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Abstract

Given a lattice basis of n vectors in Zn, we propose an algorithm using 12n3 + O(n2) floating

point operations for checking whether the basis is LLL-reduced. If the basis is reduced then the

algorithm will hopefully answer “yes”. If the basis is not reduced, or if the precision used is not

sufficient with respect to n, and to the numerical properties of the basis, the algorithm will answer

“failed”. Hence a positive answer is a rigorous certificate. For implementing the certificate itself,

we propose a floating point algorithm for computing (certified) error bounds for the entries of the R

factor of the QR matrix factorization. This algorithm takes into account all possible approximation

and rounding errors.

The cost 12n3 + O(n2) of the certificate is only six times more than the cost of numerical

algorithms for computing the QR factorization itself, and the certificate may be implemented using

matrix library routines only. We report experiments that show that for a reduced basis of adequate

dimension and quality the certificate succeeds, and establish the effectiveness of the certificate.

This effectiveness is applied for certifying the output of fastest existing floating point heuristics of

LLL reduction, without slowing down the whole process.

1 Introduction

Our motivation is to develop a certificate for lattice basis reducedness that may be used
in cooperation with—possibly non certified—numerical reduction heuristics such as those
described in [31, Ch. II-3] and [20]. The two main constraints are speed and effectiveness.
Indeed, the certificate has to be fast enough for not slowing down the whole process, and
the answer should be relevant (“yes”) on a large class of inputs such as those successfully
treated by the heuristic. Hence our general concern is somehow the compromize between
speed and proven accuracy. The certificate will be introduced later below. It relies on error
bounds for the R factor of the QR factorization of a matrix that we discuss first.

Bounding errors for the factor R. Let A be an n×n invertible integer matrix. The QR
factorization (see for instance [10, Ch. 19]) of A is a factorization A = QR in which the factor
R ∈ Rn×n is an upper triangular matrix, and the factor Q ∈ Rn×n is orthogonal (QT Q=I).

This material is based on work supported in part by the French National Research Agency, ANR Gecko.

LIP Research Report RR2007-03, École Normale Supérieure de Lyon — January, 2007.
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We take the unique factorization such that the diagonal entries of R are positive. Let F

denote a set of floating point numbers such that the arithmetic operations in F satisfy the
IEEE 754 arithmetic standard [1]. Assume that an approximate floating point and upper

triangular factor R̃ ∈ Fn×n is given. In Section 6 we propose an algorithm for computing a
componentwise error bound for |R̃−R| using operations in F only. For a matrix A = (ai,j),

|A| denotes (|ai,j|). Our error bound for |R̃−R| is given by a matrix H ∈ Fn×n with positive
entries such that (see (9) on page 7):

|R̃ − R| ≤ H|R̃|. (1)

Since floating point numbers are rational numbers, when R̃ and E are known, (1) provides
a rigourous mathematical bound for the error with respect to the unkown matrix R.

For understanding the behaviour of the error bounding algorithm better, we recall in Sec-
tion 3 some existing numerical pertubation analyses for the QR factorization. The necessary
background material may be found in Higham’s book [10]. Then in Sections 4 and 5, we
give the mathematical foundations of our approach. We focus on the componentwise bounds
of [34] that allow us to derive an algorithm based on the principles of verification (self-
validating) methods. On the latter methods we refer to the rich surveys of Rump [25, 26],
see also the short discussion in Section 2. As numerical experiments of Section 6.3 will demon-
strate, the error bounding algorithm is effective in practice. Its cost is only 5 times more
than a numerical QR factorization, we mean 10n3 + O(n2) operations in F. For efficiency,
the error bounds are themselves calculated using floating point operations, nevertheless, they
take into account all possible numerical and rounding errors. The reducedness certificate will
require 2n3 + O(n2) additional operations. Most of the 12n3 operations actually correspond
to the evaluation of matrix expressions. An efficient implementation may thus rely on fast
matrix routines such as the BLAS [8].

At a given precision, the error bounding algorithm provides relevant bounds for input
matrices with appropriate numerical properties. In particular, the dimension and related
condition numbers should be considered in relation with the precision (see Section 6.3).
However, the power of the verification approach [25, 26] is to be effective on many inputs for
which the numerical approach itself is effective—here the numerical QR factorization. For
example, we report experiments using 64 bits floating point numbers, and R̃ computed by
the modified Gram-Schmidt orthogonalization (see [10, Alg. 19.12]). On integer matrices of
dimension n = 1500 with condition number around 105, we certify that the relative error on
the entries of R̃ has order as small as 10−6 or 10−5, with only 10−10 or 10−9 on the diagonal.
We refer here to the diagonal entries since they play a key role for instance in the LLL Lovász
test (see (3)). For large condition numbers (with respect to double precision), say 1012, and
n = 200, the algorithm may typically certify relative errors in 10−1, and 10−4 on the diagonal.

The LLL-reducedness certificate. The effectiveness of the error bound on |R̃ − R|
allows us to address the second topic of the paper. To an n × n integer matrix A we as-
sociate the Euclidean lattice L generated by the columns (aj) of A (for definitions and on
algorithmic aspects of lattices we refer for instance to [6]). From (aj), the LLL algorithm
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computes a reduced basis [12], where the reduction is defined via the Gram-Schmidt or-
thogonalization of a1, a2, . . . , an ∈ Zn. The Gram-Schmidt orthogonalization determines the
associated orthogonal basis a∗

1, a
∗
2, . . . , a

∗
n ∈ Qn by induction, together with factors µij , using

a∗
i = ai −

∑i−1

j=1
µija

∗
j , and µij = 〈ai, a

∗
j〉/‖a∗

j‖2
2, 1 ≤ j < i. Vectors a1, a2, . . . , an are said

proper for η ≥ 1/2 if their Gram-Schmidt orthogonalization satisfies

|µij| ≤ η, 1 ≤ j < i ≤ n. (2)

In general one considers η = 1/2. The basis a1, a2, . . . , an of L is called LLL-reduced with
factors δ and η if the vectors are proper, and if they satisfy the Lovász conditions:

(δ − µ2

i+1,i)‖a∗
i ‖2

2 ≤ ‖a∗
i+1‖2

2, 1 ≤ i ≤ n − 1, (3)

with 1/4 < δ ≤ 1 and 1/2 ≤ η <
√

δ. If A = QR is the QR factorization of A then we have

{
‖a∗

i ‖2 = rii, 1 ≤ i ≤ n,
µij = rji/rjj, 1 ≤ j < i ≤ n.

(4)

We see from (4) that if an approximation R̃ of R with error bounds on its entries are known,
then (depending on the quality of the bounds) it may be possible to check whether (2) and (3)
are satisfied. All the above draws the reducedness certificate that we propose in Section 7.
We also fix a set F of floating point numbers, and perform operations in F only. For certifying
the reducedness of the column basis associated to A the certificate works in three steps:

i: Numerical computation of a R factor R̃ such that A ≈ Q̃R̃;

ii: Certified computation of F ∈ Fn×n such that |R̃ − R| ≤ F (see (1));

iii: Certified check of properness (2) and Lovász conditions (3).

