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Generating 
erti�ed properties for numeri
alexpressions and their evaluations⋆Mar
 Daumas1 and Guillaume Melquiond2

1 lirmm (umr 5506 
nrs�um2), visiting lp2a (ea 3679 upvd)
2 lip (umr 5668 
nrs�ens Lyon�inria)Abstra
t We present Gappa, a tool that 
an generate 
erti�ed prop-erties based on dyadi
 fra
tions, interval arithmeti
 and forward erroranalysis. Gappa operates on numeri
al expressions and on their evalu-ation on 
omputers. For ea
h property, Gappa generates a proof that
an be 
he
ked with an automati
 proof 
he
ker with the help of a 
om-panion library of veri�ed fa
ts. So far, Gappa generates proofs for eitherCoq and HOL Light and we have developed a large 
ompanion libraryfor Coq dealing with the addition, multipli
ation, division, and squareroot, in �xed- and �oating-point arithmeti
s. Gappa handles seamlesslyadditional properties expressed as interval properties or rewriting rulesin order to establish more intri
ate results. Users 
an simultaneously pro-vide bounds to be proved on expressions and ask Gappa to propose oneson other expressions. Re
ent work has proved that Gappa is perfe
tlyadapted to the veri�
ation of small pie
es of software. For larger pie
esof software, Gappa 
an either be used to double 
he
k assertions pro-du
ed by non veri�ed tools or be invoked as needed by tools that handleloops and bran
hes but miss the ability to handle possible e�e
ts of thea

umulation and magni�
ation of negligible errors.1 Introdu
tionGappa is a simple and e�
ient tool for automati
ally developing 
erti�ed prop-erties and proofs in general 
al
ulus, in 
omputer arithmeti
 [1℄, and in theengineering of numeri
al software [2,3℄ and hardware [4℄. These properties dealwith arithmeti
 expressions on real and rational numbers and their evaluationin 
omputers on �xed- and �oating-point data formats.Software and hardware designers usually answer questions su
h as: 1. Howa

urate are results? 2. Will hardware or software exhibit any ex
eptional be-havior? The answer to question 1 is very often �su�
iently� [5℄ and the answerto question 2 is very often �never� [6℄.When we deal with programs that involve model, trun
ation and/or round-o� errors, we 
annot expe
t programs to yield exa
t results, but spe
i�
ationsshould still fully 
hara
terize the a

ura
y of the results. Moreover spe
i�
ations

⋆ This work has been partially founded by PICS 2533 of the CNRS and projet EVA-Floof the ANR.
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onsider that the ex
eptional behavior of one operation (su
h as adivision by zero, an over�ow or an invalid operand) 
orre
tly handled by therest of a program leading to meaningful results is not an ex
eptional behaviorof the program.Writing a 
omplete and a

urate spe
i�
ation about the behavior of somenumeri
al software is usually a di�
ult task requiring some familiarity withba
kward error analysis, �rst order analysis, 
ondition number and singular valuede
omposition [7,8℄. Su
h work is even more repulsive to designers as it leads toa dead-end similar to what was mentioned satiri
ally in [9℄. To the author's bestknowledge, Gappa is the �rst tool both able to automati
ally handle some of theproperties en
ountered in the spe
i�
ation of numeri
al software and based onsu�
iently strong foundations to be
ome part of future tools routinely used insoftware engineering.Gappa is well suited to 
ertify numeri
al programs appearing in safety 
riti-
al appli
ations su
h as air transportation or ubiquitous software su
h as basi
libraries approximating the 
ommon elementary fun
tions (sin, exp, et
). Afterea
h invo
ation, Gappa generates a 
erti�
ate that is a formal proof that 
an be
he
ked independently. Similar methodology has proved to be su�
ient to meetthe highest Common Criteria Evaluated Assuran
e Level (EAL 7) [10,11℄ andit may now be applied to numeri
al appli
ations using �oating- and �xed-pointarithmeti
s.Properties that are most often needed involve: the range of variables ap-pearing in programs to prevent any ex
eptional behavior (over�ow or divisionby zero) and the range of absolute and/or relative errors to 
hara
terize thea

