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Asymptotic Properties of the Detrended Fluctuation
Analysis of Long Range Dependence Processes

Jean-Marc Bardet and Imen Kammoun

Abstract— In the past few years, a certain number of authors
have proposed analysis methods of the time series built from
a long range dependence noise. One of these methods is the
Detrended Fluctuation Analysis (DFA), frequently used in the
case of physiological data processing. The aim of this method
is to highlight the long-range dependence of a time series with
trend. In this study asymptotic properties of DFA of the fractional
Gaussian noise are provided. Those results are also extended to
a general class of stationary long-range dependent processes. As
a consequence, the convergence of the semi-parametric estimator
of the Hurst parameter is established. However, several simple
exemples also show that this method is not at all robust in case
of trend.

Index Terms— Detrended ¤uctuation analysis, fractional Gaus-
sian noise, stationary process, self-similar process, Hurst param-
eter, trend, long-range dependence processes.

I. INTRODUCTION

IN the past few years, numerous methods of analysis of a
trended long range process have been proposed. One of

these methods is the Detrended Fluctuation Analysis (DFA),
frequently used in the case of physiological data processing
in particular the heartbeat signals recorded in healthy or
sick subjects (see for instance [10], [13], [17], [18] and
[19]). Indeed, it can be interesting to £nd some constants
among the ¤uctuations of physiological data. The parameter
of long-range dependence (so called Hurst parameter) of
the original signal, or the self-similarity parameter of the
aggregated signal could be a new way of interpretation and
explanation for a physiological behavior.

The DFA method is a version for time series with trend of
the method of aggregated variance used for long-memory
stationary process (see for instance [13]). It consists on
1. aggregated the process by windows with £xed length,
2. detrended the process from a linear regression in each
windows, 3. computed the standard error of the residual errors
(the DFA function) for all data, 4. estimated the coef£cient of
the power law from a log-log regression of the DFA function
on the length of the chosen window. After the £rst stage, the
process is supposed to behave like a self-similar process with
stationary increments added with a trend. The second stage
is supposed to remove the trend. Finally, the third and fourth
stages are the same than those of the aggregated method (for
zero-mean stationary process).
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The processing of experimental data, and in particular
physiological data, exhibits a major problem that is the
non-stationarity of the signal . Hu et al. (2001) have studied
different types of non-stationarities associated with examples
of trends (linear, sinusoidal and power-law trends) and
deduced their effect on an added noise and the kind of
competition who exists between this two signals. They have
also explained (see Chen et al., 2002) the effects of three
other types of non-stationarities, which are often encountered
in real data. The DFA method was applied to signals with
segments removed, with random spikes or with different
local behavior. The results were compared with the case of
stationary correlated signals.

In Taqqu et al. (1999), the case of the fractional Gaussian
noise (FGN) is studied. A theoretical proof to the power
law followed by the expectation of the DFA function
of this process is established. This is an important £rst
step for proving the convergence of the estimator of the
Hurst parameter. The study we propose here is a kind of
achievement of this work. Indeed the convergence rate of the
Hurst parameter estimator is obtained, in a semi-parametric
frame.

The paper is organized as follows. In Section II, the
DFA method is presented and two general properties are
proved. The Section III is devoted to provide asymptotic
properties (beforehand illustrated by simulations) of the DFA
function in case of the FGN. Section IV contains an extension
of these results for a general class of stationary long-range
dependence processes. Finally, in Section V, the method is
proved not to be robust in different particular cases of trended
processes, while the proofs of the different results are in the
Appendix I.

II. DEFINITIONS AND FIRST PROPERTIES OF THE DFA
METHOD

The Detrended Fluctuation Analysis (DFA)

The DFA method was introduced in [18]. The aim of this
method is to highlight the self-similarity of a time series with
trend. Let (Y (1), . . . , Y (N)) be a sample of a time series
(Y (n))n∈ .

1) The £rst step of the DFA method is a "discrete
integration" of the sample, i.e. a calculation of
(X(1), . . . , X(N)) where

X(k) =

k∑

i=1

Y (i) for k ∈ {1, . . . , N}. (1)
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2) The second step is a division of {1, . . . , N} in [N/n]
windows of length n (for x ∈

�
, [x] is the integer

part of x). In each window, the least squares regression
line is computed, which represents the linear trend
of the process in the window. Then, we denote by
X̂n(k) for k = 1, . . . , N the process formed by this
piecewise linear interpolation. Then the DFA function
is the standard deviation of the residuals obtained from
the difference between X(k) and X̂n(k), therefore,

F (n) =

√√√√ 1

n · [N/n]

n·[N/n]∑

k=1

(
X(k)− X̂n(k)

)2

3) The third step consists on a repetition of the second
step with different values (n1, . . . , nm) of the window’s
length. Then the graph of the logF (ni) by log ni is
drawn. The slope of the least squares regression line of
this graph provides an estimation of the self-similarity
parameter of the process (X(k))k∈ or the Hurst pa-
rameter of the (Y (n))n∈ process (see above for the
explanations).

From the construction of the DFA method, it is interesting to
de£ne the restriction of the DFA function in a window. Thus,
for n ∈ {1, . . . , N}, one de£nes the partial DFA function
computed in the j-th window, i.e.

F 2
j (n) =

1

n

nj∑

i=n(j−1)+1

(X(i)− X̂n(i))
2 (2)

for j ∈ {1, . . . , [N/n]}. Then, it is obvious that

F 2(n) =
1

[N/n]

[N/n]∑

j=1

F 2
j (n). (3)

Remark: In the Hu et al. and Kantelhardt et al. papers (for
details [10], [12] and [13]), the de£nition of the time series
(X(n))n∈ computed from (Y (n))n∈ is different of (1), i.e.

X̃(k) =

k∑

i=1

(Y (i)− Y N ) , for k ∈ {1, . . . , N}

with Y N =
1

N

N∑

j=1

Y (j).

It is obvious to see that in both the de£nitions, (X(k)−X̂n(k))
is the same and therefore the value of F (n) is the same.

