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Commissariat à l’Énergie Atomique,

91680, Bruyères le Chatel, BP 12, France

Abstract

We address the discretization of the Levermore’s two moments and en-

tropy model of the radiative transfer equation. We present a new approach

for the discretization of this model: first we rewrite the moment equations

as a Compressible Gas Dynamics equation by introducing an additionnal

quantity that plays the role of a density. After that we discretize using a

Lagrange-projection scheme. The Lagrange-projection scheme permits us

to incorporate the source terms in the fluxes of an acoustic solver in the

Lagrange step, using the well-known ”piecewise steady approximation”

and thus to capture correctly the diffusion regime. Moreover we show

that the discretization is entropic and preserve the flux-limited property

of the moment model. Numerical examples illustrate the feasability of our

approach.
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1 Introduction

We are interested in the discretization of the equations of radiative transfer by
means of accurate and stable coarse grid techniques. In this direction we have
studied, in [1], an implicit discretization of a radiative two moments model based
on relaxation plus well-balanced scheme in dimension one. The discrete model
has two small parameters. The first one ε is a physical parameter that measures
the ratio of the sound velocity over the light velocity. The second parameter
∆x is the mesh size. The direct eulerian method [1] is very well adapted to one
dimensional problems and consequently to multidimensional problems computed
on a cartesian mesh. We refer to [5] for an extension on a cartesian 2D mesh in
the context of the explicit HLLC solver. In this work we address a new problem,
which consists in discretization techniques that can be used on a general non
structured mesh in dimension greater than one. The previous method is not
able to answer this question because it needs the solution of some steady state
problems. The solution of these steady state problems is possible on a cartesian
mesh in dimension one, but as far as we know, no general solution exists on
a general multidimensional mesh in the context of direct explicit or implicit
eulerian methods. Therefore we do not know how to respect the diffusion limit
ε → 0 of the model on non structured coarse grid with the method [1]. This
is why we explore a new method. Since the ideas behind this method seem to
be new, we evaluate it in dimension one. However the scheme that we propose
could be easily extended in dimension greater than one.

The starting point is the observation [12] that moment models for anisotropic
flows are isotropic if we rewrite the equations in an appropriate moving frame.
This statement is true at the level of principles. We use this idea in our work
by showing the Levermore moments model based on the entropy closure may
be recast as a classical gas dynamics system using new unknowns. Since this
equivalence is very important in this work, we propose to call such systems
GDL for Gas Dynamics Like. As a consequence the radiative pressure which is
a tensor is splitted in a scalar pressure and displacement. The scalar pressure
is the isotropic pressure of radiation in the frame attached with the radiation.

Therefore it gives us the opportunity to solve our problem with some stan-
dard two steps Lagrange plus projection methods which are classicaly used for
the numerical solution of gas dynamic equations. We study and evaluate one of
them. We show that the new scheme has two properties. First the scheme is
entropy increasing and therefore is flux limited in the sense that the modulus
of the radiation flux is always smaller than the radiation energy. The technique
of the proof seems to be more powerful than the previous one [1, 5] since we
treat an radiative flux with two components while the previous published results
concerned only a radiative flux with one component. Second the diffusion limit
of the scheme is correct. Our proof is in the weak sense while the classical one
[6] relies on strong convergence. To get this property, we have generalized in our
lagrangian framework the steady-state approximation scheme, see [6]. The con-
struction of this new steady state approximation is much easier in the lagrangian
two steps framework used in this approach than in the more traditional eulerian
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and direct framework that was used in [1]. We think the two steps lagrange
plus projection scheme is the key point for the construction of this asymptotic
preserving scheme. The new approach is more adequate for a multi-dimensional
extension. We illustrate the correctness of this method on a simple test case
and show the diffusion limit is well captured on a coarse grid.

This work is organized as follows. In section 2 we rewrite the moments model
as a Gas Dynamics Like system with an appropriate definition of the pressure.
In section 3 we recall the streaming regime and the diffusion regime. In section
4 we show there exists other Gas Dynamics Like systems. Section 5 is devoted
to the construction of a numerical scheme. In section 6 we show the positivity
of the scheme. In section 7 we prove the diffusion limit is correct. Finally we
give the result of one numerical experiment in section 8.

In some parts of the paper we will simplify the notations using ε = 1. The
numerical tests have been done with ε≪ 1.

2 Derivation of the equations

Let consider the M1 moment moment model for radiative hydrodynamics in
dimension d = 1, 2, 3 {

∂tE + 1
ε
∇.F = 0,

∂tF + 1
ε
∇.P = 0.

(1)

We consider the entropy closure of [7] for which one can parametrize the radiative
energy E ∈ ❘, flux F ∈ ❘d and pressure P ∈ ❘d×d by





E = 3+|b|2
3(1−|b|2)3T

4,

F = − 4b
3(1−|b|2)3T

4,

P =
(

1−χ
2 I + 3χ−1

2
f⊗f
|f |2
)
E,

(2)

where f = F
E

is the non dimensional radiation flux and

χ =
3 + 4|f |2

5 + 2
√

4 − 3|f |2
(3)

is the Eddington factor. This closure model is compatible with an entropy-
entropy flux pair

S =
4

3(1 − |b|2)2T
3 ∈ ❘, Q = −bS ∈ ❘d. (4)

It means that smooth solutions satisfy ∂tS + 1
ε
∇.Q = 0 while discontinuous

solutions satisfy ∂tS + 1
ε
∇.Q ≥ 0 in the weak sense (S is the physical concave

entropy).
The starting point of our analysis is a quite strong formal analogy between

this system and compressible gas dynamics. Let us define what we will refer to
as the velocity

u = −b ∈ ❘d (5)
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and a density ρ ∈ ❘
∂tρ+

1

ε
∇.(ρu) = 0.

