N

N

Generating certified properties for numerical expressions
and their evaluations

Marc Daumas, Guillaume Melquiond

» To cite this version:

Marc Daumas, Guillaume Melquiond. Generating certified properties for numerical expressions and
their evaluations. 2007. hal-00127769v1

HAL Id: hal-00127769
https://hal.science/hal-00127769v1

Preprint submitted on 29 Jan 2007 (v1), last revised 9 Nov 2010 (v3)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00127769v1
https://hal.archives-ouvertes.fr

hal-00127769, version 1 - 29 Jan 2007

Generating certified properties for numerical
expressions and their evaluations*

Marc Daumas! and Guillaume Melquiond?

! LirMM (UMR 5506 CNRS—UM?2), visiting LP2A (EA 3679 UPVD)

2 1P (UMR 5668 CNRS—ENS Lyon—INRIA)

Abstract We present Gappa, a tool that can generate certified prop-
erties based on dyadic fractions, interval arithmetic and forward error
analysis. Gappa operates on numerical expressions and on their evalu-
ation on computers. For each property, Gappa generates a proof that
can be checked with an automatic proof checker with the help of a com-
panion library of verified facts. So far, Gappa generates proofs for either
Coq and HOL Light and we have developed a large companion library
for Coq dealing with the addition, multiplication, division, and square
root, in fixed- and floating-point arithmetics. Gappa handles seamlessly
additional properties expressed as interval properties or rewriting rules
in order to establish more intricate results. Users can simultaneously pro-
vide bounds to be proved on expressions and ask Gappa to propose ones
on other expressions. Recent work has proved that Gappa is perfectly
adapted to the verification of small pieces of software. For larger pieces
of software, Gappa can either be used to double check assertions pro-
duced by non verified tools or be invoked as needed by tools that handle
loops and branches but miss the ability to handle possible effects of the
accumulation and magnification of negligible errors.

1 Introduction

Gappa is a simple and efficient tool for automatically developing certified prop-
erties and proofs in general calculus, in computer arithmetic [1], and in the
engineering of numerical software [2,3] and hardware [4]. These properties deal
with arithmetic expressions on real and rational numbers and their evaluation
in computers on fixed- and floating-point data formats.

Software and hardware designers usually answer questions such as: 1. How
accurate are results? 2. Will hardware or software exhibit any exceptional be-
havior? The answer to question 1 is very often “sufficiently” [5] and the answer
to question 2 is very often “never” [6].

When we deal with programs that involve model, truncation and/or round-
off errors, we cannot expect programs to yield exact results, but specifications
should still fully characterize the accuracy of the results. Moreover specifications

* This work has been partially founded by PICS 2533 of the CNRS and projet EVA-Flo
of the ANR.

2 Marc Daumas and Guillaume Melquiond

normally consider that the exceptional behavior of one operation (such as a
division by zero, an overflow or an invalid operand) correctly handled by the
rest of a program leading to meaningful results is not an exceptional behavior
of the program.

Writing a complete and accurate specification about the behavior of some
numerical software is usually a difficult task requiring some familiarity with
backward error analysis, first order analysis, condition number and singular value
decomposition [7,8]. Such work is even more repulsive to designers as it leads to
a dead-end similar to what was mentioned satirically in [9]. To the author’s best
knowledge, Gappa is the first tool both able to automatically handle some of the
properties encountered in the specification of numerical software and based on
sufficiently strong foundations to become part of future tools routinely used in
software engineering.

Gappa is well suited to certify numerical programs appearing in safety criti-
cal applications such as air transportation or ubiquitous software such as basic
libraries approximating the common elementary functions (sin, exp, etc). After
each invocation, Gappa generates a certificate that is a formal proof that can be
checked independently. Similar methodology has proved to be sufficient to meet
the highest Common Criteria Evaluated Assurance Level (EAL 7) [10,11] and
it may now be applied to numerical applications using floating- and fixed-point
arithmetics.