Lemma 2.1: With the previous notations, let F̃ (n) be the
DFA function built from (X̃(k)), i.e.

F̃ (n) =

√√√√ 1

n · [N/n]

n·[N/n]∑

k=1

(
X̃(k)− ̂̃Xn(k)

)2

.

Then for n ∈ {1, . . . , N}, F (n) = F̃ (n).

Proof: Consider the j-th window, j ∈ {1, . . . , [N/n]} and
de£ne the vectors X (j) = (X(1+n(j−1)), . . . , X(nj))′ and
X̃(j) = (X̃(1 + n(j − 1)), . . . , X̃(nj))′ = X(j) − (1 + n(j −
1), . . . , nj)′ · Y N . In this j-th window, de£ne Ej the vector

subspace of
� n generate by the two vectors of

� n, (1, . . . , 1)′

and
(
(j−1)n+1, (j−1)n+2, . . . , nj

)′
. It is well known that

if PA is the matrix of the orthogonal projection on a vector
subspace A of

� n, then

F 2
j (n) =

1

n

(
PE⊥

j
·X(j)

)′
· PE⊥

j
·X(j)

and F̃ 2
j (n) =

1

n

(
PE⊥

j
· X̃(j)

)′
· PE⊥

j
· X̃(j),

where E⊥j is the orthogonal vector subspace of Ej .
But (1 + n(j − 1), . . . , nj)′ · Y N ∈ Ej , and therefore

PE⊥
j
· X̃(j) = PE⊥

j
·X(j) − PE⊥

j
· (1 + n(j − 1), . . . , nj)′ Y N

= PE⊥
j
·X(j),

and thus, F 2
j (n) = F̃ 2

j (n), that implies F (n) = F̃ (n). ¤

In order to simplify the following proofs, the case of the
DFA method applied to a stationary process {Y (t), t ≥ 0}
can be considered. The following lemma shows that the law
of F 2

j (n) does not depend on j

Lemma 2.2: Let {Y (t), t ≥ 0} a stationary process. Then,
with X(k) =

∑k
i=1 Y (i) for k ∈ {1, . . . , N}, for any n ∈

{1, . . . , N}, the times series (F 2
j (n))1≤j≤[N/n] is a stationary

process.

Proof: Set j ∈ {1, . . . , [N/n]} and de£ne the vector X (j) =
(X(1 + n(j − 1)), . . . , X(nj))′. Then,

X(j) −X(n(j − 1) + 1)·(1, . . . , 1)′

L
= X(1) −X(1) · (1, . . . , 1)′.

(4)

Indeed

X(j) −X(n(j − 1) + 1) · (1, . . . , 1)′ =
(
0, Y (2 + n(j − 1)), .

..,

n−1∑

k=2

Y (k + n(j − 1)),
n∑

k=2

Y (k + n(j − 1))
)

and

X(1)−X(1) · (1, . . . , 1)′ =
(
0, Y (2), . . . ,

n−1∑

k=2

Y (k),
n∑

k=2

Y (k)
)

We have (Y (2), . . . , Y (n))
L
= (Y (2+ (j − 1)n), . . . , Y (jn))

because {Y (t), t ≥ 0} is a stationary process. Then
with g :

� n−1 →
� n−1 a Borelian function de£ned by

g(y2, . . . , yn) = (y2, . . . ,
∑n−1

k=2 yk,
∑n

k=2 yk), it is clear that

g(Y (2), . . . , Y (n))
L
= g(Y (2 + (j − 1)n), . . . , Y (jn)) and

therefore (4) is true.

Now, in each window j, and with the same de£nition
of the vector subspace Ej than in the proof of Lemma 2.1,

F 2
j (n) =

1

n

(
PE⊥

j
·X(j)

)′
· PE⊥

j
·X(j)

=
1

n

(
X(j) −X(n(j − 1) + 1) · (1, . . . , 1)′

)′
· PE⊥

j
·

(
X(j) −X(n(j − 1) + 1) · (1, . . . , 1)′

)
,
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with PE⊥
j
· (1, . . . , 1)′ = (0, . . . , 0)′. But E1 = Ej and thus

E⊥j = E⊥1 . Therefore, with (4), we obtain F 2
j (n)

L
= F 2

1 (n)
for all j ∈ {1, . . . , [N/n]}.

Moreover, for all m ∈ � ∗, (j1, . . . , jm) ∈ {1, . . . , [N/n]}m

and t ∈ � ∗, the same reasoning can be resumed for the case of
vectors (F 2

j1
(n), . . . , F 2

jm
(n)) and (F 2

j1+t(n), . . . , F
2
jm+t(n)).

Indeed,
(
X(j1)

′

−X(n(j1 − 1) + 1) · (1, . . . , 1), . . . ,

X(jm)′ −X(n(jm − 1) + 1) · (1, . . . , 1)
)′

L
=

(
X(j1+t)′ −X(n((j1 + t)− 1) + 1) · (1, . . . , 1), . . . ,

X(jm+t)′ −X(n((jm + t)− 1) + 1) · (1, . . . , 1)
)′

and PEj1
= · · · = PEjm

= PEj1+t
= · · · = PEjm+t

. This
achieves the proof. ¤

Finally, in order to consider trended processes, the following
property for two independent processes could be considered.

Lemma 2.3: Let Y = {Y (k), k ∈ � } and Y ′ =
{Y ′(k), k ∈ � } be two independent processes, with�
(Y (k)) = 0 for all k ∈ � , and denote respectively F 2

Y ,
F 2
Y ′ and F 2

Y +Y ′ the DFA functions associated to Y , Y ′ and
Y + Y ′. Then, for n ∈ {1, · · · , N},

�
(F 2

Y +Y ′(n)) =
�
(F 2

Y (n)) +
�
(F 2

Y ′(n)).