Following the principles of verification algorithms [26], Step i is purely approximation,
and we propose an implementation of Steps ii and iii that is independent of the factorization
algorithm used for computing R̃. For taking into account all possible numerical and rounding
errors, Steps ii and iii use certified computing techniques (see Section 6.1). We rely on
the fact that the arithmetic operations +,−,×,÷,

√
in F are according to the IEEE 754

standard. We especially use explicit changes of rounding mode for certified bounds.
Verification algorithms are a powerful alternative between numerical and computer alge-

bra algorithms, they somehow illustrate the boundary between the two fields. The reduced-
ness certificate we propose illustrates a cooperation of purely numerical computation with a
certified approach based on the IEEE 754 standard, in order to provide a computer algebra
answer. Our progress in linear algebra is in the line of previous works on error bounds for
linear systems [23, 21, 28], on certifying the sign of the determinant [22, 11], on verifying
positive definiteness [27], or on eigenvalues [15, 24]. Our contribution is to establish the
effectiveness of componentwise bounds for a whole matrix, propose a corresponding certified
algorithm using fast verification techniques, and derive and test with experiments a certifi-
cate for the LLL reducedness application.
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Absolute value and matrix norms. We already considered above the absolute value of a
matrix A = (aij) defined by (|aij|). We write |A| ≤ |B| if |aij | ≤ |bij |. It is possible to check
that if A = BC then |A| ≤ |B||C|. We will use several matrix norms (see [10, Ch. 6]) such as
the Frobenius norm ‖ · ‖F or the 2-norm ‖ · ‖2. We will also especially use the infinity norm
‖ · ‖∞ = max1≤i≤n

∑n

j=1
|aij |. For A = BC we have ‖A‖∞ ≤ ‖B‖∞‖C‖∞, and if h = ‖A‖∞

then |A| ≤ H with hij = h.

Condition numbers. For a nonsingular matrix A, the matrix condition number is defined
by κp(A) = ‖A‖p‖A−1‖p with p = 2, F or ∞ [10, Th. 6.4]. With the infinity norm we will
also use the Bauer-Skeel condition number cond(A) = ‖|A−1||A|‖∞ ≤ κ∞(A) [10, § 7.2].

2 Error bounds computation and verification algorithms

In linear algebra, few things are known about the complexity of computing certified and
effective error bounds. The problem is somewhere between the one of computing approximate
solutions, and the one of computing multi-precision or exact solutions. A main result in [7]
shows that the problem of computing a certified estimation of ‖A−1‖ (for a consistent matrix
norm) is as difficult as testing whether the product of two matrices is zero. Hence if we
consider O(n3) operations for multiplying two matrices of dimension n, a deterministic error
bound—based on a condition number bound—would cost O(n3). The use of randomization
may lead to error estimations in O(n2) operations, we refer to [10, Chap. 15] and references
therein, and to the fact that the matrix product could be verified in O(n2) operations [9].
We did not investigate the randomization possibilities yet.

Verification methods have been developped in [23, 21] for computing certified error bounds
for linear system solution. In [21] the error bound (normwise) is computed in twice the time
of numerical Gaussian elimination. In the same spirit, a verification approach using O(n3)
floating point operations is proposed in [22] for the sign of the determinant (see [11] for
a survey on this topic). Note that computing the sign of the determinant corresponds to
knowing the determinant with a relative error less than 1. Our error bounding algorithm
for R will also use O(n3) floating point operations. The verification approach [25, 26] gives
an effective alternative to interval arithmetic whose exponential overestimation of the error
would not be appropriate for our problem [26, §10.7]. The general strategy for calculating
an error bound is first to establish a result whose assertion is a mathematical expression for
the bound (see Theorem 4.2), then design an algorithm that verifies the assumptions for the
latter assertion, and computes a certified evaluation of the bound (see Section 5).

3 Perturbation analyses and bounds for the QR factorization

A finite precision computation of the QR factorization of A leads to an approximate factor R̃.
The errors in R̃ with respect to R are called the forward errors (absolute or relative). The

matrix R̃ is not the factor of the QR factorization of A, however, it is seen as the QR factor
of a perturbed matrix Ã = A + E, where E is called the backward error. The choice of
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Ã is non unique, and one refers for instance for the smallest error norm. The link between
backward and forward error is made using the condition number of the problem, hence for us
the condition number for the problem of computing R. The (relative) condition number of
the problem—under some class of perturbations—measures the relative change in the output
for a relative change in the input. In this context, a useful tool for estimating the accuracy
of the solution to a problem, is the rule of thumb [10, p. 9]:

forward error <∼ condition number × backward error. (5)

We survey below some more precise instantiations of (5) for the QR factorization. Known
results are, in general, approximate inequalities (first order results), but could be extended
for giving strict bounds on the forward error. The rule of thumb therefore gives a first possible
direction for deriving an error bounding algorithm for |R̃ −R| (the forward absolute error).
However, most of corresponding bounds rely on matrix norms, and may thus overestimate
the actual componentwise error in most cases.

We will investigate an alternative direction in Section 4. Rather than on the rule of
thumb, our error bounding algorithm will be based on the componentwise bounds of Sun [34].
This will lead to an algorithm that seems to be naturally more effective than a matrix norm
approach for our problem. Another advantage of using Sun’s results is to remain in the spirit
of the verification methods. In particular, we will see that the error bounding algorithm is
oblivious of the algorithm that is used for computing the approximate factor R̃. Our bound
computation may be appended to any numerical QR algorithm, and does not rely on back-
ward error bounds that would be have been needed for using (5). An approximate Q̃ in not

orthogonal in general, the backward error problem is to know for which matrix Ã close to
A, there exists an orthogonal Q̂ such that Ã = Q̂R̃? Backward error bounds are known
for specific QR algorithms such as Householder or Gram-Schmidt ones (see Theorems 19.4
and 19.13 in [10]), but may not be available in the general case. We will circumvent the need
of the backward error in Section 4 using the correspondence between the QR factorization
of A, and the Cholesky factorization RT R of AT A.

Sensitivity of the QR factorization. The condition number of the problem of computing
R (the “rate of change” of R) in the QR factorization may be defined theoretically for given
classes of perturbations, but it is non trivial to derive expressions of the condition number
that can be used in practice. Nevertheless, various formulae are proposed in the literature
providing quantities that can be thought as a condition number for R, we refer for instance
to [4]. These quantities may be very effective in practice in a matrix norm setting.

