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ASYMPTOTIC AND NUMERICAL MODELLING OF FLOWS

IN FRACTURED POROUS MEDIA

Philippe ANGOT, Franck BOYER and Florence HUBERT1

Abstract. This study concerns some asymptotic models used to compute the flow outside and inside
fractures in a porous medium. The flow is governed by the Darcy law both in the fractures and in
the porous matrix with large discontinuities in the permeability tensor. These fractures are supposed
to have a small thickness with respect to the macroscopic length scale, so that we can asymptotically
reduce them to immersed polygonal fault interfaces and the model finally consists in a coupling between
a d-dimensional elliptic problem and a (d-1)-dimensional one on the sharp interfaces modelling the
fractures.

A cell-centered finite volume scheme on general polygonal meshes fitting the interfaces is derived to
solve the set of equations with the additional differential transmission conditions linking both pressure
and normal velocity jumps through the interfaces. We prove the convergence of the FV scheme for
any set of data and parameters of the models and derive existence and uniqueness of the solution to
the asymptotic models proposed. The models are then numerically experimented for fully or partially
immersed fractures. Some numerical results are reported showing different kinds of flows in the case
of impermeable or partially/fully permeable fractures. The influence of the variation of the aperture
of the fractures is also investigated. The numerical solutions of the asymptotic models are validated
by comparing them to the solution of the global Darcy model or to some analytic solutions.

1991 Mathematics Subject Classification. 76S05 - 74S10 - 35J25 - 35J20 - 65N15.

The dates will be set by the publisher.

1. Introduction

The present work addresses the numerical modelling of flows in fractured porous media by means of finite
volume methods. The flow in the fracture domain Ωf , in general fully immersed in the porous matrix Ω, is
assumed to be governed by the Darcy law, as in the porous matrix, with an anisotropic permeability tensor Kf .
Our objective is to study asymptotic “double-permeability” models of fracture flow interacting with the matrix
flow where the fractures are reduced to sharp interfaces Σ when the fracture aperture bf is going to zero. More
precisely, if lm and lp denote respectively the macroscopic and pores length scales, we have : lp � bf � lm. The
models involve some algebraic or differential immersed transmission conditions on the mean fracture surface
Σ which combine the jumps of both pressure and normal velocity through the fault interface. The fractures
may be “impermeable” (no jump of normal velocity with jumps of pressure on Σ), “fully permeable” (jumps
of normal velocity with no jump of pressure on Σ), or characteristic of intermediate cases according to some
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physical phenomena altering their properties with time : mechanical effects (erosion, sedimentation, clogging,
thermomechanical stress), chemical effects... [7, 14].

The global Darcy simulations of such problems require refined meshes inside the fracture domain Ωf , that are
usually very expensive. Hence the asymptotic models, where the fractures are reduced to immersed polygonal
fault interfaces, are useful to provide a good approximation of the global flow at a lower cost.

Outline

The paper is organized as follows. Section 2 is devoted to the derivation of the asymptotic models of flow
in fractured porous media we are interested in. The permeability anisotropy along the curvilinear coordinates
associated with Σ is taken into account. The models depend on quadrature rules used to approximate the mean
variables across the fracture and are characterized by a real parameter ξ ≥ 1

2 .
We state and prove in Section 3 the global solvability of the asymptotic models in the case of a fully immersed

fracture inside the porous matrix. In Section 4, a cell-centered finite volume scheme is proposed to approximate
the solution of this problem. We prove the convergence of the finite volume approximate solution towards the
unique solution of the asymptotic model under study, for any value of the parameter ξ ∈ [ 1

2 ,+∞[.
Numerical investigations of the validity of the asymptotic models is proposed in Section 5. All the numerical

results of the asymptotic models are compared to the solutions of the global double-permeability Darcy system,
discretized by means of a modified Discrete Duality Finite Volume scheme on meshes locally refined in the
neighborhood of the fractures. Such m-DDFV schemes are proved to be first-order in the discrete H 1- norm
in [9], for any kind of anisotropy and heterogeneity of the permeability tensor.

We first illustrate the various typical flows we can expect depending on the physical properties of the fracture
(impermeable, permeable, ...) in the case of a single fracture and we study the influence of the choice of the
quadrature parameter ξ.

Then, the behavior of the model and some of its limits are illustrated on more complex situations: a fracture
network, a non-constant aperture fracture. Finally we compare our result with analytical solutions obtained
in [19] in the case of a lens-shaped fracture in an infinite porous matrix.

2. Asymptotic models of flow in fractured porous media

We consider an open polygonal bounded domain Ω̃ ⊂ R
d (d= 2 or 3 in practice); Γ

def

= ∂Ω̃ is divided into
two disjoint subsets Γ = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅, on which Dirichlet or Neumann boundary conditions will be
respectively considered. For sake of simplicity, we concentrate now on the 2D case, see Fig. 1. There is no
difficulty to consider numerous disjoint fractures or fractures in contact with the boundary of the domain but
we only treat here the case of a single fully immersed 1D polygonal fracture Σ ⊂ Ω̃.

Let us define the open bounded set Ω ⊂ Ω̃, representing the porous matrix, such that Ω̃ = Ω ∪ Σ and its
boundary ∂Ω=Γ ∪ Σ. It is always possible to embed Σ within a polygonal interface Σ̃ ⊃ Σ which divides the
domain Ω̃ into two open disjoint subdomains Ω− and Ω+ such that Ω̃ = Ω− ∪ Σ̃ ∪ Ω+. Let n be the outward
unit normal vector on Γ, and ν the unit normal vector on Σ oriented from Ω− to Ω+. The outward unit normal
to ∂Ω+ on Σ is then n+ = −ν and the outward unit normal to ∂Ω− on Σ is n− = ν. Let τ be a unit tangential
vector on Σ so that (τ ,ν) is positively oriented, and s a normalized curvilinear coordinate parametrizing Σ
in the direction given by τ . In our bidimensional situation, the boundary of Σ is composed by two points
∂Σ = {∂Σ+, ∂Σ−} defined in such a way that s = 0 in ∂Σ− and s = |Σ| in ∂Σ+.

For any function ψ in H1(Ω), let γ+ψ and γ−ψ be the traces of ψ on each side of Σ, ψ = 1
2 (γ+ψ + γ−ψ)

the arithmetic mean of traces of ψ, and [[ψ]] = (γ+ψ − γ−ψ) the jump of traces of ψ on Σ oriented by ν (see
Section 3.1.1). Let ∇τ and ∇τ · denote the tangential gradient and divergence operators along Σ.

Notice that the sets Ω+ and Ω− will never appear neither in the final set of equations nor in the finite volume
scheme we will propose. They are only introduced to fix an orientation and to give a precise meaning of the
trace operators γ+ and γ−.
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Darcy law in the porous matrix   

Darcy law in the fracture Σ
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Figure 1. Configuration for “‘double-permeability” models.

2.1. Governing equations for the flow in the porous matrix

We suppose that the flow in the porous matrix Ω is governed by a mass conservation equation together
with Darcy’s law relating the gradient of the pressure p to the filtration velocity vp and some usual boundary
conditions on Γ, see Fig. 1 :

∇ · vp = Q in Ω (1)

vp = −
1

µ
K · (∇p− ρg) in Ω (2)

p = pD on ΓD (3)

vp · n = 0 on ΓN (4)

where K is the permeability tensor of the porous medium, symmetric and positive definite, µ > 0 and ρ > 0 the
dynamic viscosity and the density of the fluid, g the gravity, and Q a mass source term. It is of course possible
to consider more general boundary conditions on ΓN like non-homogeneous Fourier boundary conditions for
instance but we focus our attention here on homogeneous neumann conditions.

2.2. Asymptotic model of flow in the fracture

2.2.1. Averaging the Darcy law across the fracture

The flow inside the fracture domain Ωf =
{
s+ tν(s) / s ∈ Σ, t ∈

[
−

bf (s)
2 ,

bf (s)
2

]}
with bf � 1, is supposed

to satisfy the Darcy law for a permeability tensor Kf given in the curvilinear frame (τ ,ν) by

Kf =

[
Kf,τ 0

0 Kf,ν

]
,

that is (Kfτ , τ ) = Kf,τ , (Kfν,ν) = Kf,ν . Note that we assume that Kf is diagonal in the curvilinear frame,
that is (Kfτ ,ν) = 0. It is possible to write down a model for general permeabilities such that (Kfτ ,ν) 6= 0
but its analysis is then much more intricate.

The coefficients Kf,τ and Kf,ν can be estimated by specific studies of flows inside different kinds of fractures
[1]. Transversely to Σ, the variations of the permeability Kf in the fracture are neglected and we define the
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mean quantities of the variables :

uf,τ =
1

bf

∫ bf
2

−
bf
2

vp · τ dt, uf,ν =
1

bf

∫ bf
2

−
bf
2

vp · ν dt, Πfp =
1

bf

∫ bf
2

−
bf
2

p dt, Qf =
1

bf

∫ bf
2

−
bf
2

Qdt.

First, we average the mass conservation equation (1) and the Darcy law (2) over the cross-section of the fracture
which gives respectively :

∇τ · (bfuf,τ ) + [[vp · ν]] = bfQf ,

uf,τ = −
1

µ
Kf,τ (∇τ Πfp− ρg · τ ),

uf,ν = −
1

µ
Kf,ν

(
[[p]]

bf
− ρg · ν

)
.

Then, by using the trapezoidal quadrature rule to approximate the mean variables with an error in O(b2f ), i.e.

Πfp ' p, uf,ν ' vp · ν, (5)

we get the first asymptotic model of flow along the fault interface Σ :

∇τ · (bfuf,τ ) = bfQf − [[vp · ν]] in Σ (6)

uf,τ = −
1

µ
Kf,τ (∇τ Πfp− ρg · τ ), in Σ (7)

Πfp = p, in Σ, (8)

vp · ν = −
1

µ
Kf,ν

(
[[p]]

bf
− ρg · ν

)
in Σ. (9)

Finally, a natural Neumann boundary condition for the pressure on ∂Σ is added to close the system :

uf,τ = 0 on ∂Σ.

This boundary condition states that, since the fracture aperture is small, most of the fluid exchanges takes
place through the boundary of the fracture. Other kind of boundary conditions can of course be considered :
in the case where the fracture is touching Γ it can be natural to impose a Dirichlet boundary condition on the
pressure on ∂Σ (see some numerical results in Section 5).

