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Abstract

A comprehensive graph theoretical and finite geometrical study of the commutation relations between the
generalized Pauli operators of N -qudits is performed in which vertices/points correspond to the operators
and edges/lines join commuting pairs of them. As per two-qubits, all basic properties and partitionings of
the corresponding Pauli graph are embodied in the geometry of the generalized quadrangle of order two.
Here, one identifies the operators with the points of the quadrangle and groups of maximally commuting
subsets of the operators with the lines of the quadrangle. The three basic partitionings are (a) a pencil of
lines and a cube, (b) a Mermin’s array and a bipartite-part and (c) an independent set and the Petersen
graph. These factorizations stem naturally from the existence of three distinct geometric hyperplanes of
the quadrangle, namely a set of points collinear with a given point, a grid and an ovoid, which answer to
three distinguished subsets of the Pauli graph, namely a set of six operators commuting with a given one,
a Mermin’s square, and set of five mutually non-commuting operators, respectively. The generalized Pauli
graph for multiple qubits is found to follow from symplectic polar spaces of order two, where maximal
totally isotropic subspaces stand for maximal subsets of mutually commuting operators. The substructure
of the (strongly regular) N -qubit Pauli graph is shown to be pseudo-geometric, i. e., isomorphic to a graph
of a partial geometry. Finally, the (not strongly regular) Pauli graph of a two-qutrit system is introduced,
leaving open its possible link to more abstract and exotic finite geometries.

PACS Numbers: 03.67.-a, 03.65.Fd, 02.10.Hh, 02.40.Dr
Keywords: Generalized Pauli Operators – Pauli Graph – Generalized Quadrangle of Order Two –

Symplectic Polar Spaces – Finite Projective (Ring) Geometries

1 Introduction

The intricate structure of commuting/non-commuting relations between N -qubit observables may serve as
a nice illustration of the distinction between the quantum and the classical and failure of classical ideas
about measurements. A deeper understanding of this structure is central to the explanation of quantum
peculiarities such as quantum complementarity, quantum entanglement as well as other related concep-
tual (or practical) issues like no-cloning, quantum teleportation, quantum cryptography and quantum
computing, to mention a few. Many “strange features” of finite quantum mechanics are linked with two
important open theoretical questions: finding complete sets of mutually unbiased bases [1] and/or solving
the Kochen-Specker theorem in relevant dimensions [2]. Both problems are tricky and difficult due to a
large number of the observables involved. Already for a two-qubit system, there are as many as fifteen
operators — tensor products of the four Pauli matrices. This set can be viewed as a graph if one regards
the operators as vertices and joins any pair of commuting ones by an edge. The two-qubit Pauli graph,
henceforth referred to as P [2, 2], is regular of degree six, that is, every observable commutes with other
six; one of its subgraphs, frequently termed as a Mermin’s square, has already been thoroughly studied
due to its relevance to a number of quantum “paradoxes” [2, 3]. For N -qubits (N -qutrits), N > 2, the
corresponding graphs P [2, N ] (P [3, N ]) are endowed with 4N − 1 (9N − 1) vertices. One of their partitions
features 2N + 1 (3N + 1) maximally commuting sets of 2N − 1 (3N − 1) operators each and is intimately
related to the derivation of the maximum sets of mutually unbiased bases in the corresponding dimensions
[4, 5].
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This paper aims at an in-depth understanding of the properties of the N -qudit Pauli graphs by employ-
ing a number of novel graph theoretical and finite geometrical tools. It is organized as follows. Sec. 2 first
lists basic notions and definitions of graph theory and then introduces the relevant finite geometries. The
latter start with the ubiquitous Fano plane, continue with other remarkable finite projective configurations
(e. g., Pappus and Desargues) and related subspaces, and ends with more abstract and involved structures,
such as generalized polygons and (symplectic) polar spaces. Sec. 3 introduces the two-qubit Pauli graph
and discusses its basic properties. The graph’s three basic factorizations are then examined in very detail
and their algebraic geometrical origin is pointed out: first, in terms of the three kinds of the geometric
hyperplanes of the generalized quadrangle of order two, second in terms of the projective lines over the
rings of order four and characteristic two residing in the projective line over Z2×2

2 [6]. Sec. 4 discusses a
self-similarity of the N -qubit graph; one shows that its structure is that of the symplectic polar spaces of
order two [7] and strongly regular graphs associated with them. Finally, Sec. 5 deals with some properties
of the two-qutrit Pauli graph P [3, 2] and muses about possible finite geometry behind it.

2 Graphs and geometry

2.1 Excerpts from graph theory

A graph G consists of two sets, a non-empty set V (G) of vertices and a set E(G) of two element subsets of
V (G) called edges, the latter regarded as joins of two vertices. Alternatively, vertices are also called points
and edges also lines [8, 9, 10]. Two distinct vertices of G are called adjacent if there is an edge joining
them; similarly, two distinct edges with a common vertex are called adjacent. If one vertex belongs to one
edge both are said to be incident. The adjacency matrix A = [aij ] of a graph G with |V (G)| = v vertices
is an v × v matrix in which aij = 1 if the vertex vi is adjacent to the vertex vj and aij = 0 otherwise. The
degree D of a vertex in a graph G is the number of edges incident with it; a regular graph is a graph where
each vertex has the same degree. A strongly regular graph is a regular graph in which any two adjacent
vertices are both adjacent to a constant number of vertices, and any two non adjacent vertices are also
both adjacent to a constant, though usually different, number of vertices. The graph spectrum spec(G) is
composed of the eigenvalues (with properly counted multiplicities) of its adjacency matrix. For a regular
graph, the largest eigenvalue equals the degree of the graph and the absolute value of any other eigenvalue
is less than D.