Let A = QR and A ≈ Ã + E = Q̂R̃ be QR factorizations. As already noticed, for a
floating point factorization A ≈ Q̃R̃, in general we have Q̂ 6= Q̃ since Q̃ is not orthogonal.
Let R̃ = R + F . For a sufficiently small backward error E, consider the normwise relative
error ǫ = ‖E‖F/‖A‖2 = ‖Ã − A‖F /‖A‖2. Then Sun’s [33, Rem. 3.5] perturbation bounds
(see also [32]) give

‖R̃ − R‖F /‖R‖2 ≤
√

2κ2(A)ǫ + O(ǫ2). (6)
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An improved bound is given by Zha [Theorem2.1][35] (see also [4, § 5] and [10, §19.9]) under

a componentwise model of perturbation that we simplify here. Let |Ã − A| = |E| = ǫ|A|,
then for sufficiently small ǫ we have:

‖R̃ − R‖∞/‖R‖∞ ≤ cncond(R−1)ǫ + O(ǫ2) (7)

where cn is a constant depending on n. Hence the Bauer-Skeel condition number of R−1 can
be considered as a condition number for the problem of calculating R. This indicates that one
may potentially loose significant digits (in the result) linearly with respect to the increase of
log cond(R−1). This typical behaviour is illustrated by Figure 3.1 where we have computed
QR factorizations of random matrices (of randsvd type [10, Ch. 28]). The algorithm used is
the Modified Gram-Schmidt algorithm [10, Algo. 19.12].
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Figure 3.1: Maximum relative diagonal error in R (Modified Gram-Schmidt algorithm)
with respect to cond(R−1) for random matrices A (n = 200).

Identities (6) and (7) provide first order estimations of the errors. They are essential for
an idea of the normwise loss of accuracy. Nevertheless, the loss of accuracy on individual
entries (needed for the reducedness certificate) may not be deduced from these identities.
Consider for instance the case of Figure 3.1 where the ratios of the rij may be as large as 1011.
The normwise bound of (7), that involves the max row sum ‖R‖∞, cannot provide relevant
informations for every |r̃ij − rij|. Note also that the loss of accuracy would certainly be
amplified by the implementation of the error estimation itself in finite precision (Figure 3.1 is
a mathematical representation of the error). Normwise bounds much sharper than (6) and (7)
may be found, especially in [5, 4], it remains to know how well the corresponding proposed
estimations approximate the true condition number [4, §10]. It would also be interesting to
investigate how the new techniques of [5, 4] could lead to practical componentwise bounds.

4 Strict componentwise bounds for the R factor

We now present the mathematical view and justification of the error bounding algorithm
of Section 6. Given A ∈ Rn×n invertible, and an upper triangular matrix R̃ ∈ Rn×n, the
problem is to bound |R̃ − R| where R is the unknown QR factor of A. In practice we will

have A, R̃ ∈ Fn×n.
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4.1 QR and Cholesky factorization

The strict componentwise analysis of Sun [34, § 4] for QR uses the matrix Ã such that

Ã = Q̂R̃ is a QR factorization. Note that, because of the loss of orthogonality, if Q̃ is a
numerical approximation of Q then Ã is not in general the matrix Q̃R̃. Informations on Ã
may be available by taking into account the algorithm that has produced R̃. We refer for
instance to [4, Eq. (5.8)] and [10, §19.9 ] where properties of Householder transformations are
used for bounding the backward error. This is not sufficient for our problem since we are
given only A and R̃, and since one of our goal is to be oblivious of the method used for R̃.

For not relying on Ã, we propose to rather resort to Sun’s study of the Cholesky factor-
ization [34, § 4]. If B ∈ Rn×n is symmetric positive definite, then there is a unique upper
triangular R ∈ Rn×n with positive diagonal entries, such that B = RT R. This factorization
is called the Cholesky factorization [10, Th. 10.1]. It holds that A = QR is a QR factor-
ization if and only if B = AT A = RT R is a Cholesky factorization. It may not be a good
idea to use the Cholesky factorization for computing R numerically. The condition number
of the problem may indeed increase too much, especially κ2(A

T A) = (κ2(A))2. For avoiding
this drawback, our point is to implement the reduceness certificate of Section 7 using QR for
computing R̃, and to use the Cholesky point of view only for computing the error bound.

4.2 The bound on |R̃ − R|
For a matrix A ∈ Rn×n, the spectral radius ρ(A) is the maximum of the eigenvalue modules.
We denote by triu(A) the upper triangular part of A, we mean that triu(A) = (tij) with
tij = aij if i ≤ j, and tij = 0 otherwise. The following Theorem is [34, Th. 2.1].

Theorem 4.1. For B, B̃ ∈ Rn×n symmetric positive definite matrices, let R and R̃ be the

Cholesky factors of B and B̃. Let E = B̃ − B, and

G = |R̃−TER̃−1|. (8)

Then if ρ(G) < 1 we have

|R̃ − R| ≤ triu(G(I − G)−1)|R̃|. (9)

Inequality (9) is what we announced with (1). Let us apply Theorem 4.1 with B = AT A

and B̃ = ÃT Ã. Using Ã = Q̂R̃ and Q̂T Q̂ = I, we get from (8):

G = |R̃−TER̃−1| = |R̃−T (B̃ − B)R̃−1| = |R̃−T (ÃT Ã − AT A)R̃−1|
= |R̃−T ÃT ÃR̃−1 − R̃−T AT AR̃−1| = |Q̂T Q̂ − R̃−T AT AR̃−1| = |R̃−T AT AR̃−1 − I|.

Going back to the R factor of the QR factorization we then have the following corollary to
Theorem 4.1

Theorem 4.2. For A ∈ Rn×n an invertible matrix, let R be the QR factor of A. Let

R̃ ∈ Rn×n be upper triangular and invertible, and

G = |R̃−TAT AR̃−1 − I|. (10)
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Then if

ρ(G) < 1, (11)

we have

|R̃ − R| ≤ triu(G(I − G)−1)|R̃|. (12)

Proof. Since R̃ is invertible, B̃ = R̃T R̃ is positive definite, the same holds for B = AT A. By
construction R and R̃ are the Cholesky factors of B and B̃. It suffices to apply Theorem 4.1
for concluding.

Few things are known about the (mathematical) quality of Bound (12) over R. Further-
more, both additional method and arithmetic errors will be introduced for the finite precision
evaluation of the bound. Additional method errors will be introduced especially for calcu-
lating certified bounds for R̃−1 and triu(G(I −G)−1) (see Section 5). Additional arithmetic
errors will be introduced by the finite precision itself. All together we produce an error
bounding algorithm that is not fully analyzed, the experiments of Section 6.3 will however
give a precise idea of its practical behaviour and effectiveness. For illustrating Bound (12)
over R, let us consider some examples that show that Theorem 4.2 leads to accurate bounds.
The calculations have been done in Maple [16], either exactly or with high precision, then

rounded for the presentation. Let H = triu(G(I − G)−1) such that (12) is |R̃ − R| ≤ H|R̃|.
On the matrices used for Figure 3.1 (randsvd, n = 200), with R̃ computed using 64 bits

floating point numbers via the Modified Gram-Schmidt algorithm, we typically get the follow-
ing. For A with cond(R−1) ≈ 105, the infinity norm of the error matrix is ‖H‖∞ ≈ 2×10−9.