2.2.2. Generalization for other quadrature rules

Such models have already been proposed in [13, 17]. In fact, in those references other quadrature rules are
used in place of the trapezoidal rule to approximate the cross-section mean values of the pressure Πfp and of
vp · ν in (5). Following the computations in the above references, we propose to replace (8) by

Πfp = p+
(2ξ − 1)µ

4Kf,ν
bf [[vp · ν]], on Σ,

where ξ ≥ 1/2 is a quadrature parameter.
For example, the trapezoidal rule (8) is recovered when ξ = 1/2 which appears to be the most natural and

simple choice, whereas the use of the mid-point rule gives ξ = 3/4. We give some numerical comparison of the
models for various values of this parameter in Section 5.
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Finally, the asymptotic model we study in this paper is (together with equations (1)-(4)):

∇τ · (bfuf,τ ) = bfQf − [[vp · ν]] in Σ, (10)

uf,τ = −
Kf,τ

µ
(∇τ Πfp− ρg · τ ) in Σ, (11)

vp · ν = −
Kf,ν

µ

(
[[p]]

bf
− ρg · ν

)
in Σ, (12)

Πfp = p+
(2ξ − 1)µ

4Kf,ν
bf [[vp · ν]] in Σ. (13)

Formally, when bf → 0, we see from (10) and (12) that [[vp · ν]] and [[p]] are enforced to tend to 0 on Σ.

Furthermore, bfKf,τ and
Kf,ν

bf
can be understood as equivalent tangential (resp. normal) permeabilities of the

sharp fracture limit.

2.2.3. Bibliographical remarks

These models were already studied in [18] in the particular case where the fracture interface Σ is not immersed

inside the domain Ω̃, but separates it into disjoint subdomains and for the quadrature parameter ξ > 1/2
(typically ξ = 3/4 or ξ = 1). In this reference, the most natural model (that is when ξ = 1/2) does not enter
the analysis because of the mixed formulation considered. In particular, the mixed finite element approximation
used there seems to yield numerical instabilities when ξ → 1/2. The model with ξ = 3/4 is also numerically
studied in [13] for an isotropic fracture permeability tensor Kf .

In the case of fully immersed fracture, the asymptotic model is numerically experimented in [8] for ξ = 3/4.
In [3–5], it is proposed (in the case ξ = 1/2) to replace the partial differential equation (10)-(11) on the fracture
by a simpler algebraic model. More precisely, in these references, equations (1)-(4) and (12)-(13) are conserved
whereas (10)-(11) are replaced by

[[vp · ν]] = −
bfKf,τ

µ

(
1

s
(p− P ) − ρg · τ

)
+ bfQf on Σ,

where P is a given reference pressure at s = 0. The coupling of these last models with solutal transport problems
was also numerically experimented in [6].

3. Well-posedness of the asymptotic models

3.1. Functional setting

3.1.1. Trace results for fractured domains

We define H1
Γ(Ω) = {p ∈ H1(Ω), p = 0 on Γ}. Let us recall the trace theorems available for the fractured

domain Ω (see for instance [15]). We concentrate here on the trace problem on the fracture Σ since the trace
operator γΓ on Γ can be defined classically.

First of all, we define two linear and continuous trace operators γ+ and γ− from H1(Ω) on H
1
2 (Σ), for

instance by using the standard trace operators on the two domains Ω+ and Ω− and showing that the restriction
to Σ to these traces does not depend on the way Ω+ and Ω− are constructed from the interface Σ.

We can also prove that the space S defined by

S = {u ∈ C∞(Ω) ∩ C∞(Ω̄+) ∩ C∞(Ω̄−), u is constant near the extremities of Σ}, (14)

is dense in H1(Ω).
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Proposition 3.1. The global trace operator γΣ on Σ defined by

γΣ : p ∈ H1(Ω) 7→ γΣ(p) = (γ+(p), γ−(p)) ∈ H
1
2 (Σ) ×H

1
2 (Σ),

is continuous from H1(Ω) onto the space

TΣ =

{
(g+, g−) ∈

(
H

1
2 (Σ)

)2

,

∫ |Σ|

0

|g+(s) − g−(s)|2

s(|Σ| − s)
ds < +∞

}

=

{
(g+, g−) ∈

(
H

1
2 (Σ)

)2

, g+ − g− ∈ H
1
2

00(Σ)

}
,

endowed with the norm

‖(g+, g−)‖TΣ
=

(
‖g+‖2

H
1
2

+ ‖g−‖2

H
1
2

+

∫ |Σ|

0

|g+(s) − g−(s)|2

s(|Σ| − s)
ds

) 1
2

.

Furthermore, there exists a continuous linear operator RΣ : TΣ → H1
Γ(Ω) which is a right inverse of the global

trace operator, that is

γΣ ◦RΣ = IdTΣ
.

Finally, C∞
c (Ω) is dense in ker γΣ ∩H1

Γ(Ω).

One can now define the normal traces on Σ of any vector field in v ∈ Hdiv(Ω)
def

= {u ∈ (L2(Ω))d, ∇ · u ∈
L2(Ω)} as follows.

Proposition 3.2. The map v · n defined by

g = (g+, g−) ∈ TΣ 7→ (v · n)(g)
def

=

∫

Ω

v · ∇RΣ(g) dx+

∫

Ω

(∇ · v)RΣ(g) dx,

is linear continuous and does not depend on the choice of the right inverse operator RΣ. Furthermore, there

exists two unique elements in (H
1
2 (Σ))′ and H− 1

2 (Σ) = (H
1
2

00(Σ))′ respectively denoted by [[v · ν]] and v · ν such

that

〈v · n, g〉TΣ
′,TΣ

= −

〈
[[v · ν]],

g+ + g−

2

〉

(H
1
2 )′(Σ),H

1
2 (Σ)

− 〈v · ν, (g+ − g−)〉
H− 1

2 (Σ),H
1
2
00(Σ)

.

When v is smooth enough (say v ∈ (H1(Ω))d), [[v · ν]] and v · ν are respectively equal to the jump and the
mean-value of v · ν across Σ.

Finally, we have for any φ ∈ H1(Ω) the following Stokes formula

∫

Ω

v·∇φ dx+

∫

Ω

(∇·v)φ dx = 〈v·n, γΓφ〉
H− 1

2 (Γ),H
1
2 (Γ)

−〈[[v·ν ]], φ〉
(H

1
2 )′(Σ),H

1
2 (Σ)

−〈v · ν, [[φ]]〉
H− 1

2 (Σ),H
1
2
00(Σ)

. (15)

3.1.2. Functional spaces

From now on, we assume given the fracture aperture s 7→ bf (s) such that

bf ∈ C1(Σ), inf
Σ
bf > 0. (16)

The gravity vector g, the density ρ and the viscosity µ of the fluid as well as the quadrature parameter
ξ ∈

[
1
2 ,+∞

[
appearing in the model are fixed all along the following analysis.
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We denote by ‖ · ‖0,Ω the L2−norm on Ω and ‖ · ‖1,Ω the H1−norm on Ω. Let L2(Σ) and H1(Σ) be the
standard Lebesgue and Sobolev spaces on Σ endowed with their respective usual norms ‖ · ‖0,Σ and ‖ · ‖1,Σ. For
any pressure field q ∈ H1(Ω) defined inside the porous matrix, let us associate the Darcy velocity vq ∈ (L2(Ω))2

defined by

vq = −
K

µ
(∇q − ρg), (17)

and, in the case where vq ∈ Hdiv(Ω), we define the fracture pressure Πfq on Σ by

Πf q = q +
(2ξ − 1)µ

4Kf,ν
bf [[vq · ν]] ∈ (H

1
2 (Σ))′. (18)

Notice that the product bf [[vq · ν]] is well defined since bf is supposed to be smooth (see (16)). We introduce
the space

W =
{
q ∈ H1(Ω) such that vq ∈ Hdiv(Ω), (2ξ − 1)[[vq · ν]] ∈ L2(Σ),Πf q ∈ H1(Σ)

}
,

endowed with the norm

‖q‖W =
(
‖q‖2

1,Ω + ‖Πfq‖
2
1,Σ + (2ξ − 1)‖[[vq · ν]]‖2

0,Σ

) 1
2 .

3.2. Well-posedness of the problem

We call a solution of the asymptotic model, any function p ∈ W that satisfies

∇ · vp = Q in Ω, (19)

p = pD on ΓD, (20)

vp · n = 0 on ΓN , (21)

−∇τ ·

(
bf

Kf,τ

µ
(∇τ Πfp− ρg · τ )

)
= bfQf − [[vp · ν]] in Σ, (22)

−
Kf,τ

µ
(∇τ Πfp− ρg · τ ) = 0 on ∂Σ, (23)

vp · ν = −
Kf,ν

µ

(
[[p]]

bf
− ρg · ν

)
on Σ, (24)

where vp and Πfp are defined in (17)-(18) above.
Our first result is the following.

Theorem 3.3. For any ξ ≥ 1
2 , the problem (19)-(24) admits a unique solution p ∈ W.

Proof.

• Existence: This will be proved in the following section by passing to the limit in the finite volume
scheme.
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• Uniqueness: The problem being linear, it is enough to show that if p ∈ W is a solution to the
homogeneous problem

ṽp = −
K

µ
∇p, in Ω, (25)

∇ · ṽp = 0 in Ω, (26)

p = 0, on ΓD, (27)

ṽp · n = 0 on ΓN , (28)

−∇τ ·

(
bf

Kf,τ

µ
∇τ Πfp

)
= −[[ṽp · ν]] on Σ, (29)

−
Kf,τ

µ
∇τ Πfp = 0 on ∂Σ, (30)

ṽp · ν = −
Kf,ν

µ

[[p]]

bf
on Σ, (31)

then we have p = 0.
To this end, we use p as a test function in (26), and using the Stokes formula (15), we get

0 =

∫

Ω

p∇ · ṽp dx

=

∫

Ω

K

µ
|∇p|2 dx− 〈[[ṽp · ν]], p〉

(H
1
2 (Σ))′,H

1
2 (Σ)

− 〈ṽp · ν, [[p]]〉
H− 1

2 (Σ),H
1
2
00(Σ)

=

∫

Ω

K

µ
|∇p|2 dx− 〈[[ṽp · ν]], p〉

(H
1
2 (Σ))′,H

1
2 (Σ)

+

∫

Σ

Kf,ν

µ

∣∣∣∣
[[p]]

bf (s)

∣∣∣∣
2

bf (s) ds.

Since p ∈ W , we can use Πfp ∈ H1
bf

(Σ) as a test function in (29) with the boundary condition (30).

We get

0 =

∫

Σ

Kf,τ

µ
|∇τ Πfp|

2bf ds+ 〈[[ṽp · ν]],Πfp〉
(H

1
2 (Σ))′,H

1
2 (Σ)

.