ura
y of results.Two other proje
ts are 
urrently mixing interval arithmeti
 and automati
proof 
he
king [12,13℄. Both proje
ts fo
us on providing tools to perform intervalarithmeti
 within an automati
 proof 
he
ker, ACL2 for the �rst one and PVSfor the se
ond one. Our goal is to provide invisible formal methods [14℄ in thesense that Gappa delivers formal 
erti�
ates to users that are not expe
ted toever write any pie
e of proof in any formal proof system. We use Coq proofassistant [15,16℄, but ongoing work shows that Gappa 
an work with other proofassistants su
h as PVS and HOL Light.The 
ontinuing work on interval arithmeti
 [17,18℄ has 
reated a huge set ofuseful te
hniques to deliver a

urate answers in a reasonable time. Ea
h te
h-nique is adapted to a spe
i�
 
lass of problems and most evaluations yield a
-
urate estimations only if they are handled by the appropriate te
hniques inthe appropriate order. Blending ranges and properties on dyadi
 fra
tions hasalso been heavily used in 
omputer arithmeti
 and [19℄ is one re
ent noti
eablereferen
e.Our goal in developing Gappa is to provide a tool that is able to 
onsidermany te
hniques using interval arithmeti
, dyadi
 fra
tions, and rewriting rules.Gappa is able to follow hints when some are available (either given by an heuristi
or by the user), and it otherwise performs an exhaustive sear
h. On
e it hasprodu
ed a valid proof, Gappa simpli�es it in order to redu
e the 
erti�
ation
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al expressions 3time, as in-depth proof 
he
king is and will remain mu
h slower than simpleC++ evaluation.We �rst des
ribe how to write an e�
ient s
ript for Gappa. We then presenthow Gappa works with proof 
he
kers, extending [20℄. We �nish this report withperspe
tives, experiments and 
on
luding remarks.2 Input s
ripts to GappaGappa is 
omposed of an independent program written in C++, based on Boostinterval arithmeti
 library [21℄ and MPFR [22℄, and a 
ompanion library of Coqtheorems. Gappa produ
es a Coq �le for a given input s
ript in
luding propertiesto prove. The �le 
ontains proofs of the properties. Validity of proofs 
an thenautomati
ally be 
he
ked by Coq.The input �le to Gappa 
ontains a set of hypotheses ea
h stating that avariable or an expression is within an interval. Gappa handles basi
 arithmeti
operators (addition, subtra
tion, multipli
ation, division, and square root) andthe support library 
ontains theorems so these operators 
an be used in proofs.Gappa input �le also 
ontains goals using the same format as hypotheses.Consider for example that y is the result of a program. We may de�ne Y (up-per
ase) as the exa
t answer without any model, trun
ation or rounding error.We will 
ertainly be interested in� an interval 
ontaining y to guarantee that the result does not over�ow,� an interval 
ontaining y − Y or (y − Y )/Y to guarantee that the result isa

urate.Intervals in goals may be repla
ed by question marks when Gappa should proposesome en
losing intervals. Users 
annot use question marks for intervals thatappear as hypotheses in the logi
al formula.Warning messages, error messages, and results are displayed on the standarderror output. Gappa sends to the standard output a formal proof of the logi
alformula; its format depends on the sele
ted ba
k-end. Command line and em-bedded options allow users to sele
t a ba
k-end (Coq, HOL Light, or none), toset the internal pre
ision used by MPFR bounds of intervals, to limit the depthof di
hotomy splits, and to enable or disable warning messages.2.1 Formalizing a problemThe logi
al formula that Gappa is expe
ted to prove is written between bra
k-ets ({ }) as presented below and it may 
ontain any impli
ation (->), disjun
-tion (\/), 
onjun
tion (/\) of en
losures of mathemati
al expressions. En
losuresare either bounded ranges (in) or inequalities (<= or >=). Any identi�er withoutde�nition is assumed to be universally quanti�ed over the set of real numbersthe �rst time Gappa en
ounters it.{ x - 2 in [-2,0℄ /\ (x + 1 in [0,2℄ -> y in [3 ,4℄)-> not x <= 1 \/ x + y in ? }
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al formula is �rst modi�ed and loosely broken a

ording to the rulesof sequent 
al
ulus as presented below. Ea
h of the new formulas is then veri�edby Gappa. Some ranges on the right of these sub-formulas 
an be left unspe
i�ed.Gappa then tries to suggest ranges where the logi
al formula is veri�ed.
x ≤ 1 ∧ x − 2 ∈ [−2, 0] =⇒ x + 1 ∈ [0, 2] ∨ x + y ∈ ?