A subgraph of G is a graph having all of its vertices and edges in G. For any set S of vertices of G, the
induced subgraph, denoted 〈S〉, is the maximal subgraph G with the vertex set S. A vertex and an edge
are said to cover each other if they are incident. A set of vertices which cover all the edges of a graph G
is called a vertex cover of G, and the one with the smallest cardinality is called a minimum vertex cover.
The latter induces a natural subgraph G′ of G composed of the vertices of the minimum vertex cover and
the edges joining them in the original graph. An independent set (or coclique) I of a graph G is a subset
of vertices such that no two vertices represent an edge of G. Given the minimum vertex cover of G and
the induced subgraph G′, a maximum independent set I is defined from all vertices not in G′. The set G′

together with I partition the graph G.
Two graphs G and H are isomorphic (written G ∼= H) if there exists a one-to-one correspondence

between their vertex sets which preserves adjacency. An invariant of a graph G is a number associated
with G which has the same value for any graph isomorphic to G. A complete set of invariants would
determine a graph up to isomorphism, yet no such set is known for any graph. The most important
invariants for a graph G are the number of its vertices v = |V (G)|, the number of its edges e = |E(G)|, the
degree at each vertex, its girth g(G), i. e., the length of a shortest cycle (if any) in G, its diameter and its
(vertex) chromatic number. The distance between two points in G is the length of the shortest path joining
them, if any. In a connected graph, distance is a metric. A shortest path is called a geodesic and the
diameter of a connected graph is the length of the longest geodesic. A coloring of a graph is an assignment
of colors to its points so that no two adjacent points have the same color. A c-coloring of a graph G uses
c colors. The chromatic number κ(G) is defined as the minimum c for which G has a c-coloring.

Quite often the structure of a given graph can be expressed in a compact form, in terms of smaller
graphs and operations on them. Graph union, graph product, graph composition and graph complement
are a few [8]. The complement Ĝ of a graph G has V (G) as its vertex set, and two vertices are adjacent in

Ĝ if they are not in G. We will also need the concept of the line graph L(G) of a graph G, i. e., the graph
which has a vertex associated with each edge of G and an edge if and only if the two edges of G share a
common vertex.
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2.2 Graphs and finite geometries

A finite geometry may be defined as a space S = {P, L} of points P and lines L such that certain conditions,
or axioms, are satisfied [11]. One of the simplest set of axioms are those defining the so-called Fano plane:
(i) there are seven points and seven lines, (ii) each line has three points and (iii) each point is on three
lines. The Fano plane is a member of several communities, some of them of great relevance to the structure
of an N -qubit system. It is, first of all, a near linear space, that is a space such that any line has at least
two points and two points are on at most one line. The Fano plane is also a linear space for which the
second axiom “at most” can be replaced by “exactly”. More generally, a projective plane is a linear space
in which any two lines meet and there exists a set of four points no three of which lie on a line. The
projective plane axioms are dual in the sense that they also hold by switching the role of points and lines.
In a projective plane every point/line is incident with the same number k + 1 of lines/points, where k is
called the order of the plane. It has been long conjectured that a projective plane exists if and only k is
a power of a prime number and this conjecture was related to the existence of complete sets of mutually
unbiased bases for N -qudits [12]. The Fano plane is, in fact, the smallest projective plane, having order
k = 2. Projective planes of order k can be constructed as 3-dimensional vector spaces over finite fields
Fk; such planes are necessarily Desarguesian, but there also exists non-Desarguesian planes which do not
admit such a coordinatization.

The Fano plane belongs also to a large family of projective configurations, which consist of a finite set of
points and a finite set of lines such that each point is incident with the same number of lines and each line
is incident with the same number of points. Such a configuration may be denoted (va, eb), where v stands
for the number of points, e for the number of lines, a is the number of lines per point and b the number of
points per line. If the number of points equals the number of lines one simply denotes a configuration as
(va), although it is not, in general, unique. A configuration is said to be self-dual if its axioms remain the
same by interchanging the role of points and lines. The Fano plane is a configuration (73). We will soon
meet other two distinguished projective configurations: the Pappus configuration (93) and the Desargues
configuration (103). All the three configurations are self-dual. Any configuration may also be seen as a
regular graph by regarding its points as vertices and its lines as edges.

Recently, another class of finite geometries was found out to be of great relevance for two-qubits —
projective lines defined over rings instead of fields [3, 13, 14, 15]. Given an associative ring R with unity
and GL(2, R), the general linear group of invertible two-by-two matrices with entries in R, a pair (α, β) is

called admissible over R if there exist γ, δ ∈ R such that

(
α β
γ δ

)
∈ GL2(R). The projective line over

R is defined as the set of equivalence classes of ordered pairs (̺α, ̺β), where ̺ is a unit of R and (α, β)
admissible [16, 17]. Such a line carries two non-trivial, mutually complementary relations of neighbor
and distant. In particular, its two distinct points X : (̺α, ̺β) and Y : (̺γ, ̺δ) are called neighbor if(

α β
γ δ

)
/∈ GL2(R) and distant otherwise. The corresponding graph takes the points as vertices and its

edges link any two mutually neighbor points. For R = Fk, (the graph of) the projective line lacks any
edge, being an independent set of cardinality k + 1, or a (k + 1)-coclique. Edges appear only for a line
over a ring featuring zero-divisors, and their number is proportional to the number of zero-divisors and/or
maximal ideals of the ring concerned (see, e. g., [13]–[17] for a comprehensive account of the structure of
finite projective ring lines). Projective lines of importance for our model will be, as already mentioned in
Sec. 1, the line defined over the (non-commutative) ring of full 2 × 2 matrices with coefficients in Z2, as
well as the lines defined over three distinct types of rings of order four and characteristic two [6].

A linear space such that any two-dimensional subspace of it is a projective plane is called a projective

space. The smallest one is the binary three dimensional space PG(3, 2) of which two-dimensional subspaces
are Fano planes. A generalized quadrangle is a near linear space such that given a line L and a point P
not on the line, there is exactly one line K through P that intersects L (in some point Q) [18]. A finite
generalized quadrangle is said to be of order (s, t) if every line contains s + 1 points and every point is in
exactly t + 1 lines and it is called thick if both s > 1 and t > 1; otherwise, it is called slim. If s = t, we
simply speak of a quadrangle of order s. A generalized quadrangle of order (s, 1) or (1, t) is called a grid
or a dual grid, both being slim. The simplest thick generalized quadrangle, usually denoted as W (2), is of
order 2; it is a self-dual object featuring 15 points/lines and a cornerstone of our model.

