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Abstract

This paper is devoted to the study of the differentiability of solutions to real-valued back-
ward stochastic differential equations (BSDEs for short) with quadratic generators driven by
a cylindrical Wiener process. The main novelty of this problem consists in the fact that
the gradient equation of a quadratic BSDE has generators which satisfy stochastic Lips-
chitz conditions involving BMO martingales. We show some applications to the nonlinear
Kolmogorov equations.
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1 Introduction

In this paper we are concerned with a real valued BSDE

T

T
Y, =®(Xp) +/ F(r,X,,Y,, Z,)dr —/ Zy dW,, T € [t,T],
t

-
where W is a cylindrical Wiener process in some infinite dimensional Hilbert space E and the
generator F' has quadratic growth with respect to the variable z. Quadratic BSDEs has been
intensively studied by Kobylanski [13], and then by Lepeltier and San Martin in [14] and more
recently by Briand and Hu in [3]. The process X, appearing in the generator and in the terminal
value of the BSDE, takes its values in an an Hilbert space H and it is solution of the following
forward equation

dX, = AX, dr +b(r, X;)dr + o(1, X;)dW,, 1€t T],
Xt =ux € H.



A is the generator of a strongly continuous semigroup of bounded linear operators {4} in H,
b and o are functions with values in H and Lo(Z, H) — the space of Hilbert-Schmidt operators
from = to H — respectively. Under suitable assumptions on the coefficients, there exists a unique
adapted process (X,Y,Z) in the space H x R x Lo(Z,R) solution to this forward-backward
system. The processes X, Y, Z depend on the values of x and ¢ occurring as initial conditions in
the forward equation: we may denote them by X% Y% and Z%.

Nonlinear BSDEs were first introduced by Pardoux and Peng [19] and, since then, have
been studied with great interest in finite and infinite dimensions: we refer the reader to [§],
[6] and [18] for an exposition of this subject and to [15] for coupled forward-backward systems.
The interest in BSDEs comes from their connections with different mathematical fields, such
as finance, stochastic control and partial differential equations. In this paper, we are concerned
with the relation between BSDEs and nonlinear PDEs known as the nonlinear Feynman-Kac
formula. More precisely, let us consider the following nonlinear PDE

Owu(t,x) + Lifu(t, )] (x) + F(t,z,u(t,z),o(t, ) Vyu(t,z)) =0, u(T,x) = ®(x),

where L; is the infinitesimal generator of the diffusion X. Then the solution w is given by the
formula wu(t, z) = Y;t’x which generalizes the Feynman-Kac formula to a nonlinear setting.

Numerous results (for instance [21, 20, 17, 18, 13]) show the connections between BSDEs set
from a forward-backward system and solutions of a large class of quasilinear parabolic and elliptic
PDEs. In the finite dimensional case, solutions to PDEs are usually understood in the viscosity
sense. Here we work in infinite dimensional spaces and consider solutions in the so called mild
sense (see e.g. [9]), which are intermediate between classical and viscosity solutions. This notion
of solution seems natural in infinite dimensional framework: to have a mild solution its enough
to prove that it is Gateaux differentiable. Hence we don’t have to impose heavy assumptions on
the coefficients as for the classical solutions. However a mild solution is Gateaux differentiable
and thus more regular than a viscosity solution. For the probabilistic approach, this means
that, in the infinite dimensional case, one has to study the regularity of X% Y and Z%* with
respect to ¢ and x in order to solve the PDE.

This problem of regular dependence of the solution of a stochastic forward-backward system
has been studied in finite dimension by Pardoux, Peng [20] and by El Karoui, Peng and Quenez
[8], and, in infinite dimension, by Fuhrman and Tessitore in [9], [10]. In both cases, F' is assumed
to be Lipschitz continuous with respect to y and z. In [1], in infinite dimension, the generator
F' is assumed to be only Lipschitz continuous only with respect to z and monotone with respect
to y in the spirit of the works [21], [17] and more recently [2].

In this work, we want to achieve this program when F'is quadratic with respect to z meaning
that the PDE is quadratic in the gradient. We will only consider the case of a bounded function
®. The study of the differentiability of the process Y with respect to z in this quadratic
framework open an interesting problem of solvability of linear BSDEs with stochastic Lipschitz
condition. Let us show with an example what happens in order to motivate the assumptions we
will work with.

Let (Y*,Z%) be the solution to the BSDE — all processes are real in this example —
1 T T
}/;m:(I)(CU+Wt)+§ / |Zf|2ds—/ ZTdW,
¢ t

where ® is bounded and C!. If (G%, H®) stands for the gradient with respect to x of (Y%, Z%)



then we have, at least formally,
T T
f:(I)’(m—l—Wt)—i—/ Zfods—/ HY dWs.
¢ t

In this linear equation, of course, the process Z% is not bounded in general so the usual Lipschitz
t
assumption is not satisfied. It is only known that the process Z% is such that Z7 dWs

is a BMO-martingale: this fact was used in [11] to prove a uniqueness result. BSDOES under
stochastic Lipschitz condition have already been studied in [7] and more recently in [4]. However,
the results in these papers do not fit our BMO-framework. This is the starting point of this
paper.

The plan of the paper is as follows: Section 2 is devoted to notations. In Section 3 we recall
some known results about BMO-martingales and we state a result of existence and uniqueness for
BSDESs with generators satisfying a stochastic Lipschitz condition with BMO feature. In section
4 we apply the previous result to the study the regularity of the map (t,z) — (Y.m, Z-b)
solution of the forward-backward system. The last section contain the applications to nonlinear
Kolmogorov PDEs.