The density depends of course of some artificial initial condition which we do
not discuss for the moment. Let us define also a scalar

q =
1

3(1 − |b|2)2T
4 ∈ ❘ (6)

Lemma 1. On has the relations

F = uE + qu and P = u⊗ F + qI. (7)

The first relation comes from

uE + qu = −b(E + q) = −b (3 + |b|2) + (1 − |b|2)
3(1 − |b|2)3 T 4 = − 4b

3(1 − |b|2)3T
4 = F.

It remains to prove the second relation. Let us check that

χ =
1 + 3|b|2
3 + |b|2 . (8)

One has

χ =
3 + 4|f |2

5 + 2
√

4 − 3|f |2
=

5 − 2
√

4 − 3|f |2
3

. (9)

From

f =
F

E
= − 4b

3 + |b|2 (10)

one gets

4 − 3|f |2 = 4
(3 − |b|2)2
(3 + |b|2)2 . (11)

Therefore plugging in (9) one gets (8). It is then an easy task to check the
second relation of (7). One has separately

1 − χ

2
E =

1

3(1 − |b|2)2T
4 = q,

and
3χ− 1

2

f ⊗ f

|f |2 E =
3χ− 1

2

b⊗ b

|b|2 E

= 4
|b|2

3 + |b|2
b⊗ b

|b|2
3 + |b|2

3(1 − |b|2)3T
4 =

4b⊗ b

3(1 − |b|2)3T
4.

Adding these, one gets P = qI + u⊗ F . The relation is proved.
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Using these relations we can rewrite the equation of radiation as a system
which is formally close to the standard system of gas dynamics





∂tρ+ 1
ε
∇.(ρu) = 0,

∂tρv + 1
ε
∇.(ρu⊗ v) + 1

ε
∇q = 0,

∂tρe+ 1
ε
∇.(ρue+ qu) = 0,

∂rρs+ 1
ε
∇.(ρus) ≥ 0,

(12)

where by definition
S = ρs, F = ρv and E = ρe. (13)

q can be computed directly with respect to the main unknowns of this system

q =
1 − |b|2
3 + |b|2 ρe. (14)

From (10-11) one gets

b = − 3f

2 +
√

4 − 3|f |2
.

Since f = F
E

= ρ|v|
ρe

= |v|
e

then q is a function of v and e. Therefore the system
is closed and the scalar pressure is non singular.

The vector v is different from the ”velocity” u. But they are nevertheless
colinear since

v =
4T 4

3(1 − |b|2)3ρu.

Due to the analogy between this system and the system of compressible gas
dynamics we propose to call such a system Gas Dynamics Like (GDL in the
rest of the paper). Our purpose is to evaluate some consequence of this analogy.
A first consequence is that the total radiative pressure is now splitted into a
convective part and a isotropic part, like in classical gas dynamics.

3 Different regimes

Two regimes are important for radiative flows, on one side the streaming regime
and on the other side the diffusion regime. We now analyse these regimes.

3.1 Free streaming

Free streaming is free radiation flow. Assume that

|F |
E

= 1

everywhere at t = 0. Then |f | = 1 and so |b| = 1. In this regime some of
the equations are singular. At least the mapping (E,F ) 7→ (T, b) is singular.
However system (1) together with (2) is well defined because the total pressure
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P is a well defined function of E and F even in this regime. Similarly system
(12-14) is well defined. In the streaming regime one has

q = 0

everywhere at t = 0. Since f is parallel to b and therefore parallel to u, then the
system is equivalent to the so-called pressureless gas dynamic system. Therefore
it inherits, in this regime, the properties of pressureless gas dynamics system:
only weak hyperbolicity, exact propagation along the rays until some non linear
interaction appears. It proves

Property 2. Assume the solution in dimension 3 at t = 0 is smooth and such

that |F |
E

= 1 ⇐⇒ q = 0. Let Ω ∈ ❘3 be such that |Ω| = 1 be a direction variable.
Consider I(t, x; Ω) the solution of

∂tI +
1

ε
Ω.∇xI = 0, I(t = 0, x; Ω) = E(0, x)δ

Ω−F (0,x)
E(0,x)

.

There exists a time T > 0 such that

E(t, x) =

∫
|Ω|=1

I(t, x; Ω)dΩ
∫
|Ω|=1

dΩ
, F (t, x) =

∫
|Ω|=1

I(t, x; Ω)ΩdΩ
∫
|Ω|=1

dΩ
and

|F |
E

= 1 ⇐⇒ q = 0.

.

We deduce that for such prepared initial data, the M1 moment model is
equivalent to the transport equation.

3.2 Diffusion regime

It is the asymptotic regime of the equations with a stiff right hand side. Consider





∂tρ+ 1
ε
∇.(ρu) = 0,

∂tρv + 1
ε
∇.(ρu⊗ v) + 1

ε
∇q = − σ

ε2 ρv,
∂tρe+ 1

ε
∇.(ρue+ qu) = −(T 4 − ρe).

(15)

The asymptotic regime is a consequence of

ρv = − ε

σ
(∇.(ρu⊗ v) + ∇q) + o(ε)

which implies that ρv is O(ε). Therefore in this regime the convective part
∇.(ρu⊗ v) is O(ε2). Only the scalar pressure contributes

ρv = − ε

σ
∇q + o(ε). (16)

By construction ρue+ qu = ρv = F .

Property 3. The diffusion limit of (15) is

∂tρe−∇.( 1

σ
∇q) = −(T 4 − ρe), q =

ρe

3
.
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4 Other GDL systems

In this section we consider a system in one dimension (for simplicity)

{
∂tE + ∂xF = 0,
∂tF + ∂xP = 0.

(17)

where we have dropped the 1
ε

for convenience. We would like to determine other
models which are GDL. Assuming such a system is GDL means by comparison
with (12) that it is possible to define a velocity u such that (17) can be rewritten
as 




∂tρ+ ∂x(ρu) = 0,
∂tρv + ∂x(ρuv + q) = 0,
∂tρe+ ∂x(ρue+ qu) = 0

(18)

for well chosen unknowns. It is here understood that

ρe = E and ρv = F.

