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LOSS OF REGULARITY FOR SUPER-CRITICAL NONLINEAR

SCHRÖDINGER EQUATIONS

THOMAS ALAZARD AND RÉMI CARLES

Abstract. We consider the nonlinear Schrödinger equation with defocusing,
smooth, nonlinearity. Below the critical Sobolev regularity, it is known that
the Cauchy problem is ill-posed. We show a loss of regularity, in the spirit of
the result due to G. Lebeau in the case of the wave equation. As a consequence,
the Cauchy problem for energy super-critical equations is not well-posed in the
sense of Hadamard. We reduce the problem to a super-critical WKB analysis.
For super-cubic, smooth nonlinearity, this analysis is new, and relies on the
introduction of a modulated energy functional à la Brenier.

1. Introduction

We consider the following defocusing nonlinear Schrödinger equation on R
n:

(1.1) i∂tψ +
1

2
∆ψ = |ψ|2σψ ; ψ|t=0 = ϕ,

where σ > 1 is an integer, so that the nonlinearity is smooth. It is well-known that
the critical Sobolev regularity corresponds to the value given by scaling arguments,

sc :=
n

2
− 1

σ
·

Throughout this paper, we assume sc > 0. If ϕ ∈ Hs(Rn) with s > sc, then the
Cauchy problem (1.1) is locally well-posed in Hs(Rn) [6]. On the other hand, if
s < sc, then the Cauchy problem (1.1) is ill-posed [8] (see also the appendices in
[3, 4]). The worst phenomenon proved in [8] is the norm inflation. For 0 < s < sc,
one can find a sequence (ψh)0<h61 of solutions to (1.1) and 0 < th → 0, such that
ϕh ∈ S(Rn) and

‖ϕh‖Hs −→
h→0

0 ; ‖ψh(th)‖Hs −→
h→0

+∞.

In this paper, we prove the stronger result:

Theorem 1.1. Let σ > 1. Assume that sc = n/2 − 1/σ > 0, and let 0 < s < sc.
There exists a family (ϕh)0<h61 in S(Rn) with

‖ϕh‖Hs(Rn) → 0 as h→ 0,

a solution ψh to (1.1) and 0 < th → 0, such that:

‖ψh(th)‖Hk(Rn) → +∞ as h→ 0 , ∀k > s

1 + σ(sc − s)
·

In the case σ = 1 and n > 3, this result was established in [4]. It followed from
a super-critical WKB analysis for the cubic nonlinear Schrödinger equation, which
had been justified by E. Grenier [14]. For σ > 2, adapting the results of [14] seems
to be a much more delicate issue, and a rigorous analysis in this setting for n 6 3
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has been given very recently [1]. An important remark, in the proof of Theorem 1.1
that we present here, is that it is not necessary to justify WKB analysis as precisely
as in [14], or [1], to obtain this loss of regularity. From this point of view, our proof
is very simple. On the other hand, it can be considered as highly nonlinear: it
relies on a quasilinear analysis, as opposed to the semilinear analysis in [8] (see
also Remark 5.4 at the end of this paper). In the opinion of the authors, the proof
of Theorem 1.1 is at least as interesting as the result itself.

This result is to be compared with the main result in [18], which we recall with
notations adapted to make the comparison with the Schrödinger case easier. For
n > 3 and energy super-critical wave equations

(
∂2

t − ∆
)
u+ u2σ+1 = 0, σ ∈ N, σ >

2

n− 2
,

G. Lebeau shows that one can find a fixed initial datum inHs, s > 1, and a sequence
of times 0 < th → 0, such that the Hk norms of the solution are unbounded along
the sequence th, for k ∈]I(s), s]. The expression for I(s) is related to the critical
Sobolev exponent

ssob =
n

2

σ

σ + 1
,

which corresponds to the embedding Hssob(Rn) ⊂ L2σ+2(Rn). In [18], we find:

(1.2) I(s) = 1 if 1 < s 6 ssob ; I(s) =
s

1 + σ(sc − s)
if ssob 6 s < sc.

Note that we have

(1.3)
ssob

1 + σ(sc − ssob)
= 1.

The approach in [18] consists in using an anisotropic scaling, as opposed to the
isotropic scaling used in [17, 8]. Compare Theorem 1.1 with the approach of [18].
Recall that (1.1) has two important (formally) conserved quantities: mass and
energy,

(1.4)

M(t) =

∫

Rn

|ψ(t, x)|2dx ≡M(0),

E(ψ(t)) =
1

2

∫

Rn

|∇ψ(t, x)|2dx+
1

σ + 1

∫

Rn

|ψ(t, x)|2σ+2dx ≡ E(ϕ).

In view of (1.3), we obtain, for energy super-critical nonlinearities:

Corollary 1.2. Let n > 3 and σ > 2
n−2 . There exists a family (ϕh)0<h61 in S(Rn)

with

‖ϕh‖H1 + ‖ϕh‖L2σ+2 → 0 as h→ 0,

a solution ψh to (1.1) and 0 < th → 0, such that:

‖ψh(th)‖Hk(Rn) → +∞ as h→ 0 , ∀k > 1.