Further concepts closely related to a projective space are those of a subspace and of a geometric
hyperplane. A set of points in a projective space is a subspace if and only if for any line L the set
contains no point, one point, or all the points of L. More restrictively, a geometric hyperplane H of a
finite geometry is a set of points such that every line of the geometry either contains exactly one point of
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1 2 3 a 4 5 6 b 7 8 9 c 10 11 12

1 0 i3 −i2 4 a i6 −i5 7 b i9 −i8 10 c i12 −i11
2 −i3 0 i1 5 −i6 a i4 8 −i9 b i7 11 −i12 c i10
3 i2 −i1 0 6 i5 −i4 a 9 i8 −i7 b 12 i11 −i10 c

a 4 5 6 0 1 2 3 ic i10 i11 i12 −ib −i7 −i8 −i9
4 a i6 −i5 1 0 i3 −i2 i10 ic −12 11 −i7 −ib 9 −8
5 −i6 a i4 2 −i3 0 i1 i11 12 ic −10 −i8 −9 −ib 7
6 i5 −i4 a 3 i2 −i1 0 i12 −11 10 ic −i9 8 −7 −ib

b 7 8 9 −ic −i10 −i11 −i12 0 1 2 3 ia i4 i5 i6
7 b i9 −i8 −i10 −ic 12 −11 1 0 i3 −i2 i4 ia −6 5
8 −i9 b i7 −i11 −12 −ic 10 2 −i3 0 i1 i5 6 ia −4
9 i8 −i7 b −i12 11 −10 −ic 3 i2 −i1 0 i6 −5 4 ia

c 10 11 12 ib i7 i8 i9 −ia −i4 −i5 −i6 0 1 2 3
10 c i12 −i11 i7 ib −9 8 −i4 −ia 6 −5 1 0 i3 −i2
11 −i12 c i10 i8 9 ib −7 −i5 −6 −ia 4 2 −i3 0 i1
12 i11 −i10 c i9 −8 7 ib −i6 5 −4 −ia 3 i2 −i1 0

Table 1: The product properties between any two Pauli operators of two-qubits; 0 ≡ I2.

H , or is completely contained in H .
Last but not least, we need to introduce the concept of a polar space. A polar space S = {P, L} is

a near-linear space such that for every point P not on a line L, the number of points of L joined to P
by a line equals either one (as for a generalized quadrangle) or to the total number of points of the line
[11]. A polar space of rank N (N ≥ 2) can also be seen [19] as a set {P} of points, together with certain
subsets, called subspaces, such that: (a) every subspace, together with its own subspaces, is isomorphic to
the projective space PG(d, q) over the finite field Fq and of dimension d at most N −1, (b) the intersection
of two subspaces is a subspace, (c) for each point P not in a subspace R of dimension N − 1, there is a
unique subspace S of dimension N − 1 such that R ∩ S is (N − 2)-dimensional, and (d) there are at least
two disjoint subspaces of dimension N − 1. A polar space of rank two is a generalized quadrangle. A
particular class of higher-rank, N > 2, polar spaces called symplectic polar spaces are, as already outlined
in [7], the geometries behind (strongly regular) multiple-qubit Pauli graphs (Sec. 4).

3 The Pauli graph of two-qubits

Let us consider the fifteen tensor products σi ⊗ σj , i, j ∈ {1, 2, 3, 4} and (i, j) 6= (1, 1), of Pauli matrices

σi = (I2, σx, σy , σz), where I2 =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σz =

(
1 0
0 −1

)
and σy = iσxσz, label them

as follows 1 = I2⊗σx, 2 = I2⊗σy, 3 = I2⊗σz , a = σx⊗I2, 4 = σx⊗σx. . . , b = σy ⊗I2,. . . , c = σz ⊗I2,. . . ,
and find the product and the commutation properties of any two of them — as given in Table 1 and Table
2, respectively. Joining two distinct mutually commuting operators by an edge, one obtains the Pauli graph
P [2, 2] with incidence matrix as shown in Table 2. After removing the triple {a, b, c} of the “reference”
observables, the incidence matrix can be cast into a remarkably compact form (Table 3) which makes use
of three 3× 3 matrices: O (the “zero” matrix), A (the identity matrix) and Â (the matrix complementary
to A). The main invariants of P [2, 2] and those of some of its most important subgraphs are listed in
Table 4. As it readily follows from Tables 1–3, P [2, 2] is 6-regular and, so, intricately connected with the
complete graphs Kn, n = 5, 6 or 7. First, one checks that P [2, 2] ∼= L̂(K6), i. e., it is isomorphic to the
complement of line graph of K6. Next, computing its minimum vertex cover (Table 4), one recovers the
Petersen graph PG ≡ L̂(K5). Finally, P [2, 2] is also found to be isomorphic to the minimum vertex cover
of L̂(K7). Now, we turn to remarkable partitionings/factorizations and the corresponding distinguished
subgraphs of P [2, 2].

3.1 The “Fano pencil” FP and the cube CB

We shall first tackle the 7+8 partitioning of the graph which can, for example, be realized by the following
subgraphs/subsets: FP = 〈1, 2, 3, a, 4, 5, 6〉 and CB = 〈b, 7, 8, 9, c, 10, 11, 12〉. The subgraph FP can also
be regarded as a line pencil in the Fano plane [3, 20] as well as a hyperplane of W (2) [6]; the number of
choices for this partitioning is obviously equal to the number of the vertices of the full graph (see [3] for
another choice). A CB is also the generalized Petersen graph G(4, 1) [9]. Employing Table 1, it is easy to
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1 2 3 a 4 5 6 b 7 8 9 c 10 11 12

1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0
2 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0
3 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1
a 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0
4 1 0 0 1 0 0 0 0 0 1 1 0 0 1 1
5 0 1 0 1 0 0 0 0 1 0 1 0 1 0 1
6 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0
b 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0
7 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1
8 0 1 0 0 1 0 1 1 0 0 0 0 1 0 1
9 0 0 1 0 1 1 0 1 0 0 0 0 1 1 0
c 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1
10 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0
11 0 1 0 0 1 0 1 0 1 0 1 1 0 0 0
12 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0

Table 2: The commutation relations between pairs of Pauli operators of two-qubits aka the incidence
matrix of the Pauli graph P [2, 2]. The symbol “0”/“1” stands for non-commuting/commuting; although
the diagonal should feature 1’s (every operator commutes with itself), we put there 0’s for the reason which
will become apparent from the text.