Properties that are most often needed involve: the range of variables ap-
pearing in programs to prevent any exceptional behavior (overflow or division
by zero) and the range of absolute and/or relative errors to characterize the
accuracy of results.

Two other projects are currently mixing interval arithmetic and automatic
proof checking [12,13]. Both projects focus on providing tools to perform interval
arithmetic within an automatic proof checker, ACL2 for the first one and PVS
for the second one. Our goal is to provide invisible formal methods [14] in the
sense that Gappa delivers formal certificates to users that are not expected to
ever write any piece of proof in any formal proof system. We use Coq proof
assistant [15,16], but ongoing work shows that Gappa can work with other proof
assistants such as PVS and HOL Light.

The continuing work on interval arithmetic [17,18] has created a huge set of
useful techniques to deliver accurate answers in a reasonable time. Each tech-
nique is adapted to a specific class of problems and most evaluations yield ac-
curate estimations only if they are handled by the appropriate techniques in
the appropriate order. Blending ranges and properties on dyadic fractions has
also been heavily used in computer arithmetic and [19] is one recent noticeable
reference.

Our goal in developing Gappa is to provide a tool that is able to consider
many techniques using interval arithmetic, dyadic fractions, and rewriting rules.
Gappa is able to follow hints when some are available (either given by an heuristic
or by the user), and it otherwise performs an exhaustive search. Once it has
produced a valid proof, Gappa simplifies it in order to reduce the certification

Generating certified properties for numerical expressions 3

time, as in-depth proof checking is and will remain much slower than simple
C++ evaluation.

We first describe how to write an efficient script for Gappa. We then present
how Gappa works with proof checkers, extending [20]. We finish this report with
perspectives, experiments and concluding remarks.

2 Input scripts to Gappa

Gappa is composed of an independent program written in C++, based on Boost
interval arithmetic library [21] and MPFR [22], and a companion library of Coq
theorems. Gappa produces a Coq file for a given input script including properties
to prove. The file contains proofs of the properties. Validity of proofs can then
automatically be checked by Coq.

The input file to Gappa contains a set of hypotheses each stating that a
variable or an expression is within an interval. Gappa handles basic arithmetic
operators (addition, subtraction, multiplication, division, and square root) and
the support library contains theorems so these operators can be used in proofs.

Gappa input file also contains goals using the same format as hypotheses.
Consider for example that y is the result of a program. We may define Y (up-
percase) as the exact answer without any model, truncation or rounding error.
We will certainly be interested in

— an interval containing y to guarantee that the result does not overflow,
— an interval containing y — Y or (y — Y)/Y to guarantee that the result is
accurate.

Intervals in goals may be replaced by question marks when Gappa should propose
some enclosing intervals. Users cannot use question marks for intervals that
appear as hypotheses in the logical formula.

Warning messages, error messages, and results are displayed on the standard
error output. Gappa sends to the standard output a formal proof of the logical
formula; its format depends on the selected back-end. Command line and em-
bedded options allow users to select a back-end (Coq, HOL Light, or none), to
set the internal precision used by MPFR, bounds of intervals, to limit the depth
of dichotomy splits, and to enable or disable warning messages.

2.1 Formalizing a problem

The logical formula that Gappa is expected to prove is written between brack-
ets ({ }) as presented below and it may contain any implication (->), disjunc-
tion (\/), conjunction (/\) of enclosures of mathematical expressions. Enclosures
are either bounded ranges (in) or inequalities (<= or >=). Any identifier without
definition is assumed to be universally quantified over the set of real numbers
the first time Gappa encounters it.

{x -2 in [-2,0] /\ (x + 1 in [0,2] -> y in [3,4])
-> mnot x <= 1 \/ x + y in ? }

4 Marc Daumas and Guillaume Melquiond

The logical formula is first modified and loosely broken according to the rules
of sequent calculus as presented below. Each of the new formulas is then verified
by Gappa. Some ranges on the right of these sub-formulas can be left unspecified.
Gappa then tries to suggest ranges where the logical formula is verified.

r<lAxz—-2€[-2,00=2+1€[0,2]Vae+ye?
r<1lAz—2€[-2,00Ay€[3,4=z+yeT

In order to be useful in the proof of the whole formula, the second sub-formula
requires the first one to hold true. If Gappa cannot verify the first sub-formula,
it will skip the verification of the second one.