Adding the previous two equalities and using the definition (18) of Πfp, it follows

∫

Ω

K

µ
|∇p|2 dx+

∫

Σ

Kf,τ

µ
|∇τ Πfp|

2bf ds+

∫

Σ

Kf,ν

µ

∣∣∣∣
[[p]]

bf

∣∣∣∣
2

bf ds+
(2ξ − 1)µ

4Kf,ν

∫

Σ

[[ṽp · ν]]
2
bf ds = 0.

We conclude, since ξ ≥ 1
2 , and using (27), that the unique solution p ∈ W of (26)-(32) is p = 0, which

proves that problem (19)-(24) has at most one solution in W .

�

Remark 3.4. Existence and uniqueness of a solution to problem (19)-(24) can also be proved in the case ξ > 1
2

by using a mixed formulation (see [18] in the case of the non-immersed fracture, that is when Ω̃ \ Σ is not
connected). For ξ = 1

2 the coercivity of the mixed formulation is no more satisfied. Nevertheless, we can recover

the result (for instance when pD = 0) by using the Lax-Milgram theorem for the following variational problem

Find p ∈ W0 such that a(p, q) = L(q) for all q ∈ W0,
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where W0 = W ∩ γ0,D
−1({0}), and a is the bilinear form on W0 defined by

a(p, q) =
1

µ

∫

Ω

K∇p · ∇q dx+

∫

Σ

Kf,τ

µ
∇τ Πfp∇τ Πfq bf ds+

∫

Σ

Kf,ν

µ

[[p]]

bf

[[q]]

bf
bf ds

and L is the linear form

L(q) =

∫

Ω

Qq dx+

∫

Σ

bfQfΠfq ds+
1

µ

∫

Ω

ρKg · ∇q dx+

∫

Σ

Kf,τ

µ
ρg · τ∇τ q bf ds+

∫

Σ

Kf,τ

µ
ρg · ν[[q]] ds.

Indeed, since ξ = 1/2, W0 is an Hilbert space and the bilinear form a is continuous and coercive on W0 and
the linear form L is continuous on W0. We can check that the solution p to this variational formulation actually
solves the problem under study (see the end of the proof of Theorem 4.13)

4. Finite volume scheme for the asymptotic models

We restrict our attention here to a constant isotropic permeability tensor K in the porous matrix (so that we
will abusively consider K as a positive real number) and to a constant diagonal (but not necessarily isotropic)
permeability Kf tensor in the frame (τ ,ν) associated to the fracture.

From now on, pD ∈ H
1
2 (ΓD) is a given boundary data for the pressure.

4.1. Notations and assumptions for the polygonal mesh

Let us define the notations we will use to describe and analyze our finite volume scheme. Most of the notations
are inspired from [12], which is our reference for a general description and analysis of finite volume schemes for
usual elliptic equations.

A mesh of the fractured domain Ω ∪ Σ is denoted by T = (M,S) where M (resp. S) is a family of disjoint
2-dimensional control volumes K ⊂ Ω (resp. 1-dimensional control volumes σ ⊂ Σ).

• The control volumes K ∈ M are open convex polygons such that Ω = ∪K∈MK. For any (K, L) ∈ M
2

with K 6= L, either K ∩ L = ∅, a vertex, or K ∩ L = σ for some edge σ ≡ K|L.
Let Eint denote the set of interior edges σ = K|L ⊂ Ω and ED

ext, E
N
ext the sets of edges lying on the

boundary Γ with σ ⊂ ΓD or σ ⊂ ΓN respectively. The set E of all the edges can then be decomposed
in E = Eint ∪ ED

ext ∪ EN
ext ∪ S.

For each K ∈ M, a discretization point xK ∈ K is chosen such that the segment [xK, xL] is orthogonal
at the point xσ to each edge σ = K|L. Let dK,σ > 0 be the distance from xK to σ, and dK,L = dK,σ +dL,σ

the distance between xK and xL. The set of edges of K is denoted by EK. For each σ ∈ EK, nK,σ is the
outward unit normal of σ at K.

• We assume that the meshes M and S are compatible, that is for any control volume σ ∈ S there exists
(K+

σ ,K
−
σ ) ∈ M

2 such that σ = K
+
σ |K

−
σ with K

+
σ ⊂ Ω+ and K

−
σ ⊂ Ω−.

We denote by V the set of the vertices e of the mesh S and by Vint the set of such vertices which
are not on the boundary ∂Σ (see Figure 2), so that we have V = Vint ∪ {∂Σ+, ∂Σ−}. For each σ ∈ S,
let Vσ be the set of vertices in V belonging to ∂σ.

To each point e = σ|σ′ ∈ Vint we associate the segment Se = [xσ , xσ′ ] and the unit vector τ σ,σ′

pointing from xσ towards xσ′ . For e ∈ {∂Σ−, ∂Σ+} we note Se = [xσ , e] where σ ∈ S is the unique
element of S such that e ∈ ∂σ. We note I = (Se)e∈V the set of such segments.

For each K ∈ M or σ ∈ S, m(K) and m(σ) denote the 2D-measure of K, resp. the 1D-measure of σ. The
mesh size is defined by : size(T ) = sup{diam(K), K ∈ M}.
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σ ∈ S

pσ+

pσ

pσ−

d
K−

σ ,σ

x
K+

σ

p
K−

σ

Σ

Se

σ′σ

d
K+

σ ,σ

p
K+

σ
K

+
σ

K
−
σ

x
K−

σ

e = σ|σ′ ∈ V

n
K+

σ,σ

xσ xσ′

Figure 2. Geometry of the meshes along Σ

Finally, let rK > 0 be the larger radius of an open ball centered in xK and contained in K. The regularity of
the mesh is then measured by the quantity

reg(T ) = max
K∈M

diam(K)

rK
,

that we will require to be bounded when the size of the mesh tends to 0 in our convergence results. The
dependence of any quantity with respect to reg(T ) is implicitly assumed to be non-increasing.

4.2. The discrete spaces

4.2.1. The discrete unknowns

• Matrix pressure field and its traces:
We associate to the mesh T a set of discrete unknowns pT composed as follows

pT = (pM, γ0,Np
T , γ+pT , γ−pT ) ∈ E(T )

def

= R
M × R

EN
ext × R

S × R
S.

The unknown vector pM = (pK)K∈M ∈ R
M contains the cell-centered unknowns on the mesh M, the

vector γ0,Np
T = (pσ)σ∈EN

ext
represents the boundary values of the pressure on the part of the boundary

where Neumann boundary conditions will be imposed. Since we are going to consider possible jumps of
the pressure across the fracture Σ, we need to consider two different discrete traces of the pressure on

Σ denoted by γ+pT
def

= (pσ+)σ∈S ∈ R
S and γ−pT

def

= (pσ−)σ∈S ∈ R
S. The jumps and the mean-value

across Σ of pT is defined by [[pT ]] = γ+pT − γ−pT and pT = (γ+pT + γ−pT )/2. We can finally define,

the boundary value on ΓD of any given pM ∈ R
T by γ0,Dp

M = (pKσ
)σ∈ED

ext
∈ R

ED
ext , where Kσ is the

unique control volume in M such that σ ⊂ ∂Kσ .
As usual, in order to state our convergence results, discrete functions are identified as piecewise

constant functions as follows

pM =
∑

K∈M

1lKpK, γ+pT =
∑

σ∈S

1lσpσ+ , γ−pT =
∑

σ∈S

1lσpσ− ,



11

γ0,Dp
M =

∑

σ∈ED
ext

1lσpKσ
, γ0,Np

T =
∑

σ∈EN
ext

1lσpσ.

• Fracture pressure:
We associate to the mesh S on Σ, a fracture pressure unknown

pS = ((pσ)σ∈S, p∂Σ− , p∂Σ+) ∈ E(S)
def

= R
S × R × R,

where pσ is a value at the center xσ of the edge σ and p∂Σ− , p∂Σ+ the boundary values at the two
extremities ∂Σ− and ∂Σ+ of Σ. We associate to pS a piecewise constant function on Σ still denoted by

pS and defined pS def

=
∑

σ∈S
1lσpσ. Fig. 2 sums up the different unknowns introduced near the fracture.

4.2.2. Discrete gradient

Let us define the diamond cells Dσ for σ ∈ Eint ∪ Eext and Dσ+ ,Dσ− for σ ∈ S as shown in Figure 3. For
σ = K|L ∈ Eint, Dσ is the quadrangle whose diagonals are σ and [xK, xL]. The set of such diamond cells is
called Dint. For σ = Eext ∩ EK, Dσ is the triangle defined by the point xK and the edge σ. The set of such
diamond cells is called Dext. Finally, for σ ∈ S, Dσ+ and Dσ− are the two triangles defined by the edge σ
and by the points x

K
+
σ

and x
K

−
σ

respectively. We note DΣ+ = {Dσ+ , σ ∈ S}, DΣ− = {Dσ− , σ ∈ S} and
D = Dint ∪ Dext ∪ DΣ+ ∪ DΣ− .
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� � �
� � �

� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �

� �
� �
� �
� �
� �

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
�

Dσ

xK

Dσ

σ ⊂ ∂Ω

x
K

−
σ

x
K

+
σ

K

xK

K K
+
σ

K
−
σ

L

xL

σ = K|L ∈ Eext xσ σ ∈ S

Dσ+

Dσ−

Figure 3. The diamond cells

Definition 4.1 (Discrete gradient on M). For any pT ∈ E(T ), we define the vector-valued function ∇M,pD

pT

by

∇M,pD

pT
def

= 2

( ∑

Dσ∈Dint
σ=K|L

1lDσ

pL − pK

dK,L
nK|L +

∑

Dσ∈Dext
σ⊂ΓD

1lDσ

pD
σ − pKσ

dK,σ
nKσ

+
∑

Dσ∈Dext
σ⊂ΓN

1lDσ

pσ − pKσ

dK,σ
nK,σ

+
∑

Dσ+∈D
Σ+

1lDσ+

pσ+ − p
K

+
σ

d
K

+
σ ,σ

n
K

+
σ

+
∑

Dσ−∈D
Σ−

1lDσ−

pσ− − p
K

−
σ

d
K

−
σ ,σ

n
K

−
σ

)
,

(32)

where pD
σ = 1

m(σ)

∫
σ
pD(s) ds.

Definition 4.2 (Projection of the gravity term on the mesh). We denote by ΠDg the piecewise constant
vector-valued function defined by

ΠDg = 2
∑

Dσ∈D

1lDσ(g · nσ)nσ .

The definition of such a discrete gradient was first proposed in [11] in order to study some links between
homogenisation and numerical schemes. Notice that the coefficient 2 in front of the formula (32) is in fact the
dimension d = 2 of the problem we are studying. Its presence is due to the fact that only the part of the
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gradient along the normal nσ is approximated on each diamond cell. As we will see in the proof of Lemma
4.10, this coefficient 2 actually appears to be necessary to reach the weak convergence of the discrete gradient
toward the continuous one.