We also add that the entropy of the system satisfies (for smooth solutions)

∂tρs+ ∂x(ρus) = 0.

Set S = ρs and Q = ρus. Since by hypothesis S is the entropy of (17) there
exists a and b such that

dS = a(dE + bdF ) and dQ = a(dF + bdP ). (19)

The system (17) is GDL if and only if the following condition is fulfilled

P = uF + q (20)

where q is defined by

q =
F

u
− E.

Lemma 4. If the system is GDL then

q =
S

a
− E − bF. (21)

The result is easily proved using the material derivative

Dt = ∂t + u∂x.

The entropy equation becomes ρDts = 0. From (19) one has

ds = a(de+ bdf − (
S

a
− (E + bF )dτ)), τ =

1

ρ
.

So

0 = ρDts = a(ρDte+ bρDtf − (
S

a
− (E + bF )ρDtτ))
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a(−∂x(qu) − b∂q + (
S

a
− (E + bF )∂xu))

= a((
S

a
− (E + bF ) − q)∂xu− (b+ u)∂xq.

Since u and q are arbitrary, it means that

b+ u = 0 and
S

a
− (E + bF ) − q = 0.

The proof is ended.
We can use this expression in the definition of q. It gives F

u
−E = S

a
−(E+bF )

so

S = −a(1 − b2)
F

b
. (22)

By inspection of (2), we add one more hypothesis. We assume there exist some
functions ϕ(b), ψ(b) h(b) and a real number α ∈ ❘ such that





E = aαϕ(b),
F = aαψ(b),
S = aα+1h(b).

(23)

Plugging in dS = a(de+ bdF ) it gives a compatibility condition due to

(α+ 1)aαh(b)da+ aα+1h′(b)db

= a
(
αaα−1ϕ(b)da+ aαϕ′(b)db+ αaα−1bψ(b)da+ aαbψ′(b)db

)
.

Equating the terms in front of da and db one gets

(α+ 1)h(b) = α(ϕ(b) + bψ(b))

and
h′(b) = ϕ′(b) + bψ′(b).

So ϕ(b) = α+1
α
h(b) − bψ(b) and

ϕ′(b) =
α+ 1

α
h′(b) − bψ′(b) − ψ(b).

So

h′(b) =
α+ 1

α
h′(b) − ψ(b) ⇐⇒ h′(b) = αψ(b).

On the other hand (22) implies

ψ(b) = − b

1 − b2
h(b).

Therefore we obtain an ordinary differential equation

h′(b) = −α b

1 − b2
h(b). (24)
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We solve easily
h′

h
=
α

2

2b

b2 − 1
so

h(b) =
α

α+ 1
|1 − b2|α

2 .

The constant α
α+1 is here only for compatibility with the M1 equations. A

singularity is present for b = 1. Since b is in practice a measure of the anisotropy,
it means that we are more interested by the range |b| ≤ 1. In summary we have
proved

Lemma 5. All 1D systems such that




S = α
α+1 (1 − b2)

α
2 aα+1aα+1,

E = (α+1)−b2

α+1 (1 − b2)
α
2 −1aα+1

F = − α
α+1b(1 − b2)

α
2 −1aα+1,

q = − 1
α+1 (1 − b2)

α
2 aα+1,

P = (α+1)b2−1
α+1 (1 − b2)

α
2 aα+1,

(25)

are GDL for |b| ≤ 1.

5 Numerical methods

Many numerical schemes exist for compressible gas dynamics. We consider one
among our favorite, and generalize it to (12). This scheme is split in two stages,
one lagrangian stage and one remapping stage. We will also show that discrete
radiative quantities do not depend on the particular value of the (artificial)
discrete density.

5.1 Lagrangian step

First we rewrite the system in quasi-lagrangian coordinates




ρDtτ + ∂xb = 0,
ρDtv + ∂xq = 0,
ρDte− ∂x(qb) = 0.

The material derivative is defined by

Dt = ∂t + u∂x.

Second we linearize it considering the entropy is constant

ρDts = 0

which is true for smooth solutions. So we consider the isentropic system
{
ρDtτ + ∂xb = 0,
ρDtv + ∂xq = 0.

10



Next we need to compute the Riemann invariant. The fundamental principle of
thermodynamics for our system writes

Tds = de+ bdv + qdτ. (26)

Therefore
d(e+ bv + qτ) = Tds+ vdb+ τdq.

The definition of q implies

e+ bv + qτ = Ts = 3
1
4 sq

1
4 (1 − b2)

1
2 .

Therefore easy computations show

∂(τ, v)

∂(b, q)
= −α

(
1
4qb(1 − b2) 3

16 (1 − b2)2

q2 1
4qb(1 − b2)

)
, α = 3

1
4 sq−

7
4 (1 − b2)−

3
2 .

The eigenvalues of the matrix in parenthesis are

λ− =
1

4
p(1 − b2)(b−

√
3), λ+ =

1

4
p(1 − b2)(b+

√
3).

The eigenvectors are

r− = (q,−
√

3

4
(1 − b2)), r+ = (q,

√
3

4
(1 − b2)).

So we get

−
(
3

1
4 sq−

7
4 − (1 − b2)−

3
2

)
λ+
(
r+, Dt(b, q)

)
+
(
r+, ∂x(b, q)

)
= 0

and
−
(
3

1
4 sq−

7
4 (1 − b2)−

3
2

)
λ−
(
r−, Dt(b, q)

)
+
(
r−, ∂x(b, q)

)
= 0.

An approximate method for the construction of the scheme consists in taking
(r+, Dt(b, q)) as a right Riemann invariant. Let us consider that a right state
(bR, qR) is given. The intermediate state should satisfy

qR(b∗ − bR) +

√
3

4
(1 − b2R)(q∗ − qR) = 0.

Similarly from the left Riemann invariant we get

qL(b∗ − bL) −
√

3

4
(1 − b2L)(q∗ − qL) = 0.