This leads to the knowledge that R̃ approximates R with (relative) accuracy ≈ 10−10. The

accuracy of R̃ is about 10−13 for the diagonal entries, and the diagonal error estimation is only
in a factor of 2 from the true diagonal error. If cond(R−1) ≈ 4×1013 then ‖H‖∞ ≈ 3×10−3,
and R is known with accuracy about 10−2 (2 × 10−5 on the diagonal). The ratio between
the estimation and the true error is less than 4 on the diagonal. Again, we will certainly
loose accuracy with our finite precision implementation, but keep a very satisfying overall
behaviour. Consider also the matrix quoted from [4, Eq. 5.4]:

A1 =

[
1 1 − 10−10

1 1 + 10−10

]
,

with cond(R−1) ≈ 2 × 1010. We compute the matrix R̃ in Matlab [14], and obtain over R

the error bound:

|R̃ − R| ≈
[

9.7 × 10−17 −1.3 × 10−16

0 3.7 × 10−17

]
≤

[
3.5 × 10−12 3.5 × 10−12

0 7.4 × 10−17

]
. (13)

The matrix R is known with (relative) accuracy about 2.5 × 10−12 on the first row, and
5.25 × 10−7 for r22. On the first row the error is overestimated by a factor about 3.6 ×
104. Notwithstanding the fact that the accuracy of the bound produced by Theorem 4.1 is

8



penalized by the particular form of the matrix, the estimation of the accuracy of R̃ remains
very good. Now let A be the random 3 × 3 integer matrix

A2 =




−60 28 51

−24 −35 −89

37 51 −23


 .

We look at Bound (12) when perturbing only the second row of the exact R and get:

|R̃ − R| =

∣∣∣∣∣∣∣∣




0 0 0

0 0.0071 −0.0052

0 0 0




∣∣∣∣∣∣∣∣
≤




0 0 0

0 0.014204 0.023087

0 0 2.9 × 10−6


 . (14)

The estimator computes the errors very well on the first and the second row. We think that
the dummy error estimated for r33 is a repercussion of the perturbation of row two. In next
section we review the different quantities that are involved in Theorem 4.2 with the aim of
looking at first implementation aspects.

5 Toward an implementation

Theorem 4.2 is the foundation of our error bounding algorithm. It involves several quantities
that need further study before deriving an implementation in Section 6. We decompose the
computation of the bound on |R̃ − R| into four principal tasks. We need to: 1) check

that R̃ is invertible; 2) compute a bound on G; 3) check that ρ(G) < 1; and 4) bound

H = triu(G(I − G)−1). We recall that at this point, only A and R̃ are known.

5.1 Invertibility check of R̃

For dealing with R̃−1 in a certified way, which is clearly a non trivial question in finite
precision, we use the verification solution of Oishi and Rump [21]. We compute a purely

numerical approximate inverse V ≈ R̃−1 (by numerical triangular inversion). Then we know
from [21] that, if

‖R̃V − I‖∞ < 1, (15)

then R̃ is invertible.

5.2 Bounding G

For bounding G, and dealing with the unknown inverse of R̃, we are also inspired by [21],

and introduce W = R̃V (≈ I). We have

G = |R̃−T AT AR̃−1 − I|
= |(W−TW T )R̃−T AT AR̃−1(WW−1) − (W−TW T )(WW−1)|
= |W−T (V T AT AV − W TW )W−1)| ≤ |W−T | · |V T AT AV − W T W | · |W−1|.

9



In the inequality above, if R̃ is close to R and V is close to R̃−1, then both V T AT AV and
W T W are close to identity. Hence it is natural to pursue with:

G ≤ |W−T | · |V T AT AV − I + I − W T W | · |W−1|
≤ |W−T | · |(V T AT AV − I) − (W TW − I)| · |W−1|

which gives
G ≤ |W−T | · (|(V T AT AV − I)| + |(W TW − I)|) · |W−1|. (16)

We will use (16) for computing a certified bound for G. The products involving A, R̃,

V , and W = R̃V will be bounded directly by interval techniques. It remains to bound
|W−1|. We expect W to be close to I, and may use a specific approximation. We have

|W−1| = |(I − (I − W ))−1| (see [21, Intro.]). Then, when R̃ is invertible,

|W−1| = |I + (I − W ) + (I − W )2 + . . . |
= |2I − W + (I − W )2(I + (I − W ) + (I − W )2 + . . .)|
≤ |2I − W | + |(I − W )2| · |I + (I − W ) + (I − W )2 + . . . |
≤ |2I − W | + M(‖I − W‖2

∞/(1 − ‖I − W‖∞))

where M(x) for x ∈ R denotes the matrix whose all entries are equal to x. Here we have
used the fact that the entries of |I − W |2 · |I + (I − W ) + (I − W )2 + . . . | are bounded by
the infinity norm. Since W is triangular, it follows that

|W−1| ≤ |2I − W | + ‖I − W‖2

1 − ‖I − W‖∞
· triu(1n · 1T

n ) (17)

where 1n is the column vector with all entries equal to 1. Note that the invertibility check (15)
ensures that 1−‖I −W‖∞ > 0. The absolute value |W−1| could have been bounded directly
using 1/(1 − ‖I − W‖∞), but introducing the infinity norm only in the second order terms
leads to a much better bound in our experiments.

The matrix manipulations we have done for obtaining (16) and (17) follow some keys to
the design of verification methods. We especially refer to [26, p. 211] where the introduction of
small factors is recommended. We have introduced the matrices V T AT AV −I and W T W −I
whose absolute bounds are expected to be small when R̃ ≈ R and W ≈ I. On the other
hand, in (17), |2I − W | is expected to be close to I, and remaining terms are second order
terms (see also the analysis for α in [21, §5]).

5.3 Bounding the spectral radius of G

For any consistent matrix norm we have ρ(A) ≤ ‖A‖. With the above bound on G, we will
simply test whether

‖G‖∞ < 1 (18)

for asserting that ρ(G) < 1 in Theorem 4.2. This test corresponds to the Gershgörin disks. It
could certainly be sharpened in future versions of the certificate, see for instance the Cassini
ovals in [3], or the iterative estimation in [27].
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5.4 Bounding |R̃ − R|
Once a bound on G is known it remains to bound H = triu(G(I − G)−1). We have

G(I − G)−1 = G + G2 + G3 + . . . = G + G2(I + G + G2 + . . .)

and

triu(G(I − G)−1) ≤ triu(G) + triu

( ‖G‖2
∞

1 − ‖G‖∞
· 1n · 1T

n

)
. (19)

Since G is expected to be small, H = triu(G(I − G)−1) is expected to be close to triu(G).
Note that using the spectral radius check (18) ensures that 1 − ‖G‖∞ > 0.