Proof: With X and X ′ the aggregated processes associated to
Y and Y ′, it is obvious that

�
(F 2

Y +Y ′(n))

=
1

n · [N/n]

n·[N/n]∑

k=1

� ((
X(k) +X ′(k)− X̂n(k)− X̂ ′

n(k)
)2)

=
�
(F 2

Y (n))+
�
(F 2

Y ′(n)) +
2

n · [N/n]
·

n·[N/n]∑

k=1

� ((
X(k)− X̂n(k)

)(
X ′(k)− X̂ ′

n(k)
))

.

From the independence of X and X ′ and thanks to the
assumption

�
(Y (k)) = 0 for all k ∈ � which implies

�
(X(k)) = 0 and

�
(X̂(k)) = 0 for all k ∈ � ,

� ((
X(k)−

X̂n(k)
)(

X ′(k)− X̂ ′
n(k)

))
= 0. ¤

III. ASYMPTOTIC PROPERTIES OF THE DFA FUNCTION

FOR A FGN

In this section, we study the asymptotic (both the sample
size N and the length of window n increase to ∞) behavior
of the DFA when (Y (n))n∈ is a stationary Gaussian process
called fractional Gaussian noise (FGN), i.e. (X1, . . . , XN ) is
a Gaussian process having stationary increments and called a
fractional Brownian motion (FBM). First, one reminds some
de£nitions and properties of both this processes.

De£nition and £rst properties of the FBM and the FGN

Let {XH(t), t ≥ 0} be a fractional Brownian motion
(FBM) with parameters H ∈]0, 1[ and σ2 > 0, i.e. a real
zero mean Gaussian process satisfying,

1) XH(0) = 0 a.s.
2) E[(XH(t)−XH(s))2] = σ2|t− s|2H ∀(t, s) ∈

� 2
+.

Here there are some properties of a FBM {XH(t), t ≥ 0}
(see more details in Samorodnitsky and Taqqu, 1994)
• The process {XH(t), t ≥ 0} has stationary increments.

As a consequence, if we denote {Y H(t), t ≥ 0} the
process de£ned by Y H(t) = XH(t + 1) − XH(t) for
t ≥ 0, then {Y H(t), t ≥ 0} is a zero mean stationary
Gaussian process so-called a fractional Gaussian noise
(FGN).

• {XH(t), t ≥ 0} is a self-similar process satisfying ∀c >

0, XH(ct)
L
= cHXH(t) and H is also called the exponent

of self-similarity.
• The covariance function of the fractional Brownian mo-

tion {XH(t), t ≥ 0} is

Cov(XH(t), XH(s)) =
σ2

2
(|s|2H + |t|2H − |t− s|2H)

∀(s, t) ∈
� 2

+.
(5)

Some numerical results of the DFA of a FGN

The following Figures 1 and 2 show an example of the DFA
method applied to a FGN with different values of H (H = 0.6
in the £rst £gure and H = 0.2, 0.4, 0.5, 0.7, 0.8 in the second
one, with N = 10000 for both ones). Such a sample path is
generated with a circulant matrix algorithm (see for instance
Bardet et al., 2002). Let us remark that if (Y (n))n∈ is a
sample path of a discretized FGN, then (X(1), . . . , X(N)) is
a sample path of the associated discretized FBM.

0 100 200 300 400 500 600 700 800 900 1000
−0.1

−0.05

0

0.05

0.1

F
B

N

0 100 200 300 400 500 600 700 800 900 1000
−1

−0.5

0

0.5

F
B

M

 <−−−−n−−−−>

Fig. 1. Two £rst step of the DFA method applied to a path of a discretized
FGN (with H = 0.6 and N = 10000)

In the right of Figure 2 appear the different estimations of
H computed from the DFA method. Those values have to
be compared with theoretical ones. The results seem to be
quite good and it seems that, under certain conditions, the
asymptotic behavior of the DFA function F (n) can be written
like

F (n) ' c(σ,H) · nH , (6)
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Fig. 2. Results of the DFA method applied to a path of a discretized FGN
for different values of H = 0.2, 0.4, 0.5, 0.7, 0.8) (with also N = 10000)

where c is a positive function depending only on σ and H
(see its expression above). The approximation (6) explains
that the slope of the least square regression line of (logF (ni))
by log(ni) for different values of ni provides an estimation
of H . One provides now a mathematical proof of this result.

Let {XH(t), t ≥ 0} be a FBM, built as a cumulated
sum of a FGN {Y H(t), t ≥ 0}. We £rst give some
asymptotic properties of F 2

1 (n).

Property 3.1: Let {XH(t), t ≥ 0} be a FBM with param-
eters 0 < H < 1 and σ2 > 0. Then, for n and j large enough,

1.
�
(F 2

1 (n)) = σ2f(H) · n2H
(
1 +O

( 1
n

))
,

2. Var
(
F 2

1 (n)
)

= σ4g(H) · n4H
(
1 +O

( 1
n

))
,

3. Cov(F 2
1 (n), F

2
j (n)) = σ4h(H) · n4H · j2H−3·(

1 +O
( 1
n

)
+O

(1
j

))
,

with f(H) =
(1−H)

(2H + 1)(H + 1)(H + 2)
, g depending only

on H , see (19), and h(H) =
H2(H − 1)(2H − 1)2

48(H + 1)(2H + 1)(2H + 3)
.

The proofs of these results (and of the other ones) are provided
in the Appendix I.
In order to obtain a central limit theorem for the logarithm of
the DFA function, one considers a normalized DFA functions

S̃j(n) =
F 2
j (n)

n2Hσ2f(H)
and S̃(n) =

F 2(n)

n2Hσ2f(H)
(7)

for n ∈ {1, . . . , N} and j ∈ {1, . . . , [N/n]}.
As a consequence, for n ∈ {1, . . . , N}, the stationary time
series (S̃j(n))1≤j≤[N/n] satisfy




�
(S̃j(n)) = 1 +O

( 1
n

)

Var(S̃j(n)) =
g(H)

f(H)2
+O

( 1
n

)

Cov(S̃1(n), S̃j(n)) =
h(H)

f(H)2
·

1

j3−2H
(
1 +O

( 1
n

)
+O

(1
j

))

(8)

Under conditions on the asymptotic length n of the windows,
one proves a central limit theorem satis£ed by the logarithm

of the empirical mean S̃(n) of the random variables
(S̃j(n))1≤j≤[N/n].