x ≤ 1 ∧ x − 2 ∈ [−2, 0] ∧ y ∈ [3, 4] =⇒ x + y ∈ ?In order to be useful in the proof of the whole formula, the se
ond sub-formularequires the �rst one to hold true. If Gappa 
annot verify the �rst sub-formula,it will skip the veri�
ation of the se
ond one.Inequalities 
an be present on both sides of a sub-formula. On the left side,ea
h inequality will be used only if Gappa is already able to 
ompute an en
losureof the expression by some other means. On the right side, Gappa will introdu
e areverted 
opy of the inequalities on the left side in order to in
rease the numberof available hypotheses, as allowed by 
lassi
al logi
.When proving a disjun
tion in a sub-formula, one of the sub-terms of thedisjun
tion has to 
ontinuously hold with respe
t to the set of hypotheses. IfGappa 
annot prove that the same sub-term always hold, it will be unable toprove that the whole disjun
tion holds.Gappa produ
es an error message if an interval is written with reversedbounds or is so tight that Gappa needs to repla
e it with an empty interval.For example, the goal 1.3 in [1.3,1.3℄ 
an not be veri�ed by Gappa, as theempty set is the biggest representable subset of the set {1.3}.2.2 De�nitions of rounded expressions and aliasesTyping large expressions in the logi
al formula would not be pra
ti
al for the
erti�
ation of software. Aliases to mathemati
al expressions are de�ned by 
on-stru
tions of the form name = term and name be
omes available for later de�ni-tions, the logi
al formula and hints. It is neither an equality nor an a�e
tationin any operational semanti
 but rather an alias. Gappa uses the de�ned aliasesfor its outputs and in the formal proof instead of ma
hine generated names. Asymbol 
annot be de�ned more than on
e, even if the right hand sides of bothde�nitions are equivalent. Neither 
an it be de�ned after having been used as anunbound variable. For example b = a * 2; a = 1; is not a

epted by Gappa.Gappa is spe
ially designed to verify properties that may appear when 
erti-fying numeri
al 
odes. Rounding operators are used in the arithmeti
 expressionsof these properties. They are real fun
tions yielding rounded values a