We thus get the analogue of the result of G. Lebeau when I(s) = 1, with the
drawback that we consider a sequence of initial data only. The information that
we don’t have for Schrödinger equations, and which is available for wave equations,
is the finite speed of propagation, that is used in [18] to construct a fixed initial
datum. On the other hand, our approach involves an isotropic scaling; see Section 2.
Moreover, in Theorem 1.1, our range for k is broader than in [18] when 1 < s < ssob,
and also, we allow the range 0 < s 6 1, for which no analogous result is available
for the wave equation. Note that unlike in [18], we perform no linearization in our
analysis (the properties of the analogous linearized operator are not as interesting
in the case of Schrödinger equations): despite the fact that for fixed ε, (1.1) is a
semilinear equation, we consider a quasilinear system to prove our main result.
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Before going further into details, let us focus on the notion of solution to (1.1).
In view of Theorem 1.1, we assume that the initial data are in the Schwartz class:
ϕ ∈ S(Rn). Then (1.1) has a local smooth solution: for all s > n/2, there exists
Ts > 0 such that (1.1) has a unique solution ψ ∈ C([−Ts, Ts];H

s). If n 6 2, then
(1.1) has a global smooth solution, ψ ∈ C(R;Hs) for all s > 0, and the identities
(1.4) hold for all time. The same is true when n = 3 and σ = 1. These results are
established in [12]. In the H1-critical three dimensional case (n = 3 and σ = 2),
it is proved in [9] that solutions with Hs regularity (s > 1) remain in Hs for all
time; the same is true in the four dimensional case (n = 4 and σ = 1), from [22].
On the other hand, if the nonlinearity is H1 super-critical (σ > 2

n−2 ), then it is
not known in general whether the solution remains smooth for all time or not. In
Theorem 1.1, for σ = 1, the solution ψh is a smooth solution, that remains smooth
up to time th, thanks to a result due to E. Grenier [14]. In general, the solution
that we consider in Theorem 1.1 is a weak solution:

Definition 1.3. Let ϕ ∈ H1 ∩ L2σ+2(Rn). A (global) weak solution to (1.1) is a
function ψ ∈ C(R;D′)∩L∞(R;H1∩L2σ+2) solving (1.1) in D′(R×R

n)∩C(R;L2),
and such that:

• ‖ψ(t)‖L2 = ‖ϕ‖L2 , ∀t ∈ R.
• E(ψ(t)) 6 E(ϕ), ∀t ∈ R.

From [13], for ϕ ∈ S(Rn), (1.1) has a global weak solution. The proof in [13]
is based on Galerkin method. We use a different construction, as in [18], which is
described in Section 4. Note that when the nonlinearity is H1-subcritical, then the
weak solution is unique, and coincides with the strong solution. Recall also that
the existence of blowing-up solutions in the H1-supercritical case is open so far. On
the other hand, if the nonlinearity is focusing, many results are available (see [23]
for an overview of the subject, and similar problems for other dispersive equations).

Note that in view of Definition 1.3, Corollary 1.2 is sharp.

As in [4], the idea for the proof of Theorem 1.1 consists in reducing the analysis
to a super-critical WKB analysis, for an equation of the form:

(1.5) iε∂tu
ε +

ε2

2
∆uε = |uε|2σuε ; uε(0, x) = a0(x).

The parameter ε goes to zero. The above equation is super-critical as far as geo-
metrical optics is concerned: if one plugs an approximate solution of the form

vε ∼ eiφ/ε
(
a0 + εa1 + ε2a2 + . . .

)

into the equation, then closing the systems of equations for φ, a0, a1, . . . is a very
delicate issue (see e.g. [5]). In the case σ = 1, this issue was resolved by E. Gre-
nier [14]. However, the argument in [14] relies very strongly on the fact that the
nonlinearity is defocusing, and cubic at the origin. In [1], we have proposed an
approach that justifies WKB analysis for (1.5) for any σ > 2, in space dimension
n 6 3 (higher dimensions could also be considered with the same proof, up to
considering sufficiently large values of σ). Yet, such a justification is not needed
to prove Theorem 1.1; see §2. In this paper, we use a functional that yields suffi-
ciently many informations to infer Theorem 1.1. This functional may be viewed as
a generalization of the one used in [19] in the cubic case, following an idea intro-
duced by Y. Brenier [2]. The general form for this modulated energy functional was
announced in [19]. However, we will see that making the corresponding analysis
rigorous is not straightforward, since we consider weak solutions.

The main idea of the proof of Theorem 1.1 consists in noticing that for an ε-
independent initial datum a0 in (1.5), the solution uε becomes ε-oscillatory for
times of order O(1) as ε→ 0. This phenomenon is typical of super-critical régimes,
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as far as geometrical optics is concerned (see also [7]). This crucial step is stated
in Theorem 2.1, which in turn is proved thanks to the above mentioned modulated
energy functional.

We end this introduction with a remark concerning the study of the Cauchy
problem for (1.1). From [8], it is known that the Cauchy problem is not well posed
in Hs(Rn) for 0 < s < sc. Yet, one can try to solve the Cauchy problem by
searching the solutions in a larger space. Denote H∞ = ∩s>0H

s(Rn). Recall the
notion of well-posed in the sense of Hadamard:

Definition 1.4. Let s > k > 0. The Cauchy problem for (1.1) is well posed from
Hs(Rn) to Hk(Rn) if, for all bounded subset B ⊂ Hs(Rn), there exist T > 0 and
a Banach space XT →֒ C([0, T ];Hk(Rn)) such that:
(1) For all ϕ ∈ B ∩H∞, (1.1) has a unique solution ψ ∈ C([0, T ];H∞).
(2) The mapping ϕ ∈ (H∞(Rn), ‖ · ‖B) 7→ ψ ∈ XT is continuous.

The following result is a direct consequence of our analysis (see Remark 2.2).