O A A A

A O Â Â

A Â O Â

A Â Â O

Table 3: Structure of the incidence matrix of P [2, 2] after removal of the triple of operators {a, b, c}.

observe that two vertices on one line of FP map to the third one on the same line, i.e., 1.a = 4, 2.a = 5
and 3.a = 6. The three observables are found to share a common base of 4-dimensional vectors; for this
particular choice, the lines in the Fano pencil FP feature unentangled 2-qubit bases. In addition, an edge
of CB is mapped to a vertex of FP , e. g., 8.10 = 6, 8.12 = −4, etc. In particular there is an Hamiltonian
cycle of length 6 (shown with thick lines) in the cube graph CB which features six bases of entangled
states. It is worth mentioning here that in [3] the projective lines over direct product of rings of the type
Z×n

2 , n = 2, 3, 4, were used to tackle this kind of partitioning. With these lines it was possible to grasp
the structure of the two subsets, but not the coupling between them; to get a complete picture required
employing a more abstract projective line with a more involved structure [6].

3.2 The Mermin square MS and the bipartite part BP

We shall focus next on the 9+6 partitioning which can be illustrated, for example, by the subgraphs
BP = 〈1, 2, 3, a, b, c〉 and MS = 〈4, 5, 6, 7, 8, 9, 10, 11, 12〉. The BP part is easily recognized as the bipartite

G P [2, 2] PG ∼= MV C MS BP FP CB
v 15 10 9 6 7 8
e 45 15 18 9 9 12

spec(G) {−35,19,6} {−24,15,3} {−24,14,4} {−3,04,3} {−2,−13,12,3} {−3,−13,13,3}

g(G) 3 5 3 4 3 3
κ(G) 4 3 3 2 3 2

Table 4: The main invariants of the Pauli graph P [2, 2] and its subgraphs, including its minimum vertex
covering MV C isomorphic to the Petersen graph PG. For the remaining symbols, see the text.
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10 c

9

12

7b

11

(−6)

(6)
(−5)

(5)

(4)

(FP) (CB)

(−4)
2

5

Figure 1: Partitioning of P [2, 2] into a pencil of lines in the Fano plane (FP ) and a cube (CB). In FP
any two observables on a line map to the third one on the same line. In CB two vertices joined by an edge
map to points/vertices in FP . The map is explicitly given for the entangled Hamiltonian path by labels
on the corresponding edges.

(BP) (MS)

11 6 7
(−)

(−)
5

(+)

12
(−)

8

(+)

109

(+)

4

c
(12)

3

(6) (10)

b2

1 (4) a

Figure 2: Partitioning of P [2, 2] into an unentangled bipartite graph (BP ) and a fully entangled Mermin
square (MS). In BP two vertices on any edge map to a point in MS (see the labels of the edges on a
selected Hamiltonian path). In MS any two vertices on a line map to the third one. Operators on all six
lines carry a base of entangled states. The graph is polarized, i.e., the product of three observables in a
row is −I4, while in a column it is +I4.

graph K[3, 3], while the MS part is a 4-regular graph. There is a map from the edges of BP to the vertices
of MS, and a map from two vertices of a line in MS to the third vertex on the same line. The bases
defined by two commuting operators in BP are unentangled. By contrast, operators on any row/column
of MS define an entangled base. A square/grid like the MS was used by Mermin [2] — and frequently
referred to as a Mermin’s square since then — to provide a simple proof of the Kochen-Specker theorem
in four dimensions. The proof goes as follows. One observes that the square is polarized in the sense that
the product of three operators on any column equals +I4 (the 4 × 4 identity matrix), while the product
of three observables on any row equals −I4. By multiplying all columns and rows one gets −I4. This is,
however, not the case for the eigenvalues of the observables; they all equal ±1 and their corresponding
products always yield +1 because each of them appears in the product twice; once as the eigenvalue in
a column and once as the eigenvalue in a row. The algebraic structure of mutually commuting operators
thus contradicts that of their eigenvalues, which furnishes a proof of the Kochen-Specker theorem. The
MS set is also recognized as a (92, 63) configuration for any point is incident with two lines and any line
is incident with three points and does not change its shape if we reverse our notation, i. e., join by an edge
two mutually non-commuting observables; in graph theoretical terms this means that the MS equals its
complement. It is also interesting to see that this configuration sits inside the Pappus (93) configuration
(all vertices and lines in Fig. 3) by removing from the latter the three non-concurrent lines (the dotted
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9
8

7

10

1211

Figure 3: The Mermin square MS viewed as a “sub-Pappus” configuration; the Pappus configuration (93)
is obtained by adding the three extra lines (dotted).

b

7

11

4
8

3

c

a10

1 2

6

9
12

(−6)

(2)

(1)

(9)

5
(12)

(PG) (I)

Figure 4: The partitioning of P [2, 2] into an independent set (I) and the Petersen graph (PG), aka its
minimum vertex cover. The two vertices on an edge of PG correspond/map to a vertex in I (as illustrated
by the labels on the edges of a selected Hamiltonian path).

ones). Last but not least, it needs to be mentioned that the MS configuration represents also the structure
of the projective line over the product ring Z2 × Z2 if we identify the points sets of the two and regard
edges as joins of mutually distant points [14, 15]; it was precisely this fact that motivated our in-depth
study of projective ring lines [13, 17] and finally led to the discovery of the relevant geometries behind
two- and multiple-qubit systems [3, 6, 7].