2 Notations

2.1 Vector spaces and stochastic processes

In the following, all stochastic processes will be defined on subsets of a fixed time interval [0, T'].

The letters =, H and K will always denote Hilbert spaces. Scalar product is denoted (-, -),
with a subscript to specify the space if necessary. All Hilbert spaces are assumed to be real and
separable. Lo(Z, K) is the space of Hilbert-Schmidt operators from = to K endowed with the
Hilbert-Schmidt norm. We observe that if K = R the space Lo(Z,R) is the space L(Z,R) of
bounded linear operators from = to R. By the Riesz isometry the dual space Z* = L(Z,R) can
be identified with =.

W = {W;}+>0 is a cylindrical Wiener process with values in the infinite dimensional Hilbert
space Z, defined on a probability space (2, F,P); this means that a family W (t), ¢ > 0, is a
family of linear mappings from = to L?(£2) such that

(i) for every uw € =, {W(t)u, t > 0} is a real (continuous) Wiener process;
(ii) for every u,v € Zand t > 0, E (W (t)u - W(t)v) = (u,v)=.

{Fi}iepo,r) will denote the natural filtration of W, augmented with the family N of P-null
sets of Fr:
Fr=0c(W(s) : se€[0,t]) VN.

The filtration {F;};c(o 7y satisfies the usual conditions. All the concepts of measurability for
stochastic processes (e.g. predictability etc.) refer to this filtration. By P we denote the
predictable o-algebra on Q x [0,7] and by B(A) the Borel o-algebra of any topological space A.

Next we define several classes of stochastic processes which we use in the sequel. For any
real p > 0, SP(K), or SP when no confusion is possible, denotes the set of K-valued, adapted
and cadlag processes {Y;}4c[o,7) such that

1A1/p
1Y | g :=E |sup,ejo.ry |Yl” < too.



If p>1,||sris anorm on S and if p € (0,1), (X, X’) — HX - X’HSP defines a distance
on SP. Under this metric, SP is complete. MP (MP (Ly(Z, K))) denotes the set of (equivalent
classes of) predictable processes {Z; };cjo, 7 with values in Lo(Z, K') such that

T /2 1A1/p
1Z 3o ::E{(/O yzsy%zs) ] < foo.

For p > 1, MP is a Banach space endowed with this norm and for p € (0,1), MP is a complete
metric space with the resulting distance. We set & = Up~1S8”, M = U,~1MP and §* stands for
the set of predictable bounded processes.

Given an element ¥ of L (Q x [0,T]; L2(Z, K)), one can define the It6 stochastic integral
fot U(o)dW,, t € [0,T]; it is a K-valued martingale with continuous path such that

t 1/2
E [Supte[o,T} | / ¥(o) dWoF] < Ho0.
0
The previous definitions have obvious extensions to processes defined on subintervals of [0, T'].

2.2 The class ¢

F: X — V, where X and V are two Banach spaces, has a directional derivative at point x € X
in the direction h € X when
F h)—F
VF(z;h) = lim (z + sh) (x),

s—0 S

exists in the topology of V. F'is said to be Gateaux differentiable at point z if VF (x; h) exists for
every h and there exists an element of L(X, V'), denoted VF(x) and called Gateaux derivative,
such that VF(z; h) = VF(z)h for every h € X.

Definition 2.1. F : X — V belongs to the class G!(X; V) if it is continuous, Gateaux differen-
tiable on X, and VF : X — L(X,V) is strongly continuous.

In particular, for every h € X the map VF(-)h : X — V is continuous. Let us recall some
features of the class G!(X, V') proved in [9].

Lemma 2.2. Suppose F € G1(X,V). Then

(i) (z,h) — VF(x)h is continuous from X x X to V;

(ii) If G € GX(V, Z) then G(F) € GY(X, Z) and V(G(F))(x) = VG(F(z))VF(x).

Lemma 2.3. A map F: X — V belongs to G (X, V) provided the following conditions hold:
(i) the directional derivatives V F(x; h) exist at every point x € X and in every direction h € X ;
(ii) for every h, the mapping VF(-;h) : X — V is continuous;

(iii) for every x, the mapping h — VF(x;h) is continuous from X to V.

These definitions can be generalized to functions depending on several variables. For instance,
if F' is a function from X x Y into V', the partial directional and Gateaux derivatives with respect
to the first argument, at point (z,y) and in the direction h € X, are denoted V,F(z,y;h) and
V. F(x,y) respectively.



Definition 2.4. F': X xY — V belongs to the class G1'%(X x Y; V) if it is continuous, Gateaux
differentiable with respect to x on X x Y, and V,F : X x Y — L(X,V) is strongly continuous.

As in Lemma 2.2, the map (z,y, h) — V,F(z,y)h is continuous from X x Y x X to V, and
the chain rules hold. One can also extend Lemma 2.3 in the following way.

Lemma 2.5. A continuous map F : X xY — V belongs to G4°(X x Y, V) provided the following
conditions hold:

(i) the directional derivatives YV F(x,y;h) exist at every point (x,y) € X XY and in every
direction h € X;

(ii) for every h, the mapping VF(-,-;h) : X XY — V is continuous;
(iii) for every (z,y), the mapping h — VYV F(z,y;h) is continuous from X to V.

When F depends on additional arguments, the previous definitions and properties have
obvious generalizations. For instance, we say that F' : X x Y x Z — V belongs to G110(X x
Y x Z; V) if it is continuous, Géateaux differentiable with respect to z and y on X x Y x Z, and
VoF : X xY xZ— L(X,V)and VyF : X xY x Z — L(Y,V) are strongly continuous.