Definition 4.3 (Fluxes accross Σ). For any pT ∈ E(T ), we introduce the two mass fluxes across any edge σ
in S by

vpT

σ+ · n+ def

= −
K

µ

(
pσ+ − p

K
+
σ

d
K

+
σ ,σ

− ρg · n+

)
, vpT

σ− · n− def

= −
K

µ

(
pσ− − p

K
−
σ

d
K

−
σ ,σ

− ρg · n−

)
.

Finally, the jump and the mean-value of these fluxes are defined by





[[vpT

σ · ν]]
def

= −(vpT

σ+ · n+ + vpT

σ− · n−),

vpT

σ · ν
def

= −
vpT

σ+ · n+ − vpT

σ− · n−

2
.

(33)

Definition 4.4 (Discrete fracture pressure). For any matrix pressure field pT ∈ E(T ), following (18), we define
the discrete fracture pressure ΠSpT ∈ E(S) associated to pT by

ΠSpT =
1

2

(
γ+pT + γ−pT

)
+

(2ξ − 1)µ

4Kf,ν
bf,σ[[vpT

· ν]],

where bf,σ is the mean value of bf on σ.

Definition 4.5 (Discrete gradient on S). For any fracture pressure field pS ∈ E(S), we define the real-valued
function ∇SpS ∈ L2(Σ) by

∇SpS =
∑

e∈Vint
e=σ|σ′

1lSe

pσ′ − pσ

m(Se)
(τ σ,σ′ · τ ) + 1lS

∂Σ+

p∂Σ+ − pσ+

m(S∂Σ+)
− 1lS

∂Σ−

p∂Σ− − pσ−

m(S∂Σ−)
.

4.2.3. The discrete norms

We define on E(T ) the discrete H1(Ω) norm

‖pT ‖1,T =
(
‖pM‖2

0,Ω + ‖∇M,pD

pT ‖2
0,Ω

) 1
2

,

and on E(S), the discrete H1(Σ) norm

‖pS‖1,S =
(
‖pS‖2

0,Σ + ‖∇SpS‖2
0,Σ

) 1
2 .

Finally, we define on E(T ) the discrete W norm by

‖pT ‖WT ,pD =
(
‖pT ‖2

1,T + ‖ΠSpT ‖2
1,S + (2ξ − 1)‖[[vpT

· ν]]‖2
0,Σ

) 1
2

. (34)

Lemma 4.6 (Discrete trace inequality). There exists C > 0 depending on reg(T ) such that for all pT ∈ E(T ),
we have

‖γ0p
M‖0,Γ + ‖γ+pT ‖0,Σ + ‖γ−pT ‖0,Σ ≤ C‖pT ‖1,T .
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Lemma 4.7 (Discrete Poincaré Lemma). There exists C = C(Ω) such that for all pT ∈ E(T ), we have

‖pM‖0,Ω ≤ C
(
‖∇M,pD

pT ‖0,Ω + ‖pD‖ 1
2
,ΓD

)
.

The proofs of Lemmas 4.6 and 4.7 are direct adaptations of the one for classical analogous results given
in [12] for instance.

4.3. The cell-centered numerical scheme

4.3.1. Description of the scheme

• Flow in the porous matrix Ω. Integrating equation (19) over all control volumes K ∈ M, the classical
cell-centered FV method reads

∑

σ∈EK

FK,σ = m(K)QK, ∀K ∈ M, (35)

where QK is the mean value of Q on K, and FK,σ is the numerical flux approaching
∫

σ vp · nK ds. This
numerical flux is defined by

FK,σ
def

= −m(σ)
K

µ

(
pK,σ − pK

dK,σ
− ρg · nK

)
,

where pK,σ is an approximate value of the pressure on the side of σ touching the control volume K. Let
us see how to determine pK,σ .

– For σ = K|L ∈ Eint, the pressure is continuous across σ, that is pK,σ = pL,σ, and we have conserva-
tivity of the fluxes, that is FK,σ = −FK,σ. It follows in that case that pK,σ = pL,σ can be eliminated
and we get

FK,L
def

= FK,σ = −FL,σ = −m(σ)
K

µ

(
pL − pK

dK,L
− ρg · nK,L

)
. (36)

– For σ ∈ EN
ext, then pK,σ is the corresponding value pσ of γ0,Np

T and the Neumann boundary
condition reads FKσ ,σ = 0, which determines in fact pσ. We do not really need its value since the
important point is that the numerical flux is zero.

– For σ ∈ ED
ext, then pK,σ is given by the mean value pD

σ of the Dirichlet data pD on σ, then

FKσ,σ = −m(σ)
K

µ

(
pD

σ − pKσ

dK,σ
− ρg · nK

)
. (37)

– For σ ∈ S, then the pressure is not continuous across σ, and is defined by γ±pT on each side of σ.
More precisely, we have

F
K

+
σ ,σ = −m(σ)

K

µ

(
pσ+ − p

K
+
σ

d
K

+
σ ,σ

− ρg · n+

)
,

and

F
K

−
σ ,σ = −m(σ)

K

µ

(
pσ− − p

K
−
σ

d
K

−
σ ,σ

− ρg · n−

)
.

In this case, we do not have conservativity of the fluxes and the values of pσ+ and pσ− will be
determined through the coupling with the discretization of the 1D elliptic equation (22) on Σ.
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Note that, following Definition 4.3, we have

F
K

+
σ ,σ = m(σ)vpT

σ+ · n+, F
K

−
σ ,σ = m(σ)vpT

σ− · n−. (38)

• The discrete fracture pressure. The discrete fracture pressure is now defined by pS def

= ΠSpT .
Following Definition 4.4, this reads

pσ =
1

2
(pσ+ + pσ−) +

(2ξ − 1)µ

4Kf,ν
bf,σ [[vpT

σ · ν]], ∀σ ∈ S. (39)

• Flow along the fracture Σ. The 1D finite volume discretization of problem (22)-(23) reads

∑

e∈Vσ

Gσ,e = m(σ)bf,σQf,σ −m(σ)[[vpT

σ · ν]], ∀σ ∈ S, (40)

where Qf,σ = 1
bf,σm(σ)

∫
σ
Qf (s)bf (s) ds. The numerical flux Gσ,e aims to approach −Kf,τ

µ bf (∇τ Πfp−

ρg · τ ) at the vertex e. This flux is defined by

Gσ,e = −
Kf,τ

µ
bf,e

(
pσ,e − pσ

dσ,σ′

− ρg · τ σ,σ′

)
,

where bf,e is the mean value of bf on the segment [xσ , xσ′ ] and pσ,e is an approximate value of the
fracture pressure at the vertex e.

– For e = σ|σ ∈ Vint, we use the conservativity of the fluxes Gσ,e = −Gσ′,e and the continuity of
the pressure pσ,e = pσ′,e, so that the fluxes finally reads

Gσ,σ′
def

= Gσ,e = −Gσ′,e = −
Kf,τ

µ
bf,e

(
pσ′ − pσ

dσ,e
− ρg · τσ,σ′

)
. (41)

– For e ∈ ∂Σ = {∂Σ+, ∂Σ−}, the value pσ,e is given by p∂Σ− or p∂Σ+ and the Neumann boundary
condition (23) implies that Gσ,e = 0. This uniquely defines the two boundary values p∂Σ− and
p∂Σ+ .

• Transmission conditions on Σ. The discretization of equation (24) for all σ = K
+
σ |K

−
σ ∈ S gives :

vpT

σ · ν = −
Kf,ν

µ

(
pσ+ − pσ−

bf,σ
− ρg · ν

)
= −

Kf,ν

µ

(
[[pT ]]σ
bf,σ

− ρg · ν

)
. (42)

If we sum up the above considerations, the finite volume scheme under study consists in the flux balance
equations (35) and (40), together with the flux definitions (36), (37), (38) and (41), the definition (39) of the
pressure fracture and the transmission condition (42).

4.3.2. A priori estimates

By using the various definitions given above of the discrete gradient operators, we can give a kind of variational
formulation of the finite scheme under study.

Lemma 4.8 (Finite Volume variational formulation). Suppose we are given a solution pT ∈ E(T ) to the scheme

(35)-(42). Then, we have

1

2

∫

Ω

K

µ
(∇M,pD

pT − ρΠDg) · ∇M,0φT dx+

∫

Σ

Kf,ν

µ

(
[[pT ]]

bf,σ
− ρg · ν

)
[[φT ]]

bf,σ
bf (s) ds

−

∫

Σ

φT [[vpT

· ν]] ds =

∫

Ω

QφT dx, ∀φT ∈ E(T ), (43)
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and

∫

Σ

Kf,τ

µ
(∇SΠSpT − ρg · τ )∇SφSbf (s) ds =

∫

Σ

Qfφ
Sbf ds−

∫

Σ

[[vpT

· ν]]φS ds, ∀φS ∈ E(S). (44)

Proof. Let us multiply equation (35) by φK for all K ∈ M and sum over M. It follows

∑

K∈M

∑

σ∈EK

FK,σφK =
∑

K∈M

m(K)QKφK.

We transform now the left-hand side as a sum over the set of edges. For edges σ ∈ Eint we use the conservativity
of the fluxes and (36). For edges σ ∈ ED

ext we use the definition (37) of the flux, and for edges σ ∈ S, we use
the two definitions (38). We get

∑

K∈M

m(K)QKφK =
∑

σ∈Eint
σ=K|L

m(σ)
K

µ

(
pL − pK

dK,L
− ρg · nK,L

)
(φL − φK) +

∑

σ∈ED
ext

m(σ)
K

µ

(
pK − pD

σ

dK,σ
− ρg · nK

)
(φK − 0)

+
∑

σ∈S

m(σ)
K

µ

(
pσ+ − p

K
+
σ

d
K

+
σ ,σ

− ρg · n+

)
(φσ+ − φ

K
+
σ
)

+
∑

σ∈S

m(σ)
K

µ

(
pσ− − p

K
−
σ

d
K

−
σ ,σ

− ρg · n−

)
(φσ− − φ

K
−
σ
)

+
∑

σ∈S

m(σ)
(
φσ+(vpT

σ+ · n+) + φσ−(vpT

σ− · n−)
)
.