3.3 The Petersen graph PG and the maximum independent set I

The third fundamental partitioning of P [2, 2] comprises a maximum independent set I and the Petersen
graph PG [6]. This can be done in six different ways and one of them features I = 〈1, 2, 6, 9, 12〉 and
PG = 〈3, a, 4, 5, b, 7, 8, c, 10, 11〉. As in the case of their cousins CB and BP , the Petersen graph PG

admits a map of its edges into the vertices of the independent set I. Its complement, P̂G, can be viewed
as a Desargues configuration (103) (see Fig. 5) whose points are the vertices of PG and lines are triples
of non-commuting observables ok, ol, om, k 6= l 6= m, ok.ol = ±iom. The Desargues configuration is, like
those of Fano and Pappus, self-dual.
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7
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c
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Figure 5: The complement of the Petersen graph viewed as the Desargues configuration; every line com-
prises three pairwise non-commuting operators ok, ol, om, k 6= l 6= m, i. e., the operators obeying the rule
ok.ol = ±iom.

3.4 Finite projective algebraic geometry underlying P[2, 2]

3.4.1 P [2, 2] as the generalized quadrangle of order two — W (2)

At this point we have dissected P [2, 2] to such an extent that we are ready to show the unique finite
projective geometry hidden behind — namely the generalized quadrangle of order two, W (2) [6]. As
already mentioned in Sec. 2.2, W (2) is the simplest thick generalized quadrangle endowed with fifteen
points and the same number of lines, where every line features three points and, dually, every point is
incident with three lines, and where every point is joined by a line (or, simply, collinear) with other
six points [18, 20]. These properties can easily be grasped from the drawing of this object, dubbed for
obvious reasons the doily, depicted in Fig. 6; here, all the points are drawn as small circles, while lines
are represented either by line segments (ten of them), or as segments of circles (the remaining five of
them). To recognize in this picture P [2, 2] one just needs to identify the fifteen points of W (2) with our
fifteen generalized Pauli operators as explicitly illustrated, with the understanding that collinear means
commuting (and, so, non-collinear reads non-commuting); the fifteen lines of W (2) thus stand for nothing
but fifteen maximum subsets of three mutually commuting operators each.

That W (2) is indeed the right projective setting for P [2, 2] stems also from the fact that it gives a
nice geometric justification for all the three basic partitionings/factorizations of P [2, 2]. To see this, we
just employ the fact that W (2) features three distinct kinds of geometric hyperplanes [18]: 1) a perp-set
(Hcl(X)), i. e., a set of points collinear with a given point X , the point itself inclusive (there are 15 such
hyperplanes); 2) a grid (Hgr) of nine points on six lines, aka a slim generalized quadrangle of order (2, 1)
(there are 10 such hyperplanes); and 3) an ovoid (Hov), i. e., a set of (five) points that has exactly one point
in common with every line (there are six such hyperplanes). One then immediately sees [6] that a perp-set
is identical with a Fano pencil, a grid answers to a Mermin square and, finally, an ovoid corresponds to a
maximum independent set. Because of self-duality of W (2), each of the above introduced hyperplanes has
its dual, line-set counterpart. The most interesting of them is the dual of an ovoid, usually called a spread,
i. e., a set of (five) pairwise disjoint lines that partition the point set; each of six different spreads of W (2)
represents such a pentad of mutually disjoint maximally commuting subsets of operators whose associated
bases are mutually unbiased [3, 4]. It is also important to mention a dual grid, i. e., a slim generalized
quadrangle of order (1, 2), having a property that the three operators on any of its nine lines share a base
of unentagled states. It is straightforward to verify that these lines are defined by the edges of a BP ;
each of the remaining six lines (fully located in the corresponding/complementary MS) carries a base of
entangled states (see Fig. 6).

We shall finish this section with the following observation. A triad of a generalized quadrangle is an
unordered triple of pairwise non-collinear points, with the common elements of the perp-sets of all the
three points called its centers [18]. W (2) possesses two different kinds of triads: 1) those featuring three

centers (e. g., the triple {b, 5, 11}), as well as 2) those which are unicentric (e. g., the triple {1, 6, 12}).
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Figure 6: W (2) as the unique underlying geometry of two-qubit systems. The Pauli operators correspond
to the points and maximally commuting subsets of them to the lines of the quadrangle. Three operators
on each line have a common base; six out of fifteen such bases are entangled (the corresponding lines being
indicated by boldfacing).

3.4.2 P [2, 2] and the projective line over the full two-by-two matrix ring over Z2

W (2) is found as a subgeometry of many interesting projective configurations and spaces [18, 20]. We
will now briefly examine a couple of such embeddings of W (2) in order to reveal further intricacies of its
structure and, so, to get further insights into the structure of the two-qubit Pauli graph.

We shall first consider an embedding of W (2) in the projective line defined over the ring Z2×2
2 of full

2 × 2 matrices with Z2-valued coefficients,

Z2×2
2 ≡

{(
α β
γ δ

)
| α, β, γ, δ ∈ Z2

}
, (1)

because it was this projective ring geometrical setting where the relevance of the structure W (2) for two-
qubits was discovered [6]. To facilitate our reasonings, we label the matrices of Z2×2

2 in the following
way

1′ ≡
(

1 0
0 1

)
, 2′ ≡

(
0 1
1 0

)
, 3′ ≡

(
1 1
1 1

)
, 4′ ≡

(
0 0
1 1

)
,

5′ ≡
(

1 0
1 0

)
, 6′ ≡

(
0 1
0 1

)
, 7′ ≡

(
1 1
0 0

)
, 8′ ≡

(
0 1
0 0

)
,

9′ ≡
(

1 1
0 1

)
, 10′ ≡

(
0 0
1 0

)
, 11′ ≡

(
1 0
1 1

)
, 12′ ≡

(
0 1
1 1

)
,

13′ ≡
(

1 1
1 0

)
, 14′ ≡

(
0 0
0 1

)
, 15′ ≡

(
1 0
0 0

)
, 0′ ≡

(
0 0
0 0

)
, (2)

and see that {1′, 2′, 9′, 11′, 12′, 13′} are units (i. e., invertible matrices) and {0′, 3′, 4′, 5′, 6′, 7′, 8′, 10′, 14′, 15′}
are zero-divisors (i. e., matrices with vanishing determinants), with 0’ and 1’ being, respectively, the ad-
ditive and multiplicative identities of the ring. Employing the definition of a projective ring line given in
Sec. 2.2, it is a routine, though a bit cumbersome, task1 to find out that the line over Z2×2