Inequalities can be present on both sides of a sub-formula. On the left side,
each inequality will be used only if Gappa is already able to compute an enclosure
of the expression by some other means. On the right side, Gappa will introduce a
reverted copy of the inequalities on the left side in order to increase the number
of available hypotheses, as allowed by classical logic.

When proving a disjunction in a sub-formula, one of the sub-terms of the
disjunction has to continuously hold with respect to the set of hypotheses. If
Gappa cannot prove that the same sub-term always hold, it will be unable to
prove that the whole disjunction holds.

Gappa produces an error message if an interval is written with reversed
bounds or is so tight that Gappa needs to replace it with an empty interval.
For example, the goal 1.3 in [1.3,1.3] can not be verified by Gappa, as the
empty set is the biggest representable subset of the set {1.3}.

2.2 Definitions of rounded expressions and aliases

Typing large expressions in the logical formula would not be practical for the
certification of software. Aliases to mathematical expressions are defined by con-
structions of the form name = term and name becomes available for later defini-
tions, the logical formula and hints. It is neither an equality nor an affectation
in any operational semantic but rather an alias. Gappa uses the defined aliases
for its outputs and in the formal proof instead of machine generated names. A
symbol cannot be defined more than once, even if the right hand sides of both
definitions are equivalent. Neither can it be defined after having been used as an
unbound variable. For example b = a * 2; a = 1; is not accepted by Gappa.
Gappa is specially designed to verify properties that may appear when certi-
fying numerical codes. Rounding operators are used in the arithmetic expressions
of these properties. They are real functions yielding rounded values according to
the target data format (precision, minimum_exponent, and 1sb_weight) and
a predefined rounding mode amongst, the ones presented Table 1. Floating- and
fixed-point rounding operators can be expressed with the following operators:

float< precision, minimum_exponent , rounding_direction >(...)
fixed< lsb_weight, rounding_direction >(...)

The syntax above can be abbreviated for the floating-point formats of Table 2
and for (fixed-point) integer arithmetic:

Generating certified properties for numerical expressions 5

float< mname, rounding_direction >S(...)
int< rounding_direction >(...)

The example below shows various ways of expressing rounded operations.
Aliases are permitted for rounding operators and Line 1 defines rnd as rounding
to nearest using IEEE 754 standard for 32 bit floating-point data [23]. When all
the arithmetic operations on the right side of a definition are followed by the
same rounding operator (as visible Line 2), this operator can be put once and for
all at the left of the equal symbol (as presented Line 3). On this example, Gappa
even complains that y and z are two different names for the same expression.

1 @rnd = float< ieee_32, ne>;
2 y = rnd(x * rnd(1 - x));
3 z rnd= x * (1 - x);

Tablel. Rounding modes available in Gappa. For modes that are not defined by IEEE
754 standard [23] and its forthcoming revision, readers are invited to review [24,25]
and references herein.

Alias|Meaning
zr |toward zero
aw |away from zero
dn |toward minus infinity (down)
up |toward plus infinity
od |to odd mantissas
ne |to nearest, tie breaking to even mantissas
no |(to nearest, tie breaking to odd mantissas
nz |to nearest, tie breaking toward zero
na |to nearest, tie breaking away from zero
nd |to nearest, tie breaking toward minus infinity
nu |to nearest, tie breaking toward plus infinity

Table2. Predefined floating-point formats available in Gappa

Alias |Meaning
ieee_32 |IEEE-754 single precision
ieee_64 |IEEE-754 double precision
ieee_128|IEEE-754 quadruple precision
x86_80 |extended precision on x86-like processors

Most truncated hardware operators [26] and some compound operators can-
not be described as if they were computed to infinite precision and then rounded.