6 Error bounding algorithm for the QR factor R

Let F be a set of floating point numbers such that the arithmetic operations in F satisfy
the IEEE 754 standard. A and R̃ are now matrices in Fn×n. Since (finite) floating point

numbers are rational numbers, A and R̃ can be seen as rational matrices. Let R ∈ Rn×n be
the unknown QR factor of A (in general, the entries of R are not in F). We carry the approach
of Section 5 over to the floating point case for computing a floating point matrix H such that
|R̃ − R| ≤ H|R̃|. The error matrix H provided by Theorem 4.2 can be computed modulo
the two checks (15) and (18), and using the inequalities (16), (17), and (19). These checks
and inequalities only involve matrix multiplications, additions, subtractions, and divisions
by a scalar. After explaining the basic techniques we use for computing certified bounds
in floating point arithmetic, we present the error bounding algorithm and demonstrate its
effectiveness on various examples.

6.1 Certified bounds for floating point matrix expressions

We denote by fl(x) the value of an arithmetic expression x computed by floating point
arithmetic in F. For instance, for a, b ∈ F, fl(a + b × c) denotes the result in F with
the addition and the mutiplication performed in floating point arithmetic. In the text, an
arithmetic expression on floating point numbers denotes the exact value in R. For instance
a + b ∈ R is the result of the addition in R. The abolute value, the max, and the negation
are exact operations: for a, b ∈ F, fl(|a|) = |a|, fl(max{a, b}) = max{a, b}, fl(−a) = −a.

Thanks to the IEEE 754 standard, we can use the possibility of changing the rounding
mode for computing certified bounds. We essentially follow Rump’s approach for imple-
menting verified matrix operations [26], and Oishi and Rump [21]. We use the statements
“setround(down)” and “setround(up)”∗. All operations after a statement “setround(down)”
or “setround(up)” are rounded downwards or upwards, respectively, until the next call to
setround. For two floating point numbers a and b, a bound r on |a op b| for op ∈ {+,−,×,÷}
may be computed as follows. The program

setround(down); r = fl(a op b)
setround(up); r = fl(a op b); r = max{|r|, |r|} (20)

∗fesetround(FE DOWNWARD) and fesetround(FE UPWARD) in C language.
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leads to r and r such that r ≤ a op b ≤ r, and to r ∈ F such that |a op b| ≤ r, for any a and
b, and any op. The IEEE standard ensures that r and r are the best possible bounds in F.
This may be extended to the matrix operation A×B −C with A, B, C ∈ Fn×n. If A×B is
implemented using only additions and multiplications, then the program

setround(down); R = fl(A × B − C)
setround(up); R = fl(A × B − C); R = max{|R|, |R|} (21)

where the maximum is taken componentwise, provides R ≤ A × B − C ≤ R, and R ∈ Fn×n

such that |A × B − C| ≤ R. For bounding more general matrix expressions we will use a
midpoint-radius matrix representation (we refer to [26, §10.9]). Assume that M and N are
two matrices known to be in intervals [M, M ] and [N, N ], respectively. The intervals are for
instance obtained by a computation of type (21). Then the program [26, Fig. 10.22]:

setround(up); mM = fl((M − M)/2); rM = fl(mM − M)
mN = fl((N − N)/2); rN = fl(mN − N)

setround(down); R = fl(mM × mN − I)
setround(up); R = fl(mM × mN − I)

R = fl
(
max{|R|, |R|} + |mM | × rN + rM × (|mN | + rN)

)
(22)

computes R such that |M×N −I| ≤ R. Both (21) and (22) allow to use fast matrix routines
such as the BLAS ones (see the general discussion in [26, §10.9]) The number of operations
in F needed is 2 and 4 matrix products, respectively.

Other matrix operations that we will perform are additions, products, and divisions by
scalars for matrices with positive entries (absolute values essentially). We also compute in-
finity norms. With no subtraction involved, certified bounds can be computed using directed
rounding. From (20), upper bounds for these computations are obtained by evaluating the
floating point expressions after a “setround(up)” statement. For upper bounds on divisions
by a floating point number 1− g, we first compute upper bounds for −(g− 1) and 1/(g− 1).

Other approaches for certified matrix computations could be considered. We refer to
Rump [26] for a general discussion on this topic, and for the efficiency of the approach
chosen here.

6.2 Computing an error bound

For A and R̃ in Fn×n, R̃ upper triangular, we follow Section 5 for computing a floating point
matrix H such that |R̃ − R| ≤ H|R̃|. All operations are done in the given floating point
number set F. For simplifying the presentation we often forget the costs in O(n2).

The first step is the computation of V ≈ R̃−1. Such a triangular matrix inversion is done
in n3/3 operations [10, Ch. 14]. We then compute W and W for W = R̃V by two triangular
matrix products, this is done in 2n3/3 operations. This dominates the cost for checking that

R̃ is invertible by bounding |W − I| using (21), and by the infinity norm test (15). Re-using
W and W , a bound on |W−1| is then computed using (17) in O(n2) operations. The latter
uses (21) for |W −2I|, and computes a bound with positive matrices using directed upwards
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rounding. We now look at bounding G using (16). Since G is symmetric we restrict ourselves
to counting the operations for calculating the upper triangular part. With W ∈ [W, W ] one
can bound |W T W − I| using (22) in four matrix products. Since W is upper triangular,
and W T is lower triangular, the bound is obtained in 4n3/3 operations. We then use (21)
and (22) for computing an interval for AV in 2n3 operations (two dense × triangular matrix
products), and for bounding |V T AT AV T −I| in 4n3 operations (four dense products resulting
in a symmetric matrix). A bound on G is deduced by operations on matrices with positive
entries in 4n3/3 operations. The latter is essentially two dense × triangular matrix products
with a symmetric result. Once a bound on G is known, testing its spectral radius by (18)
costs O(n2) operations. G has positive entries, a bound on the error matrix H can then be
computed by directed towards rounding using (19) also in O(n2) operations.

We summarize this analysis, and take into account the final matrix product H|R̃| in the
following result.

Theorem 6.1. Let A ∈ Fn×n, and R̃ ∈ Fn×n upper triangular be given. The error bounding

algorithm computes a matrix F ∈ Fn×n such that |R̃−R| ≤ F , where R is the unknown QR
factor of A, in 10n3 + O(n2) floating point operations.

A QR factorization typically costs 2n3 + O(n2) (Gram-Schmidt or Householder ap-
proaches) or 3n3 + O(n2) (using Givens rotations). Hence we are able to compute a cer-

tified error bound |R̃ − R| at the cost of only five approximate factorizations. We have
implemented the algorithm in C language. The error bounding program takes in input two
floating point matrices A and R̃ and always returns a matrix F . The entries of F are finite
(positive) floating numbers if the program is able to certify that R̃ is invertible, that the
spectral radius of G is less than one, and if no overflow is produced. Otherwise, the entries
of F may be equal to infinity.

6.3 Computational results

The results we present here correspond to the application of Theorem6.1 with 64 bits floating
point numbers. In this section and in Section 7 the condition numbers and the “true errors”
have been computed with high precision using Mpfr [18]. For several types of matrices, we
study the behaviour of the certified error bound by looking at its value and its accuracy
(with respect to the true error), especially when the dimension and the condition number
increase. We mainly focus on the exponent k such that relative error is in 10−k, k expresses
the number of significant decimal digits we certify for the entries of R̃. Let us first come
back on the examples of Section 4. On the matrix A1, and R̃ from Matlab, we compute the
bound

|R̃ − R| ≤
[

6.7 × 10−11 6.7 × 10−11

0 5 × 10−16

]
.