These equations are equivalent to the linear system

{
(q∗ − qR) + 4√

3
ER

3+|bR|2 (b∗ − bR) = 0,

(q∗ − qL) − 4√
3

EL

3+|bL|2 (b∗ − bL) = 0.
(27)
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The solution is




b∗ =

EL

3+|bL|2 bL + ER

3+|bR|2 bR
EL

3+|bL|2 + ER

3+|bR|2
+

√
3

4

qR − qL
EL

3+|bL|2 + ER

3+|bR|2
,

q∗ =

3+|bL|2
EL

qL + 3+|bR|2
ER

qR
3+|bL|2

EL
+ 3+|bR|2

ER

+
4√
3

bR − bL
3+|bL|2

EL
+ 3+|bR|2

ER

.

(28)

A standard Lagrangian scheme is now




∆mn
j

˜
τ

n+1
j

−τn
j

∆t
+ bn

j+ 1
2

− bn
j− 1

2

= 0,

∆mn
j

˜
v

n+1
j

−vn
j

∆t
+ qn

j+ 1
2

− qn
j− 1

2

= 0,

∆mn
j

˜
e

n+1
j

−en
j

∆t
− qn

j+ 1
2

bn
j+ 1

2

+ qn
j− 1

2

bn
j− 1

2

= 0,

(29)

where the fluxes are computed using (28) and where the mass of the cell is

∆mn
j = ρn

j ∆x =
∆x

τn
j

. (30)

The quantities after this lagrangian step will be modified after the remap step.

5.2 Discretization of the source term

The lagrangian system with a source term modeling the scattering of radiation
is 




ρDtτ + ∂xb = 0,
ρDtv + ∂xq = −σρv,
ρDte− ∂x(qb) = 0.

(31)

This source term is important for the capture of the diffusion limit of scheme,
in the stiff case (see system (15)). A first possibility for the discretization of
the relaxation −σρv is to use a splitting strategy. That is: First one solves the
Lagrangian system using (29); Second one discretizes the ordinary differential
equation

ρDtv = −σρv
in the cell during the time step. It is known this strategy fails to capture the
diffusion limit for stiff problems. Therefore we do not recommend it.

The second possibility is to remark that the right hand side is analogous
to a friction or a gravity right hand side in the equations of compressible gas
dynamics. In such a case a possibility is to incorporate the right hand side in
the definition of the fluxes such that the second equation in (31) is guaranteed
by construction in the stationary case. So we replace (27) by

{
(q∗ − qR) + 4√

3
ER

3+|bR|2 (b∗ − bR) = σ
2 ∆xρRvR,

(q∗ − qL) − 4√
3

EL

3+|bL|2 (b∗ − bL) = −σ
2 ∆xρLvL.

(32)
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With respect to (27) qR and qL are just modified. The solution is





b∗ =

EL

3+|bL|2 bL + ER

3+|bR|2 bR
EL

3+|bL|2 + ER

3+|bR|2
+

√
3

4

(
qR + σ

2 ∆xρRvR

)
−
(
qL − σ

2 ∆xρLvL

)

EL

3+|bL|2 + ER

3+|bR|2
,

q∗ =

3+|bL|2
EL

(
qL − σ

2 ∆xρLvL

)
+ 3+|bR|2

ER

(
qR + σ

2 ∆xρRvR

)

3+|bL|2
EL

+ 3+|bR|2
ER

+
4√
3

bR − bL
3+|bL|2

EL
+ 3+|bR|2

ER

.

(33)
Another choice could be to remark that

ρv = −kb with k = − T 4

3(1 − |b|2)3 .

So the right hand side in (32) becomes now

{
(q∗ − qR) + 4√

3
ER

3+|bR|2 (b∗ − bR) = −σ
2 ∆xkRb

∗,

(q∗ − qL) − 4√
3

EL

3+|bL|2 (b∗ − bL) = σ
2 ∆xkLb

∗.
(34)

The solution of this linear system always exists.

5.3 Remap step

The remap step is standard for gas dynamics. Since the lagrangian step of the
algorithm is equivalent to solving gas dynamics on a moving mesh, we just move
the mesh. The velocity of the moving mesh is of course

x̃n+1
j+ 1

2

= xn
j+ 1

2
+ ∆tun

j+ 1
2

= xn
j+ 1

2
− ∆tbn

j+ 1
2
.

A convenient notation is to note x̃j the length of the cell after the displacement
of the mesh

∆̃xj = ∆x+ ∆t
(
un

j+ 1
2
− un

j− 1
2

)
= x̃n+1

j+ 1
2

− x̃n+1
j− 1

2

.

After that we project the numerical solution onto the old mesh in a conservative
fashion.

5.4 Independence with respect to the density

The first equation of (29) combined with the definition (30) of the mass of the
cell at the beginning of the time step is equivalent to

ρ̃n+1
j ∆̃xj = ρn

j ∆x.

Therefore the second equation of (29) is equivalent to

∆̃xjF̃
n+1
j − ∆xFn

j

∆t
+ qn

j+ 1
2
− qn

j− 1
2

= 0.

13



Similarly the third equation is equivalent to

∆̃xjẼ
n+1
j − ∆xEn

j

∆t
− qn

j+ 1
2
bn
j+ 1

2
+ qn

j− 1
2
vn

j− 1
2

= 0.

The new length ∆̃xj is equal to the old one plus an increment which is a function
of bn

j+ 1
2

and bn
j− 1

2

which are by definition independent of the density at the

beginning of the time step. Therefore F̃n+1
j and Ẽn+1

j are independent of the
definition the density at the beginning of the time step. The projection step is
purely geometric and is therefore independent of the densities.

In case we use (33) or (34) the conclusions are the same.

6 Maximum principle

In this work maximum principle means

E ≥ 0 and |b| ≤ 1 ⇐⇒ E ± |F | ≥ 0.

For the sake of the simplicity, we present the semi-discrete case and give only a
sketch of the proof. In the sequel we show that the maximum principle can be
viewed as a consequence of a standard entropy inequality.