2 is endowed
with 35 points whose coordinates, up to left-proportionality by a unit, read as follows

(1′, 1′), (1′, 2′), (1′, 9′), (1′, 11′), (1′, 12′), (1′, 13′),

(1′, 0′), (1′, 3′), (1′, 4′), (1′, 5′), (1′, 6′), (1′, 7′), (1′, 8′), (1′, 10′), (1′, 14′), (1′, 15′),

(0′, 1′), (3′, 1′), (4′, 1′), (5′, 1′), (6′, 1′), (7′, 1′), (8′, 1′), (10′, 1′), (14′, 1′), (15′, 1′),

(3′, 4′), (3′, 10′), (3′, 14′), (5′, 4′), (5′, 10′), (5′, 14′), (6′, 4′), (6′, 10′), (6′, 14′). (3)
1See, for example, [13, 14] for more details about this methodology and a number of illustrative examples of a projective

ring line.
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(MS)

(1’,12’)

(1’,13’)

(1’,2’)

(1’,9’)

(3’,10’)

(3’,14’)

(3’,4’)

(5’,10’)

(5’,14’)

(5’,4’)

(6’,10’)

(6’,4’)

(6’,14’)

(BP)

(1’,11’)

(1’,1’)

Figure 7: A BP + MS factorization of P [2, 2]) in terms of the points of the subconfiguration of the
projective line over the full matrix ring Z2×2

2 ; the points of the BP have both coordinates units, whilst
those of the MS feature in both entries zero-divisors. The “polarization” of the Mermin square is in this
particular ring geometrical setting expressed by the fact that each column/row is characterized by the
fixed value of the the first/second coordinate. Compare with Fig. 2.

Next, we pick up two mutually distant points of the line. Given the fact that GL(2, R) act transitively on
triples of pairwise distant points [16], the two points can, without any loss of generality, be taken to be
the points U0 := (1, 0) and V0 := (0, 1). The points of W (2) are then those points of the line which are
either simultaneously distant or simultaneously neighbor to U0 and V0. The shared distant points are, in
this particular representation, (all the) six points whose both entries are units,

(1′, 1′), (1′, 2′), (1′, 9′),

(1′, 11′), (1′, 12′), (1′, 13′), (4)

whereas the common neighbors comprise (all the) nine points with both coordinates being zero-divisors,

(3′, 4′), (3′, 10′), (3′, 14′),

(5′, 4′), (5′, 10′), (5′, 14′),

(6′, 4′), (6′, 10′), (6′, 14′), (5)

the two sets thus readily providing a ring geometrical explanation for a BP + MS factorization of the
algebra of the two-qubit Pauli operators, Fig. 7, after the concept of mutually neighbor is made synonymous
with that of mutually commuting [6]. To see all the three factorizations within this setting it suffices to
notice that the ring Z2×2

2 contains as subrings all the three distinct kinds of rings of order four and
characteristic two, viz. the (Galois) field F4, the local ring Z2[x]/〈x2〉, and the direct product ring Z2×Z2

[21], and check that the corresponding lines can be identified with the three kinds of geometric hyperplanes
of W (2) as shown in Table 5 [6].

Table 5: Three kinds of the distinguished subsets of the generalized Pauli operators of two-qubits (P [2, 2]))
viewed either as the geometric hyperplanes in the generalized quadrangle of order two (W (2)) or as the
projective lines over the rings of order four and characteristic two residing in the projective line over Z2×2

2 .

P [2, 2] set of five mutually set of six operators nine operators of a
non-commuting operators commuting with a given one Mermin’s square

W (2) ovoid perp-set\{reference point} grid
Proj. Lines over F4

∼= Z2[x]/〈x2 + x + 1〉 Z2[x]/〈x2〉 Z2 ×Z2
∼= Z2[x]/〈x(x + 1)〉
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Figure 8: An illustration of an embedding of the generalized quadrangle W (2) (and thus of the associated
Pauli graph P [2, 2]) into the projective space PG(3, 2). The points of PG(3, 2) are the four vertices of the
tetrahedron, its center, the four centers of its faces and the six centers of its edges; the lines are the six
edges of the tetrahedron, the twelve medians of its faces, the four circles inscribed in the faces, the three
segements linking opposite edges of the tetrahedron, the four medians of the terahedron and, finally, six
circles located inside the tetrahedron [20]. The fifteen points of PG(3, 2) correspond to the fifteen Pauli
operators/vertices of P [2, 2]. All the thirty-five lines of the space carry each a triple of operators ok, ol,
om, k 6= l 6= m, obeying the rule ok.ol = µom; the operators located on the fifteen totally isotropic lines
belonging to W (2) yield µ = ±1, whereas those carried by the remaining twenty lines (not all of them
shown) give µ = ±i.

The other embedding of W (2) to be briefly dealt with is the one into the simplest projective space,
PG(3, 2), as illustrated in Fig. 8. This embedding is, in fact, a very close ally of the previous one due to
a remarkable bijective correspondence between the points of the line over Z2×2

2 and the lines of PG(3, 2)
[22]. W (2) and PG(3, 2) are identical as the point sets, whilst the fifteen lines of W (2) are so-called totally
isotropic lines with respect to a symplectic polarity of PG(3, 2) (Sec. 4.2).

