 3/« which

implies a too large transition zone of frequencies. The function ¢ can also be deduced from an arbitrary
-1

(A —o)(B - |A|)) Lagini<s

and the function 9 built from a translation of the Fourier transform of the Lemarié-Meyer function to

construction of its Fourier transform zZ; for instance, we propose 1}1()\) = exp (

[-27, —7] U [m, 2] (thus the ratio is now 5/a = 2). The results obtained from those functions ¢ and . are
essentially the same than with the Lemarié-Meyer mother function, they appear more precise for the detection
of frequency changes w; (because log 3/« and thus the transition band, could be as small as wanted) and

less precise for the estimation of parameters H; (because ¢ and 15 are not concentrated as well around 0).

Choice of fp,in and f.. ¢ (we assume here that the frequencies are given in the inverse of (X1, Xa---)
time unity). The choice of fiin and fina. is first driven by the selection of a frequency band inside which the

process has to be studied; the inspected frequency band is then [fm%, M] Secondly, N x % should be
@

min

large enough for computing I ( ) in (§). Formally one only needs to have N x > 1 but numerically

N x fmJ > 10 seems to be necessary to use correctly the central limit theorem. Finally, the discretiza-

tion problem implies that f,,., cannot be too large for providing a good estimation of dx(i, kAN) by
max

ex(i, kAnN). In practice

fmam

Choice of m : Formally, m could be chosen such as 3 < m < min;(t;,, — 7nv —t}). Theoretically, the larger

fmax .. oy
——— < —— appears as a minimal condition.
« AN

the m, the closer to 1 the power of the test. But numerical considerations imply that if m is too large then
the different matrix §]§N) are extremely correlated and the quality of the test is very dependent to the quality

of the different estimations of X}‘ As a consequence, we chose 5 < m < 10.
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5 Numerical simulation and applications in Biomechanics

5.1 Simulations

1. Initially, we apply the estimators and tests to several simulated trajectories of classical F.B.M. (generated
according to a Choleski decomposition) with different values of H = 0.2, 0.4, 0.6 and 0.8). The selected of values
of different parameters are : N = 6000, Ay = 0.03, m =5, fiin = 0.05 and f,,q4. = 20. There are 30 independent

replications of each time series. The results are presented in the following table :

Theoretical values of H 0.2 0.4 0.6 0.8
Empirical mean of H 0.148 | 0.384 | 0.599 | 0.821
Standard deviation of H | 0.034 | 0.031 | 0.041 | 0.048

The Figure 4 presents the log-log representation for one trajectory : the linearity is seeming. Moreover, Figure 5
exhibits a histogram of the distribution of the test statistic TéN) (in this case K = 0 and 30 x 4 = 120 independent
realizations) compared to a y2-distribution with 3 degrees of freedom. The goodness-of-fit Kolmogorov-Smirnov
test for TO(N) to the x?(3) distribution is also accepted (with D ~ 0.091 and p — value ~ 0.272).

Logarithm of IN

7
Logarithm of IN

/
/

Figure 4 : The log-log representation for a trajectory of a (My)-FBM (left, with H = 0.6) and (M;)-FBM (right)

2. Then, we apply to 30 independent replications trajectories of (M;)-FBM (generated according to a Choleski
decomposition with numerical approximations of the covariances) with Hy = 0.2 and 02 = 10, H; = 0.7, and
0? =5, and wy = 5. The results (with parameters : N = 6000, Ay = 0.03, m =5, fin = 0.8 and fiq: = 16) are
the following :

Theoretical value Hy=02| H =07]| w =5
Empirical mean 0.197 0.693 5.18
Standard deviation 0.110 0.068 0.491

Figure 4 presents the log-log representation for one trajectory, with the 2 regression lines. The hypothesis of the
modelling with a simple FBM (therefore with K = 0) is always rejected (in such a case, the model is misspecified
and the statistic TéN) is then between 39.3 and 126.8, very different from the realizations of y2-distribution with
3 degrees of freedom). On the contrary, the hypothesis of the modelling with a (M;)-FBM is always accepted and
a histogram of the realizations of the test statistic Tl(N) is presented in Figure 5 (compared to a y2-distribution

with 6 degrees of freedom). The goodness-of-fit Kolmogorov-Smirnov test for Tl(N) to the x2(6) distribution is also
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accepted (with D ~ 0.187 and p — value ~ 0.059).

Figure 5 : The empirical distribution of TO(N) and Tl(N) (respectively) compared to the corresponding y? distri-
bution in the cases of simulated trajectories of (My)-FBM (left) and (M;)-FBM (right)

Conclusion of these simulations : the results are surprisingly good compared with the complexity of the
method. The asymptotic distribution of the test statistics can be used for real data. However, the computation
time is important (especially for the computation of the test statistic) : 3 hours are necessary for the treatment of
each (M;)-FBM replication.

5.2 Applications in Biomechanics

We apply our statistics to different trajectories (see the description in the Introduction) with the following param-

eters :
e N = 6000 and Ay = 0.03;
e The mother wavelet is ©; (with & =5 and 8 = 10).

e The choice of the frequency band is f,i, = 0.15 and fqa: = 15 which corresponds to a detection frequency
band [0.52 , 38.32] Hz (with mother wavelet ¢ );

e m =2>5.

First, we study the X-trajectories of one subject (fore-aft direction) for different feet position (0; 2; 10; 20cm
clearance and 0; 15; 30; 45° angle). In all the cases, the test (with a type I error of 5%) rejects the hypothesis of
a modelling with a simple (My)-FBM. But the modelling with a (M7)-FBM is accepted by the test 12 times out
of 16, with an empirical mean of &7 ~ 3.5 and a standard deviation of &7 ~ 1 (the different values of ﬁo and H 1

are in [0.9,1] in the different cases).

For the different Y-trajectories (medio-lateral direction) of the same patient, the test rejects the hypothesis of
a modelling with a simple (M;)-FBM in all the case. The modelling with a (M;)-FBM is accepted by the test 13
times out of 16, with an empirical mean of @y ~ 3.1 and a standard deviation of @; ~ 1 (the different values of H,
and H, are in [0.8,1] in the different cases).

Figure 6 presents log-log plots of Jy(fx) versus fr (i.e. logJn(fk) vs. log fr) of all the experiments, for X-
trajectories (left) and Y-trajectories (right).
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Figure 6 : The log-log representation of the 16 different X-trajectories (left) and Y-trajectories (right)

Conclusion of these applications to biomechanics data : all these results allow us to give new interpretations
on the upright position. The behavior of X-trajectories and Y trajectories are very similar, for all the positions
of the feet (the studied statistics do not seem to depend on the angle and clearance of the feet). The (M;)-FBM
models of these trajectories fit well, which suggests two different type of behavior for low and high frequencies.
The frequency change is around 3 Hz, which corresponds to a physiological change : this could be interpreted
for instance as the passage of a cerebral control of the stability by the inner ear to a muscular auto-stabilization.
We return to ] for a more detailed discussion of the biomechanical interpretations. Such an estimation of this

frequency change would be very interesting for a better detection of certain pathologies and to help in their cure.

