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Abstract

In this work, we analyze a cerebral activity model proposed by Jirsa [8]. Using
a Galerkin approximation scheme, we prove existence and stability of global weak
solutions to a damped non-linear wave equation that generalizes the cerebral activity
equation. We prove uniqueness as well.
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1 Introduction

Non-invasive techniques such as functional Magnetic Resonance Imaging, Elec-
troEncephaloGraphy (EEG) and MagnetoEncephaloGraphy (MEG) provide
entry points to human brain dynamics for clinical purposes, as well as the
study of human behavior and cognition. Each of these observation technolo-
gies provides spatiotemporal information about the on-going neural activity
in the cortex, but unfortunately the results of measures are generally noisy,
and it is difficult to identify the equation which governs the dynamics of neu-
ral activity. Several physicists [23,16,8,6] have formulated continuous models
called neural fields to predict neural activity, using brain anatomy.
Jirsa’s model [8], which we will analyze in section 4 of this paper, general-
izes the models [23,16], and leads to the following evolution problem that we
investigate in this work:
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utt − α∆u= a(u, p)ut + b(u, p, pt), x ∈ Ω, a.e. t ≥ 0 (1.1)

u(0, ·) = u0 ut(0, ·) = u1. (1.2)

u= 0, on [0,+∞) × ∂Ω (1.3)

where Ω is an open bounded domain in Rn(n ≤ 4) with sufficiently smooth
boundary ∂Ω, u0 ∈ H1

0 (Ω) and u1 ∈ L2(Ω). The notation ut (respectively utt)
stands for the first (respectively second) partial derivative of u with respect
to time variable t and ∆ is the Laplace operator. For simplicity, we assume
that α = 1.
Although the equation(1.1) has a simple form, to our knowledge, without ad-
ditional conditions on a, b or initial condition, the existence and uniqueness
of the solution problem is still opened. In addition the existence of global

solution is not always ensured (see by example [4,28,25]).
Equation (1.1) belongs to a class of non-linear damped wave equations that
have been widely studied by many mathematicians and engineers. Existence
and uniqueness with (1.2), (1.3) condition has been considered using vari-
ous methods, semi-group theory [17,13,27,2], or point fix method [9,1]. In
[5,3,18,19,26] the authors prove existence and uniqueness of global solutions
with conditions (1.2), (1.3) using Galerkin methods.
Zhou [28], has studied a particular case of equation (1.1), without external
input p, a constant function and b defined by

b(u) = |u|m−1u

with condition (1.2) and Ω = Rn; he proved that, if 1 < m < n+2
n

the solution
blows-up in finite time. Similarly authors in [17,24,28,29,10,11,21,22,4,15,25]
discussed the case when the solution blows-up in finite time.
The closest equation to the one we investigate here, has been studied by Zhijian
[26] who considered :

utt − ∆u− ∆ut =
n∑

i=1

∂

∂xi

(σi(uxi
) + βi(uxit

))

+F (u, ut,∇u,∇ut) on [0,∞) × Ω (1.4)

with initial and boundary conditions (1.2) (1.3). He proved that this problem
has a unique classical solution, assuming what follows on the initial data :

‖
n∑

i=1

∂

∂xi

(σi(uxi
(0)) + βi(vxi

(0))) + F (u(0), v(0),∇u(0),∇v(0))‖Hk < δ (1.5)

‖v(0)‖2
Hk+1 + ‖v(0)‖Hk +

3

2
‖u(0)‖Hk+ < u(0), v(0) >Hk < γ (1.6)

where δ and γ are two real numbers. In addition, it was supposed that
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|DβF | ≤B(|λ1|
γ1 + |λ2|

γ2 + |λ̃1|
γ3 + |λ̃2|

γ4 + 1) andF (0) = 0 (1.7)

The RHS of (1.1) is a particular case of RHS of (1.4), with an additional
parameter (the input function p) that we suppose to be regular enough. We
have to mention here that the presence of ∆ut in the LHS of equation (1.4),
is crucial in the proof estimates, namely that the solution is bounded with
respect to H2 norm.
Now, the question is : if the initial data does not satisfy (1.5), (1.6) or (1.7)
and no “regularizing” term ∆ut appears, , does problem (1.1)-(1.3) admit a
global solution? If yes, is the solution unique and/or stable with respect to
initial data perturbations. In other terms, we look for the well-posedness of
the problem.