ording tothe target data format (pre
ision, minimum_exponent, and lsb_weight) anda prede�ned rounding mode amongst the ones presented Table 1. Floating- and�xed-point rounding operators 
an be expressed with the following operators:float < pre
ision , minimum_exponent , rounding_dire
tion >(...)fixed < lsb_weight , rounding_dire
tion >(...)The syntax above 
an be abbreviated for the �oating-point formats of Table 2and for (�xed-point) integer arithmeti
:
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al expressions 5float < name , rounding_dire
tion >(...)int < rounding_dire
tion >(...)The example below shows various ways of expressing rounded operations.Aliases are permitted for rounding operators and Line 1 de�nes rnd as roundingto nearest using IEEE 754 standard for 32 bit �oating-point data [23℄. When allthe arithmeti
 operations on the right side of a de�nition are followed by thesame rounding operator (as visible Line 2), this operator 
an be put on
e and forall at the left of the equal symbol (as presented Line 3). On this example, Gappaeven 
omplains that y and z are two di�erent names for the same expression.1 �rnd = float < ieee_32 , ne >;2 y = rnd(x * rnd(1 - x));3 z rnd= x * (1 - x);Table1. Rounding modes available in Gappa. For modes that are not de�ned by IEEE754 standard [23℄ and its forth
oming revision, readers are invited to review [24,25℄and referen
es herein.Alias Meaningzr toward zeroaw away from zerodn toward minus in�nity (down)up toward plus in�nityod to odd mantissasne to nearest, tie breaking to even mantissasno to nearest, tie breaking to odd mantissasnz to nearest, tie breaking toward zerona to nearest, tie breaking away from zerond to nearest, tie breaking toward minus in�nitynu to nearest, tie breaking toward plus in�nity
Table2. Prede�ned �oating-point formats available in GappaAlias Meaningieee_32 IEEE-754 single pre
isionieee_64 IEEE-754 double pre
isionieee_128 IEEE-754 quadruple pre
isionx86_80 extended pre
ision on x86-like pro
essorsMost trun
ated hardware operators [26℄ and some 
ompound operators 
an-not be des
ribed as if they were 
omputed to in�nite pre
ision and then rounded.
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h operators we revert to under-spe
i�ed fun
tions that produ
e resultswith a known bound on the relative error.{add|sub|mul}_rel < pre
ision [, minimum_exponent ℄ >(..., ...)If a minimum exponent is provided, Gappa does not instantiate any assumptionthat involves a result with an exponent below the minimum exponent. Otherwise,the error bound always hold and the absolute error is 0 when the result is 0.2.3 Rewriting expressions to suppress some dependen
y e�e
tsLet accur be an expression and approx an approximation of accur due to round-o� errors, for example. The absolute error is approx−accur and the relative erroris (approx − accur )/accur . As soon as Gappa has 
omputed ranges for approxand accur , it applies some theorems about interval subtra
tion and division toobtain some ranges for these errors.Unfortunately, expressions approx and accur are strongly 
orrelated and errorranges 
omputed that way are useless. To suppress some dependen
y e�e
ts,Gappa manipulates error expressions through a set of standard pattern-mat
hingand user-de�ned rewriting rules to reprodu
e many of the te
hniques used innumeri
al analysis and in 
omputer arithmeti
 [27,8,28,29℄.Standard rules ki
k in when the expressions of approx and a

ur are similar,e.g. accur = a + b and approx = ◦(c + d). Gappa rewrites the absolute error
approx−accur as (◦(c+d)−(c+d))+((c+d)−(a+b)). It �nds an en
losure of theleft hand side by a theorem on the ◦ rounding operator. For the right hand side,Gappa performs a se
ond rewrite: (c+d)−(a+b) is equal to (c−a)+(d−b). Thisrewriting rule gives sensible results, if c and d are 
lose to a and b respe
tively.The �rst rule, ◦(x) − y = (◦(x) − x) + (x − y), has been applied by Gappa,be
ause it knows that ◦(x) is an approximation of x when ◦ is a rounding oper-ator. Gappa 
reates su
h a pair for any absolute or relative error that appearsas a hypothesis of a logi
al sub-formula. Many rules operate on these pairs. Forexample, Gappa automati
ally repla
es B by b + −(b − B), if b and B pair asapproximations.Users may de�ne other pairs with the following syntax x ~ y that states asbelow that x is an approximation of y. Su
h pairs, additional rewriting rules,and dire
tives of bise
tion, appear in the last se
tion of the s
ript for Gappa.When given the following s
ript, Gappa warns the user that it already guessedthe two hints and proposes some a

urate bounds.�floor = int <dn >;{ x - y in [ -0.1 ,0.1℄ -> floor(x) - y in ? }floor(x) ~ x;x ~ y;Many rewriting rules are implemented in Gappa and they are su�
ient toverify most properties on straight numeri
al appli
ations. For intri
ate develop-ments, users 
an add new rules to express some mathemati
al properties of their
ode. The rule primary -> se
ondary expli
itly states that Gappa 
an use an
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losure of se
ondary expression whenever it needs an en
losure of primaryexpression. Su
h rules usually expli
it some te
hniques applied by designers thatare no longer 
lear when readying the sour
e 
ode. We 
annot expe
t an au-tomati
 tool to re-dis
over innovative te
hniques. Yet, we will in
orporate inGappa any te
hnique that be
omes 
ommonly used.In order for the previous rule to be valid, any value of primary must be 
on-tained in the 
omputed en
losure of se
ondary. This property generally holdstrue if both expressions are equal. For example, Newton relation for the re
ip-ro
al 
an be written x * (2 - x * y) - 1/y -> (x - 1/y) * (x - 1/y) *-y. Any additional rule produ
es an hypothesis in the generated Coq �le thatmust be guaranteed independently.To dete
t mistypings early, Gappa tries to 
he
k if expressions are equal andwarn if they are not. Note that Gappa does not 
he
k if divisors are always dif-ferent from zero before applying user-de�ned rewriting rules. Yet, Gappa dete
tsdivisors that are trivially equal to zero in expressions that appear in rewritingrules. For example, y -> y * (x - x) / (x - x) is most 
ertainly an error.As it dis
overs alternate expressions for one quantity, Gappa tries to enhan
eits bounds on the quantity by evaluating the new expressions. Tightening boundson one quantity may allow to tighten bounds on quantities based on it. Gappaexplores the graph of quantities breadth-�rst until the logi
al formula is provedor no range evolves anymore.2.4 Subpaving the range of some quantities by bise
tionThe last kind of hint that 
an be used when Gappa is unable to prove a formulais to pave the range of some quantities and to prove independent results on ea
htile. Rewriting expressions is usually very e�
ient but it fails if di�erent proofstru
tures are needed on various parts of the range, as in the following example.Gappa 
annot use the fa
t that rnd(y) - y is always zero when 1