Corollary 1.5. Let n > 1 and σ > 1 be such that σ > 2/n. The Cauchy problem
for (1.1) is not well posed from Hs(Rn) to Hk(Rn) for all (s, k) such that

0 < s < sc =
n

2
− 1

σ
, k >

s

1 + σ(sc − s)
·

2. Reduction of the problem

Let 0 < s < sc and a0 ∈ S(Rn). For a sequence h aimed at going to zero,
consider the family of initial data

(2.1) ϕh(x) = hs−n
2 a0

(x
h

)
.

Let ε = hσ(sc−s). By assumption, ε and h go simultaneously to zero. Define the
function uε by the relation:

(2.2) uε(t, x) = h
n
2
−sψh

(
h2εt, hx

)
.

Then (1.1) is equivalent to (1.5). Note that we have the relation:

‖ψh(t)‖Ḣm = hs−m

∥∥∥∥u
ε

(
t

h2ε

)∥∥∥∥
Ḣm

.

Our aim is to show that for some τ > 0 independent of ε,

(2.3) lim inf
ε→0

εk ‖uε (τ)‖Ḣk > 0, ∀k > 0.

Back to ψ, this will yield th = τh2ε and

‖ψh(th)‖Ḣk & hs−kε−k = hs−k(1+σ(sc−s)).

To complete the above reduction, note that in view of Theorem 1.1, we only have
to prove (2.3) for k ∈]0, 1]. Indeed, for k > 1, there exists Ck > 0 such that

‖f‖Ḣ1 6 Ck‖f‖1−1/k
L2 ‖f‖1/k

Ḣk
, ∀f ∈ Hk(Rn).

This inequality is straightforward thanks to Fourier analysis. Note also that thanks
to the conservation of mass for uε, we have:

‖uε(t)‖Ḣ1 6 Ck‖a0‖1−1/k
L2 ‖uε(t)‖1/k

Ḣk
.

Up to replacing a0 with | log h|−1a0, the analysis of this section shows that
Theorem 1.1 follows from:
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Theorem 2.1. Let n > 1, a0 ∈ S(Rn) be non-trivial, and σ > 1. There exists a
solution uε to (1.5) and τ > 0 such that for all k ∈]0, 1],

lim inf
ε→0

∥∥|εDx|kuε (τ)
∥∥

L2 > 0, where Dx = −i∇.

Remark 2.2. As we will see, the previous conclusion holds for all family of smooth
solutions uε defined on a time interval independent of ε. In particular, Corollary 1.5
also follows from this analysis. To see this, suppose, by contradiction, that the
Cauchy problem is well posed from Hs(Rn) to Hk(Rn). Since the family of initial
data given by (2.1) is bounded in Hs(Rn), the first point in Definition 1.4 implies
that the solutions ψh are defined for a time interval [0, T ] independent of h. As a
result, the function uε, as given by (2.2), is defined for t ∈ [0, T/(εh2)] with value
in H∞(Rn), and hence on the fixed time interval [0, T ]. Then, Theorem 4.1 implies
that there exists τ > 0 such that lim inf ‖|εDx|kuε(τ)|‖L2 > 0. Back to ψh this
yields the existence of a sequence τh such that ‖ψh(τh)‖Hk tends to +∞, which
contradicts the continuity given by the second point of the definition.

Remark 2.3. If we could prove Theorem 2.1 for k = 1 only, then back to ψh, this
would yield Theorem 1.1 for I(s) < k 6 s, where I(s) is given by (1.2), like in [18].

Consider the case k = 1, and recall that the conservation of energy for uε reads,
as long as uε is a strong solution of (1.5):

Eε(t) =
1

2

∫

Rn

|ε∇uε(t, x)|2dx+
1

σ + 1

∫

Rn

|uε(t, x)|2σ+2dx ≡ Eε(0).

At time t = 0, the first term (kinetic energy) is of order O(ε2), while the second
(potential energy) is dominating, of order O(1). Therefore, the game consists in
showing that there exists τ > 0, time at which the kinetic energy is of the order of
the total (initial) energy as ε→ 0.

Some important features of the proof of this result can be revealed by analyzing
the linear case with variable coefficients:

iε∂tu
ε +

ε2

2
∆uε = V (x)uε ; uε(0, x) = a0(x).

Introduce the operator Hε := −(ε2/2)∆ + V (x), so that uε(t) = e−itHε/εa0. Now,
let Opε(q) be a semiclassical pseudo-differential operator with symbol q(x, ξ) ∈ S1

1,0.

Since eitHε/ε is unitary, by means of Egorov’s Theorem (see [21]), we obtain

‖Opε(q)u
ε‖L2 = ‖eitHε/ε Opε(q)e

−itHε/εa0‖L2 = ‖Opε(q ◦ Φt)a0‖L2 + O(ε),

where Φt is the Hamiltonian flow associated with Hε. For small times, one can
relate Φt to the solution φ(t, x) of the Hamilton–Jacobi equation:

(2.4) ∂tφ+
1

2
|∇φ|2 + V (x) = 0 ; φ(0, x) = 0,

by the identity Φt(x, ξ) = (X(t, x) + tξ , ξ + (∇φ)(t,X(t, x))), where X satisfies
∂tX(t, x) = (∇φ)(t,X(t, x)) with X(0, x) = x. Hence, with q(x, ξ) = iξ, we infer

‖ε∇uε(t)‖L2 = ‖(∇φ)(t,X(t, x))a0‖L2 + O(ε),

so that the kinetic energy is of order O(1) provided that (∇φ)(t,X(t, ·))a0 6= 0.