Comparing to (13), we see that the finite precision estimator we propose is only slightly
overestimating the best bound that could be obtained by the method. On the matrix A2,
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and the corresponding perturbation of the exact R we get:

|R̃ − R| ≤




8.8 × 10−6 9.52 × 10−6 1.96 × 10−6

0 0.014207 0.023098

0 0 1.16 × 10−5


 .

The “large” perturbation of the second row is detected very accurately. For next results, R̃
is computed with the Modified Gram-Schmidt algorithm using 64 bits numbers as for the
estimator. Our tests use ten matrix samples.
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Figure 6.1: Certified ‖H‖∞ for random matrices A with κ2(A) ≈ 103.

We first illustrate the value of the certified bound with respect to the dimension. Figures 6.1
and 6.2 are for random input matrices A (of randsvd type [10, Ch. 28]).
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Figure 6.2: Certified maximum relative error on R for random matrices A
such that κ2(A) ≈ 103 (y axe with logarithmic scale).

We keep the condition number almost constant when the dimension increase. We draw the
infinity norm of H such that |R̃ − R| ≤ H|R̃|, and the certified maximum relative error on

the diagonal of R̃, we mean maxi |r̃ii− rii|/|r̃ii|. We see that ‖H‖∞ increases linearly with n.
The loss of accuracy on the diagonal is approximately quadratic in n (we use a logarithmic
scale for the y axe on Figure 6.2). Such small increase rates—that are typical of numerical
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algorithm forward errors themselves—demonstrate a first aspect of the effectiveness of our
finite precision bounds. The certified general maximum error maxij |r̃ij − rij|/|r̃ij| increases
faster. It typically grows from 10−7 to 10−5 for the dimensions considered here. We need
further investigation for a better understanding of the latter behaviour, especially of the
influence of the product H|R̃|, and of the magnitudes in R. Note also that for the two latter
figures, cond(R−1) is sligthly growing, and the growth of the estimation depends on the true
error itself.

We discuss next the accuracy of the certified bound with respect to the exact error (not the
quality of the QR algorithm itself). In addition to above randsvd matrices we also consider
random integer matrices with entries of absolute values less than 1000. On these two types
of matrices we obtain similar results. The condition numbers κ∞(A) are varying from about
104 to 106. On random integer matrices of dimension 1500, the maximum exact relative
error on R has order 10−10 to 10−9. We are able to certify this error by returning an error
bound of order 10−6 to 10−5. With respect to the dimension, we observe that the fast certified
bound overestimates the componentwise error by a factor of order about 103 for n = 200
to about 105 for n = 1500. Restricted to the diagonal entries, the overestimation goes from
about 102 to less than 104. This shows that even with condition numbers and dimensions
that can be here quite large, we are able to certify at least four or five significant decimal
digits for every entries of R, and at least 9 digits on the diagonal (where the error itself is
much smaller in general). On matrices with small condition number (generated using Matlab
gallery(’orthog’) [10, Chapter 28]) the quality of the certified bound may be remarkably
small and stable with respect to the dimension. For dimensions between 60 and 500, and
cond(R−1) ≈ 3 (κ∞ ≤ 200), we most of the time obtain an overestimation between 15 and

22 (and more than 12 certified significant decimal digits in R̃).
We may now ask the question of the sensitivity of the quality of the certified error bound

with respect to the condition number of the input matrix. We first report that the quality
maybe be very good even for matrices with high condition number. For Figure 6.4 we
use A = QAK ∈ Fn×n. The matrices Q are random orthogonal from the Matlab gallery

function [10, Chapter 28]. The matrices AK are Kahan upper triangular matrices with aii =
(sin θ)i−1, aij = −(sin θ)i−1 cos θ for j > i, and θ = 1.2.

Dimension 10 20 30 40 50 60 70
κ∞(A) 102 1.3 × 104 1.1 × 106 7.8 × 107 4.8 × 109 2.8 × 1011 1.5 × 1013

Bound/error 45 106 281 161 103 140 152

Certified digits in R̃ 14 12 10 9 7 5 4

Figure 6.4: Ratio of the certified relative error bound and the true error (max)

on Kahan matrices, and number of significant decimal digits certified in R̃.

However, in general, the quality of the bound may depend on the condition number. Consider
for instance the ratio of the certified relative error bound and the true error (max) for small
matrices (n = 10). For a Chebyshev Vandermonde-like (nearly orthogonal, κ∞ ≈ 13), the
ratio is about 11. We have a ratio about 14 for Toeplitz and symmetric positive definite
matrices (κ∞ ≈ 700). On the Pascal matrix (κ∞ ≈ 8 × 109) we get a ratio about 25, and
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about 1600 for the Hilbert matrix (κ∞ ≈ 3.5 × 1013). Figure 6.5 is more general. The
overestimation of certified error bound seem to increase quite slowly with the condition
number.

Condition number 
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Figure 6.5: Ratio of the certified relative error bound and the true error (max)
with respect to κ∞(A) on randsvd matrices of dimension n = 200.

We see that the limits of our algorithm, we mean the conditions in which it is returning
finite bounds, are clearly linked with the numerical properties of A. Let us give two examples
for the impossibility to certify the spectral radius using (18). We return finite bounds for

the error on every entries of R̃ for the Pascal matrix of dimension 14 (κ∞ ≈ 3.8 × 1014,
‖G‖∞ ≈ 0.06). For n = 15 the algorithm produces infinity bounds. On random randsvd

matrices of dimension 40, the algorithm is effective until κ∞ ≈ 3 × 1014 with ‖G‖∞ ≈ 0.9.
Note that in double precision, with relative rounding unit 2−53 (the backward error is larger
in general), and for a relative forward error less than 1, the rule of thumb (5) advocates for
a condition number less than 1016.

The certified bound is computed with finite precision, hence inherently, it overestimates
the true error. However, for realistic dimensions and condition numbers (with respect to the
precision), the overestimation is mastered. It follows that in general, many significant digits

are certified in the approximate QR factor R̃. The latter is a key to the application of the
fast bound to the reducedness certificate.

7 A certificate for LLL reducedness

To an n×n integer matrix A we associate the Euclidean lattice L generated by the columns
(aj) of A. About lattices the reader may refer for instance to Cohen’s book [6]. Since the
seminal Lenstra-Lenstra-Lovász algorithm [12]—whose range of application is exceptional—
the lattice basis reduction problem receives much attention. In particular, floating-point
variants that lead to very fast reduction approaches have been invented. See the work
of Nguyen and Stehlé [19, 31], of Schnorr [29], and references therein. Most of floating
point variants lead to powerful heuristics, especially à la Schnorr-Euchner [30], that are
implemented (often with improvements) in most of computer algebra and number theory
systems. Our aim here is not to study the basis reduction itself. We focus on the reducedness.
Indeed, a fast heuristic may not certify that the output basis is reduced (still working very
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well), and it is worthwhile to study the problem of checking a posteriori whether a given
basis is reduced or not. The notion of reduction we consider is the LLL reduction [12].