Property 3.2: Under the previous assumptions and nota-
tions, let n ∈ {1, . . . , N} be such that N/n → ∞ and
N/n3 → 0 when N →∞. Then

√
[N
n

]
· log(S̃(n))

L
−→
n→∞
N→∞

N (0, γ2(H))),

where γ2(H) > 0 depends only on H .
This result can be obtained for different lengths of windows
satisfying the conditions N/n → ∞ and N/n3 → 0. Let
(n1, . . . , nm) be such different window lengths. Then, one can
write for N and ni large enough

log(S̃(ni)) '
1√
[N/ni]

· εi =⇒

log(F (ni)) ' H · log(ni) +
1

2
log(σ2f(H)) +

1√
[N/ni]

· εi,

with εi ∼ N (0, γ2(H)). As a consequence, a linear regression
of log(F (ni)) on log(ni) provides an estimation of H . More
precisely,

Proposition 3.3: Under the previous assumptions and nota-
tions, let n ∈ {1, . . . , N}, m ∈ � ∗\{1} and r1 < · · · < rm ∈
{1, . . . , [N/n]}m be such that N/n → ∞ and N/n3 → 0
when N → ∞ with ni = rin for each i. Let Ĥ be the
estimator of H from the linear regression of log(F (ri · n))
on log(ri · n), i.e.

Ĥ =

∑m
i=1(log(F (ri · n))− log(F ))(log(ri · n)− log(n))∑m

i=1(log(ri · n)− log(n))
2

.

Then Ĥ is a consistant estimator of H such that
�
[(Ĥ −H)2] ≤ C(H,m, r1, . . . , rm)

1

[N/n]
(9)

with C(H,m) > 0.

Remark 3.4: More precisely, it could be possible to show
a central limit theorem for Ĥ , with a convergence rate of√
[N/n]. Unfortunately, the proof of such a result requires

the asymptotic development of Cov(S̃i(nk), S̃j(n`)), which
is more than complicated, for obtaining a multidimensional
central limit theorem for (log(S̃(n1)), . . . , log(S̃(nm)).

IV. EXTENSION OF THE RESULTS FOR A GENERAL CLASS A

LONG-RANGE DEPENDENCE PROCESS

Let {Y (k), k ∈ � } be a stationary zero mean long-range
dependant process with Hurst parameter H ∈] 12 , 1[. More
precisely, let rY (k) be the autocorrelation function of this
process and assume that there exists a slowly varying function
L(k) such that :

rY (k) ∼ k2H−2L(k) , as k →∞. (10)

Under different additional assumptions on Y , Davydov (1970),
Taqqu (1975), Dobrushin and Major (1979), Giraitis and Sur-
gailis (1989) and others authors have studied the asymptotic
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behavior of the Donsker line and obtained the following
convergence,

(
L(n)−

1
2 n−H

[nt]∑

i=1

Y (i)
)
t>0

D
−→
n→∞

(
σ ·BH(t)

)
t>0

, (11)

with σ > 0 and BH a fractional Brownian motion. More
precisely,

Theorem 4.1: (Davydov, Taqqu, Dobrushin, Major, Giraitis
and Surgailis) Let Y = {Y (k), k ∈ � } be a stationary
zero mean long-range dependant process satisfying assumption
(10). Then, if :

• Y is a linear process (Y (k) =
∑∞

i=−∞ ai ξk−i for k ∈ �
with (ak) a sequence of real numbers and (ξn) a sequence
of zero mean i.i.d.r.v.) or a polynomial of a linear process,

• Y is a function of a Gaussian process with Hermite rank
r = 1,

then (11) holds, and the convergence takes place in the
Skorohod space.

In such a case, roughly speaking, the aggregated process
(X(k)) has nearly the same behavior than a fractional Brow-
nian motion and the previous asymptotic results of the DFA
method can be applied. But propositions 3.1 and 3.3 can not
be proved under so general assumptions. Indeed, the proofs of
such results use a very precise expression of the covariance and
a restricted version of assumption (10) is necessary. Hence, the
covariance rY of the stationary process Y is now supposed to
satisfy rY ∈ H(H,β,C) with

H(H,β,C) =
{
rY , rY (k) = C · k2H−2

(
1 +O(1/kβ)

)

when k →∞
}
,

with 1/2 < H < 1, C > 0 and β > 0. In such semi-
parametric frame, the previous proofs are still valuable and :

Theorem 4.2: Let Y = {Y (k), k ∈ � } be a Gaussian
stationary zero mean long-range dependant process with co-
variance rY ∈ H(H,β,C). Then, Property 3.1 holds with
the addition of O(1/nβ) in each expansion. Moreover, if
N = o

(
nmax(2β+1,3)

)
, Property 3.2 and Proposition 3.3 hold.

As a consequence of this theorem, if 0 < β ≤ 1, the
DFA method provide a semi-parametric estimator of H with
the well-known minimax rate of convergence for the Hurst
parameter in this semi-parametric setting (see for instance
Giraitis et al., 1997), i.e.

lim sup
N→∞

sup
rY ∈H(H,β,C)

N2β/(1+2β) �
[(Ĥ −H)2] < +∞.

However, if β ≥ 1, this result is replaced by
lim sup
N→∞

sup
rY ∈H(H,β,C)

N2/3 �
[(Ĥ −H)2] < +∞ (it is such a

case of FGN or Gaussian FARIMA(p,d,q)).

V. CASES OF PARTICULAR TRENDED LONG-RANGE

DEPENDENT PROCESSES

In this Section, two general examples of trended long-range
dependent processes are considered and it is proved that DFA
method in such cases provides biased and unusable estimation
of the Hurst parameter.