6.1 Maximum principle for the Lagrangian system

The fully discrete entropy inequality is proved in [3, 4, 2]. The fully implicit
case does not raise new theoretical issues. The proof highlights the connection
between the moment model and gas dynamics through the fundamental principle
of thermodynamics for the model

Tj(t)s
′
j(t) = e′j(t) + bj(t)v

′
j(t) + qj(t)τ

′
j(t).

Consider the semi-discrete case with source term




∆mjτ
′
j(t) + bj+ 1

2
(t) − bj− 1

2
(t) = 0,

∆mjv
′
j(t) + qj+ 1

2
(t) − qj− 1

2
(t) = −σk∆xj(t)

(
bj+ 1

2
(t) + bj− 1

2
(t)
)
,

∆mje
′
j(t) − qj+ 1

2
(t)bj+ 1

2
(t) + qj− 1

2
(t)bj− 1

2
(t) = 0.

(35)

Therefore

∆mjTj(t)s
′
j(t) =

(
qj+ 1

2
(t)bj+ 1

2
(t) − qj− 1

2
(t)bj− 1

2
(t)
)

−bj(t)
(
qj+ 1

2
(t) − qj− 1

2
(t)
)
− qj(t)

(
bj+ 1

2
(t) − bj− 1

2
(t)
)

−σk∆xj(t)
(
bj+ 1

2
(t) + bj− 1

2
(t)
)
bj(t)

14



=
(
qj+ 1

2
(t)bj+ 1

2
(t) − bj(t)qj+ 1

2
(t) − qj(t)bj+ 1

2
(t) + qj(t)bj(t)

)

−
(
qj− 1

2
(t)bj− 1

2
(t) − bj(t)qj− 1

2
(t) − qj(t)bj− 1

2
(t) + qj(t)bj(t)

)

−σk∆xj(t)
(
bj+ 1

2
(t) + bj− 1

2
(t)
)
bj(t)

=
(
qj+ 1

2
(t) − qj(t)

)(
bj+ 1

2
(t) − bj(t)

)

−
(
qj− 1

2
(t) − qj(t)

)(
bj− 1

2
(t) − bj(t)

)

−σk∆xj(t)
(
bj+ 1

2
(t) + bj− 1

2
(t)
)
bj(t).

Now we split the source term

−σk∆xj(t)
(
bj+ 1

2
(t) + bj− 1

2
(t)
)
bj(t) = −2σk∆xj(t)bj(t)

2

−σk∆xj(t)
(
bj+ 1

2
(t) − bj(t)

)
bj(t) − σk∆xj(t)

(
bj− 1

2
(t) − bj(t)

)
bj(t)

and we incorporate it in our last expression for s′j(t). One gets

∆mjTj(t)s
′
j(t) =

(
qj+ 1

2
(t) − qj(t) − σk∆xj(t)bj(t)

)(
bj+ 1

2
(t) − bj(t)

)

−
(
qj− 1

2
(t) − qj(t) + σk∆xj(t)bj(t)

)(
bj− 1

2
(t) − bj(t)

)
− 2σk∆xj(t)bj(t)

2.

By definition of the fluxes (32)

qj+ 1
2
(t) − qj(t) − σk∆xj(t)bj(t) = qj+ 1

2
(t) − qj(t) −

σ

2
∆xjρjvj

and bj+ 1
2
(t)−bj(t) have the same sign. Their product is non negative. Similarly

qj− 1
2
(t)−qj(t)+σk∆xj(t)bj(t) and bj− 1

2
(t)−bj(t) have the opposite sign. Their

product is non positive. The last term −2σk∆xj(t)bj(t)
2 is non negative si k is

non negative (and of course ∆xj > 0). In conclusion we have proved

Lemma 6. The semi-discrete lagrangian scheme (35) with source term (28-29)
is entropic

s′j(t) ≥ 0.

Let us discuss the consequences of this property on the maximum principle.
One has the formula

∆mjsj = ∆xjSj =

[
∆xj

4

3

(
3

3 + |bj |2
) 3

4

]
E

3
4
j

(
1 − |bj |2

) 1
4 .

Assume for simplicity the energy in the cell is positive and |b| < 1 at t = 0.
Then sj(0) > 0. So sj(t) > 0. Therefore the product

∆xjE
3
4
j

(
1 − |bj |2

) 1
4 > 0 (36)
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is positive. We claim the maximum principle can be seen as a consequence of
this inequality.

If the energy Ej is positive and the cell is non degenerate 0 < ∆xj < ∞
then |bj | < 1. By continuity the energy can not vanish. The only case where
|b| = 1 is possible is if the mesh degenerates ∆xj = ∞. This is not possible
in finite time since the size of the cell is a continuous function of the interface
velocities uj+ 1

2
= b∗

j+ 1
2

and uj− 1
2

= b∗
j− 1

2

. By inspection of formula (28) b∗
j+ 1

2

is finite which means the mesh is non degenerate for a sufficiently but positive
time. One can also argue that ∆xj = 0 is not possible in finite time due to (36).

We can also analyze the semi-discrete scheme by means of the Cauchy-
Lipshitz theorem for ordinary differential equations. The Cauchy-Lipshitz the-
orem states there exists a unique solution until a maximal positive time T > 0
is reached. The condition for the Cauchy-Lipshitz theorem to be true is the
differentiability of the equation X ′(t) = F (X). This is true in our case provided
the energy is non zero and the mesh is non degenerate. During this interval
[0, T [ the above argument is true.

In view of completely discrete explicit methods it is worthwhile to estimate
the maximal time T . Note that b∗

j+ 1
2

is a mean value of bj and bj+1 plus a

difference. Take σ = 0 for simplicity

b∗ =

EL

3+|bL|2 bL + ER

3+|bR|2 bR
EL

3+|bL|2 + ER

3+|bR|2
+

√
3

4

qR − qL
EL

3+|bL|2 + ER

3+|bR|2
.

Therefore |b∗| ≤ 1 and T ≥ ∆xj(0)
2 in first approximation.