3 BSDEs with random Lipschitz condition

In this section, we want to study the BSDE

T T
Yt:§+/t f(s,Ys,Zs)ds—/t Zs dW (1)

when the generator f is Lipschitz but with random Lipschitz constants. This kind of BSDEs
were also considered in [7] and more recently in [4]. However our framework is different from
the setting of the results obtained in these papers. Let us recall that a generator is a random
function f : [0,T]x QxR x Lo(Z,R) — R which is measurable with respect to PRB(R)®B(Z)
and a terminal condition is simply a real Fr—measurable random variable. From now on, we
deal only with generators such that, P-a.s., for each ¢t € [0,T], (y,z) — f(t,y, z) is continuous.

By a solution to the BSDE (1) we mean a pair (Y,Z) = {(Yi, Z;)}scjor) of predictable
processes with values in R x La(Z, R) such that P-a.s., t — Y} is continuous, t — Z; belongs
to L2(0,T), t — f(t, Y3, Z;) belongs to LY(0,T) and P-a.s.

T T
Y}:£+/ f(s,Ys,Zs)ds—/ Zs dWs, 0<t<T.
¢ t
We will work with the following assumption on the generator.

Assumption A1l. There exist a real process K and a constant o € (0,1) such that P-a.s.:

e for each t € [0,T], (y,2z) — f(t,y,2) is continuous ;

e for each (¢,2) € [0,T] x L2(Z,R),

vy7p€R7 (y—p)(f(t,y,Z)—f(t,p,Z))SKEG ’y_p‘z



e for each (t,y) € [0,7] x R,
\V/(Z?Q) € L2(E,R) X L2(EaR), |f(tayaz) - f(t’y5Q)| < Kt |Z - Q|L2(E,R)'

In the classical theory, the process K is constant but for the application we have in mind we
will only assume the following.

Assumption A2. {Ks}se[O,T} is a predictable real process bounded from below by 1 such that
there is a constant C' such that, for any stopping time 7 < T,

T
E (/ K, |2 ds ‘ ]—“T> <2

N denotes the smallest constant C' for which the previous statement is true.

This assumption says that, for any u € La(Z, R) such that ||u||,z r) = 1 the martingale
¢
Mt:/ KaudW,, 0<t<T
0

is a BMO-martingale with | M| gapro, = N. We refer to [12] for the theory of BMO-martingales
and we just recall the properties we will use in the sequel. It follows from the inequality ([12, p.
26]),

VneN*,  E[M?2]=E [(/OT|KS|2ds)"} < pI N2

that M belongs to HP for all p > 1 and moreover

Ya € (0,1), Vp>1, n(p)? :=E {exp <p /OT |KS|2ads>} < +o0. (2)

The very important feature of BMO—martingales is the following: the exponential martingale

t t
EM) =& =exp (/ Ksu-dWs—%/ |Ks|2ds>
0 0

is a uniformly integrable martingale. More precisely, {& }o<i<7 satisfies a reverse Hélder in-
equality. Let ® be the function defined on (1,+00) by

1 2p—1>1/2
dp)= 14+ slog—L——) —1;
®) ( P %20 1)

® is nonincreasing with lim,_,; ®(p) = +o00, limy,_, 4 oc ®(p) = 0. Let g, be such that ®(¢,) = N.
Then, for each 1 < g < g4 and for all stopping time 7 < T,

E(E(M)L | Fr) < K(q,N)E(M)L (3)

q
where the constant K (g, N) can be chosen depending only on g and N = || M|/ gro, €.g.

2

KN = T 0 — 1) T (@ (V2§ V)




Remark 3.1. If we denote P* the probability measure on (€2, Fr) whose density with respect to
P is given by Er then P and P* are equivalent.

Moreover, it follows from (3) and Holder’s inequality that, if X belongs to LP(P) then X
belongs to L#(P*) for all s < p/p, where p, is the conjugate exponent of ¢*.

We assume also some integrability conditions on the data. For this, let p, be the conjugate
exponent of g,.

Assumption A3. There exists p* > p, such that
X T -
EDW’+(/\ﬂ&amm@ ]<+m.
0

As usual for BSDEs, we begin with some apriori estimate. The first one shows that, one can
control the process Y as soon as the process Z has some integrability property. The following
lemma relies heavily on the reverse Hélder’s inequality.

Lemma 3.2. Let the assumptions A1, A2 and A3 hold. If (Y, Z) is a solution to (1) such that,
for some r > p., Z € M", then, for each p € (p«,p*), Y € SP and

T

1Y s < cHra + [C1rs.00)ds

)
p*

for a suitable constant C depending on p, p*, p. and N.

Proof. The starting point to obtain this estimate is a linearization of the generator of the
BSDE (1). Let us set

f(S,Y:sa Zs) - f(S,O, Zs)
sz )

f(S,O, Zs) - f(S,0,0)
20 em)

as = bs = Zs.

Then, (Y, Z) solves the linear BSDE

T T
KE:£+/ (f(5a0,0)+as}/:9+ < bs, Zs >L2(E,R)) ds—/ Zs dWs.
t t
As usual, let us set ¢; = eJoasds | We have,

T T
ci=eré+ [ ef(s.0.00ds— [ ez aw,
t t

where we have set W} = W, — fos b, dr. Of course, we want to take the conditional expectation
of the previous equality with respect to the probability P* whose density is

T 1 /T
E(I(b))r = exp (/0 bsdWy — 5/0 |b8|%2(E,R)dS>

under which B* is a Brownian motion. To do this, let us observe that |bs|r,=r) < K so that
(D) Brro, < ||IM|Brmo, and E(I(b)) satisfies the reverse Holder inequality (3) for all ¢ < g
(with the same constant).



