
HAL Id: hal-00127769
https://hal.science/hal-00127769v1

Preprint submitted on 29 Jan 2007 (v1), last revised 9 Nov 2010 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Generating certified properties for numerical expressions
and their evaluations

Marc Daumas, Guillaume Melquiond

To cite this version:
Marc Daumas, Guillaume Melquiond. Generating certified properties for numerical expressions and
their evaluations. 2007. �hal-00127769v1�

https://hal.science/hal-00127769v1
https://hal.archives-ouvertes.fr

ha
l-

00
12

77
69

, v
er

si
on

 1
 -

 2
9

Ja
n

20
07

Generating erti�ed properties for numerialexpressions and their evaluations⋆Mar Daumas1 and Guillaume Melquiond2

1 lirmm (umr 5506 nrs�um2), visiting lp2a (ea 3679 upvd)
2 lip (umr 5668 nrs�ens Lyon�inria)Abstrat We present Gappa, a tool that an generate erti�ed prop-erties based on dyadi frations, interval arithmeti and forward erroranalysis. Gappa operates on numerial expressions and on their evalu-ation on omputers. For eah property, Gappa generates a proof thatan be heked with an automati proof heker with the help of a om-panion library of veri�ed fats. So far, Gappa generates proofs for eitherCoq and HOL Light and we have developed a large ompanion libraryfor Coq dealing with the addition, multipliation, division, and squareroot, in �xed- and �oating-point arithmetis. Gappa handles seamlesslyadditional properties expressed as interval properties or rewriting rulesin order to establish more intriate results. Users an simultaneously pro-vide bounds to be proved on expressions and ask Gappa to propose oneson other expressions. Reent work has proved that Gappa is perfetlyadapted to the veri�ation of small piees of software. For larger pieesof software, Gappa an either be used to double hek assertions pro-dued by non veri�ed tools or be invoked as needed by tools that handleloops and branhes but miss the ability to handle possible e�ets of theaumulation and magni�ation of negligible errors.1 IntrodutionGappa is a simple and e�ient tool for automatially developing erti�ed prop-erties and proofs in general alulus, in omputer arithmeti [1℄, and in theengineering of numerial software [2,3℄ and hardware [4℄. These properties dealwith arithmeti expressions on real and rational numbers and their evaluationin omputers on �xed- and �oating-point data formats.Software and hardware designers usually answer questions suh as: 1. Howaurate are results? 2. Will hardware or software exhibit any exeptional be-havior? The answer to question 1 is very often �su�iently� [5℄ and the answerto question 2 is very often �never� [6℄.When we deal with programs that involve model, trunation and/or round-o� errors, we annot expet programs to yield exat results, but spei�ationsshould still fully haraterize the auray of the results. Moreover spei�ations

⋆ This work has been partially founded by PICS 2533 of the CNRS and projet EVA-Floof the ANR.