6 Marc Daumas and Guillaume Melquiond

For such operators we revert to under-specified functions that produce results
with a known bound on the relative error.

{add|sub|mul}_rel< precision [, minimum_exponent] >(..., ...)

If a minimum exponent is provided, Gappa does not instantiate any assumption
that involves a result with an exponent below the minimum exponent. Otherwise,
the error bound always hold and the absolute error is 0 when the result is 0.

2.3 Rewriting expressions to suppress some dependency effects

Let accur be an expression and approz an approximation of accur due to round-
off errors, for example. The absolute error is approz — accur and the relative error
is (approx — accur)/accur. As soon as Gappa has computed ranges for approx
and accur, it applies some theorems about interval subtraction and division to
obtain some ranges for these errors.

Unfortunately, expressions approx and accur are strongly correlated and error
ranges computed that way are useless. To suppress some dependency effects,
Gappa manipulates error expressions through a set of standard pattern-matching
and user-defined rewriting rules to reproduce many of the techniques used in
numerical analysis and in computer arithmetic [27,8,28,29].

Standard rules kick in when the expressions of approx and accur are similar,
e.g. accur = a + b and approx = o(c + d). Gappa rewrites the absolute error
approz — accur as (o(c+d)—(c+d))+((c+d)—(a+Db)). It finds an enclosure of the
left hand side by a theorem on the o rounding operator. For the right hand side,
Gappa performs a second rewrite: (c+d) — (a+b) is equal to (¢c—a)+(d—b). This
rewriting rule gives sensible results, if ¢ and d are close to a and b respectively.

The first rule, o(x) — y = (o(x) — x) + (z — y), has been applied by Gappa,
because it knows that o(z) is an approximation of 2 when o is a rounding oper-
ator. Gappa creates such a pair for any absolute or relative error that appears
as a hypothesis of a logical sub-formula. Many rules operate on these pairs. For
example, Gappa automatically replaces B by b+ —(b — B), if b and B pair as
approximations.

Users may define other pairs with the following syntax x ~ y that states as
below that x is an approximation of y. Such pairs, additional rewriting rules,
and directives of bisection, appear in the last section of the script for Gappa.
When given the following script, Gappa warns the user that it already guessed
the two hints and proposes some accurate bounds.

@floor = int<dn>;

{x -y in [-0.1,0.1] -> floor(x) - y in 7 }
floor(x) ~ x;

x 7y

Many rewriting rules are implemented in Gappa and they are sufficient to
verify most properties on straight numerical applications. For intricate develop-
ments, users can add new rules to express some mathematical properties of their
code. The rule primary -> secondary explicitly states that Gappa can use an

Generating certified properties for numerical expressions 7

enclosure of secondary expression whenever it needs an enclosure of primary
expression. Such rules usually explicit some techniques applied by designers that
are no longer clear when readying the source code. We cannot expect an au-
tomatic tool to re-discover innovative techniques. Yet, we will incorporate in
Gappa any technique that becomes commonly used.

In order for the previous rule to be valid, any value of primary must be con-
tained in the computed enclosure of secondary. This property generally holds
true if both expressions are equal. For example, Newton relation for the recip-
rocal can be written x * (2 - x *x y) - 1/y -> (x - 1/y) * (x - 1/y) *
-y. Any additional rule produces an hypothesis in the generated Coq file that
must be guaranteed independently.

To detect mistypings early, Gappa tries to check if expressions are equal and
warn if they are not. Note that Gappa does not check if divisors are always dif-
ferent from zero before applying user-defined rewriting rules. Yet, Gappa detects
divisors that are trivially equal to zero in expressions that appear in rewriting
rules. For example,y -> y * (x - x) / (x - x) is most certainly an error.

As it discovers alternate expressions for one quantity, Gappa tries to enhance
its bounds on the quantity by evaluating the new expressions. Tightening bounds
on one quantity may allow to tighten bounds on quantities based on it. Gappa
explores the graph of quantities breadth-first until the logical formula is proved
or no range evolves anymore.