Let Y = {Y (k), k ∈ � } be a Gaussian stationary zero
mean long-range dependant process satisfying assumption
(12) (for instance, Y is a FGN) and let f :

�
7→

�
be a

deterministic function. From Lemma 2.3, it is obvious that
n ∈ {1, · · · , N},

�
(F 2

Y +f (n)) =
�
(F 2

Y (n)) +
�
(F 2

f (n)). (12)

Moreover, denote respectively F 2
Y,j and F 2

f,j the DFA function
of Y and f relating to window j ∈ {1, . . . , [Nn ]}. Then, with
few changes in the proof of Lemma 2.3,

�
(F 2

Y +f,j(n)) =
�
(F 2

Y,j(n)) +
�
(F 2

f,j(n)). (13)

Case of power law and polynomial trends

First, assume that it exists λ > 0 and a ∈
�

such that

f(t) = a(tλ+1 − (t− 1)λ+1), for t ≥ 1.

Then, the associated integrated function is

g(k) =

k∑

i=1

f(i) = akλ+1.

For this kind of trend,

Property 5.1: For f(t) = a(tλ+1 − (t − 1)λ+1), with
γ(a,N, λ) a real number depending only on a, N and λ,
logFf (n) ' 2 log n+ γ(a,N, λ) for n→∞.

Thus, it appears that a linear regression of logFf (ni) and
log(ni) for different values of ni will provide a slope 2 for
any λ > 0.

Proof: In the j-th window, with j ∈ {1, . . . , [N/n]},
consider Ej the vector subspace de£ned above and de£ne the
vector G(j) = a((1 + n(j − 1))λ+1, . . . , (nj)λ+1)′. We have

F 2
f,j(n) =

1

n

(
G(j)′ ·G(j) −G(j)′ · PEj

·G(j)
)

An explicit asymptotic expansion (in n and N ) of this partial
DFA function can be obtained by approximating sums by
integrals. Then,

F 2
f,j(n) = a2n2λ+2

(
1 +O

( 1
n

))(∫ 1

0

∫ 1

0

(x+ j − 1)2λ+2−

(4− 6(x+ y) + 12xy)(x+ j − 1)λ+1(y + j − 1)λ+1dxdy
)

Moreover, using Taylor expansion in j up to order 3, one
obtains

F 2
f,j(n) = α(a, λ) · n2λ+2j2λ−2

(
1 +O

( 1
n

)
+O

(1
j

))
, (14)



6 IEEE TRANSACTIONS ON INFORMATION THEORY, JULY 2006

and it implies that the DFA function relating to f can be
written like

F 2
f (n) =

1

[N/n]

[N/n]∑

j=1

F 2
f,j(n)

= β(a, λ) · n4N2λ−2
(
1 +O

( 1
n

)
+O

( 1

[Nn ]

))
,

with α(a, λ), β(a, λ) two positive numbers depending only
on a and λ. ¤

For illustrating this result (see Figure 3), several simulations
have been made for various values of λ > 0, a and
(n1, . . . , nm). The presented results exhibit the relation
between logFf (ni) and log(ni), that is nearly linear with a
slope of the adjustment linear line estimated at 2 like it was
theoretically proved.

2.2 2.4 2.6 2.8 3 3.2 3.4
4

5

6

7

8

9

10

11

12

log10(n)

lo
g1

0(
F

)

λ=3 a=10−7

λ=5 a=10−14

λ=7 a=10−21

λ=9 a=10−28

λ=10 a=10−31

λ=15 a=10−50

Fig. 3. Relation between log Ff (ni) and log ni in the case of power law
trend

This result can be also used for deducing similar results for
polynomial trends.

Property 5.2: Assume that it exists p ∈ � ∗

and a family (aj)0≤j≤p with ap 6= 0 such that
for k ∈ � , f(k) = apk

p + · · · + a0. Then,
=⇒ logFapkp+···+a0

(n) ' 2 log n+ γ(ap, N) for n→∞.

Proof: Indeed, ,

f(k) = apk
p + · · ·+ a0 =⇒

g(k) =
k∑

i=1

f(i) = bp+1k
p+1 + · · ·+ b0,

with bp+1 6= 0, i.e. the associated integrated function is also a
polynomial function. From the expression of the partial DFA
function and with the asymptotic expansion (14) depending on
the degree λ, for large enough n and N ,

F 2
apkp+···+a0,j(n) = F 2

apkp,j(n)
(
1 +O

( 1
n

)
+O

(1
j

))

(the degree of the partial DFA function of apk
p is greater

than the others). This approximation leads to the following

expression of the DFA function of a polynomial function,

F 2
apkp+···+a0

(n) =

β(bp+1) · n
4N2λ−2

(
1 +O

( 1
n

)
+O

( 1

[Nn ]

))
.¤

Using relations (12) and (13), the previous results for trends
can be used for deducing the behavior of the DFA function of
trended long range dependent processes. Hence, in both the
previous cases of trends, it exists C > 0 such that

�
(F 2

Y +f (n)) = C · n4N2λ−2
(
1 +O

( 1
n

)
+O

( 1

[Nn ]

))

+ σ,2f(H) · n2H
(
1 +O

( 1

nmin(1,β)

))

' C · n4N2λ−2.

Hence, it is clear that the trend is dominant at large n and the
graph tracing the relation between logFY +f (ni) and log ni

for different power law trends and different coef£cients H
con£rms this (the estimated slope is always close to 2).

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
−2

0

2

4

6

8

10

12

log10(ni)

lo
g1

0(
F

(n
i))

λ=10, a=10−31, N=12000

λ=7, a=10−21, N=10000

λ=3, a=10−7, N=10000

λ=2, a=10−4, N=5000

λ=1, a=10−2, N=5000
H=0.2
H=0.4
H=0.5
H=0.7
H=0.8

Fig. 4. Relation between log FY+f (ni) and log ni in the case of power
law trend

Case of a piecewise constant trend

Assume now that f is a step function of the form

f(t) =
m−1∑

i=0

ai � ]ti,ti+1] with t0 = 0, tm = N and m ∈ � ∗.