A  Proofs

A.1 Proof of Theorem B.1]
First, we prove the following technical Lemma :
Lemma A.1 Let X be a (Mg)-MBM. For (t,t') € R?, and (u,v') € R%, define :
S(t,u,t' u') = E {(X(t Fu) - X(0) - (X + o) — X(t'))} . (27)

1. For all (u,u/,t,t') € IR3 x IR?, there exists a constant C' > 0 depending only on the parameters (w;);, (0;);
and (Hj); such that :

|S(t,u,t )| < C- (u - Lucy + 0™ 1ysn) x (w0 Lycr + w0 Lysr) (28)

1
2. More precisely, if (max(u,u’) . wK) <1 and max(u,u’) < Y [t/ —t| , there exists a constant C' > 0

depending only on the parameters (w;);, (0;); and (Hj); such that :

1 1
/ !/ / n4
|S(t,2u,t,2u)‘ <(C- (uu —l—max(u,u) ) (m +z—OIE,aX,K{|tt/+u/u|22H‘L }) . (29)

Proof. 1/ First, the Cauchy-Schwarz inequality implies that

[S(tu.t',u)] < /B [(X(t+a) - X(£)2] x \JE[(X(# +a') - X(£)2)].

awjtr (1 _
But, E[(X(t+a)-— X(zf)ﬂ2 =4 Z o2 q?ti / (1 — cosv) dv. Then, the following expansions :

J U?H]‘Jrl
=0 @
1 2—2H 4—2H
x (1 _ COS’U) _ m X + O(.’L' ) fOI' xr — 0,
—E . = 11 1
C(H) - 9H 22H + O(x2H+1) for 2 — oo.
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oo 1 _
with C(H) = / (Tc?jv) dv, imply that :
0 v

) 4-0% - C(Hg) - u*% + O(u?) when u — 0;
E[(X(t+u)—X(1)] = (30)
4-0%-C(Hp) - u*o +0(1) when u — oo;

that achieves the proof of the majoration (Pg).

2/ We turn now to the proof of the upper bound @) To begin with, we remark that for all (¢,¢,u,u’) € IR*, the

following equalities are true :

S(t,2u,t',2u’) =

—i(t+2u)§ _ —it€ ei(t'+2u’)§ _ eit’g
/ (e )( )
R

| | _/f(&) y
_ 8/0 sin(ug) - sin(u/€) .;;)(Sg()g(t —t+u —u)) e
_ 820? /w«w sin(ug) - sin(u’€) 5528 Ef(t/ —t+u —u)) . (31)

Then, we bound the different integrals.
e First, we threat the case i = K that is when the upper limit of the integral is co. In this case, we can rewrite

the integral between wg and oo as the difference of the integral between 0 and co and the one between 0 and wg,

that is /OO ~v(§) d¢ = /OO ~v(&)d¢ — /WK (&) d§ where v(§) = sin(uf) - sin(v'€) - cos (f(t' —t+a — a)) - (Hk+1),
The secotlﬁ integral of ’She right hand OSide can be bounded by the same argument than the terms of order i = 0 in
() The first one corresponds to the expression of the covariance of the increments of a F.B.M. By, with Hurst
parameter Hg and variance 1. Thus, for all (¢,t') € IR?, (u,u’) € IR such that 4 - max(u,u’) < [t/ —t|, we get :

o sin(ug) - sin(u'E) - cos (E(t' —t + v’ —u)
[ e

- ‘E ((BHK (t+2u) — By (1)) - (B, (' +2u/) — B, (t’)))‘

1
= 203 (Hx) ‘(It —t 4 2uPHR — |t =t 4 2u — 20/ PR — =P -t — 2u,|2HK)}
K
u-u ]
< D(Hk)- with D(Hg) > 0. (32)

|t —t o — u|272HK ’

e Next, we consider the integrals with a finite upper limit and a non-zero lower limit. This corresponds to

1=1,..., K —1. In these cases, for b > 0, an integration by parts provides us

/:i+1 sin(uf) - s;llgﬁ) - cos(b€) it = % < /:i+1 u - cos(u) ~sin(u’§:§)2;;:; -cos(u') - sin(ug) - sin(b€) dé

7 7

H2H, +1) /

Wi

@it gin(uf) - sin(uw'é) . sin(u) - sin(u/'€) - sin(b€) 1<
g - sin(h) e + e )6
By using the majoration |sin(ux)| < uz, |sin(v'z)| < v'z, |cos(uz)| < 1, |cos(v'z)] < 1 and |sin(bz)| < 1 for
x >0, we deduce that for all (u,u’,b) € R3,

‘ /w(iui+1 sm(u«f) . Sg;llg’iljrﬁ) . COS(bé-) d€ < Cz . u 'bul’ (34)
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where C; > 0 is a constant depending only on H;,w; and w;41.

e Finally, it remains to bound the two integrals with lower limit 0. We will show only how to bound
/“’1 sin(ug) - sin(w’€) - cos(b)
0

§2H7;+1

d¢, since the other integral can be treated similarly. The integration by part formula

1=2Hi and

() remains valid even when the lower limit is 0. Indeed, the integrand can be bounded by C x &
1
/ g2 ¢ < 0o as soon as H; < 1. After this remark, we bound the three terms of the right hand side of (B3).

0
i) From |sin(uz)| < uz, |sin(uv'z)| < v’z and |sin(bx)| < 1 for 2 > 0, we deduce that for all (u,u’,b) € Bi,

‘ {sin(u«f) -sin(u/€) - sin(bg)rl
0

§2H0+1

< (w%’QH“) ETRET (35)

ii) For all (£,¢') € [0, w1], the power series expansion of z — sin(z) implies that

2]-‘,—1 ( )Q(k 3)+1

) k
sin(ug) - sin(ug) = u - v/ o ; (Z 25+ 1) (2(k—j)+ 1)!) ) (_1)k§2k+2-

7=0

One can remark that

k 2j+1 . (,,1\2(k—7)+1 k
'u () . < max(u,u’)?* 2 Z L -
— (25 + D)2k —4) + 1) = (2g+1) 2(k—j)+ 1)!

J

< max(u,u)*?,

because Y

can be interchanged and

w1 o3 o 7¢Y . qin(b w1 gin(b e w1
/O sin(uf) ?SPS?+£2) sin(b¢) df*u~u’/0 Slg;(Hf) df‘ < <max(u,u')2k+2~/0 ¢2k—2Ho d§>

k=1

>0 m < 2. As a consequence, when (max(u,u’) -w1) < 1 and b > 0, integration and summation

max(u, ') - Wi~ 2o

1 — (max(u,u’) -wy)?’

w1 s bowyp s -
But / SIn(P) e — 2ot / SI0E) ge. Denote M(H) = sup | [ 2 de| for 0 < H < 1. Thus
0 g2t 0 g2 weR,  Jo &
w0 max(u, u')*

‘ /‘”1 sin(ug) - sin(u’) - sin(b) (36)

€2Ho+2 df’ < M(Ho)-u-u'-p?Ho~t

1 — (max(u,u') - wy)?

iii) Similarly for (§,&’) € [0,w1], we have

k w2 ( )Q(k +1

cos(ué) - sin(u'€) =u' - €+ ,; (Z B 1)) S (—1)kg2kt1,

7=0

u2d . (u/)2(k7j)+1
But for k > 1, ( E @) 20k — ) + 1)|) < max(u,u')***1. As a consequence, when (max(u, ) -w;) < 1 and
; j)! - — ] !
Jj=0

b > 0, integration and summation can be interchanged and we get

/“’1 u - cos(uf) - sin(u'€) - sin(b€) p o /‘”1 sin(b€) dﬁ‘ < max(u, u')* ~wf72H°
0

€2Ho+1 &= £2Ho ~ 11— (max(u,u’) -wy)?’