2.4 Subpaving the range of some quantities by bisection

The last kind of hint that can be used when Gappa is unable to prove a formula
is to pave the range of some quantities and to prove independent results on each
tile. Rewriting expressions is usually very efficient but it fails if different proof
structures are needed on various parts of the range, as in the following example.
Gappa cannot use the fact that rnd(y) - y is always zero when 1 < z < 3,

2
unless the last line is provided.

Q@rnd = float< ieee_32, ne >;
x = rnd(x_);
y = x - 1;

z = x * (rnd(y) - y);
{ x in [0,3] -> |z]| <= 1b-26 }
Izl $ x;

There are three constructions for bisection each involving a $ sign in the hints
section:

— Evenly split the range into as many sub-intervals as asked. E.g. $ x in 6
splits the range of x in six sub-intervals. If the number of intervals is omitted
(e.g. $ x) and no expression is present on the left of $, the default is 4.

— Split an interval along user-provided points. E.g. $ x in (0.5,2) splits the
range [0, 3] of x in three sub-intervals, the middle one being [0.5, 2].

— The third kind of bisection tries to find by dichotomy a good subpaving such
that a goal of the logical formula holds true. This requires the range of this

8 Marc Daumas and Guillaume Melquiond

goal to be specified in the logical proposition, and the enclosed expression
has to be indicated on the left of the $ symbol.

More than one bisection hint can be used. And hints of the third kind can
try to satisfy more than one goal at once. The two hints below will be used
sequentially one after the other. The first one will split the range of u until all
the enclosures on a, b, and ¢ are verified.

a, b, ¢ $ u;
d, e $ v;

Users may build higher dimension subpavings by using more than one term
on the right of the $ symbol, reaching quickly combinatorial explosions though.
The following hint asks Gappa to find a set of sub-ranges of u and w such that the
goals on a and b are satisfied when the range of v is split into three sub-intervals.

a,b$u,vin3,w

3 Handling automatic proof checkers

The generated Coq script contains the following lemma whenever the certificate
relies on interval addition to prove a proposition, e.g. “if « € [1,2] (property p1)
and y € [3,4] (property p2), then z + y € [0, 6] (property p3)”.

1 Lemma 11 : pl -> p2 -> p3.

2 intros hO hil.

3 apply add with (1 := hO) (2 := hl) ; finalize.
12 QRed.

The first line defines the lemma: if the hypotheses p1 and p2 are verified,
then the property p3 is true too. The second line starts the proof in a suitable
state by using the intros tactic of Coq. The third line applies the add theorem
of Gappa support library with the apply tactic.

The add theorem is as follows. lower and upper are functions that return
the lower and the upper bound of an interval of type FF represented by a pair
of dyadic fractions. Fplus2 is the addition of dyadic fractions. Fle2 compares
two dyadic fractions (less or equal) and returns a boolean. The BND predicate
holds, when its first argument, an expression on real numbers, is an element of
its second argument, an interval defined by dyadic fraction bounds (IF).

Definition add_helper (xi yi zi : FF) :=
Fle2 (lower zi) (Fplus2 (lower xi) (lower yi)) &&
Fle2 (Fplus2 (upper xi) (upper yi)) (upper zi).

Theorem add

forall x y : R, forall xi yi zi : FF,
BND x xi -> BND y yi ->

add_helper xi yi zi = true ->

BND (x + y) =zi.

Generating certified properties for numerical expressions 9
The mathematical expression of the theorem is as follows:

add:Vz,y € R, VI, I, I, €IF,
zel,=yecl,=
faaaIy, Iy, I,) = true =
r+yel,.

If we simply needed a theorem describing the addition in interval arithmetic,
the faaa(Iy, Iy, I.) = true hypothesis would be replaced by I, + I, C I,. But
we also need for the theorem hypotheses to be automatically checkable. It is the
case for the « € I, and y € I, hypotheses of the add theorem, since they can be
directly matched to the hypotheses h0 (z € [1,2]) and h1 (y € [3,4]) of lemma
11.