The associated integrated series is

g(k) =

m−1∑

i=0

( i∑

s=0

(as−1 − as)ts + aik
)

� ]ti,ti+1] with a−1 = 0

For j ∈ {1, . . . , [N/n]}, the partial DFA function F 2
fj(n) is

null except if there exist ip with p ∈ {1, . . . , r} and (r, ir) ∈
{1, . . . ,m−1}2 such that tip ∈ [(jp−1)n+τn, jpn−τn] with
τ ∈]0, 1

2 [. In such case, we calculate the partial DFA function:

F 2
f,jp(n) =

1

n

n∑

k=1

(g(k + (jp − 1)n)− ĝn(k + (jp − 1)n))
2

=
1

n

(
G(jp)

′

· PE⊥
jp
·G(jp)

)

If we consider the £rst window, the partial DFA function can
be undervalued by :

F 2
f,1(n) ≥

1

n

( τn∑

k=1

(g(k)− ĝn(k))
2+

n∑

k=n−τn

(g(k)− ĝn(k))
2
)
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where the n × 1 vector
(
g(k)− ĝn(k)

)
1≤k≤n

= PE⊥
1
· G(1)

with :

G(1) =
(
a0 · 1, . . . , a0 · t1, (a0 − a1)t1 + a1 · (t1 + 1), . . . ,

(a0 − a1)t1 + a1 · n
)′

Then,
τn∑

k=1

(g(k)− ĝn(k))
2 =

(
Jτn ·PE⊥

1
·G(1)

)′
·
(
Jτn ·PE⊥

1
·G(1)

)

where Jτn is a square matrix of order n with ones in the
τn £rst terms of the diagonal and zeros elsewhere. When we
approximate sums by integrals, this expression can be written
like :
τn∑

k=1

(g(k)− ĝn(k))
2 = n3

(∫ τ

0

(∫ 1

0

a0y −
(
a0x · � x≤

t1
n

+

(
a1x+ (a0 − a1)

t1
n

)
� x>

t1
n

)
(4− 6(x+ y) + 12xy)dx

)2

dy
)
·

(
1 +O

( 1
n

))

For τ ∈]0, 1
2 [, the second term can be developed in the same

way while replacing Jτn by Jn−τn which is a square matrix
of order n with ones in the n− τn last terms of the diagonal
and zeros elsewhere. Then, this term can be approximate by :

n∑

k=n−τn

(g(k)− ĝn(k))
2 = n3

(∫ 1

1−τ

(∫ 1

0

(a0 − a1)
t1
n
+ a1y

−
(
a0x · � x≤

t1
n

+
(
a1x+ (a0 − a1)

t1
n

)
� x>

t1
n

)
(4− 6(x+ y)

+ 12xy)dx
)2

dy
)(
1 +O

( 1
n

))

Then after the development of the two terms, we deduce that
it exists a positive number c(a0, . . . , aip , tip , τ) such as the
partial DFA function in the jp-th window where tip ∈ [(jp −
1)n+ τn, jpn− τn], for p ∈ {1, . . . , r}, can be written, for n
large enough, like :

F 2
f,jp(n) ≥ c(a0, . . . , aip , tip , τ)n

2. (15)

Then if we suppose that it exists only one change point
or a de£nite number of windows j1, . . . , jr, it exists
c′(a0, . . . , air , ti1 , . . . , tir , τ) > 0 such as the DFA function
relating to f is :

F 2
f (n) =

1

[Nn ]

jr∑

j=j1

F 2
f,j(n) ≥

c′(a0, . . . , air , ti1 , . . . , tir , τ)n
3N−1

(
1 +O

( 1
n

))

Then (see Figure 5), for different values (n1, . . . , nm), the
graph tracing the relation between logFf (ni) and log(ni),
shows a slope estimated at 3

2 .
If we consider the signal formed by the superposition between
trend and a long range dependent process, we point out that�
(F 2

Y (n)) = σ,2f(H) · n2H
(
1 + O

(
1

nmin(1,β)

))
, we can

deduce, according to the previous conditions on n and N
(N/n → ∞ and N = o(nmin 3,2β+1), that the trend is
dominant for large n.

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
1.5

2

2.5
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3.5

4

4.5

5

5.5

log10(ni)

lo
g1

0(
F

(n
i))

5 change−pts
20 change−pts
60 change−pts

Fig. 5. Relation between log Ff (ni) and log ni in the case of trend with
change points

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
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2

log10(ni)
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g1

0(
F

(n
i))

H=0.3
H=0.5
H=0.8

Fig. 6. Relation between log Ff+Y (ni) and log ni in the case of trend
with change points

VI. CONCLUSION

In the semi-parametric frame of long memory stationary
process, we showed, using the DFA method, that the estimator
of the long range dependance parameter is convergent with
a reasonable convergence rate. However, in numerous cases
of trended long range dependent process (with perhaps the
only exception of a constant trend), this estimator does not
converge. The DFA method is therefore not all a robust method
and should not be applied for trended processes. In the case
of polynomial, the wavelet based method is method provides
a better estimator of the Hurst parameter, with appropriated
number of vanishing wavelet moments (see for instance Abry
et al., 1998 or Veitch and Abry, 1999).

APPENDIX I

Proof of Property 3.1: 1. From the proof of Lemma 2.2
and with its notations, one obtains

F 2
1 (n) =

1

n
(X(1) − PE1

·X(1))′ · (X(1) − PE1
·X(1))

=
1

n

(
X(1)′ ·X(1) −X(1)′ · PE1

·X(1)
)
.