(37)

Therefore from ([B3), (B4), (B7) and (BI), we deduce for (u,u’) such that max(u,v’') - wx < 1/2 :

’/OO sin(ug) - sin(v'€) - cos(b€) df‘ < (D(Hy) + 3M(Hye)) - - t4. max(u, u’)* L WA2HK u-u l2HK

2H i +1 2—2H K K
§ b b b

By combining the two previous bounds with (B1) and (B4), we deduce (BJ) and this finishes the proof. |

The proof of Theorem uses the two following lemmas:
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Lemma A.2 Under the same notations and assumptions as in Theorem @, there exists two constants C7 > 0
and Cy > 0 depending only on 1, Gmin and amaez Such that for all N

i) sup max Eex(a,k) < C x p(N) (38)
ae[am,inﬂlmam] keDN(a)

i7) sup max E |Vaien(ar, k) — Vazen(az, k)° < Cox o(N) x |az — ay|* (39)
a1,a2€[amin, Amas] FEPN (a1)NDy (az2)
where p(N) = A% + A2 L A2 log N + ANPEN 920 4 (NA )2 with H = max{H; , i=0,--- , K}.
iii) Moreover (N An) p(N) — 0 when N — oco.

Proof. The error ey(a, k) contains three different terms, the first one corresponds to the replacement of the
integral onto the interval [0, Ty] by its Riemann sum, the second and the third ones correspond to the replacement

of the integral onto IR by the integral onto the interval [0, 7] where Ty = NAy. More precisely, we have

n(a,k) = % x (e1,n(a, k) + e2,n(a, k) + €3, (a, k) (40)
with
v t pAN
ein(ak) = Y(— —kAN) X(t)dt — Ay Z P(—X — kAN) X (pAn),
0 a
con(ak) = [ ot —kAy) X0 dt,
Tn a

0
con(ak) — [ w(ékaN)X(t)dt

By using (z +y + 2)? < 3 (22 + y? + 2?) for all real numbers z, y, z, we deduce

3
E(ak) < (S) v <ZE{—:?,N(&,]<:)>. (41)

We now bound the different terms E €7 v (a, k) for i =1,2,3:

(1) Bound of E<} y(a,k).

We have the decomposition €1 ny(a, k) = I1 y(a,k) + Iz n(a, k), where
N— P+1)AN
ILN(CL,I{?) = Z / — —kAN) ( (f) —X(pAN)) dt
p=0
N-1 ,(p+1)AN A
and Ln(a,k) = / ( L k:AN) —w(p il kAN)) X (pAy) dt.
p=0 PAN a

Then, the inequality (z + y)? < 2(2? + y?) which is valid for all (x,y) € IR?, implies
Eei y(a, k) <2E (I y(a, k) + 2 E (I3 y(a, k).

On one hand, we have

1N1

E (2 y(a, k) = / o Ay(p 5531?12(2 —kaw ) o (5~ kan) B ((X(0) - Xean)XE) - X0/A0))

AN

1 N N
— Z/A/z du 1/)(U+§AN JgAN)q/,(% kaN)S(pAN,uvp/AN,U/).
0 0
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Afterwards, we use Lemma @ to bound the terms S(pAy,u,p’An,u’), where we use different types of bounds
depending wether (p,p’) is in the vicinity of the diagonal or not. Namely, when |p — p’| < 3 we use the upper
bound (Bg), and otherwise we use the one in (BJ). Observe that the assumptions of Lemma are satisfied for

large enough N since NAy — oo, as N — o0o. Thus, when N is large enough, we get

A l ‘A
E(I%’N(a’k)) < Z //dUd U+(}; N—kAN)"w(u—i_#—k’AN)‘C-(u.u')Hk_i_
p=0,p' =0
lp — ;D|<3
N-—1 ANFAN A , /A
+ Z//dudu/w(m%mﬂ(m%m) ...
pIO,p’:(S) 0 a a
lp—p'| >4
1
: A2
x C N <(|p/—p|—1)A + Inax { p _p| _1 AN)Q_QHi })
N—-1
0 o
< C A§V+2HK Z sup 7/’<< +pk)AN> X sup ¢<( +r k)AN)‘

— o0 — g P€(01) a 6¢(0,1)

pl O’17|<90,

p—p

. N-1 9+p 9/+p/

+C - Ay Z sup |9 ( —k’)AN sup |9 ( —k;)AN X -

_ ’ 0€(0,1) a 6€(0,1) a

p=0,p =0

lp—p'| >4

1 1
X | o Ao T max .
<(Ip’ —pl—DAy =0 { ((Ip" = pl = 1)Ay)?>—2H })
However, according to Assumption (A1), for every integer m € IN* there exists a constant C' > 0 such that for all

N(CER

x € R, |Y(x)] < C-(1+|z])~™. In particular, sup is bounded. Therefore,

6’€(0,1)
N-1 o
E (I y(a,k)) < C- A2+2HKZ sup <1+|9+p—ak|AN/a)
’ ¢ 0e(0,1)
N-1 N 1
+ C- A} sup (1+|0+p—ak|An/a <—+ max {7})
szoee(o,l)( | | N/) q; gAN =0, (qAN)2—2Hi
But
N—1 m o o .
A IA oo
Ay ) sup <1+|9+pak|—N) < CAy Y <1+| N|> gc/ <1+m> dz
p—0 0€(0,1) a Pyt a o a

C'lal / I+1y) ™de < Clamazl-

Let us denote H = max{H; , i=0,--- ,K} and H = min{H; , i =0,---, K}. We deduce

N
1 1
) < s e 5 (o o ()
q=3 N =0, qan
1w 1 N 1
< C A}V+2HK JrA?v IOgNJrA?V( 5 oH Z o= + Py Z o gﬁ)
AN q=3 q o AN =A% q

< C (A}v+2HK + A2 logN + A% + A}jﬁN—l”ﬁ) . (42)
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On the other hand, by using Lemma EI, formula @), we get

N IN-1 s(p+1)AN (p+1)AN

E(2y(a k) = Z/p dudu’ ( =~ kAy) —w(pAN = kAN))

p= Op/ 0 AN /AN a

a

(0 = k) — 0 (722~ kaw) ) 5(0.005,0.52)

2

+ pA A
<c (Z/ u p N—kAN)—w(pTN_kAN) x‘(pAN)Ho-k(pAN)HK’)
A 2
’ t+p N Hy Hg
(B 55 MO )t )
2
— A
< o (Z sup w(Hp ) X|(pAN>H°+<pAN)HK|> |
p=0 tE[O,AN]

But Assumption (A1) implies that for m = 4, there exists a constant C' > 0 such that for all z € IR, |[¢/'(x)| <
C-(1+ |z])~™. We deduce

N—1
t+ pA
Ax D sup (T kAN )X AN)™ + (0AN)™
»—0 t€[0,AN] a
oo 1 [e’e] Hy Hg
< CAnN Z —m"(PAN) + (pAn HK’ <C- / 7|z|1++| |r| dr < oo.
p=—00 (1 + |PAN|)
Therefore,
E (I y(ak) < CAY. (43)

(2) Bound of Esg,N(a, k).
By using Lemma @ and Cauchy-Schwartz inequality, we deduce that for N large enough,

/ / P kAN) (4 (_ - kAN) S(0,u,0,u") dudu’
Tn JTN
o(/, et o)’

Tn N

On one hand, k € Dy(a) implies that k& < [(1 — r)N/a]. On the other hand, v > T = N - Ay. Therefore, we
have (1 + ’E — k:AND > (u— (1 —=7)NAy) /a. This implies that for m > 4 and N large enough,
a

E E%,N(aa k))

IN

o0 —-m o NAN\ ™™
/ (1+’E—kAND u?fodu < / <E(1T) N> u?Ho dy
Tn a Tn a a
m oo _ .\2Hp
_ a / (v+1-7) i,
(NAN)m72H071 ” m
by making the change of variable u = (NAy) (v + 1 —r). Consequently,
Ees y(a I<:)<C-;. (44)
AT (NAN)?