Hypothesis I, + I, C I, however, cannot be matched so easily. Consequently
it is replaced by an equivalent boolean expression that can be computed by a
proof checker. In lemma 11, the computation is triggered by the finalize tactic
that checks that the current goal can be reduced to true = true. This concludes
the proof.

All the theorems of Gappa companion library are built the same way: instead
of having standard hypotheses that Coq would be unable to automatically decide,
they have a computable boolean expression. When this expression evaluates to
true, the standard hypotheses are proved to be true, and the goal of the theorem
applies. This approach is a simpler form of reflection techniques [30]. Although
the use of booleans seems to restrict it to the Coq proof checker, the interval
arithmetic library [13] developed for PVS shows that proofs through interval
computations are also attainable to other proof assistants.

Ensuring these computable boolean expressions exist is the reason why all
the interval bounds are dyadic fractions (m - 2" with m and n relative integers).
Such numbers can easily and efficiently be added, multiplied, and compared.
Rational numbers could also have been used. They would have been almost as
efficient and would have provided a division operator. But common floating-
point, properties involved in certifying numerical code are better described and
verified by using dyadic fractions.

Although enclosure (BND) is the only predicate available to users, Gappa
internally relies on more predicates to describe properties on an expression x. In
particular, the FIX and FLT predicates allow to express that the set of computer
numbers is generally a discrete subset of the real numbers, while intervals only
consider connected subsets. These predicates will appear in intermediate lemmas
of the generated certificates.

BND(z, [a,b]) =a <z <D

ABS(z,[a,b]) =0<a<|z| <)

FIX(z,e) =3Ime€Z,x=m- 2°

FLT(z,p) =3Im,e€Z,x=m-2°N|m|<2?

10 Marc Daumas and Guillaume Melquiond
4 Perspectives and concluding remarks

In our approach to program certification, proof generation and proof verification
are two distinct steps. The first one is done by Gappa with its own computational
methods, and the second one is done by a proof checker with the help of a support
library. The proof checker never has to compute any interval, it just checks
that the intervals generated by Gappa make the boolean expressions evaluate to
true, and hence are valid. In particular, there is absolutely no need for Gappa
to compute the best enclosing interval of an expression. As long as the proof
remains correct, any interval can be used.

Consequently, an interval can be widened if it does not impact the final result.
For example, manipulating the expression 2/1/2 will sooner or later require /2 #
0 to be proved. This is done by computing an enclosing interval of v/2 and
verifying that its lower bound is positive. Hence there is no need to compute
an enclosing interval with thousands of bits of precision, the interval [1,2] is
accurate enough.

Such simplifications are important, since a proof checker like Coq is consid-
erably slower than a specialized mathematical library. It is especially true for
case studies: searching for a better subpaving and certifying it, will always be
faster than directly certifying the first subpaving that has been found by Gappa.
The time spent in doing all the computations over and over in order to find a
better subpaving is negligible in comparison to the time necessary to certify the
property on one single tile with the proof checker.

The whole work of generating the proof is pushed toward the external pro-
gram. All the intervals are precomputed and none of the complex tactics of Coq
are used. The proof checker only has to be able to add, multiply, and compare
integers; it does not have to be able to manipulate rational or real numbers.
If it was not for the readability of the proof, the tool could directly generate
the lambda-term describing the proof, and Coq would just have to compute its
type. Consequently, one of our goal is to generate proofs not only for Coq, but
for other proof checkers too.

Branches and loops handling are outside the scope of this work. Both prob-
lems are not new to program verification and nice results have been published
in both areas. We do not want to propose our solution for these problems. Our
decision is to interact with the two following tools.

— Why [31] is a tool to certify programs written in a generic language (C and
Java can be converted to this language). It certifies appropriate memory
allocation and usage. It is able to handle hierarchically structured code with
functions and assertions. Why also takes care of conditional branches. It
duplicates the appropriate proofs and guarantees that both pieces of code
meet their shared post-conditions. Used together, Why and Gappa will be
able to handle complex numeric codes.