Moreover, it follows from Al that as < K2* and, in particular, (2) says that the process
e belongs to all SP spaces. Thus eré belongs to L? for all p < p, and the same is true for
fOT es|f(s,0,0)| ds. In the same way, we have, for all p < r,

T 2 T 2
E (/ e?]ZSPds)p/ <E supetp(/ ]Zslzds>p/ < 400.
0 0

Using Lemma 3.1, we deduce that eré and fOT es|f(s,0,0)| ds belongs to LP(P*) for all p <
1/2
p*/ps and (fOT |ZS|2ds> belongs to L*® for all s < r/p,.

Thus we can take the conditional expectation to obtain

T
ey =E* <eT§ +/ esf(s,0,0)ds ‘ .7-"t> ,
t

and, as a byproduct of this equality, we get

Vi < (6)°'E <5T <|§|6T/et +/tT|f(s,0,0)|es/et ds) ‘}}>.

Taking into account A1, we have as < K2% and, for all s > t,

s T
es/er < exp </ K2 dr) < exp </ K* d7“> ,
t 0

from which we deduce the inequality
Vi < (&)7'E (&0 X | F),

where we have set

T T
FT:exp</0 K,?adr), and X:<|§|+/O |f(s,0,0)|d5>.

Using the reverse Holder inequality, for each r > p,, we have, ¢ =r/(r — 1) < g, and

1/r

Vil < (&) B (&R | F) VTR (05X | )Y < K (g, N)VIE (05X | 7)Y

Doob’s inequality gives for all p, < r < p,

E

sup [Y;[”

» p/T
< KNP (L) Bl
t€[0,T]

p—r

Now, let p € (p«,p*), from Holder inequality, we have, for each p, < r < p,

p/T
E [SUPte[O,T] !Yt\”] < K(q,N)"/1 <p€ ) n(pp*/(p* — p))PE[XP" PP

r

It follows that, for p, <71 < p < p*,

r (r—=1)/r D 1/r pp* T
Wis <& (v) (G5 (G2 ) e [ o0ias
r— p—r pF—p 0

which gives the result taking r = (p + p«)/2. O

)
p*




We keep on by showing that on can obtain an estimate for the process Z in terms of the
norm of Y. This kind of results is quite classical see e.g. [2]. We give the proof in our framework
for the ease of the reader.

Lemma 3.3. Let us assume that

y- f(ty,2) < |ylfe + KPy)* + Kilyl ||

for nonnegative processes f and K.
If (Y, Z) solves the BSDE (1), with Y € 87 then, for each p < q, Z € MP and

T
(/ (K2 + K2) ds)1/2 ) ,
0 pa/(q—p)

Proof. We follow [2]. For each integer n > 1, let us introduce the stopping time

T
1Zly < © (\\Y\\3p ; H | sas

+ Y [lsa
p

where C' depends only on p and q.

t
Tn:inf{tG[O,T],/ |Zr|2dr2n}/\T.
0

1to’s formula gives us,

Tn

Tn Tn
|Yo|? +/ \Z, |2 dr = Y, |2 +2/ (Yo, f(r, Yy, Z,)) dr — 2/ Yy, ZpdW,).
0 0 0
But, from the assumption on f, we have,
2y - f(r,y,2) < 2Jylfr + 2K2y|? + 2K2[y| + |2]%/2.
Thus, since 7,, < T, we deduce that

1 Tn T T Tn
5/ |\ Z, | dr < Y? —|—2Y*/ fr dr+2Y*2/ (K2 + K7}) dr—i—Q‘/ Yy, Z.dW,)
0 0 0 0

)

It follows that

Tn T 2 T Tn
/ |Z.|2dr < 4 <y*2+ </ frdr) _|_y*2/ (K2 + K?) dr—i—‘/ (Y, Z.dW,)
0 0 0 0

and thus that

(["1zpar)™
0
S%(K5+(/Tﬁdﬁp+Y?(/Tuﬁa+K%d0”&+1/m&%2mww
0 0 0

»/ 2)
But by the BDG inequality, we get

2 Tn p/4 Tn 4
p/} <d,E [(/ |Y,,|2|Zr|2dr> ] < d,E [npm(/ |Z,,|2dr)p/ ]
0 0

(4)

%Eﬂénnﬂﬂm»




and thus )

/2 d 1 n /2

' } g—pE[Y,Z’]—i——E[(/ ]Zr\er)p }
2 2 0

Coming back to the estimate (4), we get, for each n > 1,

E [(/OT” er\er)p/Q} <C,E [Y,gwr </0Tfrdr)p+Yf(/OT (K2 4+ K?) ds>p/1

and, Fatou’s lemma implies that

E [(/OT]ZrPdr)P/Z] <C,E {YM </0Tfrdr)p+yf(/oT e ds)”/Q]

The result follows from Holder’s inequality. O

& E U / Yy, ZodW,)
0

The previous two lemmas lead the following result.

Corollary 3.4. Let the assumptions A1, A2 and A3 hold. If (Y,Z) is a solution to (1) such
that, for some r > p., Y € 8", then, for each p € (ps,p*), (Y,Z) € SP x MP and

T N 1/2
) <1+H(/0 (K2 + K2) ds)

T
1V o+ 12l < C Hrs\ n /0 1F(5,0,0)] ds

p(p*+p)/(p* p))
where C' depends on p, p«, p* and N.