In view of completely discrete implicit methods, which is not the subject
of this work, we notice inequality (36) will be true for any implicit schemes
(provided a convenient Newton algorithm is used to compute the solution of the
implicit system). It means the stability of the implicit method will be reached
without any restriction on the time step.

6.2 Maximum principle for the Eulerian system

Let now turn to the analysis of the semi-discrete eulerian scheme. This semi-
discrete scheme is (38) plus the projection fluxes written on a fixed mesh





∆xρ′j(t) − 1
ε

(
bj+ 1

2
(t)ρj+ 1

2
(t) − bj− 1

2
(t)ρj− 1

2
(t)
)

= 0,

∆x(ρjvj)
′(t) + 1

ε

(
qj+ 1

2
(t) − bj+ 1

2
(t)ρj+ 1

2
(t)vj+ 1

2
(t)

−qj− 1
2
(t) + bj− 1

2
(t)ρj− 1

2
(t)vj− 1

2
(t)
)

= −σk∆xj(t)
ε2

(
bj+ 1

2
(t) + bj− 1

2
(t)
)
,

∆x(ρjej)
′(t) − 1

ε

(
qj+ 1

2
(t)bj+ 1

2
(t) + bj+ 1

2
(t)ρj+ 1

2
(t)ej+ 1

2
(t)

−qj− 1
2
(t)bj− 1

2
(t) − bj− 1

2
(t)ρj− 1

2
(t)ej− 1

2
(t)
)

= 0.

(37)
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The projection fluxes are ρj+ 1
2
, ρj+ 1

2
vj+ 1

2
and ρj+ 1

2
ej+ 1

2
. They are upwinded

accordingly to the sign of the interface velocity uj+ 1
2

= −bj+ 1
2
. Set h = ρ,

h = ρv or h = ρe. Then

hj+ 1
2

=
1 + sign

(
uj+ 1

2

)

2
hj +

1 − sign
(
uj+ 1

2

)

2
hj+1.

Lemma 7. The eulerian semi-discrete scheme is entropic in the following sense.
Assume the density and entropy are positive in every cell at t = 0, that is
ρj(t) > 0 and sj(0) > 0. Then sj(t) > 0 for all time t > 0 and all cell j.

We give a sketch of the proof. The eulerian semi-discrete scheme may be seen
as the limit ∆t→ 0 on a given mesh of the fully discrete lagrangian plus projec-
tion scheme. The fully discrete lagrangian scheme is entropy increasing under
CFL. A first order projection is equivalent to a convex combination. There-
fore the entropy after the projection is greater than a convex combination of
entropies of neighboring cells. At the limit, one gets

∆x(ρjsj)
′(t) − 1

ε

(
bj+ 1

2
(t)ρj+ 1

2
(t)sj+ 1

2
(t) − bj− 1

2
(t)ρj− 1

2
(t)sj− 1

2
(t)
)
≥ 0.

This equation is similar to density equation plus a non negative source right
hand side, except that the density ρ is replaced by the product ρs. Therefore
ρs inherits all the properties of the classical solution of the equation of density.
In particular the discrete density remains positive. Therefore it is also the case

for the entropy ρj(t)sj(t). So sj(t) =
ρj(t)sj(t)

ρj(t)
> 0.

It is also possible to prove the result by a direct and tedious calculation of
A where

A = ∆x(ρjsj)
′(t) − 1

ε

(
bj+ 1

2
(t)ρj+ 1

2
(t)sj+ 1

2
(t) − bj− 1

2
(t)ρj− 1

2
(t)sj− 1

2
(t)
)
.

The calculation is done by elimination of (ρs)′ in function of ρ′, (ρv)′ and (ρe)′.
This is the method we have used for the analysis of the semi-discrete lagrangian
scheme (35).

7 Diffusion limit

We analyze the diffusion limit of the semi-discrete eulerian scheme. The semi-
discrete eulerian scheme is somehow the addition of the lagrangian step and the
projection step. The semi-discrete lagrangian scheme where we have reintro-
duced the small parameter ε is




∆mjτ
′
j(t) + 1

ε

(
bj+ 1

2
(t) − bj− 1

2
(t)
)

= 0,

∆mjv
′
j(t) + 1

ε

(
qj+ 1

2
(t) − qj− 1

2
(t)
)

= −σk∆xj(t)
ε2

(
bj+ 1

2
(t) + bj− 1

2
(t)
)
,

∆mje
′
j(t) − 1

ε

(
qj+ 1

2
(t)bj+ 1

2
(t) + qj− 1

2
(t)bj− 1

2
(t)
)

= 0.

(38)
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plus the flux formulas (33) which are now





bj+ 1
2

=

Ej

3+|bj |2 bj +
Ej+1

3+|bj+1|2 bj+1

Ej

3+|bj |2 +
Ej+1

3+|bj+1|2
+

√
3

4

(
qj+1 + σ

2ε
∆xρj+1vj+1

)
−
(
qj − σ

2ε
∆xρjvj

)

Ej

3+|bj |2 +
Ej+1

3+|bj+1|2
,

qj+ 1
2

=

3+|bj |2
Ej

(
qj − σ

2ε
∆xρjvj

)
+

3+|bj+1|2
Ej+1

(
qj+1 + σ

2ε
∆xρj+1vj+1

)

3+|bj |2
Ej

+
3+|bj+1|2

Ej+1

+
4√
3

bj+1 − bj
3+|bj |2

Ej
+

3+|bj+1|2
Ej+1

.

(39)
We are interested in the diffusion limit of the system (37). Any quantity is
expanded as a series in ε as in

h = h0 + εh1 + ε2h2 +O(ε3).