(3) Bound of Ec3 y(a,k).
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By using the same kind of argument than in (2), one obtains that for N large enough

/ / " (— - kAN) n (%I - kAN) (0, u,0,u') du du’
(/ (1+]5 —nanl) |u|2HK+|u|2H°)du>2

— . 2 2
c / L+ (v—r/2-NAN)?
T/Q'NAN ,Um

As a consequence, for m > 4 and N large enough,

Eej y(a, k)

IN

IN

1
EE%,N((J‘?k)SC'm' (45)

Finally, from ({2), (13), ({4) and ([&3), we deduce that (Bg) holds. This finishes the proof of the point i). Since
NAN — oo and NA% — 0, (NAx)p(N) converges to 0 when N — oo. This proves the point iii). To complete
the proof of Lemma @, it remains to proves the point ii). We deduce from the decomposition (@) that

3
E |Varen(ar,k) — Vazen(az, k)° < 3 E |ein(az, k) — e n(ar, k)| (46)

i=1
The same calculations than the ones used to prove the point i) provide the upper bound on the terms

E |ein(az, k) — ein(aq, l<:)|2 Indeed, consider for instance the terms with 2 , then by using Taylor formula, for

every pair (a1, a2) with amin < a1 < a2 < @mas there exists a real number 6 € (a;, az2) such that

con(an k) — eanlan, k) = (az—ay) /Tio (;—,f) W (g - kAN) X(t) dt

Next, by using the same kind of arguments than for the bound of E 537 n(a, k) in point i), we get that for every

integer m > 4, every ai, as in [amin, Gmaz| and k € Dy(a1) N Dy (a2)

2
|0,270,1|2 (/ (14”5*]{3AND 1+2H0d’u)
min Tn

C laz — a1]® (NAy)~2

IN

E |ea,n(ag, k) — o n(ar, k)?

IN

We deduce similarly that
E |es n(as, k) — ez n(a, k)° < Claz —aif’ (NAy)™2

At this point, it remains to show

E |e1n(az, k) —ein(an B) < C lag —ar|” o(N) (47)
to finish the proof of item ii). But, we have the decomposition

E |ein(as, k) —ein(an, k)* < 2B I y(az, k) — Ii v (a1, k)|> + 2 B I v (a2, k) — I, (a1, k)]
However, Taylor Formula implies the existence of two real numbers 01, 05 € (a1, a2) such that
Lin(ag, k) — I n(ay, k) = (ag — a1) - Ln (0, k)  fori=1or2

where EN(a k) is obtained by replacing into the expression of I; y(a,k) the map 1/)(5 - kAN) by the map

(%) X 1 (— —kAN) and w(T —k:AN) by (_{?N) X w'(pATN —k;AN). So,

E lern(as k) — ern(an, k)? < C laz — a]? x {E'IviN(Hl,k) + ET;N(%,k)}
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Since the map t — <—> x 1)’ (— — kA N) is still continuously differentiable and fast decreasing, one can lead same
a

calculations that in the bound of E I3 y (a, k). We finally get E fg,N(GQ, k) + E’I;Q’N(Og, k) < C@(N). This implies
(7) and completes the proof of Lemma [A.9 |

Lemma A.3 Under the same assumptions as in Theorem @, there exists a positive constant C > 0 such that for
every real number a > 0 and N € IN*, we have E |Iy(a) — Jy(a)| < C x p(N)Y2.

2

Proof. Since the variables d = d(a,kAy) and e = e(a,kAy) are Gaussian, the variables d?> — e have finite

second order moment and Jensen’s inequality implies

Ellv(a) - Jy(a) = E m S (0 kAy) — 2(a, kAy))
k€D (a)
1 2(a —e2(a M2
m ke%(a) \/E (d ( ,kAN) ( ’kA ))

Then we derive an upper bound for the expectations F (d2(a, kAN) — €(a, k:AN))2. Indeed, d and e are jointly

Gaussian variables with zero means. One has
E(d* —e*)? =FE(d—e)*(d+e)* = Ec*Z?,

where e =d — e and Z = d + e are also jointly Gaussian and have mean zero. By using that Z = o9 Uflps + &,

where 0? = Ee?, 03 = EZ?%, p = corr(e, Z) and where ¢ is independent of € and Gaussian, one can show that

2 2
B2 = (BYZL + BLBE = 30%08? + atod(1 - p*) < 30303
1
= 3EL x E(d+e)

But (d+e)? = (2d — ¢)? < 8d? + 22, therefore

E |In(a) = Jn(a)] <

S VES (k) x B [4d(a.kAy) + i (a. k)]

|DN keD (a)
1/2 1/2

< V6 > Eey(ak) x> E [4d*(a,kAx) + X (a k)]

[Dn(a)l |,

€Dy (a) keDy (a)
1/2 1/2

V6 E£%(ak) x {47 (a Ee%(ak) ,

= |DN k Z N 1( ) N ) Z N
e€Dn(a) k€Dy (a)

where the two last inequalities follow from Cauchy-Schwartz inequality and E d?(a, kAy) = Z;(a) for every integer
k. Since v is compactly supported, then sup |Z1(a)| < oo. By combining this remark with Lemma [A.9 i),

ac [am,'Mu Amazx

this provides E |Iy(a) — Jx(a)] < C x ¢(N)? and finishes the proof of the lemma. |

Now, the following proof of Theorem B.1] can be established :

Proof. [Theorem From Lemma [A.3 combined with Lemma [A.9 iii), we deduce

lim (N Ax)Y2E |In(a) — Jn(a)] = 0. (48)

N—o0
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Combined with (), this implies the convergence of the finite-dimensional distribution in ([I§). Indeed, it suffices
to show that

VN Ay (log Jy(a) —logIy(a)) -2 0. (49)

N—o0

Let ¢ > 0. By using the inequality |log(z) —log(y)| < 2|x/y — 1|, valid for all |z/y — 1] < 1/2, z,y > 0 one can
show that

P (\/N Ay |log Jx(a) — log In(a)| > 5)
<P (2 \Tx(a)/In(a) — 1] > \/N;_AN) TP (|JN(a)/IN(a) 1> %)

<2P <|JN(a) — In(a)| > %) (50)

EIl(a)
4N AN

2P (vl - In(a)] 2

<2P (lJN<a>IN<a>| < and [T (a) — In(a)] > —2%) )

2N AN
EIl(a) )
4N AN

<op (|JN(a) ~ In(a)| > %) Lop (IN(a) < Il;“)) . (51)