Proof. Since Y belongs to SP for some p > p,, there exists by Lemma 3.3 r € (ps, p*) such that
Z belongs to M". It follows from Lemma 3.2 that Y belongs to SP for all p < p* and then by
Lemma 3.3 Z € MP? for all p < p*.

The inequality comes from the choice ¢ = (p+p*)/2 in Lemma 3.3 together with the estimate
of Lemma 3.2. O

Assumption A4. There exists a nonnegative predictable process f such that,

E [(/OTf(s) ds)p*} < 400

and P-a.s.
V(t,y,2) € [0,T) x R x La(E,R),  |f(t,y,2)| < f(t) + KPly| + Kylz|.

Theorem 3.5. Let the assumptions A1, A2, A3 and A4 hold. Then BSDE (1) has a unique
solution (Y, Z) which belongs to SP x MP for all p < p*.

Proof. Let us prove first uniqueness. Let (Y1, Z!) and (Y2, Z2) be solutions to (1) such that

Y! and Y? belongs to SP for p > p,. The by Corollary 3.4, (Y1, Z!) and (Y2, Z?) belongs to
SP x MP for all p < p,. Moreover, U = Y! —Y? and V = Z' — Z? solves the BSDE

T T
Ut:/ F(S,Us,Vs)ds—/ V, - dWs,
t t

where F(t,u,v) = f (t,Yt2 +u, ZE + v) —f (t,Yf,th). We have F'(t,0,0) = 0 and F' satisfies
A1 with the same process K. It follows from Corollary 3.4 that (U, V) = (0,0).

10



Let us turn to existence. For each integer n > 1, let 7, be the following stopping time:

Tn :inf{te (0,77 : /Ot (f(s) + K2) dszn} AT.

Let £" = £1j¢|<p, and (Y™, Z™) be the solution to the BSDE

T T
=g [ fn ) ds— [z
t t
The existence of the solution (Y™, Z") to the previous equation comes from [16]. Indeed, we
have, setting f"(t,y, z) = Li<s, f(t,y, 2),
(8, 2)] < Lezr, (F(8) + K7+ K7 /2) (L4 [yl) + 121%/2,
and, P-a.s.
T
/ Li<r, (f(t) + K7* + K7 /2) dt < 5n/2.
0

Since " is bounded by n, the previous BSDE has a unique solution (Y, Z™) such that Y is a
bounded process and Z" € M?. Since

T
| 15000 dt <,
0

we know, from Corollary 3.4, that (Y, Z") € SP x MP for all p.

Moreover, still by Corollary 3.4, the sequence ((Y™,Z2")),~, is bounded in KP := SP x M?
for all p < p*.

Let us show that ((Y™,Z")),~; is a Cauchy sequence in KP := SP x MP for all p < p*. Let
m >n > 1 and let us set as before U =Y —Y" V = Z™ — Z". Then (U, V) solves the BSDE

T T
Utzgm_gn_i_/ F(S,Usa‘/s)ds_/ ‘/;dWs
t t
where
F(t,u,v) = Li<s, (f (t7u + Y;nﬂ} + Zz?) - f (t7Y;€n7Ztn)) - 1Tn<t§7mf(t7 Y;tn7Ztn) :
F satisfies Al and F'(¢,0,0) = =1, <t<r. f (t,Y/", Z]") belongs to LP for all p > 1.

Since ¢ € LP", ||¢m —¢n
inequality,

T T T T 1/2 T
/ |F(t,0,0)|dt < / f(t)dt + sup, |Y;"| / Kf“ dt + </ Kf dt> (/ |Zt"|2 dt>
0 Tn Tn Tn 0

Let p < p*. We choose p < ¢ < r < p*. It follows from the previous inequality, using Holder

inequality, that
T T T T 1

‘/ |F(,0,0)| dt / Ft)dt / K2 dt (/ det)
0 Tn Tn Tn

Let us recall that 7, — 7' P-a.s and that the sequence ((Y",Z")),,>; is bounded in K. Since

fOT f(t) dt belongs to LP", fOT K2 dt and fOT K? dt has moments of all order, the right hand side
of the previous inequality tends to 0 as n tends to infinity.

» — 0if n — oco. Moreover, we have, from A4 and Holder

1/2

<
q

+IY™ s
q

Rl AN Ve

q
r—q

qr
r—q

It follows from Corollary 3.4 — applied with ¢ instead of p* — that (Y, Z ”))n21 is a Cauchy
sequence in P and this is valid as soon as p < p*.

It is easy to check that the limit of this sequence is a solution to BSDE (1) O
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4 The forward-backward system

In this section, we apply the previous results on BSDEs to study the differentiability of the
solution to the following quadratic BSDE

T T
Vi =@ (XtT"”) + / F(r,X0%,Y5" Z57) dr — / ZdWr, 0<71<T, (5)

where {Xﬁ’x is the solution to

}OStST
Xb® = m 04 4 / T4 (r, X") dr —i—/ T A (r,X") dW,, t<7<T. (6)
t t

As usual, we have set XE* = g for 7 < t. Of course, from It6’s formula, we have
dXL* = AXLPdr + b (1, X2") dr + o (1, XL") dW,, 1€ [t,T], Xtr=gzeH 1<
But a solution of this equation is always understood as an (F;)-predictable continuous process
X solving (6).
We will work under the following assumption on the diffusion coefficients.

A

)

Assumption A5. (i) The operator A is the generator of a strongly continuous semigroup e!
t > 0, in the Hilbert space H.

(i) The mapping b: [0,7] x H — H is measurable and satisfies, for some constant L > 0,

[b(t, ) = b(t, y)|
[b(t, )]

L|x—y|, tel0,T], x,y € H,
L(1+z)), te[0,T], € H.