The previous argument can be made explicit for the harmonic oscillator

(2.5) iε∂tu
ε
ℓ +

ε2

2
∆uε

ℓ =
|x|2
2
uε

ℓ ; uε
ℓ(0, x) = a0(x).

Lemma 2.4. Let n > 1, and a0 ∈ S(Rn) (non-trivial). There exists τ > 0 such
that the solution uε

ℓ to (2.5) satisfies

lim inf
ε→0

‖ε∇uε
ℓ (τ)‖L2 > 0.
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Proof. The standard WKB approach yields, at leading order, the following approx-
imate solution:

vε
ℓ (t, x) = aℓ(t, x)e

iφℓ(t,x)/ε,

where φℓ and aℓ are given by an eikonal equation and a transport equation. Since
we consider an harmonic oscillator, we can compute φℓ and aℓ explicitly:

∂tφℓ +
1

2
|∇φℓ|2 +

|x|2
2

= 0; φℓ|t=0 = 0 : φℓ(t, x) =
−|x|2

2
tan t.

∂taℓ + ∇φℓ · ∇aℓ +
1

2
aℓ∆φℓ = 0; aℓ|t=0 = a0 : aℓ(t, x) =

1

(cos t)n/2
a0

( x

cos t

)
.

Energy estimates then yield (see for instance [5, §3] for more details):

‖ε∇uε
ℓ − ε∇vε

ℓ‖L∞([0,T ];L2) 6 CT ε, ∀T ∈
[
0,
π

2

[
.

Since

lim inf
ε→0

‖ε∇vε
ℓ (t)‖L2 = sin t ‖xa0‖L2 , ∀t ∈

[
0,
π

2

[
,

the lemma follows easily. �

The strategy for proving Theorem 2.1 is the same: we compare with the limit
system. For nonlinear Schrödinger equation, the eikonal equation which gives the
phase is coupled to the transport equation: the limiting system reads

(2.6)





∂tφ+
1

2
|∇φ|2 + |a|2σ = 0 ; φ|t=0 = 0,

∂ta+ ∇φ · ∇a+
1

2
a∆φ = 0 ; a|t=0 = a0.

By introducing v = ∇φ, one can transform this system into a quasilinear system
of nonlinear equations. An important feature of the system thus obtained is that
it does not enter into the classical framework of symmetric hyperbolic systems for
σ > 2. Nevertheless, one can solve the Cauchy problem (2.6) for all σ > 1 by a
nonlinear change of variable. This is done in §3 following an idea due to T. Makino,
S. Ukai and S. Kawashima [20].

For the general case σ > 1, we establish a modulated energy estimate, following
the pioneering work of Y. Brenier [2]. The idea consists in obtaining an estimate for
the L2 norm of ε∇aε where aε is the modulated unknown function aε := uεe−iφ/ε.
It is found that aε satisfies

iε
(
∂ta

ε + ∇φ · ∇aε +
1

2
aε∆φ

)
+
ε2

2
∆aε =

(
|aε|2σ − |a|2σ

)
aε.

For σ = 1, one can obtain estimates uniform in ε, that is

‖ε∇aε‖L∞([0,T ];L2) +
∥∥|aε|2 − |a|2

∥∥
L∞([0,T ];L2)

= O(ε),

by an integration by parts argument. Again, this is based on the hyperbolicity
in the case σ = 1 (see [19] for an application of this idea to the Gross-Pitaevskii
equations). Using a modulated energy functional adapted to our problem, we prove
the estimate (see Theorem 4.1 below):

‖ε∇aε‖L∞([0,T ];L2) +
∥∥(

|aε|2 − |a|2
) (

|aε|σ−1 + |a|σ−1
)∥∥

L∞([0,T ];L2)
= O(ε).

This is enough to prove Theorem 2.1 for k = 1. Note that this suffices to infer
Corollary 1.2. Finally, to cover the range k ∈]0, 1], we microlocalize the previous
estimate by means of wave packets operator.
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3. The limiting system

Being optimistic, one would try to mimic the approach of E. Grenier [14], and
write the solution uε to (1.5) as uε = aεeiφε/ε, where

(3.1)






∂tφ
ε +

1

2
|∇φε|2 + |aε|2σ = 0 ; φε

|t=0 = 0,

∂ta
ε + ∇φε · ∇aε +

1

2
aε∆φε = i

ε

2
∆aε ; aε

|t=0 = a0.

Considering the unknown vε = ∇φε instead of φε, the first step in the analysis
would be to solve

(3.2)






∂tv
ε + vε · ∇vε + ∇

(
|aε|2σ

)
= 0 ; vε

|t=0 = 0,

∂ta
ε + vε · ∇aε +

1

2
aε div vε = i

ε

2
∆aε ; aε

|t=0 = a0.

In [14], E. Grenier considers the unknown uε = (vε,Re aε, Im aε) ∈ R
n+2. It solves

a partial differential equation of the form

∂tu
ε +

n∑

j=1

Aj(u
ε)∂ju

ε =
ε

2
Luε.

In the case σ = 1, the left-hand side of the above equation defines a symmetric quasi-
linear hyperbolic system in the sense of Friedrichs, with a constant symmetrizer.
The linear operator L corresponds to the term i∆ on the right hand side of (3.2):
it is skew-symmetric, and does not appear in the energy estimates. Therefore, one
can construct a smooth solution to (3.2) on some time interval [0, T ] with T > 0
independent of ε. In the case σ > 2, the symmetrizer of [14] would become

S =

( 1
4σ|aε|2σ−2 In 0

0 I2

)
.