4 The Pauli graph of N-qubits

Following the same strategy as in the preceding section, we find out that the 43 − 1 = 63 tensor products
σi ⊗σj ⊗σk, [i, j, k = 1, 2, 3, 4, (i, j, k) 6= (1, 1, 1)] form the vertices and their commuting pairs the edges of
a regular graph of degree 30, P [2, 3], with spectrum {−527, 335, 30}. The corresponding incidence matrix
can also be cast into a compact tripartite form, Table 6, after the reference points a3 = σx ⊗ I2 ⊗ I2,
b3 = σy ⊗ I2 ⊗ I2 and c3 = σz ⊗ I2 ⊗ I2 have been omitted. This matrix looks very much the same as its
two-qubit counterpart (Table 3), save for the fact that now all the submatrices are of rank 15 × 15. As
in the two-qubit case, the matrix A3 can simply be viewed as the join of O3 and the unit matrix I8. The
same self-similarity pattern interrelating the incidence matrices of (N + 1)- and N -qubit systems is found
for any N .

As for the two-qubit incidence matrix, one of the most natural factorizations of the three-qubit matrix
consists of the first block O3 and a larger square block M3, of cardinality 45, containing O3 and Â3. The
latter block is self-complementary, as is its two-qubit counterpart, a Mermin square; it represents a regular
graph of degree 22 and spectrum {−510,−39,−22, 15, 318, 22}. The structure of this block is very intricate:
it can be recovered again by removing from the reduced incidence matrix shown in Table 6 the first triple
of points and all the reference points (of the type a, b and c, see Table 2) of the parent scale, i. e., an extra
set of 3 + 3 × 4 = 15 “pseudo-reference” points of the “daughter” scale.

After a closer look at M3, one reveals in it three subsets isomorphic to the Mermin square of two-qubits
(Fig. 2 and/or Fig. 7), from which we can form doubles (18 points) and triples (27 points) having spectra
{−34,−18, 0, 34, 8} and {−312, 06, 38, 12}, respectively; the graph of the latter bears number 105 in the list
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O3 A3 A3 A3

A3 O3 Â3 Â3

A3 Â3 O3 Â3

A3 Â3 Â3 O3

Table 6: The incidence matrix of P [2, 3] after removal of the triple of reference points (compare with
Table 3).

of graphs with few eigenvalues given in [23]. One can also form m-tuples of the “generalized” Mermin square
of size m = 1, 2, 3, 4 using the “entangled” subset E located in the first block O3 and the extra MS copies
from M3, to get another interesting blocks E∪MS, E∪(2×MS) and E∪(3×MS) and the associated graphs
with spectra {−34,−19, 34, 9}, {−312, 05, 38, 3(2±

√
6)} and {−54,−312, 02, 14, 312, 8±

√
91}, respectively.

4.1 Rank N symplectic polar spaces behind the N-qubit Pauli graphs

The geometry underlying higher order qubits [7] can readily be hinted from the observation that our doily
W (2), embodying the two-qubit operators’ algebra, is the lowest rank representative of a big family of
symplectic polar spaces of order two.

A symplectic polar space (see, e. g., [19, 24, 25] for more details) is a d-dimensional vector space over
a finite field Fq, V (d, q), carrying a non-degenerate bilinear alternating form. Such a polar space, usually
denoted as Wd−1(q), exists only if d = 2N , with N being its rank. A subspace of V (d, q) is called totally
isotropic if the form vanishes identically on it. W2N−1(q) can then be regarded as the space of totally
isotropic subspaces of PG(2N − 1, q) with respect to a symplectic form, with its maximal totally isotropic
subspaces, called also generators G, having dimension N − 1. For q = 2, this polar space contains

|W2N−1(2)| = |PG(2N − 1, 2)| = 22N − 1 = 4N − 1 (6)

points and (2+1)(22+1) . . . (2N +1) generators. A spread S of W2N−1(q) is a set of generators partitioning
its points. The cardinalities of a spread and a generator of W2N−1(2) read

|S| = 2N + 1 (7)

and

|G| = 2N − 1, (8)

respectively. Finally, it needs to be mentioned that two distinct points of W2N−1(q) are called perpendicular
if they are joined by a line; for q = 2, there exist

#∆ = 22N−1 (9)

points that are not perpendicular to a given point.
Now, in light of Eq. (6), we can identify the Pauli operators of N -qubits with the points of W2N−1(2). If,

further, we identify the operational concept “commuting” with the geometrical one “perpendicular,” from
Eqs. (7) and (8) we readily see that the points lying on generators of W2N−1(2) correspond to maximally
commuting subsets (MCSs) of operators and a spread of W2N−1(2) is nothing but a partition of the whole
set of operators into MCSs. Finally, Eq. (9) tells us that there are 22N−1 operators that do not commute
with a given operator.2

Recognizing W2N−1(2) as the geometry behind N -qubits, we will now turn our attention on the prop-
erties of the associated Pauli graphs, P [2, N ].

4.2 Strong regularity of the N-qubit Pauli graph

As already introduced in Sec. 2.1, a strongly regular graph, srg(v, D, λ, µ), is a regular graph having v
vertices and degree D such that any two adjacent vertices are both adjacent to a constant number λ of

2Shortly after Ref. [7] was posted on the arXiv-e, physicist D. Gross (Imperial College, London) sent us an outline of the
proof of this property and a couple of weeks later, Koen Thas (Ghent University), a young mathematician, also informed us
about finding a proof of the same statement.
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vertices, and any two distinct non-adjacent vertices are also both adjacent to a constant number µ of
vertices. It is known that the adjacency matrix A of any such graph satisfies the following equations [26]

AJ = DJ, A2 + (µ − λ)A + (µ − D)I = µJ, (10)

where J is the all-one matrix. Hence, A has D as an eigenvalue with multiplicity one and its other
eigenvalues are r (> 0) and l (< 0), related to each other as follows: r + l = λ − µ and rl = µ − D.
Strongly regular graphs exhibit many interesting properties [26]. In particular, the two eigenvalues r and
l are, except for (so-called) conference graphs, both integers, with the following multiplicities

f =
−D(l + 1)(D − l)

(D + rl)(r − l)
and g =

D(r + 1)(D − r)

(D + rl)(r − l)
, (11)

respectively. The N -qubit Pauli graph is strongly regular, and its properties can be inferred from the
relation between symplectic polar spaces and partial geometries.