2
≤ x ≤ 3,unless the last line is provided.�rnd = float < ieee_32 , ne >;x = rnd(x_);y = x - 1;z = x * (rnd(y) - y);{ x in [0,3℄ -> |z| <= 1b -26 }|z| $ x;There are three 
onstru
tions for bise
tion ea
h involving a $ sign in the hintsse
tion:� Evenly split the range into as many sub-intervals as asked. E.g. $ x in 6splits the range of x in six sub-intervals. If the number of intervals is omitted(e.g. $ x) and no expression is present on the left of $, the default is 4.� Split an interval along user-provided points. E.g. $ x in (0.5,2) splits therange [0, 3] of x in three sub-intervals, the middle one being [0.5, 2].� The third kind of bise
tion tries to �nd by di
hotomy a good subpaving su
hthat a goal of the logi
al formula holds true. This requires the range of this
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i�ed in the logi
al proposition, and the en
losed expressionhas to be indi
ated on the left of the $ symbol.More than one bise
tion hint 
an be used. And hints of the third kind 
antry to satisfy more than one goal at on
e. The two hints below will be usedsequentially one after the other. The �rst one will split the range of u until allthe en
losures on a, b, and c are veri�ed.a, b, 
 $ u;d, e $ v;Users may build higher dimension subpavings by using more than one termon the right of the $ symbol, rea
hing qui
kly 
ombinatorial explosions though.The following hint asks Gappa to �nd a set of sub-ranges of u and w su
h that thegoals on a and b are satis�ed when the range of v is split into three sub-intervals.a, b $ u, v in 3, w3 Handling automati
 proof 
he
kersThe generated Coq s
ript 
ontains the following lemma whenever the 
erti�
aterelies on interval addition to prove a proposition, e.g. �if x ∈ [1, 2] (property p1)and y ∈ [3, 4] (property p2), then x + y ∈ [0, 6] (property p3)�.1 Lemma l1 : p1 -> p2 -> p3.2 intros h0 h1.3 apply add with (1 := h0) (2 := h1) ; finalize .4 Qed.The �rst line de�nes the lemma: if the hypotheses p1 and p2 are veri�ed,then the property p3 is true too. The se
ond line starts the proof in a suitablestate by using the intros ta
ti
 of Coq. The third line applies the add theoremof Gappa support library with the apply ta
ti
.The add theorem is as follows. lower and upper are fun
tions that returnthe lower and the upper bound of an interval of type FF represented by a pairof dyadi
 fra
tions. Fplus2 is the addition of dyadi
 fra
tions. Fle2 
omparestwo dyadi
 fra
tions (less or equal) and returns a boolean. The BND predi
ateholds, when its �rst argument, an expression on real numbers, is an element ofits se
ond argument, an interval de�ned by dyadi
 fra
tion bounds (IF).Definition add_helper (xi yi zi : FF) :=Fle2 (lower zi) (Fplus2 (lower xi) (lower yi)) &&Fle2 (Fplus2 (upper xi) (upper yi )) (upper zi).Theorem add :forall x y : R, forall xi yi zi : FF ,BND x xi -> BND y yi ->add_helper xi yi zi = true ->BND (x + y) zi.
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erti�ed properties for numeri
al expressions 9The mathemati
al expression of the theorem is as follows:
add : ∀x, y ∈ R, ∀Ix, Iy, Iz ∈ IF,