2 Mar Daumas and Guillaume Melquiondnormally onsider that the exeptional behavior of one operation (suh as adivision by zero, an over�ow or an invalid operand) orretly handled by therest of a program leading to meaningful results is not an exeptional behaviorof the program.Writing a omplete and aurate spei�ation about the behavior of somenumerial software is usually a di�ult task requiring some familiarity withbakward error analysis, �rst order analysis, ondition number and singular valuedeomposition [7,8℄. Suh work is even more repulsive to designers as it leads toa dead-end similar to what was mentioned satirially in [9℄. To the author's bestknowledge, Gappa is the �rst tool both able to automatially handle some of theproperties enountered in the spei�ation of numerial software and based onsu�iently strong foundations to beome part of future tools routinely used insoftware engineering.Gappa is well suited to ertify numerial programs appearing in safety riti-al appliations suh as air transportation or ubiquitous software suh as basilibraries approximating the ommon elementary funtions (sin, exp, et). Aftereah invoation, Gappa generates a erti�ate that is a formal proof that an beheked independently. Similar methodology has proved to be su�ient to meetthe highest Common Criteria Evaluated Assurane Level (EAL 7) [10,11℄ andit may now be applied to numerial appliations using �oating- and �xed-pointarithmetis.Properties that are most often needed involve: the range of variables ap-pearing in programs to prevent any exeptional behavior (over�ow or divisionby zero) and the range of absolute and/or relative errors to haraterize theauray of results.Two other projets are urrently mixing interval arithmeti and automatiproof heking [12,13℄. Both projets fous on providing tools to perform intervalarithmeti within an automati proof heker, ACL2 for the �rst one and PVSfor the seond one. Our goal is to provide invisible formal methods [14℄ in thesense that Gappa delivers formal erti�ates to users that are not expeted toever write any piee of proof in any formal proof system. We use Coq proofassistant [15,16℄, but ongoing work shows that Gappa an work with other proofassistants suh as PVS and HOL Light.The ontinuing work on interval arithmeti [17,18℄ has reated a huge set ofuseful tehniques to deliver aurate answers in a reasonable time. Eah teh-nique is adapted to a spei� lass of problems and most evaluations yield a-urate estimations only if they are handled by the appropriate tehniques inthe appropriate order. Blending ranges and properties on dyadi frations hasalso been heavily used in omputer arithmeti and [19℄ is one reent notieablereferene.Our goal in developing Gappa is to provide a tool that is able to onsidermany tehniques using interval arithmeti, dyadi frations, and rewriting rules.Gappa is able to follow hints when some are available (either given by an heuristior by the user), and it otherwise performs an exhaustive searh. One it hasprodued a valid proof, Gappa simpli�es it in order to redue the erti�ation

Generating erti�ed properties for numerial expressions 3time, as in-depth proof heking is and will remain muh slower than simpleC++ evaluation.We �rst desribe how to write an e�ient sript for Gappa. We then presenthow Gappa works with proof hekers, extending [20℄. We �nish this report withperspetives, experiments and onluding remarks.2 Input sripts to GappaGappa is omposed of an independent program written in C++, based on Boostinterval arithmeti library [21℄ and MPFR [22℄, and a ompanion library of Coqtheorems. Gappa produes a Coq �le for a given input sript inluding propertiesto prove. The �le ontains proofs of the properties. Validity of proofs an thenautomatially be heked by Coq.The input �le to Gappa ontains a set of hypotheses eah stating that avariable or an expression is within an interval. Gappa handles basi arithmetioperators (addition, subtration, multipliation, division, and square root) andthe support library ontains theorems so these operators an be used in proofs.Gappa input �le also ontains goals using the same format as hypotheses.Consider for example that y is the result of a program. We may de�ne Y (up-perase) as the exat answer without any model, trunation or rounding error.We will ertainly be interested in� an interval ontaining y to guarantee that the result does not over�ow,� an interval ontaining y − Y or (y − Y)/Y to guarantee that the result isaurate.Intervals in goals may be replaed by question marks when Gappa should proposesome enlosing intervals. Users annot use question marks for intervals thatappear as hypotheses in the logial formula.Warning messages, error messages, and results are displayed on the standarderror output. Gappa sends to the standard output a formal proof of the logialformula; its format depends on the seleted bak-end. Command line and em-bedded options allow users to selet a bak-end (Coq, HOL Light, or none), toset the internal preision used by MPFR bounds of intervals, to limit the depthof dihotomy splits, and to enable or disable warning messages.2.1 Formalizing a problemThe logial formula that Gappa is expeted to prove is written between brak-ets ({ }) as presented below and it may ontain any impliation (->), disjun-tion (\/), onjuntion (/\) of enlosures of mathematial expressions. Enlosuresare either bounded ranges (in) or inequalities (<= or >=). Any identi�er withoutde�nition is assumed to be universally quanti�ed over the set of real numbersthe �rst time Gappa enounters it.{ x - 2 in [-2,0℄ /\ (x + 1 in [0,2℄ -> y in [3 ,4℄)-> not x <= 1 \/ x + y in ? }

4 Mar Daumas and Guillaume MelquiondThe logial formula is �rst modi�ed and loosely broken aording to the rulesof sequent alulus as presented below. Eah of the new formulas is then veri�edby Gappa. Some ranges on the right of these sub-formulas an be left unspei�ed.Gappa then tries to suggest ranges where the logial formula is veri�ed.
x ≤ 1 ∧ x − 2 ∈ [−2, 0] =⇒ x + 1 ∈ [0, 2] ∨ x + y ∈ ?