IN A

(iii) 0 : [0,7] x H — L(E, H) is such that, for every v € =, the map ov : [0,7] x H — H is
measurable, e54co(t,z) € Lo(Z, H) for every s > 0, t € [0,7] and = € H, and

IGSAU(tP%')‘LQ(E,H) < L S_,y(l + ’1“),
o (t,2) — Ao (t,y)l Ly < Ls e -yl
lo(t.2)lLem < L0+ |2,

for some constants L > 0 and v € [0,1/2).
(iv) For every s >0, t € [0, 7],
b(t,) € G'(H,H),  e*o(t,) € G'(H, Ly(E, H)).
A consequence of the previous assumptions is that, for every s >0, ¢t € [0,T], z,h € H,
IVob(t,2)h| < L|h|,  |Va(eo(t,2))hlr,zm < L s Al
The following results are proved by Fuhrman and Tessitore in [9].

Proposition 4.1. Let A5 hold. Then, for each (t,z) € [0,T] x H, (6) has a unique solution
{Xﬁ’x}ongT- Moreover, for everyp > 1,

12



(i) X%* belongs to SP(H) and there exists a constant C such that

E [suprefor) [XE°P] < C(1+]al)?, (7)

(ii) The map (t,z) — Xb® belongs to GO! ([O,T] x H, Sp(H)).
(iii) For every h € H, the directional derivative process V. X0"h, T e [0,T7], solves the equation:

Vo XpTh = e(T_t)Ah+/ e(T_r)Avxb(T, XEYW X" h dr
- t
+ / Vo (e Ag(r, XEE W X520 dW,, T € [t,T],

t
V. XU'h = h, 1e0,1).

(iii) Finally vaxifh

‘S < c|h| for some constant c.
P

We assume that F' : [0,7] x H x R x L3(E,R) — R and ® : H — R are measurable
functions such that

Assumption A6. There exists C' > 0 and « € (0,1) such that

o |F(t,z,y,2)] < C(1+ |y +|2*) and ® is bounded ;

F(s,+,--) is gl,l,l(H x R x La(Z,R);R) and P is gl(H; R) ;

|V, ®(x) < C
o [V F(
o |V.F(s,z,y,2
o [V, F(

We know from results of [13, 14] (these results can be easily generalised to the case of a
cylindrical Wiener process) that under A6 the BSDE (5) has a unique bounded solution and
that there exists a constant C' such that, for each (t,z),

/ Zhe . dW
0

<. (8)

t,
HSHPUE[QT] Y| Hoo * ‘ BMO
2

For the existence and the bound for the process Y we refer to [14, Corollary 1], uniqueness
follows from [13, Theorem 2.6] and finally the estimate for the BMO-norm of Z comes from a
direct computation starting from Itd’s formula applied to ¢(z) = (e2¢% — 20z — 1) /(2C?%). In

particular, for each p > 1,
T 9 \1/2
H(/ |7t ds) H <, (9)
0 P
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Proposition 4.2. Let the assumption A6 hold.

The map (t,z) — <Y.t’x,Z.t’x> belongs to GO ([0, T] x H;SP x MP) for each p > 1. More-
over, for every x € H and h € H, the directional derivative process {Vquf’mh, Vmejxh}
solves the BSDE: for T € [0,T],

u€[0,T]

T
nyjwh =V,P <X€,~’x) VxX;lxh + / V. F (S, X§’$, Y;t,x, Z;,a:) V;,;X?mh ds
u
T
+ / (VyF (87 X§7$’ Y;t,x7 Z;,x) VxY;t’xh + VZF (87 Xz,a:’ Y;t’x, Z;,x) VxZﬁ’”h) ds (10)
u

T
- / Vo Zbh dW,

and there exists Cp, such that

VoY h| g, + || Ve 28Ry < Cp(L + |2])" |-

Proof. The continuity of the map (¢, z) — <Y.t’m, A ’m> follows from a mere extension of Koby-
lanski’s stability result [13, Theorem 2.8].
For the differentiability, let us remark that, in view of A6 and (9), for all p > 1,

< Cp(1+ |2))"|Al.

H V. ® (X07) V. X5h
p

T
+ /0 |VoF (s, X0, Y", Z6") Vo X0h| ds

It follows from Theorem 3.5, that the BSDE (10) has a unique solution which belongs to SP x MP
for all p > 1. And moreover, for p > 1, it follows from Corollary 3.4 and (9), that

VoY 2h| g + | Vo 257y < O+ [2])"[A.

Let us fix (t,z) € [0,7] x H. We remove the parameters ¢ and z for notational simplicity.
For ¢ > 0, we set X¢ = X4%*teh where h is some vector in H, and we consider (Ye,Z%) the
solution in SP x MP to the BSDE

T T
y;:q)(xgewr/ F(s,Xg,ng,Zg)ds—/ 72 dW,.
t t

When ¢ — 0, (X5,Y%,7°) — (X,Y,Z) in 8P x SP x MP for all p > 1. We also denote (G, N)
the solution to the BSDE (10) and it remains to prove that the directional derivative of the map
(t,r) —> (Y.t’w, Z”) in the direction h € H is given by (G, N).