For aε ∈ L2(Rn), this matrix is not uniformly bounded, and this is why the analysis
in [14] is restricted to nonlinearities which are defocusing, and cubic at the origin.

This apparent lack of hyperbolicity is not a real problem for the homogeneous
nonlinearity that we consider, provided that we analyze the limiting system only:

(3.3)





∂tφ+
1

2
|∇φ|2 + |a|2σ = 0 ; φ|t=0 = 0,

∂ta+ ∇φ · ∇a+
1

2
a∆φ = 0 ; a|t=0 = a0.

Note that the above restriction remains apparently valid for this system: in the
presence of vacuum (zeroes of a), the symmetrizer S is singular. This may lead
to a loss of regularity in the energy estimates. However, we shall see that thanks
to the special structure of (3.3), we can construct solutions to (3.3) in Sobolev
spaces of sufficiently large order. Following an idea due to T. Makino, S. Ukai and
S. Kawashima [20], we prove:

Lemma 3.1. Let a0 ∈ S(Rn). There exists T > 0 such that (3.3) has a unique
solution (φ, a) ∈ C∞([0, T ] × R

n)2, with (φ, a) ∈ C([0, T ], Hs)2 for all s > 0.
Moreover, 〈x〉s ∇φ ∈ C([0, T ], L2) for all s > 0, where 〈x〉 = (1 + |x|2)1/2.

Proof. Differentiating the first equation in (3.3), we first consider:

(3.4)






∂tv + v · ∇v + ∇
(
|a|2σ

)
= 0 ; v|t=0 = 0,

∂ta+ v · ∇a+
1

2
a div v = 0 ; a|t=0 = a0.
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Adapting the idea of [20], consider the unknown (v, u) = (v, aσ). Even though the
map a 7→ aσ is not bijective, this will suffice to prove the lemma. The pair (v, u)
solves:

(3.5)





∂tv + v · ∇v + ∇
(
|u|2

)
= 0 ; v|t=0 = 0,

∂tu+ v · ∇u +
σ

2
u div v = 0 ; u|t=0 = aσ

0 ∈ S(Rn).

This system is hyperbolic symmetric, with a constant symmetrizer. Therefore,
there exist T > 0 and a unique solution (v, u) ∈ C∞([0, T ] × R

n)2, such that
(v, u) ∈ C([0, T ], Hs)2 for all s > 0. The fact that 〈x〉s v ∈ C([0, T ], L2) follows
easily by considering the momenta of u and v. Now that v is known, we define a
as the solution of the transport equation

∂ta+ v · ∇a+
1

2
a div v = 0 ; a|t=0 = a0.

The function a has the regularity announced in Lemma 3.1. We check that aσ solves
the second equation in (3.5). Since v is a smooth coefficient, by uniqueness for this
linear equation, we have u = aσ. Therefore, (v, a) solves (3.4). To conclude, we

notice that v is irrotational, so there exists φ̃ such that v = ∇φ̃. Setting φ = φ̃+F ,
where F = F (t) is a function of time only, (φ, a) solves (3.3). Uniqueness follows
from the uniqueness for (3.5). �

Remark 3.2. The above proof shows that if we assume only a0 ∈ Hs(Rn) with
s > n/2 + 1, then u, v ∈ C([0, T ];Hs). We infer a ∈ C([0, T ];Hs−1): the possible
loss of regularity due to the lack of hyperbolicity for (3.3) remains limited.

Remark 3.3. The nonlinear change of unknown function, u = aσ, suggests that
the above approach cannot be adapted to study (3.2), since we have to deal with
the term i∆aε, and prevent the loss of regularity that it may cause in the energy
estimates.

4. Semi-classical limit

Introduce the hydrodynamic variables:

ρ = |a|2 ; ρε = |uε|2 ; Jε = Im (εuε∇uε) .

The main result of this section is:

Theorem 4.1. Let n > 1, and σ > 1 be an integer. Let (v, a) ∈ C([0, T ];H∞)2

given by Lemma 3.1, where v = ∇φ. Then we have the following estimate:

‖(ε∇− iv)uε‖2
L∞([0,T ];L2) +

∥∥∥(ρε − ρ)
2 (

(ρε)σ−1 + ρσ−1
)∥∥∥

L∞([0,T ];L1)
= O(ε2).

Note that the above quantities are well-defined for weak solutions. We outline
the argument in a formal proof, which is then made rigorous.

Formal proof. For y > 0, denote

f(y) = yσ ; F (y) =

∫ y

0

f(z)dz =
1

σ + 1
yσ+1 ;

G(y) =

∫ y

0

zf ′(z)dz = yf(y) − F (y) =
σ

σ + 1
yσ+1.

We check that (ρε, Jε) satisfies, for σ > 1:

(4.1)





∂tρ
ε + div Jε = 0.

∂tJ
ε
j +

ε2

4

∑

k

∂k

(
4 Re∂ju

ε∂ku
ε − ∂2

jkρ
ε
)

+ ∂jG(ρε) = 0.
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As suggested in [19, Remark 1, (2)], introduce the modulated energy functional:

Hε(t) =
1

2

∫

Rn

|(ε∇− iv)uε|2 dx+

∫

Rn

(F (ρε) − F (ρ) − (ρε − ρ)f(ρ)) dx.

Denote

Kε(t) =
1

2

∫

Rn

|(ε∇− iv)uε|2 dx.

Integrations by parts, which are studied in more detail below, yield:

d

dt
Hε(t) = O

(
Kε + ε2

)
−

∫

Rn

(G(ρε) −G(ρ) − (ρε − ρ)G′(ρ)) div v dx.