x ≤ 1 ∧ x − 2 ∈ [−2, 0] ∧ y ∈ [3, 4] =⇒ x + y ∈ ?In order to be useful in the proof of the whole formula, the seond sub-formularequires the �rst one to hold true. If Gappa annot verify the �rst sub-formula,it will skip the veri�ation of the seond one.Inequalities an be present on both sides of a sub-formula. On the left side,eah inequality will be used only if Gappa is already able to ompute an enlosureof the expression by some other means. On the right side, Gappa will introdue areverted opy of the inequalities on the left side in order to inrease the numberof available hypotheses, as allowed by lassial logi.When proving a disjuntion in a sub-formula, one of the sub-terms of thedisjuntion has to ontinuously hold with respet to the set of hypotheses. IfGappa annot prove that the same sub-term always hold, it will be unable toprove that the whole disjuntion holds.Gappa produes an error message if an interval is written with reversedbounds or is so tight that Gappa needs to replae it with an empty interval.For example, the goal 1.3 in [1.3,1.3℄ an not be veri�ed by Gappa, as theempty set is the biggest representable subset of the set {1.3}.2.2 De�nitions of rounded expressions and aliasesTyping large expressions in the logial formula would not be pratial for theerti�ation of software. Aliases to mathematial expressions are de�ned by on-strutions of the form name = term and name beomes available for later de�ni-tions, the logial formula and hints. It is neither an equality nor an a�etationin any operational semanti but rather an alias. Gappa uses the de�ned aliasesfor its outputs and in the formal proof instead of mahine generated names. Asymbol annot be de�ned more than one, even if the right hand sides of bothde�nitions are equivalent. Neither an it be de�ned after having been used as anunbound variable. For example b = a * 2; a = 1; is not aepted by Gappa.Gappa is speially designed to verify properties that may appear when erti-fying numerial odes. Rounding operators are used in the arithmeti expressionsof these properties. They are real funtions yielding rounded values aording tothe target data format (preision, minimum_exponent, and lsb_weight) anda prede�ned rounding mode amongst the ones presented Table 1. Floating- and�xed-point rounding operators an be expressed with the following operators:float < preision , minimum_exponent , rounding_diretion >(...)fixed < lsb_weight , rounding_diretion >(...)The syntax above an be abbreviated for the �oating-point formats of Table 2and for (�xed-point) integer arithmeti:

Generating erti�ed properties for numerial expressions 5float < name , rounding_diretion >(...)int < rounding_diretion >(...)The example below shows various ways of expressing rounded operations.Aliases are permitted for rounding operators and Line 1 de�nes rnd as roundingto nearest using IEEE 754 standard for 32 bit �oating-point data [23℄. When allthe arithmeti operations on the right side of a de�nition are followed by thesame rounding operator (as visible Line 2), this operator an be put one and forall at the left of the equal symbol (as presented Line 3). On this example, Gappaeven omplains that y and z are two di�erent names for the same expression.1 �rnd = float < ieee_32 , ne >;2 y = rnd(x * rnd(1 - x));3 z rnd= x * (1 - x);Table1. Rounding modes available in Gappa. For modes that are not de�ned by IEEE754 standard [23℄ and its forthoming revision, readers are invited to review [24,25℄and referenes herein.Alias Meaningzr toward zeroaw away from zerodn toward minus in�nity (down)up toward plus in�nityod to odd mantissasne to nearest, tie breaking to even mantissasno to nearest, tie breaking to odd mantissasnz to nearest, tie breaking toward zerona to nearest, tie breaking away from zerond to nearest, tie breaking toward minus in�nitynu to nearest, tie breaking toward plus in�nity
Table2. Prede�ned �oating-point formats available in GappaAlias Meaningieee_32 IEEE-754 single preisionieee_64 IEEE-754 double preisionieee_128 IEEE-754 quadruple preisionx86_80 extended preision on x86-like proessorsMost trunated hardware operators [26℄ and some ompound operators an-not be desribed as if they were omputed to in�nite preision and then rounded.