If needed we shall assume that h0,1,2 are smooth functions of the time and space
variables. We begin with bj+ 1

2
. One has b0

j+ 1
2

− b0
j− 1

2

= 0 so b0
j+ 1

2

= C is a

constant which does not depend upon j. Assume that, for simplicity of the
analysis, the boundary condition is zero for this quantity. Then

b0
j+ 1

2
= 0, ∀j. (40)

Considering the ε−1 terms in (37), one has

(ρjvj)
0 = 0, ∀j. (41)

Plugging (40-41) in (37) we get

q0j+1 +
σ

2
∆x(ρj+1vj+1)

1 − q0j +
σ

2
∆x(ρjvj)

1 = 0 (42)

that is
q0j+1 − q0j

∆x
= −σ

2
(ρj+1vj+1)

1 − σ

2
∆x(ρjvj)

1. (43)

This equation is the discrete counterpart of (16). Considering (2) and F = ρv,
(41) implies b0j = 0 and also v0

j . We have used the hypothesis that T 0
j 6= 0 which

corresponds to the interesting case with non zero radiative energy. We have also
used ρ0

j 6= 0 for a similar reason. Therefore

(ρjvj)
1 = ρ0

jv
1
j + ρ1

jv
0
j = ρ0

jv
1
j , ∀j. (44)

So one can rewrite (42) as

q0j+1 − q0j
∆x

= −σ
ρ0

j+1v
1
j+1 + ρ0

jv
1
j

2
. (45)

Using a similar algebra in the first order expansion of bj+ 1
2

(recall b0
j+ 1

2

= 0)

one gets

b1
j+ 1

2
=

E0
j

3+|b0
j
|2 b

1
j +

E0
j+1

3+|b0
j+1|2

b1j+1

E0
j

3+|b0
j
|2 +

E0
j+1

3+|b0
j+1|2
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+

√
3

4

(
q1j+1 + σ

2 ∆x(ρj+1vj+1)
1
)
−
(
q1j − σ

2 ∆x(ρjvj)
1
)

E0
j

3+|b0
j
|2 +

E0
j+1

3+|b0
j+1|2

that is

b1
j+ 1

2
= α0

jb
1
j+1 + (1 − α0

j )b
1
j +O(∆x), α0

j =

E0
j

3+|b0
j
|2

E0
j

3+|b0
j
|2 +

E0
j+1

3+|b0
j+1|2

(46)

Similar calculations but for q0
j+ 1

2

yield

q0
j+ 1

2
=

3+|b0j |2
E0

j

(
q0j − σ

2 ∆x(ρjvj)
1
)

+
3+|b0j+1|2

E0
j+1

(
q0j+1 + σ

2ε
∆xρ0

j+1v
0
j+1

)

3+|b0
j
|2

E0
j

+
3+|b0

j+1|2
E0

j+1

+
4√
3

b0j+1 − b0j
3+|b0

j
|2

E0
j

+
3+|b0

j+1|2
E0

j+1

that is after simplifications

q0
j+ 1

2
= α0

jq
0
j + α0

j+1q
0
j+1 +O(∆x). (47)

It is now possible to analyze the flux in the eulerian energy equation of (37).
One has (

qj+ 1
2
bj+ 1

2
+ bj+ 1

2
ρj+ 1

2
ej+ 1

2

)0

= 0

and (
qj+ 1

2
bj+ 1

2
+ bj+ 1

2
ρj+ 1

2
ej+ 1

2

)1

= q0
j+ 1

2
b1
j+ 1

2
+ ρ0

j+ 1
2
e0
j+ 1

2
b1
j+ 1

2
.

We evaluate the first contribution in the right hand side q0
j+ 1

2

b1
j+ 1

2

with the help

of (46) and (47). One gets

q0
j+ 1

2
b1
j+ 1

2
=
(
α0

jq
0
j + α0

j+1q
0
j+1 +O(∆x)

) (
α0

jb
1
j+1 + (1 − α0

j )b
1
j +O(∆x)

)

that is

q0
j+ 1

2
b1
j+ 1

2
=

1

2
q0j b

1
j +

1

2
q0j+1b

1
j+1 +O(∆x). (48)

The second contribution in the right hand side ρ0
j+ 1

2

e0
j+ 1

2

b1
j+ 1

2

is, with the same

kind of calculations,

ρ0
j+ 1

2
e0
j+ 1

2
b1
j+ 1

2
=

1

2
ρ0

je
0
jb

1
j +

1

2
ρ0

j+1e
0
j+1b

1
j+1 +O(∆x). (49)

Therefore the total eulerian flux is

(
qj+ 1

2
bj+ 1

2
+ bj+ 1

2
ρj+ 1

2
ej+ 1

2

)1

=
1

2
(q0j +ρ0

je
0
j )b

1
j+

1

2
(q0j+1+ρ

0
j+1e

0
j+1)b

1
j+1+O(∆x)
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that is

(
qj+ 1

2
bj+ 1

2
+ bj+ 1

2
ρj+ 1

2
ej+ 1

2

)1

= −
ρ0

jv
1
j + ρ0

j+1v
1
j+1

2
+O(∆x). (50)

We know the asymptotic value of the right hand side, see formula (45). Since
the definition of q implies that q0 = 1

3E
0, then one gets

(
qj+ 1

2
bj+ 1

2
+ bj+ 1

2
ρj+ 1

2
ej+ 1

2

)1

=
E0

j+1 − E0
j

∆x
+Oj+ 1

2
(3σ∆x).

The Oj+ 1
2
(∆x) is the error which is a priori different from one interface (j + 1

2 )

to another (l + 1
2 , l 6= j). Plugging in the energy equation one has

∆x
d

dt
E0

j −
(
E0

j+1 − E0
j

3σ∆x
+Oj+ 1

2
(∆x) −

E0
j − E0

j−1

3σ∆x
−Oj− 1

2
(∆x)

)
= 0.

In summary we have proved

Lemma 8. The asymptotic limit of the system (37) is the discrete diffusion
equation

d

dt
Ej −

Ej+1 − 2Ej + Ej−1

3σ∆x2
= Oweak

j (∆x).

The right hand side is

Oweak
j (∆x) =

Oj+ 1
2
(∆x) −Oj− 1

2
(∆x)

∆x
.