Using (33), let us rewrite this expression as follows

∑

K∈M

m(K)QKφK =
∑

σ∈Eint
σ=K|L

m(σ)dK,L
K

µ

(
pL − pK

dK,L
nK,L − ρ(g · nK,L)nK,L

)
·

(
φL − φK

dK,L
nK,L

)

+
∑

σ∈ED
ext

m(σ)dK,σ
K

µ

(
pK − pD

σ

dK,σ
nK − ρ(g · nK)nK

)
·

(
φK − 0

dK,σ
nK

)

+
∑

σ∈S

m(σ)d
K

+
σ ,σ

K

µ

(
pσ+ − p

K
+
σ

d
K

+
σ ,σ

n+ − ρ(g · n+)n+

)
·

(
φσ+ − φ

K
+
σ

d
K

+
σ ,σ

n+

)

+
∑

σ∈S

m(σ)d
K

−
σ ,σ

K

µ

(
pσ− − p

K
−
σ

d
K

−
σ ,σ

n− − ρ(g · n−)n−

)
·

(
φσ− − φ

K
−
σ

d
K

−
σ ,σ

n−

)

−
∑

σ∈S

m(σ)
(
[[φT ]]σvpT

σ · ν + φTσ [[vpT

σ · ν]]
)
.

Since the mesh is conformal, notice that on any interior diamond cell Dσ ∈ Dint with σ = K|L, we have
m(σ)dK,L = 2m(Dσ), and for any boundary diamond cell Dσ ∈ Dext, we have m(σ)dK,σ = 2m(Dσ). Using now
the transmission condition (42) and the definition 4.1 of the discrete gradient, (43) follows.

By similar, and in fact simpler, computations we obtain (44).
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Corollary 4.9. Any solution pT ∈ E(T ) to the scheme (35)-(42) satisfies

∫

Ω

QφT dx+

∫

Σ

Qf bfΠSφT ds =
1

2

∫

Ω

K

µ
(∇M,pD

pT − ρΠDg) · ∇M,0φT dx

+

∫

Σ

Kf,τ

µ
(∇SΠSpT − ρg · τ )∇SΠSφT ds+

∫

Σ

Kf,ν

µ

(
[[pT ]]

bf,σ
− ρg · ν

)
[[φT ]]

bf,σ
bf (s) ds

+
(2ξ − 1)µ

4Kf,ν

∫

Σ

bf [[vpT

· ν]][[vφT

· ν]] ds, ∀φT ∈ E(T ). (45)

Hence, for any data, there exists a unique such solution pT ∈ E(T ) and there exists C > 0 which only depends

only on the data µ, ρ,K,Kf,τ ,Kf,ν ,Ω, bf and reg(T ) such that we have

‖pT ‖WT ,pD ≤ C
(
‖Q‖0,Ω + ‖Qf‖0,Σ + ‖pD‖ 1

2
,ΓD

+ |g|
)
. (46)

Proof. We obtain (45) by taking φS = ΠSφT in (44) and adding it to (43).
There exists R ∈ H1(Ω) an extension of pD compactly supported in Ω \ Σ, and such that ‖R‖1,Ω ≤

C(Ω)‖pD‖ 1
2
,ΓD

. We introduce the projectionRT ∈ E(T ) ofR on the mesh T , which readsRT = (RM, γ0,NR
T , γ+RT , γ−RT )

with RM = (RK)K∈M the mean value projection of R on the mesh M that is RK is the mean-value of R on the
ball B(xK, rK) defined in Section 4.1. We naturally choose to take γ+RT = γ−RT = 0 since R vanishes in the
neighborhood of the fracture Σ, and we take Rσ = 1

m(σ)

∫
σ
Rds for any σ ∈ EN

ext.

We can prove as in [2, 12] that

‖∇M,pD

RT ‖0,Ω ≤ C(Ω, reg(T ))‖R‖1,Ω ≤ C‖pD‖ 1
2

,ΓD
.

We remark that, if size(T ) is small enough, then [[vRT

·ν]] = ΠSRM = 0. Hence, taking φT = pT −RT in (45),
we obtain

1

2

∫

Ω

K

µ
(∇T ,pD

pT − ρΠDg) · (∇M,pD

pT −∇M,pD

RT ) dx+

∫

Σ

Kf,τ

µ
(∇SΠSpT − ρg · τ ) · ∇SΠSpT bf (s) ds

+

∫

Σ

Kf,ν

µ

(
[[pT ]]

bf,σ
− ρg · ν

)
[[pT ]]

bf,σ
bf (s) ds+

(2ξ − 1)µ

4Kf,ν

∫

Σ

[[vpT

· ν]]
2
bf (s) ds

=

∫

Ω

Q(x)(pM −RM)(x) dx +

∫

Σ

Qf (s)ΠSpT (s)bf (s) ds

We deduce by using Cauchy-Schwarz’s and Young’s inequalities that

‖pT ‖2
WT ,pD ≤ C

(
‖Q‖0,Ω‖p

M −RM‖0,Ω + ‖RT ‖2
1,T + ‖Qf‖0,Σ‖Π

SpT ‖0,Σ

)

The estimate (46) follows immediately using the trace Lemma 4.6 and the Poincaré inequality (Lemma 4.7).
Finally, applying (46) for pD = Q = Qf = 0 and g = 0, we find, using Poincaré Lemma 4.7, that this implies

pT = 0. Since the discrete system is a square linear system we obtain existence and uniqueness of the solution
for any data.

4.4. Convergence of the numerical scheme

4.4.1. Compactness properties

Lemma 4.10 (Compactness Lemma in Ω). Let (Tn)n be a family of meshes such that size(Tn) −→
n→∞

0 and

(reg(Tn))n is bounded.
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Suppose now given a family of discrete pressure fields pTn = (pMn , γ0,Np
Tn , γ±pTn) ∈ E(Tn) such that

(‖pTn‖1,Tn)n is bounded. Then there exists p ∈ H1(Ω) with γ0,Dp = pD and such that, up to a subsequence

still denoted by (pTn)n, we have

pMn −−−−→
n→∞

p strongly in L2(Ω) (47)

∇Mn,pD

pTn −−−−⇀
n→∞

∇p weakly in (L2(Ω))2 (48)

γ±pTn −−−−⇀
n→∞

γ±p weakly in L2(Σ) (49)

[[pTn ]] −−−−⇀
n→∞

[[p]] weakly in L2(Σ) (50)

γ0,Dp
Mn −−−−→

n→∞
pD strongly in L2(ΓD) (51)

γ0,Np
Mn −−−−⇀

n→∞
γ0,Np weakly in L2(ΓN ) (52)

Proof.

• First step.
We first prove that the family (pMn)n is relatively compact in L2(Ω) using Kolmogoroff Theorem.

To this end, we classically introduce p̃Mn , the extension by 0 of pMn on R
2 \ Ω. It is clear that the

assumption implies that (p̃Mn)n is bounded in L2(R2).
We now prove, using similar methods than in [12], that there exists C > 0 such that for all |η| < 1,

we have ‖p̃Mn(· + η) − p̃Mn(·)‖2
0,R2 ≤ C|η|. To this end, we define for all σ ∈ E , the function χσ from

R
2 × R

2 to {0, 1} by χσ(x, y) = 1 if [x, y] ∩ σ 6= ∅ and χσ(x, y) = 0 else. Note also cσ =
∣∣∣nσ · η

|η|

∣∣∣ for

any edge σ. Finally, notice that if cσ = 0 then χσ(x, x + η) = 0 for almost every x ∈ Ω.
Hence, for almost every x ∈ Ω we have

|p̃Mn(x+ η) − p̃Mn(x)| ≤
∑

σ∈Eint
σ=K|L

χσ(x, x+ η)|pK − pL| +
∑

σ∈Eext

χσ(x, x + η)|pKσ
|

+
∑

σ∈S

χσ(x, x + η)
(
|p

K
+
σ
− pσ+ | + |p

K
−
σ
− pσ− | + |pσ+ − pσ− |

)
.

Using the Cauchy-Schwarz inequality, it follows

|p̃Mn(x+ η) − p̃Mn(x)|2 ≤C



∑

σ∈Eint
σ=K|L

χσ(x, x + η)
|pK − pL|2

cσdσ


×

(
∑

σ∈Eint

χσ(x, x+ η)cσdσ

)

+ C

(
∑

σ∈Eext

χσ(x, x+ η)
|pKσ

|2

cσ

)
×

(
∑

σ∈Eext

χσ(x, x + η)cσ

)

+ C

(
∑

σ∈S

χσ(x, x + η)
|p

K
+
σ
− pσ+ |2

cσdK
+
σ

)
×

(
∑

σ∈S

χσ(x, x+ η)cσdK
+
σ

)

+ C

(
∑

σ∈S

χσ(x, x + η)
|p

K
−
σ
− pσ− |2

cσdK
−
σ

)
×

(
∑

σ∈S

χσ(x, x + η)cσdK
−
σ

)

+ C

(
∑

σ∈S

χσ(x, x + η)
|pσ+ − pσ− |2

cσbf,σ
2

)
×

(
∑

σ∈S

χσ(x, x+ η)cσbf,σ
2

)
.

(53)
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It is proved in [12] that, there exists C > 0 such that for any x ∈ Ω we have

∑

σ∈Eint

χσ(x, x+ η)cσdσ ≤ |η| + Csize(Tn),
∑

σ∈Eext

χσ(x, x+ η)cσdσ ≤ C.

By exactly the same computations it follows that for any x ∈ Ω we have

∑

σ∈EΣ

χσ(x, x+ η)d
K

+
σ ,σcσ +

∑

σ∈EΣ

χσ(x, x+ η)d
K

−
σ ,σcσ ≤ |η| + Csize(Tn),

and moreover, since we assumed here that Σ is a segment (or even a finite number NΣ of connected
straight lines) we have for any x ∈ Ω

∑

σ∈EΣ

χσ(x, x + η)b2f cσ ≤ NΣ‖bf‖
2
∞,Σ.

We use now these bounds in (53), then we integrate the inequality with respect to x ∈ Ω. Noting that

∫

R2

χσ(x, x + η) dx ≤ m(σ)cσ |η|, ∀σ, ∀η,

we get, using in particular the trace Lemma 4.6, the estimate

‖p̃Mn(· + η) − p̃Mn(·)‖2
0,R2 ≤C(|η| + size(Tn))|η|



∑

σ∈Eint
σ=K|L

m(Dσ)

∣∣∣∣
pK − pL

dK,L

∣∣∣∣
2




+ C(|η| + size(Tn))|η|


∑

σ∈S

m(Dσ±)

∣∣∣∣∣
p

K
±
σ
− pσ±

d
K

±
σ

∣∣∣∣∣

2



+ C|η|

(
∑

σ∈Eext

m(σ)|pKσ
|2

)
+ C|η|

(
∑

σ∈S

m(σ)

∣∣∣∣
pσ+ − pσ−

bf,σ

∣∣∣∣
2
)

≤C|η|‖pTn‖2
1,Tn

≤ C ′|η|.

Hence, by the Kolmogoroff theorem, the sequence (pMn)n is compact, and then converges in L2(Ω), up
to a subsequence. Let us denote by p its limit.