6 Mar Daumas and Guillaume MelquiondFor suh operators we revert to under-spei�ed funtions that produe resultswith a known bound on the relative error.{add|sub|mul}_rel < preision [, minimum_exponent ℄ >(..., ...)If a minimum exponent is provided, Gappa does not instantiate any assumptionthat involves a result with an exponent below the minimum exponent. Otherwise,the error bound always hold and the absolute error is 0 when the result is 0.2.3 Rewriting expressions to suppress some dependeny e�etsLet accur be an expression and approx an approximation of accur due to round-o� errors, for example. The absolute error is approx−accur and the relative erroris (approx − accur)/accur . As soon as Gappa has omputed ranges for approxand accur , it applies some theorems about interval subtration and division toobtain some ranges for these errors.Unfortunately, expressions approx and accur are strongly orrelated and errorranges omputed that way are useless. To suppress some dependeny e�ets,Gappa manipulates error expressions through a set of standard pattern-mathingand user-de�ned rewriting rules to reprodue many of the tehniques used innumerial analysis and in omputer arithmeti [27,8,28,29℄.Standard rules kik in when the expressions of approx and aur are similar,e.g. accur = a + b and approx = ◦(c + d). Gappa rewrites the absolute error
approx−accur as (◦(c+d)−(c+d))+((c+d)−(a+b)). It �nds an enlosure of theleft hand side by a theorem on the ◦ rounding operator. For the right hand side,Gappa performs a seond rewrite: (c+d)−(a+b) is equal to (c−a)+(d−b). Thisrewriting rule gives sensible results, if c and d are lose to a and b respetively.The �rst rule, ◦(x) − y = (◦(x) − x) + (x − y), has been applied by Gappa,beause it knows that ◦(x) is an approximation of x when ◦ is a rounding oper-ator. Gappa reates suh a pair for any absolute or relative error that appearsas a hypothesis of a logial sub-formula. Many rules operate on these pairs. Forexample, Gappa automatially replaes B by b + −(b − B), if b and B pair asapproximations.Users may de�ne other pairs with the following syntax x ~ y that states asbelow that x is an approximation of y. Suh pairs, additional rewriting rules,and diretives of bisetion, appear in the last setion of the sript for Gappa.When given the following sript, Gappa warns the user that it already guessedthe two hints and proposes some aurate bounds.�floor = int <dn >;{ x - y in [-0.1 ,0.1℄ -> floor(x) - y in ? }floor(x) ~ x;x ~ y;Many rewriting rules are implemented in Gappa and they are su�ient toverify most properties on straight numerial appliations. For intriate develop-ments, users an add new rules to express some mathematial properties of theirode. The rule primary -> seondary expliitly states that Gappa an use an

Generating erti�ed properties for numerial expressions 7enlosure of seondary expression whenever it needs an enlosure of primaryexpression. Suh rules usually expliit some tehniques applied by designers thatare no longer lear when readying the soure ode. We annot expet an au-tomati tool to re-disover innovative tehniques. Yet, we will inorporate inGappa any tehnique that beomes ommonly used.In order for the previous rule to be valid, any value of primary must be on-tained in the omputed enlosure of seondary. This property generally holdstrue if both expressions are equal. For example, Newton relation for the reip-roal an be written x * (2 - x * y) - 1/y -> (x - 1/y) * (x - 1/y) *-y. Any additional rule produes an hypothesis in the generated Coq �le thatmust be guaranteed independently.To detet mistypings early, Gappa tries to hek if expressions are equal andwarn if they are not. Note that Gappa does not hek if divisors are always dif-ferent from zero before applying user-de�ned rewriting rules. Yet, Gappa detetsdivisors that are trivially equal to zero in expressions that appear in rewritingrules. For example, y -> y * (x - x) / (x - x) is most ertainly an error.As it disovers alternate expressions for one quantity, Gappa tries to enhaneits bounds on the quantity by evaluating the new expressions. Tightening boundson one quantity may allow to tighten bounds on quantities based on it. Gappaexplores the graph of quantities breadth-�rst until the logial formula is provedor no range evolves anymore.2.4 Subpaving the range of some quantities by bisetionThe last kind of hint that an be used when Gappa is unable to prove a formulais to pave the range of some quantities and to prove independent results on eahtile. Rewriting expressions is usually very e�ient but it fails if di�erent proofstrutures are needed on various parts of the range, as in the following example.Gappa annot use the fat that rnd(y) - y is always zero when 1