In the finite difference sense one has Oweak
j (∆x) = O(1). But this term is

consistent with the weak formulation of the heat equation because it is the
difference of two O(1) terms. That is

Oweak(∆x) = O(∆x) in the finite volume sense.

In other words
Oweak(∆x) → 0 as ∆x→ 0

in the weak sense.
In view of fully discrete schemes, one can notice that the splitting in time

of a lagrangian plus projection scheme makes little difference in the analysis. A
small change is the eulerian flux for the energy equation which is computed in
a splitted fashion. It introduces a additional O(∆t) in asymptotic expansion of
the eulerian flux.

8 Numerical results

The algorithm used in the numerical test is the lagrangian plus projection ex-
plicit scheme with fluxes given by (33). The explicit scheme is enough to illus-
trate the correctness of the approach proposed in this work.
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We give the results of three numerical experiments. The first one shows
that the solution of the GDL formulation of the equations is independent of
the definition of the density. The second one shows that the scheme captures
an analytical solution in the streaming regime and preserves the flux-limited
property. The last test case is representative of the diffusion limit of the scheme.

8.1 Test case 1: radiative Riemann problem

We consider a Riemann problem. The coefficients are σ = 0 everywhere and
ε = 1. The initial values are

(E,F1) = (1, 0) for x < 0.5,

and
(E,F1) = (0.1, 0) for 0.5 < x.

The second component of the radiative flux is zero F2 ≡ 0. The solution consists
in a mathematical rarefaction fan on the left and a shock on the right. We
observe in figure 1 a very good agreement. One can check, as claimed in section
5.4, that the results are independent of the initial value of the density ρ.

8.2 Test case 2: streaming regime

The coefficients are σ = 0 everywhere and ε = 1. The initial values are

(E,F1, F2) = (1,
0.7 − x

0.4
,
√

1 − F 2
1 ) for 0.3 < x < 0.7,

and
(E,F1, F2) = (0, 0, 0) elsewhere.

At t < 0.4 the analytical solution is

(E,F1, F2) = (
0.4

0.4 − t
,
0.4(0.7 − x)

(0.4 − t)2
,
√

1 − F 2
1 ) for 0.3 + t < x < 0.7,

and
(E,F1, F2) = (0, 0, 0) elsewhere.

This analytical solution is also the analytical solution of the equation of trans-
port for a prepared data, see proposition 2. In practice we have used this
equivalence to compute this analytical solution. At time t = 0.4 the solution
is a measure. For t > 0.4 the code still computes a numerical solution, but a
priori this solution is not a solution of the transport equation.

We observe the solution at time t = 0.2 is in good agreement with the ana-
lytical solution. The curves with 4000 cells (figure 3) are closer to the analytical
solution than the curves with 400 cells (figure 2). The ratio of the energy flux
over the radiation energy is bounded by one, see figure 4. In figure 5 we show
the numerical solution at the singular time t = 0.04: it is approximatively a
Dirac function at x = 0.7.
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Figure 1: E, F and ρ at t = 0.2. Results in the first and second columns have
been computed with different densities but same radiative energy and radiative
flux
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Figure 2: E, F1 and F2 at time t = 0.2. 400 cells
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Figure 3: E, F1 and F2 at time t = 0.2. 4000 cells
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Figure 5: Radiative energy at time t = 0.4. 4000 cells. The numerical profile is
an approximation of the dirac function x 7→ 0.4 δ0.7(x)
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Figure 6: Classical fluxes. Non convergence towards the solution of the heat
equation as ε → 0. The curve for ε = 0.015 is completely different from the
solution of the diffusion (heat) equation. Final time T = 0.003

8.3 Test case 3: diffusion limit

The coefficients are σ = 1 everywhere and 10−4 ≤ ε ≤ 10−1. The initial values
are

(E,F1, F2) = (1, 0, 0) for 0.4 < x < 0.6, (E,F1, F2) = (10−6, 0, 0) elsewhere.

We first show in figure 6 what happens with the classical fluxes (28). In this
case the diffusion limit is not captured and the solver becomes pathological as
ε→ 0.

In figure 7 we plot four curves computed on a coarse grid of 50 cells. One is
the solution of the heat equation and is the reference solution. The three others
are computed with the moment model for decreasing ε, that is 0.1, 0.05 and
0.015. The stability of the algorithm is evident. The convergence of the coarse
grid discrete solution towards the coarse grid solution of the heat equation is
achieved.

In table 1, we show the relative error (in the L∞ norm) between the discrete
solution of the heat equation and the discrete solution of the moment model.
This error is made of two contributions: one contribution is the model error,
the other one is the discretization error. In first and second columns the model
error is dominant and this is why the error increases as ∆x tends to zero. In
the fourth and fifth columns, the discretization error is dominant so the error
decreases as ∆x tends to zero. The third column is somehow in between, the
model error is of the same order than the discretization error. The behavior on
lines is monotone and illustrates the result of convergence of lemma 8 for ε→ 0.
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Figure 7: New fluxes. Convergence study towards the solution of the heat
equation as ε → 0. Final time T = 0.003. The curve for ε = 0.015 is not
distinguishable from the solution of the diffusion (heat) equation. See table 1
for a quantitative study of convergence

ε = 10−1 ε = 5.10−2 ε = 1.5 10−2 ε = 10−2 ε = 10−4

∆x = 1/50 0.15 0.061 0.012 0.017 0.025
∆x = 1/100 0.17 0.080 0.009 0.010 0.014
∆x = 1/200 0.20 0.106 0.009 0.066 0.008
∆x = 1/400 0.24 0.130 0.012 0.004 0.004

Table 1: Relative L∞ errors between the discrete solution of the heat equation
and the discrete solution of the moment model (parameter ε) computed on the
same grid (parameter ∆x). Final time T = 0.003
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8.4 Conclusion

Numerical results validate the theoretical developments. In particular the new
scheme is independent of the artificial density used in the calculation, the
streaming regime for smooth solutions and the diffusion regime are well cap-
tured. We think the Lagrange plus projection scheme can be used for other
GDL systems.
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