We check that there exists c > 0 such that

Hε(t) > Kε(t) + c

∫

Rn

(ρε − ρ)2
(
(ρε)σ−1 + ρσ−1

)
dx.

Setting

H̃ε(t) = Kε(t) + c

∫

Rn

(ρε − ρ)2
(
(ρε)σ−1 + ρσ−1

)
dx,

we have:

H̃ε(t) 6 H̃ε(0) + C

∫ t

0

(
H̃ε(s) + ε2

)
ds.

We infer by Gronwall lemma that H̃ε(t) = O(ε2) so long as it is defined, which is
exactly the result of Theorem 4.1. �

Rigorous proof. In general, the above integrations by parts do not make sense for
all t ∈ [0, T ], since we consider weak solutions only. Note however that for σ > 2
and n 6 3, the analysis in [1] shows that we can work with strong solutions, so the
following analysis is not needed in this case. To make the above approach rigorous,
we work on a sequence of global strong solutions, converging to a weak solution.
For (δm)m a sequence of positive numbers going to zero, introduce the saturated
nonlinearity, defined for y > 0:

fm(y) =
yσ

1 + (δmy)
σ ·

Note that fm is a symbol of degree 0. For fixed m, we have a global strong solution
uε

m ∈ C(R;H1) to:

(4.2) iε∂tu
ε
m +

ε2

2
∆uε

m = fm

(
|uε

m|2
)
uε

m ; uε
m(0, x) = a0(x).

As m→ ∞, the sequence (uε
m)m converges to a weak solution of (1.5) (see [13, 18]).

For y > 0, introduce also

Fm(y) =

∫ y

0

fm(z)dz ; Gm(y) =

∫ y

0

zf ′
m(z)dz = yfm(y) − Fm(y).

The mass and energy associated to uε
m are conserved:

M ε
m(t) =

∫
|uε

m(t, x)|2dx ≡ ‖a0‖2
L2 .

Eε
m(t) =

1

2
‖ε∇uε

m(t)‖2
L2 +

∫

Rn

Fm

(
|uε

m(t, x)|2
)
dx ≡ Eε

m(0).

Moreover, the solution is in H2(Rn) for all time: uε
m ∈ C(R;H2). To see this, we

use an idea due to T. Kato [15, 16], and consider ∂tu
ε
m. Energy estimates show that

∂tu
ε
m ∈ C(R;L2), since fm is a symbol of degree 0. Using (4.2) and the boundedness

of fm, we infer ∆uε
m ∈ C(R;L2).
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We consider the hydrodynamic variables:

ρε
m = |uε

m|2 ; Jε
m = Im (εuε

m∇uε
m) .

From the above discussion, we have:

(4.3) ρε
m(t) ∈W 2,1(Rn) and Jε

m(t) ∈W 1,1(Rn), ∀t ∈ R.

The analogue of (4.1) is:

(4.4)






∂tρ
ε
m + div Jε

m = 0.

∂t(J
ε
m)j +

ε2

4

∑

k

∂k

(
4 Re∂ju

ε
m∂ku

ε
m − ∂2

jkρ
ε
m

)
+ ∂jGm(ρε

m) = 0.

Introduce the modulated energy functional “adapted to (4.2)”:

Hε
m(t) =

1

2

∫

Rn

|(ε∇− iv)uε
m|2 dx+

∫

Rn

(Fm(ρε
m) − Fm(ρ) − (ρε

m − ρ)fm(ρ)) dx.

Notice that this functional is not exactly adapted to (4.2), since the limiting quan-
tities (as ε → 0) ρ and v are constructed with the nonlinearity f and not the
nonlinearity fm. We also distinguish the kinetic part:

Kε
m(t) =

1

2

∫

Rn

|(ε∇− iv)uε
m|2 dx.

Thanks to the conservation of energy for uε
m, we have:

d

dt
Kε

m = − d

dt

∫
Fm(ρε

m)dx +
1

2

∫
|v|2∂tρ

ε
m +

∫
ρε

mv · ∂tv

−
∫
Jε

m · ∂tv −
∫
v · ∂tJ

ε
m.

Using Lemma 3.1, (4.3) and (4.4), (licit) integrations by parts yield:

d

dt
Kε

m = − d

dt

∫
Fm(ρε

m)dx− 1

2

∫
|v|2 div Jε

m −
∑

j,k

ρε
mvjvk∂jvk

−
∫
ρε

m∇f(ρ) · v +

∫
(v · ∇v) · Jε

m +

∫
∇f(ρ) · Jε

m

−
∑

j,k

∫
∂kvj Re (ε∂ju

ε
mε∂ku

ε
m) − ε2

4

∫
∇ (div v) · ∇ρε

m +

∫
ρε

mv · ∇fm(ρε).

Proceeding as in [19], we have:

ε2
∫

div (∇v) · ∇ρε
m = ε

∫
div (∇v) · (uε

mε∇uε
m + uε

mε∇uε
m)

= ε

∫
div (∇v) ·

(
uε

m(ε∇− iv)uε
m + uε

m(ε∇− iv)uε
m

)

= O
(
Kε

m + ε2
)
,

where we have used the conservation of mass and Young’s inequality. From now on,
we use the convention that the constant associated to the notation O is independent
of m and ε. Treating the term involving ∂kvj Re (ε∂ju

ε
mε∂ku

ε
m) in a similar fashion,

simplifications yield:

d

dt
Kε

m =O
(
Kε

m + ε2
)
− d

dt

∫
Fm(ρε

m) +

∫
∇fm(ρε

m)ρε
mv

−
∫

∇f(ρ) · (ρε
mv − Jε

m) .
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Similar computations for Hε
m −Kε

m yield:

d

dt
Hε

m =O
(
Kε

m + ε2
)
−

∫
(Gm(ρε

m) −Gm(ρ) − (ρε
m − ρ)G′

m(ρ)) div v

+

∫
∇ (f(ρ) − fm(ρ)) · (Jε

m − ρε
mv).