2
≤ x ≤ 3,unless the last line is provided.�rnd = float < ieee_32 , ne >;x = rnd(x_);y = x - 1;z = x * (rnd(y) - y);{ x in [0,3℄ -> |z| <= 1b -26 }|z| $ x;There are three onstrutions for bisetion eah involving a $ sign in the hintssetion:� Evenly split the range into as many sub-intervals as asked. E.g. $ x in 6splits the range of x in six sub-intervals. If the number of intervals is omitted(e.g. $ x) and no expression is present on the left of $, the default is 4.� Split an interval along user-provided points. E.g. $ x in (0.5,2) splits therange [0, 3] of x in three sub-intervals, the middle one being [0.5, 2].� The third kind of bisetion tries to �nd by dihotomy a good subpaving suhthat a goal of the logial formula holds true. This requires the range of this

8 Mar Daumas and Guillaume Melquiondgoal to be spei�ed in the logial proposition, and the enlosed expressionhas to be indiated on the left of the $ symbol.More than one bisetion hint an be used. And hints of the third kind antry to satisfy more than one goal at one. The two hints below will be usedsequentially one after the other. The �rst one will split the range of u until allthe enlosures on a, b, and c are veri�ed.a, b, $ u;d, e $ v;Users may build higher dimension subpavings by using more than one termon the right of the $ symbol, reahing quikly ombinatorial explosions though.The following hint asks Gappa to �nd a set of sub-ranges of u and w suh that thegoals on a and b are satis�ed when the range of v is split into three sub-intervals.a, b $ u, v in 3, w3 Handling automati proof hekersThe generated Coq sript ontains the following lemma whenever the erti�aterelies on interval addition to prove a proposition, e.g. �if x ∈ [1, 2] (property p1)and y ∈ [3, 4] (property p2), then x + y ∈ [0, 6] (property p3)�.1 Lemma l1 : p1 -> p2 -> p3.2 intros h0 h1.3 apply add with (1 := h0) (2 := h1) ; finalize .4 Qed.The �rst line de�nes the lemma: if the hypotheses p1 and p2 are veri�ed,then the property p3 is true too. The seond line starts the proof in a suitablestate by using the intros tati of Coq. The third line applies the add theoremof Gappa support library with the apply tati.The add theorem is as follows. lower and upper are funtions that returnthe lower and the upper bound of an interval of type FF represented by a pairof dyadi frations. Fplus2 is the addition of dyadi frations. Fle2 omparestwo dyadi frations (less or equal) and returns a boolean. The BND prediateholds, when its �rst argument, an expression on real numbers, is an element ofits seond argument, an interval de�ned by dyadi fration bounds (IF).Definition add_helper (xi yi zi : FF) :=Fle2 (lower zi) (Fplus2 (lower xi) (lower yi)) &&Fle2 (Fplus2 (upper xi) (upper yi)) (upper zi).Theorem add :forall x y : R, forall xi yi zi : FF ,BND x xi -> BND y yi ->add_helper xi yi zi = true ->BND (x + y) zi.

Generating erti�ed properties for numerial expressions 9The mathematial expression of the theorem is as follows:
add : ∀x, y ∈ R, ∀Ix, Iy, Iz ∈ IF,