Let us consider Us =1 (Y*—Y) -G, Ve =71 (Z° — Z) — N. We have,
1

Ui = _(2(XF) ~ (X1)) — Vo (X1)VoXrh +
1 T T
+g/ (F(S,Xg,yj,zg)—F(S,Xs,y;,zs))ds—/ VE AW,
t t

T T
—/ VxF(S,Xs,Y:q,ZS)VmXShdS—/ VyF (s, Xs,Ys, Zs)Gs ds
t t
T
_/ VZF($7X87}<97ZS)NSds'
t
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Using the fact that (s, -, -,-) belongs to GH1!, we can write

1
- (F(S’Xgayfazg) - F(SaXSaYSaZs)) —

1
€ E(F(S’XE’Y;’ZS)_F(S’XSa}/;aZs))+

+A€Y;E—Y;+B€Z§—Zs
5 ¢ 5 €

where AS € L(R,R) and B € L(Ly(Z,R),R) are defined by

1
Yy € R, ASy = / VyF (s, X5,Ys +a(Ys —Y5), Zs) yda,
0

1
Vz € Ly(E,R), Biz = / V.F (s, X, Y, Zs + a(Z5 — Zs)) zda.
0

Then (U¢, V®) solves the following BSDE

T T T
UF = G+ [ AUz BV s+ [ (P + @)+ G ds— [ vEaw,
t t t

where we have set
P(s) = (A; = VyF (s, X, Y5, Zs)) Gs,  Q°(s) = (BS — V2F(s,Xs, Y5, Zs)) N,
Re(s) = e (F(s, X, Yy, Zs) = F(s, Xy, Vs, Z5)) = Vo F (5, X5, Ya, Z0)Va Xsh,
¢ = H(®(X5) — ®(X7)) — Vo ®(X7)V,X7h.
It follows from A6 that
ALSCA+ 12|+ 122, B <O +1Z]+122)),

and
|P2(s)] < C (14 |Zs| +1Z21)** |G, |Q°(s)| < C(1+ |Zs| + | Z5]) | Hs|

For p large enough, we have from Corollary 3.4 taking into account (8) and (9),

T
10 lsp + [V llye < © HICEI +/0 (1P (s)] + 1@ ()] + [R*(s)]) ds

p+1

The right hand side of the previous inequality tends to 0 as € — 0 in view of the regularity and

the growth of F' and ® (see A6).

The proof that the maps = — (V,Y"*h, V,Z"%h) and h — (V,Y5*h,V,Z5%h) are contin-

uous (for every h and x respectively) comes once again of Corollary 3.4.

Remark 4.3. Since sup, , [|sup,, |Y (u,t,z)
tions on the gradient on F' in AG6.

oo
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5 Application to nonlinear PDEs

In this section we are interested in finding a probabilistic representation in our framework for
the solution to

{ Ou(t, ) + Lifu(t, )] (x) + F(t, z,u(t,x),o(t, )" Vyu(t,z)) =0, te€[0,T],z€ H, (1)
u(T,x) = ¢(x),

where L; is the operator:
Li[o](x) = %Trace (J(t, x)o(t, $)*v2¢($)) + (Az + b(t,x), Vo(x)),

where V¢ and V2¢ are the first and the second Gateaux derivatives of ¢ (identified with elements
of H and L(H) respectively). This definition is formal, since the domain of £, is not specified.

We will refer to this equation as the nonlinear Kolmogorov equation. In this equation,
F :]0,T]xHxRxZ — Risagiven function verifying A6 and V, u(t, z) is the Gateaux derivative
of u(t,z) with respect to x: it is identified with an element of H, so that o(t,z)*Vu(t, x) € E.

Under the assumption A5, we can define a transition semigroup P;, with the help of X*®
solution to (6) by the formula

Pir¢)(x) =E [¢(X77)],  xeH.

The estimate (7) shows that P, ; is well defined as a linear operator from B,(H), the set of
measurable functions from H to R with polynomial growth, into itself; the semigroup property
P sPs; =P, t <s<7,is well known.

When ¢ is sufficiently regular, the function v(t,z) = P, r[¢](x), is a classical solution of
the backward Kolmogorov equation (11) with F' = 0; we refer to [5] and [22] for a detailed
exposition. When ¢ is not regular, the function v defined by the formula v(t,z) = P r[¢|(z)
can be considered as a generalized solution of this equation.

For the nonlinear case, we consider the variation of constants formula for (11):
T
u(t, z) = / B [F (7, u(r, ), 0 (1, ) Veu(r,))l(2) dr + Br(®(z), ¢<[0,T], e H, (12)
t
and we notice that this formula is meaningful, provided F(t,-,-,), u(t,-) and Vgzu(t, ) have

polynomial growth. We use this formula as a definition for the solution of (11):

Definition 5.1. We say that a function u : [0,7] x H — R is a mild solution of the nonlinear
Kolmogorov equation (11) if the following conditions hold:

(i) v e g% ([0,T] x H,R);

(ii) there exists C' > 0 and d € N such that |V u(t,z)h| < C|h|(1 + |z|?) for all t € [0,T],
re H, heH;

(iii) equality (12) holds.

Remark 5.2. We obtain an equivalent formulation of (11) and (12) by considering the Gateaux
derivative V,u(t, x) as an element of =* = L(E,R) = L2(=Z,R). In this case, we take a function
F:0,T] x Hx R x La(E,R) — R and we write the equation in the form

Opu(t, ) + Lifu(t, )] (x) + F(t,z,u(t,x), Vyu(t,x)o(t,z)) = 0.

The two forms are equivalent provided we identify Z* = Ly(=Z, R) with = by the Riesz isometry.
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We are now ready to state the main result of this section.

Theorem 5.3. Let the assumptions A5 and A6 hold.

