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ON THE INSTABILITY FOR THE CUBIC NONLINEAR

SCHRÖDINGER EQUATION

RÉMI CARLES

Abstract. We study the flow map associated to the cubic Schrödinger equa-
tion in space dimension at least three. We consider initial data of arbitrary
size in Hs, where 0 < s < sc, sc the critical index, and perturbations in Hσ ,
where σ < sc is independent of s. We show an instability mechanism in some
Sobolev spaces of order smaller than s. The analysis relies on two features of
super-critical geometric optics: creation of oscillation, and ghost effect.

1. Introduction

We consider the Cauchy problem for the cubic, defocusing Schrödinger equation:

(1.1) i∂tψ +
1

2
∆ψ = |ψ|2ψ, x ∈ R

n ; ψ|t=0 = ϕ.

Formally, the mass and energy associated to this equation are independent of time:

Mass: M [ψ](t) =

∫

Rn

|ψ(t, x)|2dx ≡M [ψ](0) = M [ϕ],

Energy: E[ψ](t) =

∫

Rn

|∇ψ(t, x)|2dx+

∫

Rn

|ψ(t, x)|4dx ≡ E[ψ](0) = E[ϕ].

Scaling arguments yield the critical value for the Cauchy problem in Hs(Rn):

sc =
n

2
− 1.

Assume n > 3, so that sc > 0. It was established in [3] that (1.1) is locally well-
posed in Hs(Rn) if s > sc. On the other hand, (1.1) is ill-posed in Hs if s < sc

([4]). Moreover, the following norm inflation phenomenon was proved in [4] (see
also [1, 2]): if 0 < s < sc, we can find (ϕj)j∈N in the Schwartz class S(Rn) with

(1.2) ‖ϕj‖Hs −→
j→+∞

0,

and a sequence of positive times τj → 0, such that the solution ψj to (1.1) with
initial data ϕj satisfy:

‖ψj(τj)‖Hs −→
j→+∞

+∞.

In [2], this was improved to: we can find tj → 0 such that

‖ψj(tj)‖Hk −→
j→+∞

+∞, ∀k ∈

]
s

1 + sc − s
, s

]
.
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Note that (1.2) means that we consider the flow map near the origin. We show
that inside rings of Hs, the situation is yet more involved: for data bounded in Hs,
with 0 < s < sc, we consider perturbations which are small in Hσ for any σ < sc,
and infer a similar conclusion.

Theorem 1.1. Let n > 3 and 0 6 s < sc = n
2 − 1. Fix C0, δ > 0. We can find two

sequences of initial data (ϕj)j∈N and (ϕ̃j)j∈N in the Schwartz class S(Rn), with:

C0 − δ 6 ‖ϕj‖Hs , ‖ϕ̃j‖Hs 6 C0 + δ ; ‖ϕj − ϕ̃j‖Hσ −→
j→+∞

0, ∀σ < sc,

and a sequence of positive times tj → 0, such that the solutions ψj and ψ̃j to (1.1),
with initial data ϕj and ϕ̃j respectively, satisfy:

‖ψj(tj) − ψ̃j(tj)‖Hk −→
j→+∞

+∞, ∀k ∈

]
s

1 + sc − s
, s

]
(if s > 0),

lim inf
j→+∞

‖ψj(tj) − ψ̃j(tj)‖
H

s

1+sc−s
> 0.

The main novelty in this result is the fact that the initial data are close to each
other in Hσ, for any σ < sc. In particular, this range for σ is independent of s.

Remark 1.2. Like in [1, 2], we consider initial data of the form

ϕj(x) = j
n

2
−sa0(jx),

for some a0 ∈ S(Rn) independent of j. The above result holds for all a0 ∈ S(Rn)
with, say1, ‖a0‖Hs = C0, and ϕ̃j(x) = (j

n

2
−s + j)a0(jx) (see Section 2).

Considering the case s = n
4 , we infer from the proof of Theorem 1.1:

Corollary 1.3. Let n > 5 and C0, δ > 0. We can find two sequences of initial data

(ϕj)j∈N and (ϕ̃j)j∈N in the Schwartz class S(Rn), with:

C0 − δ 6 E[ϕj ], E[ϕ̃j ] 6 C0 + δ ; M [ϕj ] +M [ϕ̃j ] + E[ϕj − ϕ̃j ] −→
j→+∞

0,

and a sequence of positive times tj → 0, such that the solutions ψj and ψ̃j to (1.1)
with initial data ϕj and ϕ̃j respectively, satisfy:

lim inf
j→+∞

E[ψj − ψ̃j ](tj) > 0.

2. Reduction of the problem: super-critical geometric optics

We now proceed as in [2]. We set ε = js−sc : ε→ 0 as j → +∞. We change the
unknown function as follows:

uε(t, x) = js−n

2 ψj

(
t

jsc+2−s
,x

j

)
.

Note that we have the relation:

‖ψj(t)‖Ḣm = jm−s
∥∥uε

(
jsc+2−st

)∥∥
Ḣm

.

With initial data of the form ϕj(x) = j
n

2
−sa0(jx) + ja1(jx), (1.1) becomes:

(2.1) iε∂tu
ε +

ε2

2
∆uε = |uε|2uε ; uε(0, x) = a0(x) + εa1(x).

1Provided that we choose j sufficiently large.
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We emphasize two features for the WKB analysis associated to (2.1). First, even if
the initial datum is independent of ε, the solution instantly becomes ε-oscillatory.
This is the argument of the proof of [2, Cor. 1.7]. Second, the aspect which was
not used in the proof of [2, Cor. 1.7] is what was called ghost effect in gas dynamics
([6]): a perturbation of order ε of the initial datum may instantly become relevant
at leading order. These two features are direct consequences of the fact that (2.1)
is super-critical as far as WKB analysis is concerned (see e.g. [2]).