The second inequality in @) is valid for all N such that ¢/v/NAxN < 1/2, that is, for all sufficiently large N. The
second term in the right-hand side of (51)) vanishes, as N — oo, because Iy (a) 2, Z:(a). By using the Markov
N—o0

inequality, one can bound above the first term in the right-hand side of (@) by

8VN An

T F W@ — vl

Thus, from (@), one obtains Relation (@), which completes the proof of the convergence of the finite distributions.
To finish with the proof of Theorem B.I|, we have to show the tightness of the sequence (LN(@))a, . <a<ap.s

where Ly(a) = N An (JN(a) -1 (a)). Observe one has the decomposition Ly(a) = Ly n(a) + L2, n(a) with
Ll,N(a) = \/NAN IN(G) —Il(a))
LQ,N(G/) = \/NAN JN(G)—IN(G))

(L1,n(a))g, . <a<a,., 1t Skorokhod topology on the space of cad-lag functions on [@min, @maz]. From the other

. In [ﬂ], one have proved the tightness and the weak convergence of

hand, () implies that Lo y(a) L2, Oforallac [@min, @maz]- Note that the limit process is null, thus it is
N

— 00

obviously continuous. Then, provided one have shown the tightness of (La n(a))
tightness of (Ly(a))
weak convergence of Ly(a) to Z(a) in the Skorokod topology on the space of cad-lag functions on [amin, Gmaz)-
The last step is the proof of the tightness of (LQvN(a))amm<a<amw' Following Tkeda and Watanabe, Th.4.3 p. 18,

it suffices to show the existence of a positive constant My such that for all a1, az € [@min, Gmaz]

, one can deduce the

Amin <a<Gmax

, see for instance Jacod and Shyriaev, Cor 3.33, p. 317. Next, one deduce the

Amin<0<@maz

E (LQ,N(G/Q) - L27N(a1)) S M2 |a2 - a1|2 . (52)
Nowever, from (§) and ([[4), we get

In@-In(@) = |Dy@[" Y (Plak) - dP(ak).

k€Dn (a)
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Therefore, for a; < as, we have

e [ v/l
Lon(as) — Lon(a) = (NAN)/ x 3 S Dulas)[7t (P (az k) — d(as, k)
k=[rN/as]
(1) N/as]
Y [IDaa) T (¢Blaz k) — @ (az, k) = IDwv(an)] T (2o, k) — d(ar, K)]
k=[rN/a1]
(1) N/az]

+ > IDy(an)| ! (*(ar, k) — d*(aq, k)

k=[(1—r)N/a1]

Then, one remarks that for any finite family I of random variables (X;),., with finite variance we have

E (Z Xi>2 - ( S B < ¥ \/ﬁ \/ﬁ - (Z @) which combined with

i€l i,j)EI? (i,)€I? i€l
(x+y+2)? < 3(@*+y*+2%) implies

E |L27N(a2) — LQ,N(G1)|2 S C (N AN) X (S% + Sg + Sg)

where
[rN/ai]
$i = Dn@)l™ Y VE (a2 k) — d(as, k),
k=[rN/as]
(1 ’I‘)N/llz

S = IDwa)l™ > VE ((an,k) - d(ar, k),
]

k=[(1-r)N/ay

[(A1=r)N/as]
So= Y B 1D (B, ) — e ) — D) (¢2an, k) - e, )]
k=[rN/ai]
From ([1§), we get €?(a, k) — d*(a, k) = £*(a, k) + 2(a, k) d(a, k). Moreover, the random variables X = ¢(a, k) or
X = d(a, k) are centred Gaussian random variables, thus we have \/m =V3E (X 2). Then, by combining
this remark with Cauchy-Schwarz inequality and Lemma , we deduce

E (*(a,k) — d*(a, k)" < C{Ee*(a,k)+ Ec(a, k) d*(a, k)}
< C {E54(a, k) + VE 4 (a, k) x /E d*a, k)}
< C {(EEQ(LL, k))2 + Ee(a,k) x Ed2(a,k:)}
< Cxp(N) < {Ti@) + () }.
Afterwards
(NAN) $ < € (NAN) x (V) x {ZTu(a) + o)} x |D(as)| > x {[rN/ar] ~ [rN/as]}
< C (NAN) X o(N) X |ag —a1]*. (53)

since |Dy(az)| ~ (1 —2r)N/a as N goes to oo and Z;(a) is bounded. The same calculations provide
(NAN) 52 < C (NAN)x@(N) X |ag —a1|*. (54)

Next, we derive the upper bound for S2. Let us stress that the functions a — N |Dy(a)| ™! converges uniformly to

a(l —2r)~! when N goes to co. Thus one can replace S3 by §§ where

- RIS

S = m TZN/GI] \/E [az (€2(agz, k) — d*(az, k) — aq (eQ(al,k)—dQ(al,k))]Q.
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Then, by using (), we get the following expansion of the term fj define below

fio = az (*(az, k) — d*(az,k)) — a1 (¢*(a1, k) — d*(ar, k)
- (\/@E(@, k) — vaie(ar, k:)) x (\/@5(@, k) + /ai e(as, k:))
2 Jaz d(as, k) x (\@5(@, k) — var e(ai, k;)) +are(ar, k) x (\/@d(ag, k) — var d(ar, k;))

We lay the emphasize on the fact that all the random variables in the above formula are Gaussian centred variables.
But for two Gaussian centred random variables, say X and Y, we get E (X2Y?) < VEX*x VEY* =3 (E X?) x
(EY?). By combining this remark with Lemma -3, one obtains

Eff < C {E (\/@s(ag,k) - \/Es(al,k))2 < E (\/@s(ag,k) + \/Es(al,k))2
+ay Bd(ay, k) x B (Vs e(as, k) - \/aa(al,k:))Q o BeXan,k) x B (Vazdias, k) - /a7 d(an, k))Q}
< CoN) laz — nf* {an Ta(a) + (a1 +02) 9N} + Co(N) B (Vazd(an, k) - a d(as, )
But Taylor Formula implies the existence of a real numbers 6; € (a1, az2) such that

Jazd(ag, k) — Vard(as, k) — (ag—al)/ﬁ(;—;> W (eit—k:AN) X(t) dt

2
and after F (\/@d(ag, k) — /a1 d(aq, k)) < C ‘0,2 — a1|2. Indeed, one observe that since 0; € (amin, Gmaz), ONE
haves 1/6? <1/a? . This implies

min-*

2
E (\/@d(@,k) f \/Ed(al,k)) = Jaz— a1|2/]R/]R 912‘;2 L (% - k:AN) W' (% - k:AN) S(0,u,0,v) dudv

2
lag — a1
a4 . sup
min R 0€(amin,@max)

On the other hand, the fast decreasing of the function ¢’ insures

/ sup
R 9€(amin, @maz)

Therefore, since a1, ag, Z1(a) are bounded and p(N) — 0 as N goes to oo, we have E f2 < Co(N) |ag — a1|”
This leads to

IN

2
’L/Jl (% . /CAN)‘ (|u|1+HK1u§1 + |u|1+Ho) du) .

P (% — kAN)’ (Ju) "5 1y + Ju[ ") du < cc.

(NAN)-83 < CNT'-(NAN) < ¢(N) Jaz = ar* ([(1 = r)N/a2] = [rN/aa] )
< C-(NAN)x@(N) |az —a1]*.

Eventually, combined with (53, f4), one obtains
E |Lan(az) — Lon(a1)]? < C-(NAy)x @(N) |ag —ay|*.