x ∈ Ix ⇒ y ∈ Iy ⇒
fadd(Ix, Iy, Iz) = true ⇒
x + y ∈ Iz .If we simply needed a theorem des
ribing the addition in interval arithmeti
,the fadd(Ix, Iy, Iz) = true hypothesis would be repla
ed by Ix + Iy ⊆ Iz. Butwe also need for the theorem hypotheses to be automati
ally 
he
kable. It is the
ase for the x ∈ Ix and y ∈ Iy hypotheses of the add theorem, sin
e they 
an bedire
tly mat
hed to the hypotheses h0 (x ∈ [1, 2]) and h1 (y ∈ [3, 4]) of lemmal1. Hypothesis Ix +Iy ⊆ Iz , however, 
annot be mat
hed so easily. Consequentlyit is repla
ed by an equivalent boolean expression that 
an be 
omputed by aproof 
he
ker. In lemma l1, the 
omputation is triggered by the finalize ta
ti
that 
he
ks that the 
urrent goal 
an be redu
ed to true = true. This 
on
ludesthe proof.All the theorems of Gappa 
ompanion library are built the same way: insteadof having standard hypotheses that Coq would be unable to automati
ally de
ide,they have a 
omputable boolean expression. When this expression evaluates totrue, the standard hypotheses are proved to be true, and the goal of the theoremapplies. This approa
h is a simpler form of re�e
tion te
hniques [30℄. Althoughthe use of booleans seems to restri
t it to the Coq proof 
he
ker, the intervalarithmeti
 library [13℄ developed for PVS shows that proofs through interval
omputations are also attainable to other proof assistants.Ensuring these 
omputable boolean expressions exist is the reason why allthe interval bounds are dyadi
 fra
tions (m · 2n with m and n relative integers).Su
h numbers 
an easily and e�
iently be added, multiplied, and 
ompared.Rational numbers 
ould also have been used. They would have been almost ase�
ient and would have provided a division operator. But 
ommon �oating-point properties involved in 
ertifying numeri
al 
ode are better des
ribed andveri�ed by using dyadi
 fra
tions.Although en
losure (BND) is the only predi
ate available to users, Gappainternally relies on more predi
ates to des
ribe properties on an expression x. Inparti
ular, the FIX and FLT predi
ates allow to express that the set of 
omputernumbers is generally a dis
rete subset of the real numbers, while intervals only
onsider 
onne
ted subsets. These predi
ates will appear in intermediate lemmasof the generated 
erti�
ates.

BND(x, [a, b]) ≡ a ≤ x ≤ b
ABS(x, [a, b]) ≡ 0 ≤ a ≤ |x| ≤ b
FIX(x, e) ≡ ∃m ∈ Z, x = m · 2e

FLT(x, p) ≡ ∃m, e ∈ Z, x = m · 2e ∧ |m| < 2p
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tives and 
on
luding remarksIn our approa
h to program 
erti�
ation, proof generation and proof veri�
ationare two distin
t steps. The �rst one is done by Gappa with its own 
omputationalmethods, and the se
ond one is done by a proof 
he
ker with the help of a supportlibrary. The proof 
he
ker never has to 
ompute any interval, it just 
he
ksthat the intervals generated by Gappa make the boolean expressions evaluate totrue, and hen
e are valid. In parti
ular, there is absolutely no need for Gappato 
ompute the best en
losing interval of an expression. As long as the proofremains 
orre
t, any interval 
an be used.Consequently, an interval 
an be widened if it does not impa
t the �nal result.For example, manipulating the expression x/
√

2 will sooner or later require√2 6=
0 to be proved. This is done by 
omputing an en
losing interval of √