Note that f(ρ) − fm(ρ) → 0 in L∞([0, T ];W 1,∞) as m→ ∞. We can thus write:

(4.5)

d

dt
Hε

m =O
(
Kε

m + ε2
)

+ om→∞(1)

−
∫

(Gm(ρε
m) −Gm(ρ) − (ρε

m − ρ)G′
m(ρ)) div v.

We check that there exists C independent of m such that

|Gm(ρε
m) −Gm(ρ) − (ρε

m − ρ)G′
m(ρ)| 6 C(ρε

m − ρ)2 (θm(ρε
m) + θm(ρ)) ,

where we have set, for y > 0,

θ(y) =
yσ−1

1 + yσ
; θm(y) =

yσ−1

1 + (δmy)σ
·

Easy computations show that there exists K > 0 such that

1

K
(θ(a) + θ(b)) 6 θ(a+ b) 6 K (θ(a) + θ(b)) , ∀a, b > 0.

Since the numerator of θm is homogeneous, we infer that the above estimate remains
true when θ is replaced by θm, with the same constant K (independent of m).
Therefore, there exists c > 0 independent of m, such that:

Hε
m(t) > H̃ε

m(t) := Kε
m(t) + c

∫
(ρε

m − ρ)2 (θm(ρε
m) + θm(ρ)) .

Using Gronwall lemma, we infer

sup
t∈[0,T ]

H̃ε
m(t) 6 Cε2 + om→∞(1),

for some constant C independent of m. Letting m → ∞, Fatou’s lemma yields
Theorem 4.1. �

5. End of the proof of Theorem 1.1

To conclude, the heuristic argument is as follows. From Theorem 4.1, we expect

‖ε∇uε(t)‖L2 ≈ ‖v(t)uε(t)‖L2 ≈ ‖v(t)a(t)‖L2 .

This follows easily from Hölder’s inequality. For the values k ∈]0, 1[ in Theorem 4.1,
we morally use an estimate of the form

∥∥|v(t)|kuε(t)
∥∥

L2 .
∥∥|εDx|kuε(t)

∥∥
L2 +

∥∥|εDx − v(t)|kuε(t)
∥∥

L2 ,

where the first term of the right-hand side goes to zero by interpolation between
k = 0 and k = 1. The aim of the following lemma is to justify such a statement.

Lemma 5.1. There exists a constant K such that, for all ε ∈]0, 1], for all s ∈ [0, 1],
for all u ∈ H1(Rn) and for all v ∈W 1,∞(Rn),

‖|v|su‖L2 6 ‖|εDx|su‖L2 + ‖(ε∇− iv)u‖s
L2‖u‖1−s

L2 + εs/2K (1 + ‖∇v‖L∞) ‖u‖L2.



12 T. ALAZARD AND R. CARLES

Proof. We begin with the following elementary inequality: For all (x, y) ∈ R
n ×R

n

and all s ∈ [0, 1], there holds

(5.1) |x|s 6 |y|s + |x− y|s.
To see this, note that the result is obvious if |x| 6 |y|. Else, write |y| = λ|x| with
λ ∈ [0, 1] and use the inequalities λ 6 λs and (1 − λ) 6 (1 − λ)s.

With this preliminary established, introduce the wave-packets operator (see e.g.
[10, 11, 21])

W εv(x, ξ) = cnε
−3n/4

∫

Rn

ei(x−y)·ξ/ε−(x−y)2/2εv(y) dy,

with cn = 2−n/2π−3n/4. The mapping v 7→ W εv is continuous from the Schwartz
class S(Rn) to S(R2n), and W ε extends as an isometry from L2(Rn) to L2(R2n):

‖W εv‖L2(R2n) = ‖v‖L2(Rn).

By applying (5.1), we have
∥∥|v(x)|sW εu

∥∥
L2(R2n)

6
∥∥|ξ|sW εu

∥∥
L2(R2n)

+
∥∥|ξ − v(x)|sW εu

∥∥
L2(R2n)

.

Therefore, since

‖|ξ − v(x)|sW εu‖L2(R2n) 6 ‖W εu‖1−s
L2(R2n)

∥∥|ξ − v(x)|W εu
∥∥s

L2(R2n)

6 ‖u‖1−s
L2(Rn)

∥∥(ξ − v(x))W εu
∥∥s

L2(R2n)
,

to obtain the desired estimate, we need only prove, for X = L2(R2n):
∥∥|v(x)|sW εu−W ε(|v|su)

∥∥
X

6 Kεs/2‖∇v‖s
L∞‖u‖L2,(5.2)

∥∥|ξ|sW εu−W ε(|εDx|su)
∥∥

X
6 Kεs/2‖u‖L2,(5.3)

∥∥(iξ − iv)W εu−W ε
(
(ε∇− iv)u

)∥∥
X

6 Kε1/2(1 + ‖∇v‖L∞)‖u‖L2.(5.4)

These properties follows from the fact that the wave packets operator conjugates the
action of pseudo-differential operators, approximately, to multiplication by symbols.
For smooth symbols, one has sharp results (see [10, 11, 21]). For the rough symbols
|v(x)|s and |εξ|s, one can proceed as follows.