We propose here an algorithm that takes in input an invertible matrix A ∈ Zn×n, and
tests the LLL reducedness of the basis formed by the columns of A. In the Introduction
we have seen that this consists in testing the two conditions (2) and (3). Let R be the QR
factor of A. If the aj are proper, we mean

|ri,j|/ri,i ≤ η, 1 ≤ i < j ≤ n, (23)

and if the Lovász conditions
√

δ − (ri,i+1/ri,i)
2 ri,i ≤ ri+1,i+1, 1 ≤ i ≤ n − 1, (24)

are satisfied, then the basis a1, a2, . . . , an of L is called LLL reduced with parameters (δ, η).
The latter satisfy 1/4 < δ ≤ 1 and 1/2 ≤ η <

√
δ.

The principle of the algorithm is to compute an approximate R̃ together with error
bounds (using the floating point algorithm of Section 6), then to test (23) and (24).

The entries of A are integers of arbitrary size (our implementation relies on Gmp [17]).
Therefore the entries of A may not be represented exactly by elements in F. Nevertheless,
for the computation of an approximate R̃ we may take Ã by direct conversion to F. Since the
error is very small and R̃ will be an approximation anyway, this does not really influence the
quality of subsequent computations. Then R̃ is computed by the Modified Gram-Schmidt
algorithm. Once R̃ is known we apply Theorem 6.1 for computing a certified error bound.
The only expression that has to be bounded with A involved is in (16), where the computation
of AV using the program (21) is needed. The problem of conversion to F is solved here by
rounding upwards and downwards during the conversion integer to floating point. We mean
that we introduce a small interval such that A ∈ [A−, A+] with A−, A+ ∈ Fn×n (see the
certified techniques in Section 6.1), and we evaluate A−V and A+V in (21). Therefore the

error bound F ∈ Fn×n we compute by Theorem 6.1 is actually such that |R − R̃| ≤ F for R
the QR factor of any A ∈ [A−, A+].

Once F is known, for fixed i and j, we test (23) by resorting to the bounding techniques
of Section 6.1:

setround(down); η = fl(η); ti = fl((ri,i − fi,i) × η)
setround(up); tj = fl(|ri,j| + fi,j)

test tj ≤ ti?
(25)

with temporary variables ti and tj . Recall that the diagonal entries of R are positive.
Similarly, for a fixed i, we test (24) using:

setround(up); ti = fl(ri,i + fi,i); δ = fl(δ);
setround(down); ti+1 = fl(ri+1,i+1 − fi+1,i+1)

t = fl (((|ri,i+1| − fi,i+1)/ti)
2) − δ; t = −t;

setround(up); t = fl(
√

t × ti)
test t ≤ ti+1?

(26)
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with temporary variables t and ti. In practice, for minimizing the cost induced by the
changes of rounding mode, loops are put between the setround instructions. In addition
to the 10n3 + O(n2) operations for computing F using Theorem 6.1, the reducedness test

essentially requires 2n3 + O(n2) operations for computing an approximate factor R̃. This
gives the following.

Theorem 7.1. Let A ∈ Zn×n invertible and parameters (δ, η) be given. The reducedness

certificate certifies in 12n3 + O(n2) floating point operations that the column lattice of A is

LLL reduced with parameters (δ, η), or returns “failed”.

The reducedness is certified when the error bound computed for |R̃−R| is finite, when no
overflow or underflow occur during the test, and when the basis is reduced. The cost of the
certificate is roughly the one of six floating point QR factorizations. Therefore in general,
the reducedness test should be much faster than the reduction process itself, and may be
appended to any reduction heuristic program.

Let us now report some experiments. As previously in the paper all codes are run using
64 bits floating point numbers. The effectiveness of the certificate essentially relies on the ef-
fectiveness of the error bounding algorithm. We have manipulated lattices using Magma [13],
the LLL reduction implementation is based on the work of Nguyen and Stehlé [19, 31]. The
first family of reduced bases—matrices A—we consider are obtained by the reduction of
n × n random integer matrices. The bases are reduced for the classical LLL parameters
(δ, η) = (3/4, 1/2) in Figure 7.1, and (δ, η) = (0.99, 0.5001) for a stronger reduction in
Figure 7.2.

Dimension 40 200 500 1000
κ∞(A) 4.7 × 102 2.4 × 104 1.8 × 105 9 × 105

tk − t = mini{ti+1 − t} in (26) 18 10 13 23
Certified absolute error on ‖a∗

k‖2 7.5 × 10−12 3 × 10−10 1.5 × 10−9 1.2 × 10−8

Certified maxij µij 0.4997 0.499994 0.49991 0.49999
Max. certified relative error on |rij | 2.8 × 10−11 8.6 × 10−9 1.5 × 10−7 3 × 10−5

Figure 7.1: Reducedness certificate output on (3/4, 1/2)-reduced bases from random

integer matrices with entries on 103 bits, max |aij | ≤ 1000.

Since the numerical quality of the tested bases is good (κ∞(A) ≤ 106), the reducedness
certificate is highly efficient. We mean that the certified error is very small, and hence the
tests are passed except in exceptional cases. Figures 7.1 and 7.2 for instance look at the
smallest difference tk − t whose positiveness has to be certified in (26). The certificate has
lots of room since the absolute errors on t and tk = ‖a∗

k‖2 are much smaller. Exceptional
cases will rather occur when testing properness. Indeed, testing reducedness may be an ill-
posed problem because of the possible equalities in (23) and (24). An ill-posed case with say
η = 1/2, is for example a reduced basis with µij = 1/2 for some i, j. Therefore the algorithm
will rather be used for certifying that a (δ, η)-reduced basis is a (δ− ǫ1, η + ǫ2)-reduced basis
for small ǫ1, ǫ2. The latter does really affect the relevant certified informations provided by
the reduction.
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Dimension 40 200 500 1000
tk − t = mini{ti+1 − t} in (26) 4.8 × 10−2 7.7 × 10−2 5.3 × 10−2 7.3 × 10−2

Certified absolute error on ‖a∗

k‖2 9.4 × 10−14 6 × 10−12 4 × 10−11 2 × 10−10

Figure 7.2: Reducedness certificate output on (0.99, 0.501)-reduced bases from random

integer matrices with entries on 10 bits, max |aij | ≤ 10.