2 andverifying that its lower bound is positive. Hen
e there is no need to 
omputean en
losing interval with thousands of bits of pre
ision, the interval [1, 2] isa

urate enough.Su
h simpli�
ations are important, sin
e a proof 
he
ker like Coq is 
onsid-erably slower than a spe
ialized mathemati
al library. It is espe
ially true for
ase studies: sear
hing for a better subpaving and 
ertifying it, will always befaster than dire
tly 
ertifying the �rst subpaving that has been found by Gappa.The time spent in doing all the 
omputations over and over in order to �nd abetter subpaving is negligible in 
omparison to the time ne
essary to 
ertify theproperty on one single tile with the proof 
he
ker.The whole work of generating the proof is pushed toward the external pro-gram. All the intervals are pre
omputed and none of the 
omplex ta
ti
s of Coqare used. The proof 
he
ker only has to be able to add, multiply, and 
ompareintegers; it does not have to be able to manipulate rational or real numbers.If it was not for the readability of the proof, the tool 
ould dire
tly generatethe lambda-term des
ribing the proof, and Coq would just have to 
ompute itstype. Consequently, one of our goal is to generate proofs not only for Coq, butfor other proof 
he
kers too.Bran
hes and loops handling are outside the s
ope of this work. Both prob-lems are not new to program veri�
ation and ni
e results have been publishedin both areas. We do not want to propose our solution for these problems. Ourde
ision is to intera
t with the two following tools.� Why [31℄ is a tool to 
ertify programs written in a generi
 language (C andJava 
an be 
onverted to this language). It 
erti�es appropriate memoryallo
ation and usage. It is able to handle hierar
hi
ally stru
tured 
ode withfun
tions and assertions. Why also takes 
are of 
onditional bran
hes. Itdupli
ates the appropriate proofs and guarantees that both pie
es of 
odemeet their shared post-
onditions. Used together, Why and Gappa will beable to handle 
omplex numeri
 
odes.� Flu
tuat [32,33℄ handles loops by e�e
tively 
omputing loop invariants. On
ethese invariants are provided, Gappa 
an 
ertify the 
orre
t behavior of anynumeri
al 
ode. Results of Flu
tuat will be used as ora
les and 
erti�ed
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al expressions 11by Gappa. Should there be a signi�
ant bug in Flu
tuat, Gappa will stopwithout being able to meet its goals as it 
annot 
ertify erroneous results.The developments presented so far already allow us to guarantee the 
or-re
t behavior of many useful fun
tions. Our software, a user's guide in
luding agrammar, a des
ription of the example presented Figure 1 and links and detailsof some proje
ts using Gappa are available on the Internet at the address below.http://lipforge.ens-lyon.fr/www/gappa/In parti
ular, our tool is being used to 
ertify CRlibm, a library of elementaryfun
tions with 
orre
t rounding in the four IEEE-754 rounding modes and per-forman
es 
omparable to standard mathemati
al libraries [2,29℄. Gappa is alsoused to develop robust semi-stati
 �lters for the CGAL proje
t [3℄.�rnd = float< ieee_32, ne >;a1 = 8388676b-24;a2 = 11184876b-26;l2 = 12566158b-48;s1 = 8572288b-23;s2 = 13833605b-44;r2 rnd= -n * l2;r rnd= r1 + r2;q rnd= r * r * (a1 + r * a2);p rnd= r1 + (r2 + q);s rnd= s1 + s2;e rnd= s1 + (s2 + s * p);R = r1 + r2;S = s1 + s2;E = s1 + (s2 + S * (r1 + (r2 + R * R * (a1 + R * a2))));Er = S * (1 + R + a1 * R * R + a2 * R * R * R + 0);E0 = S0 * (1 + R0 + a1 * R0 * R0 + a2 * R0 * R0 * R0 + Z);{ Z in [-55b-39,55b-39℄ /\ S - S0 in [-1b-41,1b-41℄ /\R - R0 in [-1b-34,1b-34℄ /\ R in [0,0.0217℄ /\ n in [-10176,10176℄ ->e in ? /\ e - E0 in ? }e - E0 -> (e - E) + (Er - E0);r1 -> R - r2;Figure1. Gappa s
ript for an implementation of an almost 
orre
tly rounded elemen-tary fun
tion in single and double pre
ision [34℄ later validated in HOL Light [35℄.
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