But, Lemma [A.9 iii) implies that (N Ay) x ¢(N) converges to 0 when N converges to oo, therefore we deduce (53).
Now, the functional Delta method
(see for instance Van der Vaart, chapter 20, p. 297), provide a central limit theorem for log(In(.)) — log(Zi(.)),

This finishes the proof of the tightness of the sequence (Ly(a))

Amin <a<Gmaz”

because the function log(.) is a Hadamard-differentiable function on the space of cad-lag function on [amin, Gmaz];
this completes the proof of Theorem @ |
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A.2 Proofs of section 4

Proof. [Proposition We lay the emphasize on the fact that, in this proof, we generalize the
choice of the frequencies by considering ay = (NAy)?, with ¢ > 0.

For a given N, denote T™* = (t§ = 0,t7,- - - tiesti 41 = an) such as :

*

W
frr < L < fprqq, forall j=1,...,K
J o J

and for T' = (0,t1,--- ,tx,an) € A(Iév), we denote ZZ-(N) =/ NAN(Y; —logZ:1(1/ 1))

N N N
Y]tjatj+1] = (}/thrla T a}/tj+1fﬂv)/v X]tj,tj+1] = (1Og fthriv 1)1§i§(tj+1—tj)v Z](tj11j+1] = (Zt(jJr)lv T aZt(lefer)/'
. . ~(N) P
First step : We would like to prove : w; — wj foralj=1,... K.
N—o0

Denote Q") = QW) (t*,A(t*)) where A(t*) is obtained from a linear regression of (Y;) on (log f;) for i =
41,5, —7n. Let e > 0and [|T =T |oo= je{rlnaxK}|tj —ti] for T = (0,t1,--- ,tx,an) € A%V)

RETIN

T = (0,8, ,th,an) € A%v). Then, we get,

P (| Tt > cay) SP( min Q)(T,A(T >>s@im)’

T€Veay

where V.o = {T € A(Iév), | T —t" ||oo> EaN}. We want to show that for all T € V..,
Q™ = o(QM)(T, A(T))). In fact,

K+1
v _ 1 (N) -1 7 (N)
QY =5az 2 G, {Id‘Xlt;ﬁt;ﬂ] (Xfe 0,0 X150501) X t*ﬂ]] It )

=0
K+1
1

(N) (N)
S NAN jZO (Z]tj tj+1]) Z]t* t*+1]

1 (N) (V)
< ¥ay @) Zian

From Proposition EI, we deduce

1 ) v, D Yool B afmin\"
ay Giax) Zivan =2 2= | 2\ g gy ) ) (55)

which is a positive and IL*° random variable because Z is a continuous Gaussian process. Afterward, for a sequence

(Yr)r € R™N and a sequence of random variables (£ )rev, we will write x = Op(¥n) as N — oo, if for all € > 0,
there exists ¢ > 0, such as

P(|§N|§C'1/JN) >1-—e¢,

for all sufficiently large N. Here, we obtain :
Q= 0n (2. (56)

Now, let T € V.q,, we want a lower bound of Q™) (T, A(T)). We use the following decomposition

K4+1tj+1—7N

QM@ A®) = Y Y M- logT (/A + [XK ~losTi(1/5)] +

7=0 i=t;+1

2[Y; —log Th(1/£1)] x | Xk, — log Ta(1/)]

Q1+ Q2+ Qs.
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Then :
K+1

(N) :
1. Since Q1 = NA Z t],tﬁl ) Z] o as previously we get

tyiti+1]’

Q1=0p (NGXN) : (57)

2. Let 7= [ log Bfmaz - min log aw—;ﬂ . Then, for all j € {0,1,--- , K}, t5,, —7n > tf +Tan.
B afmin J ﬁw;‘ J+ -7 =

Since T' € V4, , we have n = min{e, 7,log(8/a)} > 0 and there exists an integer j € {0,--- , K 41} for which
there are no estimated abrupt change in the interval [t;‘ — nay, t;‘] or [t;‘ — TN, — TN + nay]. Thus there
exists k € {0,---, K + 1} satisfying [t; — nan,t;] C [tx,tk+1 — 7n] (we follow here a similar proof than Bai
and Perron in Lemma 2, p 69) and

t

Q@ > D X —logTi(1/£i))

i:t;’f —nan—+1

t;‘ . . 2
~ 1 —~ 1
> Y e s a1 (59)
i=t*—nan—+1 N an
j—NnanN
with :
e A(H,o) =log (02 : KH(w)) — (2H +1) - log (f’g'”) for all (H,o) € K;

B fmaa

Q Jmin

oy (ﬁ) = log (11(1/f1-)) = log <11 <f}fn (ijjfc:a:)—/w))

2
Since for all (H,0) € K, the function z — Ly »)(z) = (A(H, o)+x-B(H,o)— g(ac)) is an infinitely dif-

ferentiable function on IR, we know from the theory of Riemann sums that :

. B(H,o):—(2H+1)-log< ) for all (H,0) € K;

tx . . 9

1 ! ) )

Hoy=— A(H — B(H,0)—g | —

N( 50) an i ( 50)+ an ( 50) g<aN>
i=t;—nan

— u(H,o):/SJ (A(H,0) + 2 - B(H,0) — g (2))? du,

N—oo *

1*77

* -1 *

wj t;

with s7 = log < ) <log (afm(w)) = lim ——. Moreover, the sequence (uy(H,o))y converges uni-
fmzn ﬁfmzn N—oo aN

formly to u(H, o) because for N large enough

1 i OL (1 »
sup |un(H,0) —u(H, o) < <—2+77 S;—])-Sllp sup (H, )( )‘
(H,o)ek an an |/ (Hoyec |0<a<(si+1)| O
— 0,
N—o0
. ) OL(p,0)
since K is a compact set of [0, 1]x]0, co[ and thus sup sup ()| p < c0. As a consequence,
(H,0)eK | 0<z<(s5.+1) Ox

from (5) and since we assumed that (ﬁi(N) N)) e Kforalli=0,---, K, for some sufficiently small, fixed
& > 0 and for all sufficiently large N,
S; 2
Q2 > an (/ (A(H(N) A(N)) +x- B(H(N) ,(CN)) g(ac)) dx — f) . (59)

*

;"
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But it is impossible that there exists (a,b) € IR* such as g(z) = a +b -z for all z € [s] — n,s}], i.e.,

T (01 . ec””) =e%. " forallx € [s]* -, s;‘] with ¢; =

as :

cy = log (g;mm ) , which can also be written

R
fmin,
Ti(z) = a; -2 forall z € [a/w], o/ + 1], (60)

with 7 > 0 and (a;,b;) € IR%. Indeed, assume now (b)) is true. But, for all z € [o/wy, o /wi + 1],

T-wl 2 B o 2
Ti(z) = 2 (0}‘31 -wszfl“/ ] ulfH(* 1' du + o7 QHJ'“/ ng}(LIU)-ll dU> :
o xT-w*
J

oI 5 onabr . L .
890"1 (a/w}) = a1 - W(a/wj) for n = 0,1, which implies that by = (2H} +1) and a; = QJ;QKH; ()

Then

(here, we use the equality 1(c) = 0). Thus, for all z € [o/w, afws + 1],

2 Wi 10|12
oi2 .x2H;71+1/ W( )| du = 0;2 L 2HI 1 /I “i | (u)l du.
« (o7

i— W2H T W2H; 1

s /w;W(ac-y)l2 o o dy =0,
o)z y2Hj71+1 y?H +1

*2 o2
and hence { g*_ 1 iJIJ{* . But this condition is impossible from Assumption (Bg) and consequently there
j—1 = H;

is no (a,b) € IR? such as g(z) = a +b-x for all z € [s] —n, s3].