• Second Step. We have

‖γ0,Dp
Mn − pD‖2

0,ΓD
≤ 2

∑

σ∈ED
ext

m(σ)|pKσ
− pD

σ |2 + 2
∑

σ∈ED
ext

∫

σ

|pD(s) − pD
σ |2 ds

≤ C
∑

σ∈ED
ext

dKσ ,σm(Dσ)

∣∣∣∣
pKσ

− pD
σ

dKσ,σ

∣∣∣∣
2

+ C
∑

σ∈ED
ext

m(σ)

∫

σ

∫

σ

∣∣∣∣
pD(s) − pD(t)

|s− t|

∣∣∣∣
2

ds dt

≤ Csize(Tn)
(
‖pTn‖2

1,Tn
+ ‖pD‖2

1
2
,ΓD

)
.

Hence we obtain the strong L2 convergence of the trace γ0,Dp
Mn towards the boundary data pD.
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• Third step. The bound ‖pTn‖1,T ≤ C and the trace Lemma 4.6 give that there exists G ∈ (L2(Ω))2,
q+ ∈ L2(Σ), q− ∈ L2(Σ), qN ∈ L2(ΓN ), qD ∈ L2(ΓD) such that up to a subsequence, we have

∇Mn,pD

pTn −−−−⇀
n→∞

G weakly in L2(Ω),

γ±pTn −−−−⇀
n→∞

q± weakly in L2(Σ),

γ0,Np
Mn −−−−⇀

n→∞
qN weakly in L2(ΓN ).

Let us now identify the functions G, q± and qN . To this end, for any Φ ∈ S2 (S being defined in (14)),
let us write

∫

Ω

pM∇ · Φ dx+

∫

Ω

∇M,pD

pT · Φ dx =
∑

K∈T

pK

∑

σ∈EK

∫

σ

Φ|K · nK,σ ds+
∑

D∈D

∇M,pD

pT ·

(∫

D

Φ dx

)

Noting that ∇M,pD

pTn is parallel to nK,σ on any diamond cell, it follows that

∇M,pD

pTn ·

(∫

D

Φ dx

)
= ∇M,pD

pTn ·

(∫

D

Φ · nK,σ

)
nK,σ.

Hence, reordering the first sum above as a sum over the diamond cells we derive that

∫

Ω

pMn∇ · Φ dx+

∫

Ω

∇Mn,pD

pTn · Φ dx

=
∑

D∈D

m(D)∇Mn,pD

pTn ·

(
1

m(D)

∫

D

Φ · nK,σ dx −
1

m(σ)

∫

σ

Φ · nK,σ ds

)
nK,σ

+
∑

σ∈ED
ext

pD
σ

∫

σ

Φ · n ds+
∑

σ∈EN
ext

∫

σ

γ0,Np
MnΦ · n ds+

∑

σ∈S

∫

σ

(
γ+pTn (γ+Φ) · n+ + γ−pTn (γ−Φ) · n−

)
ds. (54)

By using Taylor expansions, we easily see that for any diamond cell in the domain we have

∣∣∣∣
1

m(D)

∫

D

Φ dx−
1

m(σ)

∫

σ

Φ ds

∣∣∣∣ ≤ Csize(Tn)‖Φ‖S2 .

It follows that the first term in the right-hand side of (54) tends to 0 when n→ ∞. Passing to the limit
in the other terms gives

∫

Ω

p∇ · Φ dx+

∫

Ω

G · Φ dx =

∫

ΓD

pDΦ · n ds+

∫

ΓN

qNΦ · n ds+

∫

Σ

(
q+ (γ+Φ) · n+ + q− (γ−Φ) · n−

)
ds.

We conclude that p ∈ H1(Ω) and G = ∇p, γ0,Dp = pD, qN = γ0,Np, q
± = γ±p and the claim is proved.

�

As a consequence to this result, we deduce a weak convergence result of the projection of the gravity term,
as defined in Definition 4.2.

Corollary 4.11. For any family of meshes (Tn)n like in the previous Lemma we have

ΠDng −−−−⇀
n→∞

g, weakly in (L2(Ω))2.
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Proof. Notice that g is the gradient of the map p(x) = (g, x). Let pD = p|ΓD
and introduce

pTn = (pMn = (p(xK))K, γ0,Np
Tn = (p(xσ))σ∈EN

ext
, γ+pTn = (p(xσ))σ∈S, γ

−pTn = (p(xσ))σ∈S).

It is easily seen that ΠDng = ∇Mn,pD

pTn , and that a bound ‖pTn‖1,Tn ≤ C|g| holds. By using the previous
Lemma we have the weak convergence of a subsequence of (ΠDng)n towards ∇p = g. The convergence of the
complete sequence is then proved since the limit g does not depend on the subsequence. �

We can also obtain by similar and simpler arguments a 1D compactness result on the fracture Σ that we
state here.

Lemma 4.12 (Compactness lemma in Σ). Let (Tn)n be a family of meshes such that size(Tn) −→
n→∞

0 and

(reg(Tn))n is bounded. Let now pSn ∈ E(Sn) be a family of fracture pressure fields such that (‖pSn‖1,bf ,Sn)n

is bounded. Then, there exists pf ∈ H1(Σ) such that, up to a subsequence still denoted by pSn , we have

pSn −−−−→
n→∞

pf strongly in L2(Σ),

∇SnpSn −−−−⇀
n→∞

∇τ pf weakly in L2(Σ).

4.4.2. Convergence theorem

We are now in position to prove the main result of this paper, which shows the convergence of the finite
volume scheme towards a solution of our asymptotic model of flows in fractured porous media.

Theorem 4.13. Let (Tn)n be a family of meshes such that size(Tn) −−−−→
n→∞

0 and (reg(Tn))n is bounded. Then,

the unique solution pTn to the scheme (35)-(42) for the mesh Tn converges towards the unique solution p ∈ W
of problem (19)-(24).

More precisely, (pMn)n strongly converges towards p in L2(Ω), (∇Mn,pD

pMn)n weakly converges towards ∇p
in (L2(Ω))2, (ΠSnpTn)n strongly converges towards Πfp in L2(Σ) and (∇SnΠSnpTn)n weakly converges towards

∇SΠfp in L2(Σ).
Proof. Notice that we are going to show the convergence of a subsequence which is enough to prove the claim
since we already know that the solution to (19)-(24) is unique.

• From the a priori estimate obtained in Lemma 4.9, and the compactness Lemmas 4.10 and 4.12, we
obtain that there exists p ∈ H1(Ω) and pf ∈ H1(Σ) such that the convergences (47)-(52) hold and
moreover

ΠSnpTn −−−−→
n→∞

pf strongly in L2(Σ) (55)

∇SnΠSnpTn −−−−⇀
n→∞

∇τ pf weakly in L2(Σ). (56)

We want now to show that pf = Πfp, that p ∈ W and that it is a solution to (19)-(24).
• From equation (42) and (50) we derive that

vpTn · ν −−−−−⇀
n→+∞

−
Kf,ν

µ

(
[[p]]

bf
− ρg · ν

)
weakly in L2(Σ).

From now on, we need to perform a separate analysis for the two cases ξ > 1
2 and ξ = 1

2 , since in
the first case we have an additional a priori estimate and we have to pass to the limit independently
in the problem in the porous matrix and in the fracture, whereas in the second case we must treat
simultaneously the two equations.

• The case ξ > 1
2
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– Thanks to the a priori estimate (46) and the definition (34) of the norm ‖ · ‖WT ,pD , we see that

for ξ > 1
2 , the quantity [[vpTn

· ν]] is bounded in L2
bf

(Σ). Hence, there exists Ψ ∈ L2(Σ) such that,

up to a subsequence,

[[vpTn
· ν]] −−−−⇀

n→∞
Ψ weakly in L2(Σ). (57)

Notice that, thanks to assumptions (16), it is easily seen that
∑

σ∈Sn
1lσbf,σ converges strongly

towards bf in L2(Σ) for instance. Hence, we can pass to the limit in equation (39) and find

pf =
1

2
(γ+p+ γ−p) +

(2ξ − 1)µ

4Kf,ν
bfΨ. (58)

– Let now φf be a function in C2(Σ), which is constant near the two ends ∂Σ+ and ∂Σ− of Σ. Let
us take φS = ((φf (xσ))σ , φf (∂Σ−), φf (∂Σ+)) ∈ E(S) in (44). It follows that, for n large enough
(so that φf is constant on the two edges σ touching the boundary of Σ) we have

∫

Σ

Kf,τ

µ
(∇SnΠSnpTn − ρg · τ )(∇τφf (s) +Rn(s))bf (s) ds

=

∫

Σ

Qf (s)(φf (s) + rn(s))bf (s) ds−

∫

Σ

[[vpTn
· ν]](φf (s) + rn(s)) ds, (59)

where

Rn(s) =
φf (xσ′) − φf (xσ)

dσ,σ′
(τ σ,σ′ · τ ) −∇τφf (s), ∀s ∈ Se, ∀e = σ|σ′ ∈ Vint,

Rn(s) = 0, ∀s ∈ Se, ∀e ∈ {∂Σ−, ∂Σ+},

and

rn(s) = φf (xσ) − φf (s), ∀s ∈ σ, ∀σ ∈ Sn.

Since φf is smooth, we easily see that ‖Rn‖∞,Σ + ‖rn‖∞,Σ ≤ size(Tn)‖φf‖C2 . Hence, we can pass
to the limit in (59) by using (56) and (57). We find that pf solves

−∇τ

(
bf (s)

Kf,τ

µ
(∇τ pf − ρg · τ )

)
= bfQf − Ψ on Σ, (60)

as well as the Neumann boundary condition on ∂Σ.
– Let φ ∈ S (see the definition (14)) such that φ = 0 on ΓD. We use here the center-valued projection

ΠTn,cφ = (ΠMn,cφ, γ0,NΠTn,cφ, γ±ΠTn,cφ) of φ on the mesh Tn defined by





ΠMn,cφ = (φK)K∈Mn , φK = φ(xK),

γ±ΠTn,cφ = (φσ±)σ∈Sn , φσ± = γ±φ(xσ),

γ0,NΠTn,cφ = (φN
σ )σ∈EN

ext
, φN

σ = γ0,Nφ(xσ).
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It follows from (43) that

∑

D∈D

∫

D

K

µ

(
∇Mn,pD

pTn − ρΠDng
)
·
(
(∇φ(x) · nσ + R̃n(x))nσ

)
dx

+

∫

Σ

Kf,ν

µ

(
[[pTn ]]

bf,σ
− ρg · τ

)(
[[φ]] + r+n − r−n

bf,σ

)
bf ds−

∫

Σ

(
φ+

r+n + r−n
2

)
[[vpTn

· ν]] ds

=

∫

Ω

Q(x)ΠMn,cφ dx, (61)

where

R̃n(x) = ∇φ(x) · nσ −∇Mn,0ΠTn,cφ · nσ , ∀x ∈ Dσ, ∀Dσ ∈ D,

r±n (s) = γ±φ(xσ) − γ±φ(s), ∀s ∈ σ ∈ Sn.