As a consequence,

�
(F 2

1 (n)) =
1

n

(
trace(Σn)− trace(PE1

· Σn)
)
,

where Σn is the covariance matrix of X(1) and is such that

Σn = Cov(Xi, Xj)1≤i,j≤n

=
σ2

2

(
|i|2H + |j|2H − |i− j|2H

)
1≤i,j≤n
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But, trace(Σn) = σ2
n∑

i=1

|i|2H = σ2n2H+1
( 1
n

n∑

i=1

∣∣ i
n

∣∣2H)

= σ2n2H+1
( ∫ 1

0

x2Hdx+O
( 1
n

))
. Therefore, in one hand,

trace(Σn) =
σ2

2H + 1
n2H+1 ·

(
1 +O

( 1
n

))
. (16)

In the other hand, it is well known that PE1
is a (n×n) square

matrix such that

PE1
=

2

n(n− 1)

(
(2n+ 1)− 3(i+ j) + 6

i · j

1 + n

)
1≤i,j≤n

Then, after some straightforward computations, we obtain the
formula

trace(PE1
· Σn) =

σ2n2H+1n2

n(n− 1)

n∑

p=1

n∑

q=1

[ 1
n2

(
(2 +

1

n
)− 3·

p+ q

n
+

6p · q

n(1 + n)

)(∣∣ q
n

∣∣2H+
∣∣ p
n

∣∣2H−
∣∣q − p

n

∣∣2H
)]

In order to clarify the formula, we approximate these sums by
integrals

trace(PE1
· Σn) = σ2n2H+1 ·

(
1 +O

( 1
n

))
·

∫ 1

0

∫ 1

0

[(
2− 3(x+ y) + 6xy)

)(
x2H + y2H − |x− y|2H

)]
dxdy

After the calculation of this integral and a simpli£cation with
formula (16), we get the result

trace(Σn)− trace(PE1
· Σn) = σ2f(H) · n2H+1 ·

(
1 +O

( 1
n

))

and therefore the formula of
�
(F 2

1 (n)).

2. From the previous notations and the property of the
trace of a product of matrix,

Var(F 2
1 (n)) =

1

n2

[ �
(X(1)′· PE⊥

1
·X(1) ·X(1)′· PE⊥

1
·X(1))

−
( �
(X(1)′ · PE⊥

1
·X(1))

)2]

=
1

n2

[
trace(Σn· Σn)− trace(PE1

· Σn· Σn)
]

(17)

The development of the £rst term provides the following
asymptotic expansion

trace(Σn · Σn) =
σ4

4

n∑

i=1

n∑

p=1

(
|i|2H + |p|2H − |i− p|2H

)2
=

σ4

4
n4H+2

(
1 +O

( 1
n

))∫ 1

0

∫ 1

0

(
|x|2H+ |y|2H− |x− y|2H

)2
dxdy

The calculation of this integrals provides the following sim-
pli£ed expression

trace(Σn · Σn) =
σ4

4
n4H+2

(
1 +O

( 1
n

))
·

[ 1

4H + 1
+

1

(4H + 1)(4H + 2)
− 2

(Γ(2H + 1))2

Γ(4H + 3)

] (18)

The same development can be done for the second term

trace(PE1
· Σn · Σn) =

σ4

2
n4H+2

(
1 +O

( 1
n

))
·

∫ 1

0

∫ 1

0

∫ 1

0

(
|x|2H+ |y|2H− |y − x|2H

)(
|x|2H+ |z|2H− |x− z|2H

)

·
(
2− 3(y + z) + 6yz

)
dx dy dz

After the computation of this last integral, and using relations
(17) and (18)
[
trace(Σn · Σn)− trace(PE1

· Σn · Σn)
]

= σ4 · g(H)n4H+2
(
1 +O

( 1
n

))

with, g(H) =
1

2

(
−
(16H2 + 24H + 17)(Γ(2H + 1))2

(4H + 5)Γ(4H + 4)

+
H + 1

(2H + 1)(4H + 1)
+

7H + 3

2(2H + 1)2(H + 1)
−

3

2(H + 1)2

+
3(4H + 3)

2(2H + 1)2(H + 1)2(4H + 5)
−

4

(2H + 1)2(4H + 3)

)
.

Then, using the relations (17), one obtains

Var
(
F 2

1 (n)
)
= σ4 · g(H) · n4H

(
1 +O

( 1
n

))
.

3. An asymptotic expansion of the covariance between
two DFA functions in two suf£ciently far windows can be
provided. Indeed

Cov(F 2
1 (n), F

2
j (n)) =

1

n2
Cov

(
(X(1) − X̂(1))′·(X(1) − X̂(1)),

(X(j) − X̂(j))′ · (X(j) − X̂(j))
)

=
1

n2

(
trace

(
Σ(1,j) · Σ(1,j)

)
− trace

(
PE1

· Σ(1,j) · Σ(1,j)
))

,

because PE⊥
1
= PE⊥

j
and with Σ(1,j) the covariance matrix

�
(X(1) ·X(j),) = (σ

(1,j)
k,k′ )1≤k,k′≤n. As usual, this formula can

be developed

Cov(F 2
1 (n), F

2
j (n)) =

1

n2

( n∑

k=1

n∑

k′=1

σ
(1,j)
k,k′ · σ

(1,j)
k′,k −

n∑

i=1

n∑

k′=1

n∑

k=1

pi,k · σ
(1,j)
k,k′ · σ

(1,j)
k′,i

)
,

with

σ
(1,j)
k,k′ =

σ2

2

(
|k + nj|2H + |k′|2H − |k − k′ + nj|2H

)
1≤k,k′≤n

and with PE1
= (pi,j)1≤i,j≤n such that

pi,j =
2

n(n− 1)

(
(2n+ 1)− 3(i+ j) + 6

i · j

1 + n

)
.