A partial geometry is a more general object than a finite generalized quadrangle. It is finite near-linear
space {P, L} such that for any point P not on a line L, (i) the number of points of L joined to P by a
line equals α, (ii) each line has (s + 1) points, (iii) each point is on (t + 1) lines; this partial geometry

is usually denoted as pg(s, t, α) [11]. The graph of pg(s, t, α) is endowed with v = (s + 1) (st+α)
α

vertices,

L = (t + 1) (st+α)
α

lines and is strongly regular of the type

srg

(
(s + 1)

(st + α)

α
, s(t + 1), s − 1 + t(α − 1), α(t + 1)

)
. (12)

The other way round, if a strongly regular graph exhibits the spectrum of a partial geometry, such a
graph is called a pseudo-geometric graph. Graphs associated with symplectic polar spaces W2N−1(q) are
pseudo-geometric [26], being

pg

(
q
qN−1 − 1

q − 1
, qN−1,

qN−1 − 1

q − 1

)
-graphs. (13)

Combining these facts with the findings of the preceding section, we conclude that that N -qubit Pauli
graph is of the type given by Eq. (13) for q = 2; its basics invariants for a few small values of N are listed
in Table 7.

N v L D r l λ µ s t α

2 15 15 6 1 −3 1 3 2 2 1
3 63 45 30 3 −5 13 15 6 4 3
4 255 153 126 7 −9 61 63 14 8 7

Table 7: Invariants of the Pauli graph P [2, N ], N = 2, 3 and 4, as inferred from the properties of the

symplectic polar spaces of order two and rank N . In general, v = 4N −1, D = v−1−22N−1, s = 2 2N−1−1
2−1 ,

t = 2N−1, α = 2N−1−1
2−1 , µ = α(t + 1) = rl + D and λ = s− 1 + t(α− 1)) = µ + r + l. The integers v and e

can also be found from s, t and α themselves.

5 The Pauli graph of two-qutrits

A complete orthonormal set of operators of a single-qutrit Hilbert space is [5]

σI = {I3, Z, X, Y, V, Z2, X2, Y 2, V 2}, I = 1, 2, 3, . . . , 9, (14)

where I3 is the 3 × 3 unit matrix, Z =




1 0 0
0 ω 0
0 0 ω2


, X =




0 0 1
1 0 0
0 1 0


, Y = XZ, V = XZ2 and

ω = exp (2iπ/3). The 92−1 = 80 tensor products σI ⊗σJ , I, J = 1, 2, 3, . . . , 9 and (I, J) 6= (1, 1), form the
vertices and commuting couples of them the edges of the two-qutrit Pauli graph, P [3, 2], with spectrum
{−715,−140, 524, 25}; the graph is not strongly regular, its largest eigenvalue is of multiplicity one and
three other eigenvalues all feature high-order multiplicities. Removing the set of eight reference points
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E F F F F F F F F

F E B B B F B̂ B̂ B̂

F B̂ E B̂ B B F B B̂

F B̂ B E B̂ B B̂ F B

F B̂ B̂ B E B B B̂ F

F F B̂ B̂ B̂ E B B B

F B F B B̂ B̂ E B̂ B

F B B̂ F B B̂ B E B̂

F B B B̂ F B̂ B̂ B E

Table 8: Structure of the incidence matrix of P [2, 3] after removal of the eight reference points.

σI ⊗ I3, I 6= 1, the incidence is brought into the form as shown in Table 8, with the following building
blocks

E =

(
04 I4

I4 04

)
, F =

(
I4 I4

I4 I4

)
, and B =

(
U Û

Û U

)
, where U =




0 0 0 0
1 0 1 0
1 0 0 1
1 1 0 0


,

and 04 and I4 are the zero and unit 4×4 matrices, respectively. One still recognizes a natural partitioning
into the block E and the remainder, which has been partitioned into a 4× 4 array to reflect the symetries
of the graph. Reincorporating the reference points back into the block E, and denoting J the all-one 8× 8

matrix, one gets the matrix
E J
J E

, representing two copies of the bipartite graph K[4, 4]. The remain-

ing part comprises (not strongly) regular subgraphs of cardinality 16, of the form
E B

B̂ E
,

E B̂
B E

,. . . ,

and of spectrum {−2, 03, (−1±
√

(3))4, 23, 4}. Higher dimensional regular subgraphs of P [3, 2] have cardi-
nalities 24, 32 and 64 and spectra {−44,−22,−17, 210, 7}, {−48,−26, 217, 10} and {78,−36,−132, 517, 21},
respectively.

Since P2,3, and all the regular subgraphs displayed, are not strongly regular, they are not pseudo-
geometric. Hence, the geometry behind them is likely to be more involved and intricate that in the case
of multiple qubit systems. From what we learned about N -qubits, it should be natural to assume that the
geometry behind N -qutrits is that of W2N−1(q = 3). This, at first sight, does not seem to be the case as
|W2N−1(3)| = |PG(2N−1, 3)| = (32N −1)/2 = (9N −1)/2, while the number of operators is twice as many;
however, treating a pair of operators as a single point of W2N−1(3) may give us important clues about
the relevant geometry. In the case N=2, an equivalent approach, exactly paralleling that for two-qubits,
is to look for hints by examining the structure of the projective line over the full 2 × 2 matrix ring with
coefficients in Z3.

6 Conclusion

The paper introduces an important concept of the Pauli graph for the generalized Pauli operators of
finite-dimensional quantum systems and illustrates and discussed this concept in an exhaustive detail for
N -qubit systems, N ≥ 2. In doing so, the geometries underlying these systems, viz. the symplectic polar
spaces of rank N and order two, are invoked to reveal all the intricacies of the algebra of the operators and
its basic factorizations. Although there exits a variety of other interesting geometry-oriented approaches
to model finite dimensional quantum systems (see, for example, [27]–[33]), ours seems to be novel in that it
goes beyond classical projective geometry and Galois fields and is, in principle, applicable to any quantum
system of finite dimension.
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