Since φ is smooth and vanishes on ΓD, we easily get that

‖R̃n‖∞,Ω + ‖r±n ‖∞,Σ ≤ C size(Tn)‖φ‖S .

Furthermore, on each diamond cell the vector ∇Mn,pD

pTn is parallel to nσ . Hence we get

∫

D

∇Mn,pD

pTn ·
(
(∇φ(x) · nσ)nσ

)
dx =

∫

D

∇Mn,pD

pTn · ∇φ(x) dx,

so that finally, using Corollary 4.11, we can pass to the limit in (61) and obtain

∫

Ω

K

µ
(∇p− ρg) · ∇φ dx+

∫

Σ

Kf,ν

µ

(
[[p]]

bf
− ρg · ν

)
[[φ]]

bf
bf ds−

∫

Σ

φΨ ds =

∫

Ω

Qφdx.

Taking φ ∈ C∞
c (Ω) in this formulation, we get that p solves

∇ · vp = Q in Ω,

with vp = −K

µ (∇p − ρg). In particular vp ∈ Hdiv(Ω) and comparing the Stokes formula (15) we
get 




vp · n = 0, on Γ,

Ψ = [[vp · ν]],

vp · ν = −
Kf,τ

µ

(
[[p]]

bf
− ρg · ν

)
,

and then by (58), we find that the fracture pressure solves

pf = p−
(2ξ − 1)µ

4Kf,ν
bf [[vp · ν]],

that is pf = Πfp. Finally, replacing the above value for Ψ in (60), we recover the Darcy equation
in the fracture and the claim is proved.

• The case ξ = 1
2

Note that, in that case, we can easily pass to the limit in (39) to find that

pf =
1

2
(γ+p+ γ−p) = Πfp. (62)
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Unfortunately we do not have now any a priori bound on [[vpTn
· ν]]. Hence, we are not able to perform

the limit independently in (43) and (44) as before. That is the reason why we are going to treat
simultaneously the continuity equation in the porous matrix and in the fracture by passing to the limit
in the global formulation (45) (the last term being 0 since ξ = 1

2 ).

Taking here also φTn = ΠTn,cφ for any φ ∈ S in this formula, we get

∑

D∈D

∫

D

K

µ

(
∇Mn,pD

pTn − ρΠDng
)
·
(
(∇φ(x) · nσ + R̃n(x))nσ

)
dx

+

∫

Σ

Kf,τ

µ
(∇SnΠSnpTn − ρg · τ )(∇τφ(s) +Rn(s))bf (s) ds

+

∫

Σ

Kf,ν

µ

(
[[pTn ]]

bf,σ
− ρg · τ

)(
[[φ]] + r+n − r−n

bf,σ

)
bf ds

=

∫

Ω

Q(x)ΠMn,cφ dx +

∫

Σ

Qf (s)(φ(s) + rn(s))bf (s) ds,

By the same arguments than above, we can pass to the limit in this formula and obtain

∫

Ω

K

µ
(∇p− ρg) · ∇φ dx+

∫

Σ

Kf,τ

µ
(∇τ Πfp− ρg · τ )∇τφ(s)bf (s) ds

+

∫

Σ

Kf,ν

µ

(
[[p]]

bf
− ρg · ν

)
[[φ]]

bf
bf ds =

∫

Ω

Qφdx+

∫

Σ

Qfφbf ds. (63)

Taking first φ ∈ C∞(Ω) vanishing in a neighborhood of the fracture Σ, we see that ∇ · vp = Q in Ω and
that the Neumann boundary condition (21) is satisfied.

Furthermore, we know from the compactness Lemma 4.12 that Πfp ∈ H1(Σ), that is to say Πfp =
p ∈ H1(Σ) by (62). It follows that p lies in the space W defined in section 3.1.2.

We use now the Stokes formula (15) for vp and any φ ∈ S and we compare to (63). It follows:

〈
[[vp · ν]], φ

〉
(H

1
2 )′,H

1
2

+ 〈vp · ν, [[φ]]〉
H− 1

2 ,H
1
2
00

+

∫

Σ

Kf,τ

µ
(∇τ p− ρg · τ )∇τφ bf (s) ds+

∫

Σ

Kf,ν

µ

(
[[p]]

bf
− ρg · τ

)
[[φ]]

bf
bf ds =

∫

Σ

Qfφbf ds. (64)

For any ψ ∈ C∞
c (Σ), we easily build a function φ ∈ S such that γ+φ = ψ/2 and γ−φ = −ψ/2, so that

φ = 0 and [[φ]] = ψ. Using this particular test function in (64) for any such ψ, we deduce that

vp · ν = −
Kf,ν

µ

(
[[p]]

bf
− ρg · ν

)
.

Coming back to (64) and using now a test function φ such that [[φ]] = 0 we finally find that the continuity
equation (22) and the boundary condition (23) are satisfied in the fracture Σ.

• Conclusion
We proved the existence of a solution of the problem (19)-(23) for all ξ ≥ 1

2 . Furthermore, this
problem admits at most one solution as shown in the previous section. Hence, we conclude that the
whole sequence (pTn)n converges towards the unique solution of problem (19)-(23) in the sense given in
the statement of the theorem.
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5. Numerical results for some immersed polygonal fractures

We present numerical results for a computational domain Ω = [0, 1]2. Let us recall that the permeability
tensor is isotropic in the porous matrix - we choose K = Id - and diagonal in the curvilinear frame of the
fractures. We have taken in this section g = 0, ρ = µ = 1 and Q = 0, Qf = 0, so that the flow is only generated
by the boundary conditions.

We always take the quadrature parameter ξ equal to 1
2 , excepted in Section 5.3 where the influence of this

parameter is investigated.

All the numerical results for both the asymptotic and the global Darcy models are presented when the mesh
convergence is reached. We represent the distribution of the pressure field inside the domain from dark (high
pressure values) to light (low pressure values). We also represent some of the streamlines of each flow.

5.1. The DDFV scheme for the global model

The difficulties in approximating by finite volume methods the two-permeabilities global Darcy model are
twofold. The first one comes from the very different scales in the flow (the small aperture of the fractures, the
high permeability ratios, ...). The second one comes from the anisotropy of the equation inside the fracture
which requires a “gradient reconstruction” method to approximate fluxes across the edges; we choose a Discrete

Duality Finite Volume approach (see [2], [10]). In presence of strong discontinuities of the permeability tensor,
these DDFV schemes still converges but slowly (at rate 1/2). To recover a first order scheme, it is proposed
and analysed in [9, 16] a modified DDFV scheme. This m-DDFV scheme ensures the local continuity and
conservativity of the numerical fluxes across any edge of the mesh and is proved to be of first order in the
discrete H1-norm, even in presence of high permeablility jumps.

5.2. Results for a straight half-fracture with constant aperture

We consider the half fracture Σ×
[
− bf

2 ,
bf

2

]
, with Σ = {(x, y) such that x = 0.5, y ≥ 0.5} and bf is constant

and equal to 0.01. Let us describe the various configurations and boundary conditions we propose to illustrate
various typical flows and the behavior of the model under study in each case.

p = 0

p = 0

p
=

1

Kf,τ = 106,Kf,ν = 102

y = 0.75

p
=

2

Fully permeable case

Kf,τ = Kf,ν = 10−7

Impermeable case

p
=

1

p
=

0

vp · n = 0

vp · n = 0

Partially permeable case

Kf,τ = 100,Kf,ν = 100

p = 1

p
=

1

p
=

0

vp · n = 0

vp · n = 0vp · n = 0

Figure 4. Configurations and boundary conditions for a straight half fracture

• Fully permeable fracture, see Figure 4 (left).

The quantities bfKf,τ and
Kf,ν

bf
are of the same order e.g. Kf,τ = 106, Kf,ν = 100. We impose

Dirichlet boundary conditions on ∂Ω: p(·, 0) = 0, p(·, 1) = 0, p(0, ·) = 1, p(1, ·) = 2.
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0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

 

 

Global Darcy model
Asymptotic model

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 

 
Global Darcy model
Asymptotic model

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 

 

Global Darcy model
Asymptotic model

0.5 0.6 0.7 0.8 0.9 1
−0.1

−0.05

0

0.05

0.1

0.15

 

 
Global Darcy model
Asymptotic model

0.5 0.6 0.7 0.8 0.9 1
0.4

0.45

0.5

0.55

0.6

0.65

 

 
Global Darcy model
Asymptotic model

0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

0.95

1

 

 

Global Darcy model
Asymptotic model

Figure 5. Pressure field and streamlines (top), Pressure along the cutline y = 0.75 (middle),
Pressure along the fracture (bottom)

• Impermeable fracture, see Figure 4 (center).

The quantity bfKf,τ is close to zero and
Kf,ν

bf
remains small e.g. Kf,τ = 10−7, Kf,ν = 10−7. We

impose mixed boundary conditions on ∂Ω: vp · n(·, 0) = 0,vp · n(·, 1) = 0, p(0, y) = 0, p(1, ·) = 1.
• Fracture with intermediate properties, see Figure 4 (right).

In this test, formally performed for the corresponding non-immersed fracture in [17, 18], the ratio
between Kf,ν/bf and K is high whereas bfKf,τ and K are of same order e.g. Kf,τ = 100, Kf,ν = 100.

We impose mixed boundary conditions on ∂Ω: p(0, ·) = 0, p(1, ·) = 1, vp ·n(·, 0) = 0, vp ·n(x, 1) = 0
for any x 6= 1

2 , and p( 1
2 , 1) = 1.
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In Figure 5, the results obtained by the resolution of the global Darcy two-permeabilities model by the m-
DDFV methos and the resolution of the asymptotic model are compared. At the top part of the figure, we
show the pressure field and some streamlines indicating the shape of the flow we are looking at in each case. In
the middle part of the figure, we show the pressure on the horizontal cutline y = 0.75 whereas in the bottom
part we show the pressure field along the fracture. In any cases, the curves for the global Darcy model and the
asymptotic models are nearly identical.

These results show the ability of the asymptotic model to simulate efficiently all kinds of flows in fractured
porous media, from impermeable fractures (where pressure jumps hold across the fracture) to fully permeable
ones (where mass fluxes jumps hold across the fracture). The gain in using the asymptotic model is especially
obvious for large permeability ratios or very anisotropic fracture permeabilies: the resolution of the global Darcy
model typically requires six times more degrees of freedom than the asymptotic one in order to achieve mesh
convergence of the numerical solutions for a given tolerance.