Now, one considers the asymptotic expansion of this formula
when n is large enough

Cov(F 2
1 (n), F

2
j (n)) =

σ4

4
n4H

(
1 +O

( 1
n

))(∫ 1

0

∫ 1

0

(
|x+j|2H

+ y2H− |x− y + j|2H
)(
|y + j|2H+ x2H− |y − x+ j|2H

)
dxdy

−

∫ 1

0

∫ 1

0

∫ 1

0

(4− 6(x+ z) + 12xz)
(
|x+ j|2H+ y2H− |x− y + j|2H

)

(
|y+j|2H+z2H−|y−z+j|2H

)
dx dy dz

)
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For obtaining an asymptotic expansion of this formula when
j is large enough (i.e. both windows are taken away one
of the other one), a Taylor expansion in j up to order 3 is
necessary. After calculation of integrals and simpli£cation,
we get the result. ¤

Proof of Property 3.2: One divides the proof in 3 steps:

• Step 1: one proves that [N/n] · Var(S̃(n)) → γ2(H),
where γ2(H) depends only on H , when [N/n]→∞. Indeed,

Var(S̃(n)) =
1

[Nn ]
2

[N
n

]∑

j=1

[N
n

]∑

j′=1

Cov(S̃j(n), S̃j′(n))

=
1

[Nn ]
Var(S̃j(n)) +

2

[Nn ]
2

[N
n

]∑

j=1

(
[
N

n
]− j

)
Cov(S̃1(n), S̃j(n))

from the stationarity.

However, with properties (8), one deduces that when [N/n]→

∞,

[N
n

]∑

j=1

Cov(S̃1(n), S̃j(n)) and

[N
n

]∑

j=1

j · Cov(S̃1(n), S̃j(n))

converge, because it exists C ≥ 0 such that∣∣Cov(S̃1(n), S̃j(n))
∣∣ ≤ C · j2H−3 and 0 < H < 1.

Therefore, it exists γ2(H) depending only on H such
that

lim
[N/n]→∞

[N/n] · Var(S̃(n)) = γ2(H). (19)

• Step 2: the proof of a central limit theorem for S̃(n) when
[N/n] → ∞ can be obtained from the same method than in
the proof of the Proposition 2.1 of Bardet (2000) (the Theorem
3 of Soulier, 2000, leads to the same result).

Indeed, S̃(n) =
1

n2H+1σ2f(H) · [N/n]

n·[N/n]∑

i=1

Z2
i , where the

zero-mean Gaussian vector Z = (Z1, . . . , Zn·[N/n]) has the
covariance matrix P · Σ · P , where P is a diagonal block
matrix with each block constituted with (n, n) matrix PE⊥

1

and Σ is the covariance matrix of a FBM times series (each
(n, n) block is Σ(i,j) with the previous notations). Using a
Lindeberg condition, S̃(n) satis£es the following central limit
theorem

√
[N/n] ·

(
S̃(n)−

�
(S(n))

)
L
−→

[N/n]→∞
N (0, γ2(H))), (20)

if λ = ‖P · Σ · P‖, the supremum of the eigenvalues of the
symmetric matrix P · Σ · P , is such that

λ = o
( 1√

[N/n]

)
. (21)

But, following the proof of the Proposition 2.1 of Bardet
(2000),

λ ≤
1

[N/n]
max

i∈{1,...,[N/n]}




[N/n]∑

j=1

√
Cov

(
S̃i(n), S̃j(n)

)



λ ≤
1

[N/n]




[N/n]∑

j=1

√
Cov

(
S̃1(n), S̃j(n)

)



≤ C(H) ·
1

[N/n]

[N/n]∑

j=1

√
j2H−3 third line of (8)

≤ C(H) · [N/n]H−3/2.

Therefore (21) and (20) are proved .

• Step 3: Now,
�
(S̃(n)

)
= 1 +O

( 1
n

)
for n large enough.

Then, if
√
[N/n] · 1

n → 0, that is N/n3 → 0,

√
[N/n] ·

(
S̃(n)− 1

)
L
−→

[N/n]→∞
N (0, γ2(H))).

The classical Delta method allows the passage between a
central limit theorem for S̃(n) and central limit theorem for
log(S̃(n)) (thanks to the regularity properties of the function
logarithm). ¤

Proof of Proposition 3.3: It is possible to write
Ĥ = (1, 0) · (Z ′ · Z)−1 · Z ′ · F , where Z is the (n, 2)
matrix such that PE⊥

1
= Z · (Z ′ · Z)−1 · Z ′. and

F = (log(F (n1)), . . . , log(F (nm)))
′. Then,

Var(Ĥ)

= (1, 0) · (Z ′ · Z)−1 · Z ′ · Cov(F, F ) · Z · (Z ′ · Z)−1 · (1, 0)′

≤ ‖(1, 0) · (Z ′ · Z)−1 · Z ′‖2 · ‖Cov(F, F )‖2

≤ ‖(1, 0) · (Z ′ · Z)−1 · Z ′‖2 · 2m · γ2(H).

Like, ‖(1, 0) · (Z ′ · Z)−1 · Z ′‖ only depends on r1, ·, rn, the
proof of Proposition 3.3 is completed. ¤

Proof of Theorem 4.2: From the assumptions on Y and
rY , if i ≥ j ≥ 1,

Cov(Xi, Xj) =
i∑

k=1

j∑

`=1

Cov(Yk, Y`)

=

i∑

k=1

(i− k)rY (k) +

j∑

k=1

(j − k)rY (k)−

i−j∑

k=1

(i− j − k)rY (k).

As a consequence, for all (i, j) ∈ {1, . . . , n}2,

Cov(Xi, Xj) = C ·
(∫ 1

0

(1− u)u2H−2du
)
·

(
i2H

(
1 +O

( 1

imin(β,1)

))
+ j2H

(
1 +O

( 1

jmin(β,1)

))
− |i− j|2H

·
(
1 +O

( 1

(1 + |i− j|)min(β,1)

)))
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Now, this covariance can be used in every place of the proofs,
replacing the previous one. This implies

1.
�
(F 2

1 (n)) = σ,2f(H) · n2H
(
1 +O

( 1

nmin(β,1)

))
,

2. Var
(
F 2

1 (n)
)

= σ
′4g(H) · n4H

(
1 +O

( 1

nmin(β,1)

))
,

3. Cov(F 2
1 (n), F

2
j (n)) = σ,4h(H) · n4H · j2H−3

(
1+

+O
( 1

nmin(β,1)

)
+O

(1
j

))
,

with σ,2 = 2C ·
(∫ 1

0

(1− u)u2H−2du
)

. The proofs of prop-

erty 3.2 and proposition 3.3 are the same than in the case of
FGN. ¤
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