x ∈ Ix ⇒ y ∈ Iy ⇒
fadd(Ix, Iy, Iz) = true ⇒
x + y ∈ Iz .If we simply needed a theorem desribing the addition in interval arithmeti,the fadd(Ix, Iy, Iz) = true hypothesis would be replaed by Ix + Iy ⊆ Iz. Butwe also need for the theorem hypotheses to be automatially hekable. It is thease for the x ∈ Ix and y ∈ Iy hypotheses of the add theorem, sine they an bediretly mathed to the hypotheses h0 (x ∈ [1, 2]) and h1 (y ∈ [3, 4]) of lemmal1. Hypothesis Ix +Iy ⊆ Iz , however, annot be mathed so easily. Consequentlyit is replaed by an equivalent boolean expression that an be omputed by aproof heker. In lemma l1, the omputation is triggered by the finalize tatithat heks that the urrent goal an be redued to true = true. This onludesthe proof.All the theorems of Gappa ompanion library are built the same way: insteadof having standard hypotheses that Coq would be unable to automatially deide,they have a omputable boolean expression. When this expression evaluates totrue, the standard hypotheses are proved to be true, and the goal of the theoremapplies. This approah is a simpler form of re�etion tehniques [30℄. Althoughthe use of booleans seems to restrit it to the Coq proof heker, the intervalarithmeti library [13℄ developed for PVS shows that proofs through intervalomputations are also attainable to other proof assistants.Ensuring these omputable boolean expressions exist is the reason why allthe interval bounds are dyadi frations (m · 2n with m and n relative integers).Suh numbers an easily and e�iently be added, multiplied, and ompared.Rational numbers ould also have been used. They would have been almost ase�ient and would have provided a division operator. But ommon �oating-point properties involved in ertifying numerial ode are better desribed andveri�ed by using dyadi frations.Although enlosure (BND) is the only prediate available to users, Gappainternally relies on more prediates to desribe properties on an expression x. Inpartiular, the FIX and FLT prediates allow to express that the set of omputernumbers is generally a disrete subset of the real numbers, while intervals onlyonsider onneted subsets. These prediates will appear in intermediate lemmasof the generated erti�ates.

BND(x, [a, b]) ≡ a ≤ x ≤ b
ABS(x, [a, b]) ≡ 0 ≤ a ≤ |x| ≤ b
FIX(x, e) ≡ ∃m ∈ Z, x = m · 2e

FLT(x, p) ≡ ∃m, e ∈ Z, x = m · 2e ∧ |m| < 2p

10 Mar Daumas and Guillaume Melquiond4 Perspetives and onluding remarksIn our approah to program erti�ation, proof generation and proof veri�ationare two distint steps. The �rst one is done by Gappa with its own omputationalmethods, and the seond one is done by a proof heker with the help of a supportlibrary. The proof heker never has to ompute any interval, it just heksthat the intervals generated by Gappa make the boolean expressions evaluate totrue, and hene are valid. In partiular, there is absolutely no need for Gappato ompute the best enlosing interval of an expression. As long as the proofremains orret, any interval an be used.Consequently, an interval an be widened if it does not impat the �nal result.For example, manipulating the expression x/
√

2 will sooner or later require√2 6=
0 to be proved. This is done by omputing an enlosing interval of √

2 andverifying that its lower bound is positive. Hene there is no need to omputean enlosing interval with thousands of bits of preision, the interval [1, 2] isaurate enough.Suh simpli�ations are important, sine a proof heker like Coq is onsid-erably slower than a speialized mathematial library. It is espeially true forase studies: searhing for a better subpaving and ertifying it, will always befaster than diretly ertifying the �rst subpaving that has been found by Gappa.The time spent in doing all the omputations over and over in order to �nd abetter subpaving is negligible in omparison to the time neessary to ertify theproperty on one single tile with the proof heker.The whole work of generating the proof is pushed toward the external pro-gram. All the intervals are preomputed and none of the omplex tatis of Coqare used. The proof heker only has to be able to add, multiply, and ompareintegers; it does not have to be able to manipulate rational or real numbers.If it was not for the readability of the proof, the tool ould diretly generatethe lambda-term desribing the proof, and Coq would just have to ompute itstype. Consequently, one of our goal is to generate proofs not only for Coq, butfor other proof hekers too.Branhes and loops handling are outside the sope of this work. Both prob-lems are not new to program veri�ation and nie results have been publishedin both areas. We do not want to propose our solution for these problems. Ourdeision is to interat with the two following tools.� Why [31℄ is a tool to ertify programs written in a generi language (C andJava an be onverted to this language). It erti�es appropriate memoryalloation and usage. It is able to handle hierarhially strutured ode withfuntions and assertions. Why also takes are of onditional branhes. Itdupliates the appropriate proofs and guarantees that both piees of odemeet their shared post-onditions. Used together, Why and Gappa will beable to handle omplex numeri odes.� Flutuat [32,33℄ handles loops by e�etively omputing loop invariants. Onethese invariants are provided, Gappa an ertify the orret behavior of anynumerial ode. Results of Flutuat will be used as orales and erti�ed