The function g belongs to the Hilbert space L*([sj — 7, s}];dz). Since L = {A+ B -z, z € [s] —
n,s%], (A,B) € IR?} is a closed linear subspace of L2([ ¢ — 1, 5}];dz), there exits a distance between g

and L in IL*([s] —n,s3];dx), i.e. there exists (A, B) € IR? such as

83 5 5 2 s3
/ (A+B~zfg(z)) dr = inf / (A+B -z —g(z))? de = C >0,
s* s]*.—’r]

A,B)€IR?
T—n (A;B)e

because g ¢ L. Then, by choosing £ such as 0 < £ < C/2, the inequality (@) implies :

Q

for all sufficiently large N, with C' a real positive number only depending on 7, s7, H;_, H, 0;_;, 0} and
.
3. The previous evaluations of (); and @2 provide an upper bound of QJ35.We get
K+1tg41—7TN R 1/2
Qs < 2(Qn)"° <Z > (X - 10g11(1/fi))2>
k=0 i=trp+1
1/2
< 2(Q)'?x (azv © sup {2 sup{(log f,1) - A)? + 210g211(1/f)}> :
fmingfgfmam AEK
an
= Op|—==]. 62
" (\/NAN) (62)

We deduce from (F7), 1) a
P ( min  QN)(T, A( ) =

TEViay

(F2) that @1 = 0(Q2) and Q3 = 0(Q2), which implies

an — 1 and thus
N —oo

nd
> ¢
1

i P(||f7T* HOOZEaN)zo — o™ 2, .

N—o0
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Second step : For j =1,---, K, we want to prove that if 3/4 <p<land0<q<1,forall e >0, there exists
0 < C < oo such as for sufficiently large N, P ( Lo V) ) <e

“j
Mutatis mutandis, we follow the same method as in the proof of the convergence in probability. Now, let 0 < p < 1,
1 ~
0<n= 3 min{z,log(8/a)} and consider minpeyn  QW)(T, A(T)) with
cak;

Wi = {T e AN CaB < Tt [ o< naN} .
Then, as previously, for T' € Wgap and N large enough, it exists j € {1, -+, K} such as
N
ti+Caly <t <tjp1—7N (63)

(the following proof is valid even if one considers the alternative tf < t; — Caf). Then

tiy1—7TN
QM(T,NT)) = Y (Yi—logTi(1/f:))* + (Xik; —log Ti(1/f:))* +
i=t5+1
+2(Y; —log Iy (1/f:))(XiA; —log Z1(1/ f3))
> Qi +Qh+ Qs
1. First, we have again,
an
=0 64
Q\ =0 ( X AN) (64)
tji+1—TN R
2. Secondly, Q5 = Z (X;\; —logZy(1/£:))?. But we know logZy(1/f;) = X\ ford e {t5 41, ,tj11 — TN}
i=t+1

Moreover, for a; = 1/fi, i € {t; +1,--- ,t;} and N large enough, a; ~ a/w;, and

Il(ai) =1 <%> + <ai wﬁ‘) I/ (w ) +O< %) .

7 aiw; 2 8 - 2
—_— (az)2<J e / u|;/»H<*>| du+ 72 / |1/21}<;;>+|1 du) i

1t * U
i W
]

wj

2H
a * * « . *
T (—*> = 20].2KH; (1/1)(2Hj +1) <F> ; thus for i € {¢t; +1,--- ’tj},
J

log Zy(1/f2) = XXt + | (2H? + 1)2min 1og ( Bmas T WY i : 65
8 1(/f1)_ Zj+|:( ]+)6 Og(afmin)}.(aN)—’— (aN). ( )
Then, with Xj:(aj,bj) one gets for i € {t; +1,--- ,tj11 — 7N},

(XZ-XJ- “logZi(1/ fi)) — (log f — logf)(@, — a%) + Z, (66)

X X X indicates the empirical mean of X X X between ¢; + 1 and ¢;41 — 7n. Thus,

tj+1—7N

o > 3 ((logfz o27) @ — ) + —— 2). (67)

-
z_thrl
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We also have :

tj+1—7TN

> (logfi—Tlogf) (Vi -Y)
R i=t;+1
aj = t]‘+17TN 9
> (log fi —Tog f)
i=t;+1
tj+1—TN ( ) 1
L — ; Z™N) _TogZ; — Z
i_;ﬂ (log f; —log f) (10g11(1/f)+ NoPNL VAT )
= tit1—TN ) ’
Y. (logfi —log f)
i=t;+1
and thus,
¢
(log f; — Tog f) (log Ty (1/f:) — X|\})
/\ % ’L:thrl
aj —a; = tit1—TN
— 2
> (log f; —Tog f)
i=t;+1
tj+1—TN
Z (log f; — log f) (ZZ.(N) — 7)
1 i=t;+1 68
+ NAy fia1 TN 2 -
> (log fi —Tog f)
i=t;+1
From the definition of (log f;),
tj+1—TN
_ 1 maz
> (logfi—Togf)" ~ {ﬁ tog <§J;‘ 4 >] (tj+1 — v = t5) = O(an). (69)

i:t]‘ +1

Expansions (@) and (@) imply there exist two constants C; > 0 and Cs > 0 such as for N large enough :

5
o, | 22 (ogfi—Togf) (logZi(1/fi) — XA;) o,
(&1 bt < =t < Oy —tj_tj
an - tjt1—TN 9 - an ’
> (log fi —log f)
i:tj+1
Moreover
tj+1—TN

Z (log fi— @) (Zi(N) — 7)

1 i=t;4+1 _0 1
/NAN tit1—TN ) — VP NAN .
> (log fi —Tog f)

i=tj+1

Thus, we deduce from (Bg) that :

o (8 s op (L) <oy —af
— a; —a;|.
! an P NAN o I J
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*

th—t;\2
As a consequence, for (p, ¢) such as 4¢(1—p) < 1 (for instance, p = 3/4 and ¢ = 1), then ( z j) V/NAyx > C?,
an

and thus for all € > 0, for N sufficiently large, we can chose C' > 0 such as :

*

N
P (%12 (log fi —@)2 (u) < ((log f; —log f) (a@; — a}f))2> >1—c. (70)

an

Now, from (7), (f0) and with P(t;41 — v — t; > gaN) — 1, for (p,q) € [3/4,1] x [0,1], for all € > 0, for N

N—o0
sufficiently large, we can also chose C' > 0 such as :

02 t"f—fj 4 TN - 92
P f(W) -+ Y (logfi—logf) <@y | = 1-¢
i=t1+1

= ]P(C‘*-Cg-ajl\?%ﬁ%) > l—eg, (71)

with Cs > 0 a real number not depending on C, N and «.

3. Finally, from the classical bound of Qj, we obtain,
Qs <2-(@Q)"7- (@)

But, following a similar method as previously, from (@ one can find a upper-bound for @5, i.e. for (p,q) €

[3/4,1] x [0, 1], for all € > 0, for N sufficiently large, we can also chose C' > 0 such as :
P(Qy<C'Csal?) = 1-¢,

with C3 > 0 a real number not depending on C, N and e. Thus, for (p,q) € [3/4,1] x [0,1], for all € > 0, we can
also chose C' > 0 such as :

2p—2

P(Q’3§02~C4~\ZQ’7—AN> > 1-—¢, (72)

with C4 > 0 a real number not depending on C' and N.