The nonlinear Kolmogorov equation (11) has a unique mild solution u given by the formula
u(t,z) =Y)", (t,x) €[0,T) x H

where (Y%, Z47) is the solution to the BSDE (5) and X" the solution to (6). Moreover, we
have, P-a.s.
YE = (s, X17), Z8 0 (s, XE)*V u(s, t, X5).

Proof. Let us first recall a result of [9, Lemma 6.3]. Let {e;} be a basis of = and let us consider

the standard real Wiener process W! = fOT<ei, dWes), 7 > 0.

If v e G%'([0,T] x H,R), for every i, the quadratic variation of v(s, X4*) and W/ is given
by

[v(-,X_t’m),Wi]s :/ Voo(r, XP)G (1, X5%)e; dr, s € [t,T). (13)
t

(a) Existence. Let us recall that for s € [¢,T7, Y is measurable with respect to F; 5 and F;

it follows that Yf’x is deterministic (see also [6]). Moreover, as a byproduct of Proposition 4.2,
the function w defined by the formula u(t,z) = Ytt’m has the regularity properties stated in
Definition 5.1. It remains to verify that equality (12) holds true for w.

To this purpose we first fix ¢ € [0,7] and = € H. Since (Y."*, Z%") solves the BSDE (5), we
have, for s € [¢,T7,

T T
Y 4 / ZHT AW, = B(XL") + / F(T, xte yte, ZW) dr,
S S

and, taking expectation for s =t we obtain, coming back to the definition of v and P 7,

T
ult, ) = Por[®)(z) + E [ / F(T, Xix,yfvf,zﬁﬂ dT:| . (14)
t
Moreover, we have, for each i,
i S
[Y_t’m,WZ]S :/ (Zr,ei)ydr, se|t,T].
t

Now let us observe that the processes Y and Z satisfy the Markov property: for t < s < T,
P-a.s.
5, X057 t,x
Yi4s =Y fort € [s,T)]

Zs,X;’I _ Zt,m f
2 = 77" forae T €ls,T].

In fact the solution of the backward equation is uniquely determined on an interval [s, T] by
the values of the process X on the same interval. The process X is the unique solution of the
forward equation (6) and satisfies the Markov property.

As consequence we have, P—a.s.,

u(T, th_,m) = ngv T €[t T].
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It follows from (13) that, for each 4,

S

[Y_t’m,WZ]s :/t Vou(r, X o (1, XE%)e; dr, s € [t, T).
Therefore, for a.a. 7 € [t,T], we have P-a.s.
qu(7-7 th_’m)O'(T7 th_,m)ei = <th—7ma 62‘>,
for every i. Identifying V,u(t, z) with an element of =, we conclude that for a.a. 7 € [t,T],
o(r, X"V Vo u(r, t, XET) = ZL7.
Thus, F (T, Xbr oyt Zﬁx) can be rewritten as

F (1, X% u(r, XE%), 0 (1, XL ) Vu(r, X57))

and (14) leads to

T
u(t,z) = P, r[¢)(x) —l—/t P, [F (7, u(t,-),0(r, ) Vyu(r,-))|(z) dr

which is (12).

(b) Uniqueness. Let u be a mild solution. We look for a convenient expression for the process
u(s, X%, s € [t,T). By (12) and the definition of P, ., for every s € [t,T] and z € H,

u(s,z) = E [@(X%m)]
T
+E [/ F (7, X5 u(r, Xb%), o(1, X5%) " Vu(r, Xﬁ’x))dT] .
S
Since X7 is independent of Fs, we can replace the expectation by the conditional expectation
given Fg:
u(s,z) = E [@(X5)]

T
+E [ / F(r, XE% u(r, X%, 0(m, X27) " Vau(r, X27)) dT] :
S

Taking into account the Markov property of X, P-a.s.
XpXT = xte 1 el T,
we have

u(s, Xi*) = B {‘I)(X%JC)]
T
LB U F(r, XE° u(r, X2 o (r, X27) ' Vou(r, X27))dr |
S

If we set
T

£ = @(X;lm) +/ F(T, X5 u(r, XE7), o (1, XE7)*V pu(T, Xﬁ’m))dT
t
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the previous equality leads to

—E7 g [ F(r X ulr, XE), o, XE) Vsl X)) dr.
t

Let us observe that E**[¢] = u(t,z). Since £ € L?(; R) is Fj; rj—measurable, by the repre-
sentation theorem, there exists Z € L3 (Q x [t,T); L2(E, R)) such that

E7s[¢] :u(t,a:)—l—/s Z.dW,, selt,T).
t

We conclude that the process u(s, Xo®), s € [t,T] is a (real) continuous semimartingale with
canonical decomposition

u(s, X% = u(t,m)—i—/ Z. dW, (15)
t

S
—/ F(T, X5 u(r, X5%) o (1, X5)*V pu(T, Xﬁ’m)> dr.
t

Using (13) and arguing as in the proof of existence, we deduce that for a.a. 7 € [t,T], P-a.s.
o (1, XL Vou(r, Xb%) = Z,.

Substituting into (15) we obtain
S
u(s, X% = wu(t,z) +/ o (1, XLV pu(r, XL%) dW,
. ¢
—/ F(T, Xﬁ’”ﬁ,u(r, Xf_’x),O'(T, Xﬁ’w)*vxu(T, Xﬁ’w)) dr,
¢

for s € [¢t,T]. Since u(T, Xfp’x) = @(Xélm), we deduce that

{(u(s, X0, o (7, XL¥)*Vu(r, XE7) }se[t,T]

solves the backward equation (5). By uniqueness, we have Y7 = u(s, Xo™), for each s € [t,T]
and in particular, for s = t, u(t,z) = Y;"*.
O
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