Generating erti�ed properties for numerial expressions 11by Gappa. Should there be a signi�ant bug in Flutuat, Gappa will stopwithout being able to meet its goals as it annot ertify erroneous results.The developments presented so far already allow us to guarantee the or-ret behavior of many useful funtions. Our software, a user's guide inluding agrammar, a desription of the example presented Figure 1 and links and detailsof some projets using Gappa are available on the Internet at the address below.http://lipforge.ens-lyon.fr/www/gappa/In partiular, our tool is being used to ertify CRlibm, a library of elementaryfuntions with orret rounding in the four IEEE-754 rounding modes and per-formanes omparable to standard mathematial libraries [2,29℄. Gappa is alsoused to develop robust semi-stati �lters for the CGAL projet [3℄.�rnd = float< ieee_32, ne >;a1 = 8388676b-24;a2 = 11184876b-26;l2 = 12566158b-48;s1 = 8572288b-23;s2 = 13833605b-44;r2 rnd= -n * l2;r rnd= r1 + r2;q rnd= r * r * (a1 + r * a2);p rnd= r1 + (r2 + q);s rnd= s1 + s2;e rnd= s1 + (s2 + s * p);R = r1 + r2;S = s1 + s2;E = s1 + (s2 + S * (r1 + (r2 + R * R * (a1 + R * a2))));Er = S * (1 + R + a1 * R * R + a2 * R * R * R + 0);E0 = S0 * (1 + R0 + a1 * R0 * R0 + a2 * R0 * R0 * R0 + Z);{ Z in [-55b-39,55b-39℄ /\ S - S0 in [-1b-41,1b-41℄ /\R - R0 in [-1b-34,1b-34℄ /\ R in [0,0.0217℄ /\ n in [-10176,10176℄ ->e in ? /\ e - E0 in ? }e - E0 -> (e - E) + (Er - E0);r1 -> R - r2;Figure1. Gappa sript for an implementation of an almost orretly rounded elemen-tary funtion in single and double preision [34℄ later validated in HOL Light [35℄.

12 Mar Daumas and Guillaume MelquiondReferenes1. Revy, G.: Analyse et implantation d'algorithmes rapides pour l'évaluation poly-nomiale sur les nombres �ottants. Tehnial Report ensl-00119498, Éole NormaleSupérieure de Lyon (2006)2. de Dinehin, F., Lauter, C.Q., Melquiond, G.: Assisted veri�ation of elementaryfuntions using Gappa. In: Proeedings of the 2006 ACM Symposium on AppliedComputing, Dijon, Frane (2006) 1318�13223. Melquiond, G., Pion, S.: Formally erti�ed �oating-point �lters for homogeneousgeometri prediates. Theoretial Informatis and Appliations (2007) To appear.4. Mihard, R., Tisserand, A., Veyrat-Charvillon, N.: Optimisation d'opérateursarithmétiques matériels à base d'approximations polynomiales. In: Symposiumen Arhiteture de Mahines, Perpignan, Frane (2006) 1318�13225. Information Management and Tehnology Division: Patriot missile defense: soft-ware problem led to system failure at Dhahran, Saudi Arabia. Report B-247094,United States General Aounting O�e (1992)6. Lions, J.L., et al.: Ariane 5 �ight 501 failure report by the inquiry board. Tehnialreport, European Spae Ageny, Paris, Frane (1996)7. Demmel, J.W.: Applied Numerial Linear Algebra. SIAM (1997)8. Higham, N.J.: Auray and stability of numerial algorithms. SIAM (2002) Seondedition.9. Meyer, B.: UML: the positive spin. Amerian Programmer (1997)10. Shlumberger: Shlumberger leads the way in smart ard seurity with ommonriteria EAL7 seurity methodology. Press Releases (2003)11. Rokwell Collins: Rokwell Collins reeives MILS erti�ation from NSA on mi-roproessor. Press Releases (2005)12. Gameiro, M., Manolios, P.: Formally verifying an algorithm based on intervalarithmeti for heking transversality. In: Fifth International Workshop on theACL2 Theorem Prover and Its Appliations, Austin, Texas (2004) 1713. Daumas, M., Melquiond, G., Muñoz, C.: Guaranteed proofs using interval arith-meti. In Montushi, P., Shwarz, E., eds.: Proeedings of the 17th Symposium onComputer Arithmeti, Cape Cod, Massahusetts (2005) 188�19514. Tiwari, A., Shankar, N., Rushby, J.: Invisible formal methods for embedded ontrolsystems. Proeedings of the IEEE 91(1) (2003) 29�3915. Huet, G., Kahn, G., Paulin-Mohring, C.: The Coq proof assistant: a tutorial:version 8.0. (2004)16. Bertot, Y., Casteran, P.: Interative Theorem Proving and Program Development.Springer-Verlag (2004)17. Neumaier, A.: Interval methods for systems of equations. Cambridge UniversityPress (1990)18. Jaulin, L., Kie�er, M., Didrit, O., Walter, E.: Applied interval analysis. Springer(2001)19. Rump, S.M., Ogita, T., Oishi, S.: Aurate �oating-point summation. TehnialReport 05.12, Hamburg University of Tehnology, Hamburg, Germany (2005)20. Daumas, M., Melquiond, G.: Generating formally erti�ed bounds on values andround-o� errors. In: Real Numbers and Computers, Dagstuhl, Germany (2004)55�7021. Brönnimann, H., Melquiond, G., Pion, S.: The Boost interval arithmeti library.In: Real Numbers and Computers, Lyon, Frane (2003) 65�80