To prove (5.2), directly from the definition, we compute

‖|v|sW εu−W ε(|v|su)‖2
L2(R2n)

= c2n(2π)nε−n/2

∫∫
e−(x−y)2/ε ||v(x)|s − |v(y)|s|2 |u(y)|2 dydx.

Consequently, since v ∈ W 1,∞(Rn), the inequality (5.1) implies

‖|v|sW εu−W ε(|v|su)‖2
L2(R2n)

6 K‖∇v‖2s
L∞

∫∫
ε−n/2e−(x−y)2/ε |x− y|2s |u(y)|2 dydx

6 K‖∇v‖2s
L∞

∫∫
e−z2 ∣∣√εz

∣∣2s ∣∣u(x−
√
εz)

∣∣2 dzdx,

which proves (5.2).

We next compute W ε(|εDx|su)(x, ξ): it is given by

cn(2π)−n/2ε−7n/4

∫∫
ei(x−y)·(ξ−θ)/ε−(x−y)2/2εeix·θ/ε|θ|sû

(
θ

ε

)
dθdy,

where û is the Fourier transform of u. Hence, by using

(2π)−n/2

∫
ei(x−y)·(ξ−θ)/ε−(x−y)2/2ε dy = εn/2e−(ξ−θ)2/2ε,



LOSS OF REGULARITY FOR NLS 13

we find

W ε
(
|εDx|su

)
(x, ξ) := eix·ξ/εW εwε(ξ,−x),

with wε(τ) := |τ |sε−n/2û(τ/ε). This leads us back to the situation of the previous
step (with |v(x)|s replaced with |x|s), and hence (5.3) is proved.

Finally, the arguments establishing (5.2) and (5.3) also yield the usual estimates
∥∥vW εu−W ε(vu)

∥∥
L2(R2n)

6 Kε1/2‖∇v‖L∞‖u‖L2,
∥∥iξW εu−W ε(ε∇u)

∥∥
L2(R2n)

6 Kε1/2‖u‖L2,

which proves (5.4). This completes the proof of the lemma. �

We infer that the heuristic argument of the beginning of this section is justified:

Corollary 5.2. For all t ∈ [0, T ] and all k ∈]0, 1], we have:

(5.5) lim inf
ε→0

∥∥|εDx|kuε(t)
∥∥

L2 >
∥∥|v(t)|ka(t)

∥∥
L2 .

Proof. Let t ∈ [0, T ]. It follows from the previous lemma that
∥∥|εDx|kuε(t)

∥∥
L2 = ‖|v(t)|kuε(t)‖L2 + o(1).

Write
∥∥|v(t)|ka(t)

∥∥
L2 6

∥∥|v(t)|kuε(t)
∥∥

L2 +
∥∥|v(t)|2k

(
|uε(t)|2 − |a(t)|2

)∥∥
L1 .

From Hölder’s inequality, the last term is bounded by

(5.6)
∥∥|v(t)|2k

∥∥
L1+1/σ

∥∥|uε(t)|2 − |a(t)|2
∥∥

Lσ+1 .

When k > σ/(σ + 1), Lemma 3.1 and Sobolev embedding show that the first term
is bounded on [0, T ]. When 0 < k < σ/(σ + 1), Hölder’s inequality yields:

∥∥|v(t)|2k
∥∥

L1+1/σ 6 CN

∥∥∥〈x〉N v(t)
∥∥∥

2kσ/(σ+1)

L2
for N >

n

2k

(
σ

σ + 1
− k

)
.

Lemma 3.1 and Theorem 4.1 show that (5.6) goes to zero as ε tends to 0. �

To complete the proof of Theorem 2.1, it remains only to prove that the right-
hand side in (5.5) is non trivial. To see this, we note that, from (3.4),

a|t=0 = a0 ; v|t=0 = 0 ; ∂tv|t=0 = −∇
(
|a0|2σ

)
.

Therefore, by continuity (see Lemma 3.1), we obtain the following result.

Lemma 5.3. There exists τ > 0 such that

(5.7)

∫
|v(τ, x)|2k|a(τ, x)|2dx > 0, ∀k ∈ [0, 1].

This implies Theorem 2.1, hence Theorem 1.1.

Remark 5.4. We can compare the results of this paper with the analysis in [8]. The
approximate solution used in [8] consists in neglecting the Laplacian in (1.5):

iε∂tw
ε = |wε|2σwε ; wε

|t=0 = a0, hence wε(t, x) = a0(x)e
−it|a0(x)|2σ/ε.

A direct application of Gronwall lemma shows that wε is a suitable approximation
of uε up to time of order cε| log ε|θ, for some c, θ > 0. The Taylor expansion in time
for v shows that

v(t, x) = −t∇
(
|a0(x)|2σ

)
+ O

(
t3

)
.

The formal analysis of [4, §3.1] is thus justified also in this case: wε(t) is a good
approximation of uε(t) for t≪ ε1/3:

‖|εDx|suε(t)‖L2 ≈ ‖|v(t)|sa(t)‖L2 ≈ ‖|εDx|swε(t)‖L2 for t≪ ε1/3.
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To prove this point, it seems necessary to perform a quasilinear analysis (see §3),
and the semilinear approach based on Gronwall lemma is not enough.

Acknowledgments. The authors are grateful to Patrick Gérard for stimulating
comments on this work.
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(2001), no. 4-6, 267–306 (2002), Hommage à Pascal Laubin.
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