— Fluctuat [32,33] handles loops by effectively computing loop invariants. Once
these invariants are provided, Gappa can certify the correct behavior of any
numerical code. Results of Fluctuat will be used as oracles and certified

Generating certified properties for numerical expressions 11

by Gappa. Should there be a significant bug in Fluctuat, Gappa will stop
without being able to meet its goals as it cannot certify erroneous results.

The developments presented so far already allow us to guarantee the cor-
rect behavior of many useful functions. Our software, a user’s guide including a
grammar, a description of the example presented Figure 1 and links and details
of some projects using Gappa are available on the Internet at the address below.

http://lipforge.ens-lyon.fr/www/gappa/

In particular, our tool is being used to certify CRlibm, a library of elementary
functions with correct rounding in the four IEEE-754 rounding modes and per-
formances comparable to standard mathematical libraries [2,29]. Gappa is also
used to develop robust semi-static filters for the CGAL project [3].

Q@rnd = float< ieee_32, ne >;

al = 8388676b-24;
a2 = 11184876b-26;
12 = 12566158b-48;
sl = 8572288b-23;
s2 = 13833605b-44;

r2 rnd= -n * 12;

r rnd= rl + r2;

gqrnd=r *xr * (al + r * a2);
p rnd= rl + (r2 + q);

s rnd= sl + s2;

e rnd= sl + (s2 + s * p);

R=1r1 + r2;
S = s1 + s2;

E=s1+(s2+S % (r1 + (r2 +R * R * (al + R * a2))));
Er =S * (1 +R+al *R*R+ a2 xR *R *R+ 0);
EO =S0 * (1 + RO+ al * RO * RO + a2 * RO * RO * RO + Z);

{ Z in [-55b-39,55b-39] /\ S - SO in [-1b-41,1b-41] /\
R - RO in [-1b-34,1b-34] /\ R in [0,0.0217] /\ n in [-10176,10176]1 ->
ein ? /\ e - EO in ? }

e - EO -> (e - E) + (Er - E0);

rl -> R - r2;

Figurel. Gappa script for an implementation of an almost correctly rounded elemen-
tary function in single and double precision [34] later validated in HOL Light [35].

12

Marc Daumas and Guillaume Melquiond

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Revy, G.: Analyse et implantation d’algorithmes rapides pour ’évaluation poly-

nomiale sur les nombres flottants. Technical Report ensl-00119498, Ecole Normale
Supérieure de Lyon (2006)

. de Dinechin, F., Lauter, C.Q., Melquiond, G.: Assisted verification of elementary

functions using Gappa. In: Proceedings of the 2006 ACM Symposium on Applied
Computing, Dijon, France (2006) 1318-1322

Melquiond, G., Pion, S.: Formally certified floating-point filters for homogeneous
geometric predicates. Theoretical Informatics and Applications (2007) To appear.
Michard, R., Tisserand, A., Veyrat-Charvillon, N.: Optimisation d’opérateurs
arithmétiques matériels & base d’approximations polynomiales. In: Symposium
en Architecture de Machines, Perpignan, France (2006) 1318-1322

Information Management and Technology Division: Patriot missile defense: soft-
ware problem led to system failure at Dhahran, Saudi Arabia. Report B-247094,
United States General Accounting Office (1992)

Lions, J.L., et al.: Ariane 5 flight 501 failure report by the inquiry board. Technical
report, European Space Agency, Paris, France (1996)

Demmel, J.W.: Applied Numerical Linear Algebra. STAM (1997)

Higham, N.J.: Accuracy and stability of numerical algorithms. STAM (2002) Second
edition.