Now, from (64), (F1]) and (F2), one deduces that for (p,q) € [3/4,1] x [0,1], for all € > 0, for N sufficiently

large, we can chose C > 0 sufficiently large such as :

. ~ Co  4p3
P Tenvlvlip Q<N>(T,A(T))zc4.7.a]§ >1—e

. a
and thus like Q) = Op (N—XN) from (Ed),

P min QMTAT) <] <e,

that leads to P (a}vfp ‘@](N) —wj

> C) < ¢ for sufficiently large C' and V. |

Proof. [Proposition @] From Proposition EI, we deduce that V5 =0,--- | K,

7(N) (N * g%
P([U; LV, j+1*TN]) — L

N—o0
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(N)
J

P (VNAN (MY = X)) €] = oo,2]x] - o0,y])

—P (A;N)) « P( NAy (;(_N) _ Xf) €] — o0, 2]x] — 00,4 | A§_N>) N

Denote A"’ the event [U;N), \N/J—(N)] C [t5, 5,1 — 7n]. Then, Vj =0, -+, K and ¥(z,y) € IR?,

70

J J

+ P (A7) x P (VB (A0 = 33) €] = o0,0)x] — 00,91 | A7)
Now, since P (\/N—AN (5\§-N) - )\j) €] — o0, z]x] — 00,y | @) <1and P (@) —1_-P (AE'N))’ we obtain -
F (A§N)) P (\/N—AN @N) - A?) €] — 00, 2] x] — 00, 9] | Ag.N))
<P (\/N—AN (X;N) — )\;‘) €] — oo, z]x] — oo,y])

<P (VNAN (A = 27) €] o0, a]x] = o0,y] | AV} +1- P (4). (73)

Since QJ(-N) 2, wi and @;ﬂ . wiyy, therefore (@](N),QJ(JR) 2, (wj,wjs1), we have
N—oo N —o00 N—o0o
P * o (N) P * el ..
(fk)ke{U(N) Ly (97 (k))1<k<m and X P X7. Thus, from Proposition B.] and central limit the-
i g —00 — 00

orem ([[7), for all (z4)1<r<m € R™, we get

JP(MNAN (Y]ﬁN)—X;N)A;) e [[) - o0 2] |A§.N>> N (Zj e [[) - o0 2] |A§.N>> 0,

k=1

~ 1 1
with Z; R Nm(0,%%) and ¥} = | cov (Z( - ),Z( - )) (it explains the expression (24) of z%).
g; (k) g; (1) 1<k,i<m

. . ~ -1 s . .

From the equality A;N) = ((XJ(N))'XJ(-N)) (X](N))’Yj(N), we deduce that for all (z,y) € R2, with & 2 N3(0, I‘i\J)
* ’ -1 ’ ’ -1
and IV = (X7'X7) X;mx; (X)x;)

P (\/m (X;N) - )\;) €] — 00, z|x] — 00, y] | A;N)) - P (éj €] — 00, z|x] — 00, y] | A;N)) — 0. (74)

N —o0

We also have :
P (Ej €] — o0, z|x] — oo,y]) +P (AS-N)) —-1<

_ P (& el - alx] - o)

< P (& € = oo.a]x] —o0,y) | A < (75)
(N
P (a™)
Now, as P (ASN)) — 1, from (7d), (74) and (), we deduce that for all (z,y) € IR? :
N—o00
P (VNAN (XY = x;) € —o0.ax] = 00y]) — P (§ €] = oo.a]x] = 00,31
that achieves the proof. [ |

Proof. [Proposition [t.3] First, from the expression of each sj; given in (P4) and with M,,(IR) the set of real
m-by-m matrix, the function ¥ : (H,u,v) — 3X(H,u,v) € M, (IR) is a continuous (and therefore measurable)
function of (H,u,v) for H in a compact set included in ]0,1[ and (u,v) €] fmin, fmaz[>. For all j =0,--- , K, we

have :



34 Statistic of multi-scale fractional Brownian motion

1. from Assumptions (Bx) and (C), (H; o Ny e K and (@; o) Dj(fi) €] fmin, fmaz|?;

2. from (1)) and (3), ﬁj(N) 2o\, oM 2 wi, w AJ(JJR L wjyq and therefore

N—oco N —oco N —oo
7 (N) ~(N) ~(N P .
(Hj 7“{5‘ )7w§+i) Nj)oo (H w w]Jrl)
As a consequence, EA];N) = Z(ﬁj(N), QJ(N), @J(i\_q) Z, Y%, forallj =0, , K, and since ¥(H, u,v) is an invertible
N—o0
covariance matrix for all (H,u,v) €]0, 1[X]fmin, fmaz|?
s\t P <) 1 .
(zj ) i (zj) , forall j=0, -, K. (76)

Secondly, denote

= (0 () 7))
5

-1 .
VN _ (V) (N) (V) v (V) (N)
Y= (T () 5Y)wOr(EY)
The 2-by-m matrix M;N) verifies :
AN MO ey L gz
NAN J J
o SN S(N) D 5 . .
with ZJ(- ) = (Z(N)(l/fi))ie{ﬁjm,m,f/j(N)} and ZJ(- ) e Z; = (Z(l/gj (k)))lgkgm from the central limit theo-

rem ([7). In the same way,

AN Z FEP®) e L gz,

=J J J J NAy J J
From (fd), we obtain M(N) MJ(N) £, 0, and thus,
N—o0

VNAN (AN = xp) =Mz s o,

. ~ 5 o . . . . .
with M J(N)ZJ(N) 2, N2(0,T57) (the same covariance matrix as that obtained with a generalized least squares
N—o0

estimation), and this implies Proposition [.3. |

Proof. [Proposition @] For each j =0,--- , K, one first show that

(N (N N D
Nay- | VY = XN [ 2 xP(m—2). (77)
J —00
(N o (N N SN (N N N H(N F(N)7T7(N) .
Indeed, || V™ — XM 2 =) POVYS >||2§(N)f — | PV ZN) |2 ) where P = I, — XV MM s

the matrix of the orthogonal projector in IR™ on the orthogonal of V;, where V; = {X](-N))\, A € IR?} is the

2-dimensional subspace of IR™ generated by X j(-N) (here the notion of orthogonality is based on the inner product

N -1
< U0 Sgn = u - (EEN)) -v for u,v € IR™). From the previous proofs, we know :
J

o Z(N) N%Oo 3, XJ(N) N%;o X; and therefore ﬁj(iv) N%’Oo P}, where

’ -1 ’
P = (Im - X; (X]* (E;)_lX;-‘) X7 (E;)_l) is the matrix of an orthogonal projector on a (m — 2)-

dimensional subspace of IR™;

P
o Ju,v >Ny —— <uv>g*foruv€]Rm
J N —oco
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o ZM T Z; with Z; R Niu(0,%3).

N—o0

/\N ~ N * ~
Consequently, || PJ»(L)ZJ(» ) ||2E(N) 40’0 l P} Z; |
7 e

2.. From Cochran’s Theorem, we know || P Z; l|%-
J J

2 x2(m — 2) and therefore (77) is proved.

Moreover, with the notations of Proposition B.1, if log f > log f’ + log 8/c then cov(Z(1/f), Z(1/f")) = 0. But
for all (i, 5) € {0, , K}, i # j, vk € (O™, VY and vk’ € (O, VY, [log fi —log fi| = log B/a.
Thus, we deduce that the different A§N) are asymptotically Gaussian and independent. It provides the end of the
proof of the Proposition [£.4, |
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