5.3. Influence of the quadrature parameter ξ

p = 0

p = 0

Partially permeable fracture

Kf,τ = 100, Kf,ν = 10−4

p
=

1

p
=

1

y = 0.56

y = 0.75

Figure 6. Boundary condition for a partially permeable fracture

In many situations, we observed that the influence of the quadrature parameter ξ is almost negligible and
any value in the interval [1/2, 1] gives satisfactory results. Nevertheless, the influence of the parameter ξ can
be observed in some cases. We choose here for instance a fracture with a very high anisotropy Kf,τ = 100,
Kf,ν = 10−4. We consider Dirichlet boundary conditions for the pressure: p = 1 on the vertical sides and p = 0
on the horizontal ones (see Figure 6).

In Figure 7, we show the pressure field obtained with the global Darcy model on a mesh with 65560 control
volumes (that is the reference solution) and the solutions obtained for various values of ξ for the asymptotic
model on a mesh with 16384 control volumes. We see that ξ = 1/2 seems to give a sharper solution than the
one for ξ = 3/4 which is used by some authors. We also point out that for ξ < 1/2, the asymptotic model can
become ill-posed or unstable (in the present situation, negative values of the pressure appear).

In Figure 8, we go further in the comparisons by showing, on the left part of the figure, the pressure obtained
along the fracture in each case. More precisely, we plot Πfp(s) for the two models ξ = 1/2 and ξ = 3/4, as well
as the quantity p̄(s) = (γ+p(s) + γ−p(s))/2 for ξ = 3

4 . We recall that when ξ = 1/2, we have Πfp = p̄ that is
the reason why there is only one curve in that case.
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Reference global Darcy solution Asymptotic model for ξ = 1/2

Asymptotic model for ξ = 0.498 Asymptotic model for ξ = 3/4

Figure 7. Comparison between the pressure field obtained with the global Darcy model and
the asymptotic model for various values of ξ
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Figure 8. Comparison of pressure along and across the fracture between the global Darcy
model and the asymptotic model for ξ = 0.5 and ξ = 0.75

The reference mean-pressure s 7→ 1
bf

∫ bf /2

−bf /2 p(t, s) dt computed by the resolution of the global Darcy model

on the fine grid is also given for reference. These results confirm that the model for ξ = 1
2 leads to more precise

results.
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The other two parts (center and right) of Figure 8 show the pressure along two cutlines y = 0.5625 and
y = 0.75. It is confirmed that the model for ξ = 3

4 badly computes the pressure inside the fracture, but is quite

satisfactory outside the fracture, at least far enough from the extremity of Σ fully immersed in Ω̃.

As a conclusion, in the remaining of this paper, we systematically use the value ξ = 1/2 in our computations.

5.4. Results for a network of half straight fractures
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p
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p = 1

p = 0

x = 0.65

p = (2x− 1)(3x− 1)

p = (2x− 1)(3x− 1)

Figure 9. Configuration and boundary conditions for a network of half straight fractures

We consider here a set of four horizontal fractures of aperture bf = 0.01 defined by Fi = Σi×
[
−

bf

2 ,
bf

2

]
, with

Σ1 = {(x, y) such that x ≥ 0.3, y = 0.2}, Σ2 = {(x, y) such that x ≤ 0.7, y = 0.4}, Σ3 = {(x, y) such that x ≥
0.3, y = 0.6}, Σ4 = {(x, y) such that x ≤ 0.7, y = 0.8}. The fractures F2 and F4 are impermeable Kf,τ =
Kf,ν = 10−2, whereas F1 and F3 present intermediate properties Kf,τ ∈ {1, 10} and Kf,ν = 10−2. For the
boundary conditions described in Figure 9, we compare in Figure 10 the solution (solid line) of the global Darcy
model using a mesh with 68160 control volumes, and the solution (dashed line) of a the asymptotic model, using
a mesh with 25600 control volumes, along the four fractures Σi and along the cutline {x = 0.65}.

We observe a perfect agreement of the two solutions in the first two cases since the curves are almost
indistinguishable. In the third case, where Kf,τ is larger, we can see that we approach the validity limit of
the model. It appears that the Neuman boundary condition at the boundary of the fracture is not perfectly
suitable in this case. A more precise modelling of the asymptotic boundary condition on ∂Σ seems to really be
necessary in this kind of situations.

5.5. Fracture with variable aperture

We now investigate the ability of the asymptotic model to simulate flows in fractures with variable aperture.
We consider (see Figure 11) a vertical conic-shaped fracture at x = 1

2 where bf varies linearly from 0.001
(bottom) to 0.019 (top). We consider an isotropic case Kf,τ = Kf,ν = 100.

In Figure 12, we compare the results obtained by the global Darcy model (left part of the figure) and by the
asymptotic model (center part of the figure). We can see a quite good agreement. Notice that the mesh used to
compute the global Darcy solution has to be very fine near the bottom of the fracture since its aperture is equal
to 10−3 in this area. More precisely, the asymptotic results presented here have been obtained for a rectangular
mesh with 16000 control volumes, whereas the global Darcy computation has been performed on a triangular
mesh with 100000 control volumes, suitably refined in the neighbourhood of the fracture.
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Boundary conditions 1
Kf,τ = 102 on F1 and F3

Boundary conditions 2
Kf,τ = 1 on F1 and F3

Boundary conditions 2
Kf,τ = 10 on F1 and F3
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Figure 10. Pressure field and streamlines (top), Pressure along the four fractures (middle),
Pressure along the cross section Σ⊥ (bottom)

We also give for comparison, the result obtained with the asymptotic model if we replace the variable (linear)
aperture bf (s) with a constant mean-value bf (s) ≡ 10−2, which amounts to approximate the conic-shaped
fracture with an “equivalent” constant aperture fracture. We clearly see that the result is unsatisfactory which
demonstrates the necessity to suitably take into account the geometry of the fracture in the asymptotic model.

5.6. Comparison with an analytic solution

We finally test the model in the case of a permeable lens-shaped fracture, using the analytic behaviour of
the flow obtained in [19] in the neighbourhood of the extremities of the lens embedded in an infinite porous
medium. This lens, centered in (0.5, 0.5) and whose length is 0.2, is limited by two parts of circles of same
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Figure 11. Configuration and boundary conditions for the conic-shaped fracture

Global Darcy model
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account the variable aperture

Asymptotic model for a constant
aperture fracture

Figure 12. Influence of the shape of the fracture

radius meeting with a right angle. We refer to Figure 13 which also presents the boundary conditions used for
the numerical simulations. We consider the isotropic case where Kf,τ = Kf,ν = Kf = 12. For a flow parallel to
the main symmetry axis of the lens, the analytic solution derived in [19] in the neighbourhood of the extremity
(0.5, 0.6), is equivalent up to a constant to

panal(y) ∼





4
(Kf+1)∆

(
0.6−y
y−0.4

)γ1

, y < 0.6,

2
∆

(
cos(πγ1) −

Kf−1
Kf+1 cos

(
πγ1

2

))(
y−0.6
y−0.4

)γ1

, y ≥ 0.6,

with ∆ = cos(πγ1) −
1
2

Kf−1
Kf+1 cos

(
πγ1

2

)
, γ1 = 2

π acos
(

1
2

Kf−1
Kf +1

)
.
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Figure 13. The lens-shaped fracture : Configuration and boundary conditions (left), Pressure
field along the symmetry axis x = 0.5 of the fracture near one of its extremity (right).

The right part of Figure 13 shows the good agreement near the extremity between this analytic solution
and the global Darcy solution, computed on a triangular mesh with 20000 cells. Note that we chose for the
additive constant the pressure value given by the global Darcy solution at the angular point (0.5, 0.6). The
solution given by the asymptotic model on a mesh composed by 13000 triangles is globally close to the global
Darcy solution, except in the very neighbourhood of the extremity of the lens, where the aperture bf vanishes.
Since the aperture (s) vanishes at the two extremities of the fracture, this test case does not enter the analysis
proposed in this paper. Nevertheless, the model seems to give satisfactory results event in this situation.

6. Conclusion and perspectives

In this study, some asymptotic models of flow in fractured porous media are formally derived in the case where
the fracture domains, whose aperture is supposed to be small, are reduced to polygonal interfaces immersed
inside the porous matrix. It is then needed to solve an adequate 1D Darcy-type equation along these immersed
interfaces, coupled with an usual 2D Darcy equation in the porous matrix.

A cell-centered Finite Volumes scheme is investigated to solve this coupled problem. Existence of solutions
to the asymptotic models is stated by passing to the limit into the FV scheme, whereas uniqueness is ensured
by energy estimates. The convergence proof of the scheme is quite intricate due to the fact that, because of the
immersed interfaces, the domain under study is no more located on one side of its boundary.

Using the proposed numerical scheme, the behavior and the validity of the asymptotic models under study
are then investigated for a large variety of situations. On these examples, we obtain a good agreement with
the solutions computed analytically or obtained by using apropriate numerical schemes for the global Darcy
problem on locally refined meshes. In our experiments, the number of required degrees of freedom saved with
the use of the asymptotic models proves to be all the more important than the permeability jumps are large.

Showing that, in the case of fully immerged fractures, the solution of the asymptotic model proposed here
is actually a correct approximation of the solution of the global Darcy model in the limit → 0 is devoted
to a further work. It would be interesting to investigate the coupling of such models with a time dependent
advection-diffusion equation for the solutal transport in order to study solutal dispersion phenomena in fractured
porous media. Another perspective can be to consider fractures in which the flow is governed by the Stokes
equation instead of the Darcy one.



32

Acknowledgements

The authors want to thank P. Adler for many stimulating discussions. This study has been carried out in the
framework of the research project “Dispersion in fractured porous media” which received a financial support
from the GdR CNRS MoMaS in the period 2004–2006.

References

[1] Adler P.M., Thovert J.-F., Fractures and Fracture Networks, K luwer Acad., Amsterdam, 1999.
[2] Andreianov B., Boyer F. and Hubert F., Discrete duality finite volume schemes for Leray-Lions type elliptic problems on

general 2D-meshes, Num. Meth. for PDEs, Vol. 23, N◦1, pp 145–195, 2007.
[3] Angot P., Finite volume methods for non smooth solution of diffusion models; application to imperfect contact problems,

in Recent Advances in Numerical Methods and Applications, Proc. 4th Int. Conf. NMA’98, Sofia (Bulgarie), O.P. Iliev, M.S.
Kaschiev, S.D. Margenov, Bl.H. Sendov, P.S. Vassilevski (Eds.), pp. 621-629, World Sci. Pub, 1999.
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