A second type of reduced bases on which we have run the certificate comes from the
problem of computing a good floating point coefficient polynomial approximation to a func-
tion [2]. We have considered reduced bases with parameters (3/4, 1/2). These bases may
have integer entries as large as 1080. The certificate has always succeeded. On a 18 × 18
example, with κ∞(A) ≈ 4 × 1012, the smallest difference t − tk has been around 2.4 × 1076

with certified absolute error 1.95 × 1062. The maximum of the µij has been certified to be
less than 0.493. On an example with n = 31 and κ∞(A) ≈ 8 × 1013, we have certified an
absolute error 3.2× 1053 for t− tk ≈ 1.7× 1067. On the latter example we have also checked
that maxµij ≤ 0.4991, thanks to a maximum relative error |R̃ −R| certified to be less than
0.2 (only 6 × 10−15 on the diagonal).

The first main source of failure of the certificate is the failure of the error bounding
algorithm when the precision is too small compared to the numerical quality of the tested
basis. We have run the certificate on a third class of reduced bases. These bases are obtained
by the reduction of “random” (knapsack type) lattice bases in the sense of [20, §3.4]. In the
experiments reported here, the non reduced bases have random integers of 103 bits in the
knapsack weight row. The reduced bases in input of the certificate (matrices A) are dense
with integers as large as 1045 for n = 75, and 1020 for n = 300. We use the parameters
(δ, η) = (3/4, 1/2) and (δ, η) = (0.99, 0.5001). The choice (δ, η) = (0.99, 0.5001) produces
better reduced bases as shown by κ∞ in Figure 7.3 (for a same non reduced basis). Until
dimension 175 the certificate is very likely to succeed since the maximum certified relative
error is small. On several tenths of trials, the certificate never failed, with a certified max |µij|
as close to 1/2 (with η = 1/2) as 0.4999916.

Dimension 75 100 125 150 175
(δ, η) = (3/4, 1/2), κ∞(A) 6 × 105 5.2 × 106 2.3 × 108 1.3 × 1010 2 × 1011

tk − t = mini{ti+1 − t} in (26) 1.3 × 1037 8.5 × 1026 4.2 × 1020 3 × 1015 1.2 × 1012

Max. certified relative error on |rij | 1.3 × 10−9 3.4 × 10−8 2.2 × 10−6 2.1 × 10−5 6.3 × 10−3

(δ, η) = (0.99, 0.5001), κ∞(A) 2.4 × 104 4.6 × 105 4 × 105 4 × 107 9 × 108

Max. certified relative error on |rij | 5.1 × 10−10 2.5 × 10−9 3.9 × 10−8 6 × 10−7 9.5 × 10−6

Figure 7.3: Reducedness certificate output on “random” reduced bases from knapsack problems,

max |aij | goes from 1045 (n = 50) down to 1025 (n = 175).

Beyond dimension 175 with this type of reduced basis, the certificate starts to fail more
often. On dimension 200 with a conditioning about 1012 with (3/4, 1/2), the error bound
on the relative error approaches 1. The properness with η = 1/2 may become impossible
to check, and ask for a certificate with η = 1/2 + ǫ, say η = 0.5001. Note that the Lovász
test (26) seems to fail later thanks to much better error bounds on the diagonal in general. On
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dimension 300 for (3/4, 1/2) the quality of the reduced bases is too deteriorated (κ∞ ≈ 1019),
and the error bounding algorithm fails with the impossibility of having a small spectral radius
in (5.3). Nevertheless, on a typical example of dimension 300 with a (0.99, 0.5001) reduced
basis, the error bounding algorithm remains effective (κ∞ ≈ 2.5 × 1013, ‖H‖∞ ≈ 0.6). The
certificate may not be able to certify the actual reducedness of the basis, for example with
mini{ti − t} ≈ −4.12× 108, and a too big absolute error bound 4.42× 108. By changing the
certificate parameters to (δ − ǫ1, η + ǫ2) = (0.985, 0.515), the certificate succeeds again, and
therefore is still able to certify a relevant information on the basis.

The numerical limitations of the certificate are close to those identified in [20, Heuristic 4]
for the reduction process itself. Indeed, on the knapsack bases, it is claimed in [20] that a
precision n/4 + o(n) should suffice when using the floating point reduction of [19]. This
means that n ≈ 200 is a barrier with a 53 bits precision (64 bits numbers). The eventuality
of a link between both limitations deserves to be further investigated.

8 Conclusions

Between numerical approximation and computer algebra, we propose a certificate for an
(exact) algebraic/geometric property—the LLL reducedness of a lattice basis. This work,
based on the fast computation of certified error bounds, inherits from the verification methods
approach. In particular, thanks to the IEEE arithmetic standard, the floating point errors
do not put a curb on the objective of certification. They may rather be mastered and
used for accelerating the programs. In error bound computation and property certification,
the foreground of our study is to understand the compromize between the cost and the
quality/effectiveness of bounds and certificates. In our case for instance, may we hope for
an O(n2) effective certificate? Various computer arithmetics come in the background, where
floating point computation, multi-precision, verification identities, midpoint-radius intervals,
and exact computation are collaborative tools.

We think that our study raises several directions that deserve further investigations. The
error bounding problem for the R factor, and its finite precision implementation should be
better understood and improved, ingredients such as diagonal scaling and other approximate
QR factorizations may be introduced. The usefulness of taking into account the algorithm
used for computing R̃ should be studied (in a more restrictive verification approach). A
more general question is to know whether reducedness could be certified without resorting
to the QR factorization?

To our knowledge, the minimum precision required for a proven LLL variants is 1.6n+o(n)
with the L2 algorithm of [19, 20] (for δ close to 1 and η close to 1/2). Our experiments
show we may certify reducedness for dimensions much higher than this worst-case limit
(nmax ≤ 53/1.6 ≈ 33). The certificate is therefore very effective for a use complementary
to reduction heuristics in dimension greater than nmax with double precision. Noticing the
fact that the certificate is sensitive to the numerical properties of the input basis, it is worth
studying its extensions to reduction algorithms and reducedness certificates with adaptative
precision, and sensitive to the numerical quality.
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Nancy, France, December 2005.

[32] G.W. Stewart. On the perturbation of LU, Cholesky, and QR factorizations. SIAM J. Math.

Anal., 14(4):1141–1145, 1993.

[33] J.-G. Sun. Perturbation bounds for the Cholesky and QR factorizations. BIT, 31:341–352,
1991.

[34] J.-G. Sun. Componentwise perturbation bounds for some matrix decompositions. BIT, 32:702–
714, 1992.

[35] H. Zha. A componentwise perturbation analysis of the QR decomposition. SIAM J. Matrix

Anal. Appl., 14(4):1124–1131, 1993.

22

http://www.mpfr.org

	Introduction
	Error bounds computation and verification algorithms
	Perturbation analyses and bounds for the QR factorization
	Strict componentwise bounds for the R factor
	QR and Cholesky factorization
	The bound on |R"0365R-R|

	Toward an implementation
	Invertibility check of R"0365R
	Bounding G
	Bounding the spectral radius of G
	Bounding |R"0365R-R|

	Error bounding algorithm for the QR factor R
	Certified bounds for floating point matrix expressions
	Computing an error bound
	Computational results

	A certificate for LLL reducedness
	Conclusions