Generating erti�ed properties for numerial expressions 1322. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: Amultiple-preision binary �oating-point library with orret rounding. TehnialReport RR-5753, INRIA (2005)23. Stevenson, D., et al.: An Amerian national standard: IEEE standard for binary�oating point arithmeti. ACM SIGPLAN Noties 22(2) (1987) 9�2524. Even, G., Seidel, P.M.: A omparison of three rounding algorithms for IEEE�oating-point multipliation. In Koren, I., Kornerup, P., eds.: Proeedings of the14th Symposium on Computer Arithmeti, Adelaide, Australia (1999) 225�23225. Boldo, S., Melquiond, G.: When double rounding is odd. In: Proeedings of the15th IMACS World Congress on Computational and Applied Mathematis, Paris,Frane (2005)26. Texas Instruments: TMS320C3x � User's guide. (1997)27. Kahan, W.: Further remarks on reduing trunation errors. Communiations ofthe ACM 8(1) (1965) 4028. Boldo, S., Daumas, M.: A simple test qualifying the auray of Horner's rule forpolynomials. Numerial Algorithms 37(1-4) (2004) 45�6029. de Dinehin, F., Defour, D., Lauter, C.: Fast orret rounding of elementary fun-tions in double preision using double-extended arithmeti. Researh report 5137,Institut National de Reherhe en Informatique et en Automatique, Le Chesnay,Frane (2004)30. Boutin, S.: Using re�etion to build e�ient and erti�ed deision proedures.In: Proeedings of the Third International Symposium on Theoretial Aspets ofComputer Software, London, United Kingdom (1997) 515�52931. Filliâtre, J.C.: Why: a multi-language multi-prover veri�ation tool. ResearhReport 1366, Université Paris Sud (2003)32. Martel, M.: Propagation of roundo� errors in �nite preision omputations: asemantis approah. In: 11th European Symposium on Programming, Grenoble,Frane (2002) 194�20833. Putot, S., Goubault, E., Martel, M.: Stati analysis based validation of �oatingpoint omputations. In: Novel Approahes to Veri�ation. Volume 2991 of LetureNotes in Computer Siene., Dagstuhl, Germany (2004) 306�31334. Tang, P.T.P.: Table driven implementation of the exponential funtion in IEEE�oating point arithmeti. ACM Transations on Mathematial Software 15(2)(1989) 144�15735. Harrison, J.: Floating point veri�ation in HOL light: the exponential funtion.Tehnial Report 428, University of Cambridge Computer Laboratory (1997)