Consider the two solutions uε and ũε of (2.1) with a1 = 0 and a1 = a0 respec-
tively. Then Theorem 1.1 stems from the following proposition, which in turn is
essentially a reformulation of [2, Prop. 1.9 and 5.1].

Proposition 2.1. Let n > 1 and a0 ∈ S(Rn; R) \ {0}. There exist T > 0 indepen-

dent of ε ∈]0, 1], and a, φ, φ1 ∈ C([0, T ];Hs) for all s > 0, such that:

‖uε − aeiφ/ε‖L∞([0,T ];Hs
ε
) + ‖ũε − aeiφ1eiφ/ε‖L∞([0,T ];Hs

ε
) = O(ε), ∀s > 0,

where

‖f‖2
Hs

ε
=

∫

Rn

(
1 + |εξ|2

)s
|f̂(ξ)|2dξ,

and f̂ stands for the Fourier transform of f . In addition, we have, in Hs:

φ(t, x) = −t|a0(x)|
2 + O(t3) ; φ1(t, x) = −2t|a0(x)|

2 + O(t3) as t→ 0.

Therefore, there exists τ > 0 independent of ε, such that:

lim inf
ε→0

εs‖uε(τ) − ũε(τ)‖Ḣs > 0, ∀s > 0.

3. Outline of the proof of Proposition 2.1

The idea, due to E. Grenier [5], consists in writing the solution to (2.1) as
uε(t, x) = aε(t, x)eiφε(t,x)/ε, where aε is complex-valued, and φε is real-valued. We
assume that a0, a1 ∈ S(Rn) are independent of ε. For simplicity, we also assume
that they are real-valued. Impose:

(3.1)





∂tφ
ε +

1

2
|∇φε|2 + |aε|2 = 0 ; φε(0, x) = 0.

∂ta
ε + ∇φε · ∇aε +

1

2
aε∆φε = i

ε

2
∆aε ; aε(0, x) = a0(x) + εa1(x).

Working with the unknown function uε = t(Re aε, Im aε, ∂1φ
ε, . . . , ∂nφ

ε), (3.1)
yields a symmetric quasi-linear hyperbolic system: for s > n/2 + 2, there exists
T > 0 independent of ε ∈]0, 1] (and of s, from tame estimates), such that (3.1) has
a unique solution (φε, aε) ∈ C([0, T ];Hs)2. Moreover, the bounds in Hs(Rn) are
independent of ε, and we see that (φε, aε) converges to (φ, a), solution of:

(3.2)






∂tφ+
1

2
|∇φ|2 + |a|2 = 0 ; φ(0, x) = 0.

∂ta+ ∇φ · ∇a+
1

2
a∆φ = 0 ; a(0, x) = a0(x).

More precisely, energy estimates for symmetric systems yield:

‖φε − φ‖L∞([0,T ];Hs) + ‖aε − a‖L∞([0,T ];Hs) = O(ε), ∀s > 0.
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One can prove that φε and aε have an asymptotic expansion in powers of ε. Consider
the next term, given by:




∂tφ
(1) + ∇φ · ∇φ(1) + 2 Re

(
aa(1)

)
= 0 ; φ(1)

∣∣
t=0

= 0.

∂ta
(1) + ∇φ · ∇a(1) + ∇φ(1) · ∇a+

1

2
a(1)∆φ +

1

2
a∆φ(1) =

i

2
∆a ; a(1)

∣∣
t=0

= a1.

Then a(1), φ(1) ∈ L∞([0, T ];Hs) for every s > 0, and

‖aε − a− εa(1)‖L∞([0,T∗];Hs) + ‖Φε − φ− εφ(1)‖L∞([0,T∗];Hs) 6 Csε
2, ∀s > 0 .

Observe that since a is real-valued, (φ(1),Re(aa(1))) solves an homogeneous linear
system. Therefore, if Re(aa(1)) = 0 at time t = 0, then φ(1) ≡ 0.

Considering the cases a1 = 0 and a1 = a0 for uε and ũε respectively, we obtain
the first assertion of Prop. 2.1. Note that the above O(ε2) becomes an O(ε) only,
since we divide φε and φ by ε. This also explains why the first estimate of Prop. 2.1
is stated in Hs

ε and not in Hs. The rest of the proposition follows easily.

Remark 3.1. We could use the ghost effect at higher order. For N ∈ N, assume
ũε
|t=0 = (1 + εN )a0 for instance. Then for some τ > 0 independent of ε, we have

lim inf
ε→0

(
εs‖uε(τ) − ũε(τ)‖Ḣs × ε1−N

)
> 0, ∀s > 0.

Back to the functions ψ, the range for k becomes:

k >
s+ (sc − s)(N − 1)

1 + sc − s
·

For this lower bound to be strictly smaller than s, we have to assume s > N − 1.
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tions, Ann. Inst. H. Poincaré Anal. Non Linéaire, to appear. See also arXiv:math.AP/0311048.
[5] E. Grenier, Semiclassical limit of the nonlinear Schrödinger equation in small time, Proc.

Amer. Math. Soc. 126 (1998), no. 2, 523–530.
[6] Y. Sone, K. Aoki, S. Takata, H. Sugimoto, and A. V. Bobylev, Inappropriateness of the heat-

conduction equation for description of a temperature field of a stationary gas in the continuum

limit: examination by asymptotic analysis and numerical computation of the Boltzmann equa-

tion, Phys. Fluids 8 (1996), no. 2, 628–638.
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