Meyer, B.: UML: the positive spin. American Programmer (1997)

Schlumberger: Schlumberger leads the way in smart card security with common
criteria EAL7 security methodology. Press Releases (2003)

Rockwell Collins: Rockwell Collins receives MILS certification from NSA on mi-
croprocessor. Press Releases (2005)

Gameiro, M., Manolios, P.: Formally verifying an algorithm based on interval
arithmetic for checking transversality. In: Fifth International Workshop on the
ACL2 Theorem Prover and Its Applications, Austin, Texas (2004) 17

Daumas, M., Melquiond, G., Mufioz, C.: Guaranteed proofs using interval arith-
metic. In Montuschi, P.,; Schwarz, E., eds.: Proceedings of the 17th Symposium on
Computer Arithmetic, Cape Cod, Massachusetts (2005) 188-195

Tiwari, A., Shankar, N., Rushby, J.: Invisible formal methods for embedded control
systems. Proceedings of the IEEE 91(1) (2003) 29-39

Huet, G., Kahn, G., Paulin-Mohring, C.: The Coq proof assistant: a tutorial:
version 8.0. (2004)

Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development.
Springer-Verlag (2004)

Neumaier, A.: Interval methods for systems of equations. Cambridge University
Press (1990)

Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied interval analysis. Springer
(2001)

Rump, S.M., Ogita, T., Oishi, S.: Accurate floating-point summation. Technical
Report 05.12, Hamburg University of Technology, Hamburg, Germany (2005)
Daumas, M., Melquiond, G.: Generating formally certified bounds on values and
round-off errors. In: Real Numbers and Computers, Dagstuhl, Germany (2004)
55-70

Bronnimann, H., Melquiond, G., Pion, S.: The Boost interval arithmetic library.
In: Real Numbers and Computers, Lyon, France (2003) 65-80

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Generating certified properties for numerical expressions 13

Fousse, L., Hanrot, G., Lefévre, V., Pélissier, P., Zimmermann, P.. MPFR: A
multiple-precision binary floating-point library with correct rounding. Technical
Report RR-5753, INRIA (2005)

Stevenson, D., et al.: An American national standard: IEEE standard for binary
floating point arithmetic. ACM SIGPLAN Notices 22(2) (1987) 9-25

Even, G., Seidel, P.M.: A comparison of three rounding algorithms for IEEE
floating-point multiplication. In Koren, I., Kornerup, P., eds.: Proceedings of the
14th Symposium on Computer Arithmetic, Adelaide, Australia (1999) 225-232
Boldo, S., Melquiond, G.: When double rounding is odd. In: Proceedings of the
15th IMACS World Congress on Computational and Applied Mathematics, Paris,
France (2005)

Texas Instruments: TMS320C3x — User’s guide. (1997)

Kahan, W.: Further remarks on reducing truncation errors. Communications of
the ACM 8(1) (1965) 40

Boldo, S., Daumas, M.: A simple test qualifying the accuracy of Horner’s rule for
polynomials. Numerical Algorithms 37(1-4) (2004) 45-60

de Dinechin, F., Defour, D., Lauter, C.: Fast correct rounding of elementary func-
tions in double precision using double-extended arithmetic. Research report 5137,
Institut National de Recherche en Informatique et en Automatique, Le Chesnay,
France (2004)

Boutin, S.: Using reflection to build efficient and certified decision procedures.
In: Proceedings of the Third International Symposium on Theoretical Aspects of
Computer Software, London, United Kingdom (1997) 515-529

Filliatre, J.C.: Why: a multi-language multi-prover verification tool. Research
Report 1366, Université Paris Sud (2003)

Martel, M.: Propagation of roundoff errors in finite precision computations: a
semantics approach. In: 11th European Symposium on Programming, Grenoble,
France (2002) 194-208

Putot, S., Goubault, E., Martel, M.: Static analysis based validation of floating
point computations. In: Novel Approaches to Verification. Volume 2991 of Lecture
Notes in Computer Science., Dagstuhl, Germany (2004) 306-313

Tang, P.T.P.: Table driven implementation of the exponential function in IEEE
floating point arithmetic. ACM Transactions on Mathematical Software 15(2)
(1989) 144-157

Harrison, J.: Floating point verification in HOL light: the exponential function.
Technical Report 428, University of Cambridge Computer Laboratory (1997)