In this paper, we prove that problem (1.1)-(1.3) has a unique global stable so-
lution under “realistic” assumptions. Indeed, these assumptions are motivated
by the underlying physical cerebral activity model that leads to an equation
which is a particular case of equation (1.1). From the physical point of view,
these assumptions mean that the brain activity remains “normal” if the initial
data are “normal”.

The outline of the paper is the following : existence results are stated in Section
2. Uniqueness and stability are discussed in Section 3. Finally in Section 4, we
present and analyze the cerebral activity model, and apply the general result.

2 Existence of weak global solutions

We denote ‖.‖ the L2(Ω) norm , ‖.‖∞ the L∞-norm, ‖.‖1 the H1(Ω) norm,
and (.,.) the L2- inner product.

Definition 2.1 Let (u0, u1) ∈ H1
0 (Ω) × L2(Ω), and T > 0 be given. We shall

say that u is a weak solution to problem (1.1), (1.3) if

u ∈ L2([0, T ), H1
0(Ω)), ut ∈ L2([0, T ), H1(Ω)), utt ∈ L2([0, T ), L2(Ω))

and for almost every t ≥ 0, ∀ω ∈ H1
0 (Ω)

(utt(t), ω) + (∇u(t),∇ω) = (a(u, p)(t)ut(t) + b(u, p, pt)(t), ω) (2.1)

and
u(0, .) = u0, ut(0, .) = u1 (2.2)

From now, we do not indicate the dependence with respect to t to make the
paper more readable. First we give an existence result of weak solutions to
problem (1.1)-(1.3).
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Theorem 2.1 Assume that for some T > 0
(A1) a, b ∈ C1(R2,R) and C1(R3,R) respectively, and a, ∇a and ∇b are (uni-
formly) bounded functions.
(A2) |b(u, p, q)(t, x)| ≤ C1|u(t, x)| + C2 a.e. on [0, T ) × Ω where C1 and , C2

are nonnegative constants.
(A3) p ∈ H2([0, T ), L∞(Ω)).
(A4) (u0, u1) ∈ H1

0 (Ω) × L2(Ω)
Then for problem (1.1)-(1.3) admits (at least) a weak solution u on [0, T ) and

u ∈ H2([0, T ), L2(Ω)) ∩H1([0, T ), H1
0(Ω))

Proof - We need several steps to prove this result. We use the Galerkin method
to construct a solution. Let {λk}

∞

k=1 be a sequence of eigenvalues of −∆ in
Ω . Let {ωk}

∞

k=1 ∈ H1
0 (Ω) ∩H2(Ω) be the associated eigenfunction such that

{ωk}
∞

k=1 a complete orthonormal system of L2(Ω). We construct approximate
solutions un as following

un(t) =
n∑

k=1

dn,k(t)ωk

where dn,k functions are determined by the ordinary differential equations
system

(un
tt, ωk) + (∇un,∇ωk) = (a(un, p)un

t + b(un, p, pt), ωk) k = 1, . . . n. (2.3)

dn,k(0)= uk
0, d

n,k
t (0) = uk

1 (2.4)

withu0, u1 ∈ C∞

0 ,such that uk
0 → u0 and uk

1 → u1 in . Now, (2.3) and (2.4) are
equivalent to:

d
n,k
tt + λkd

n,k = f(dn,k, d
n,k
t , t) k = 1, . . . n, (2.5)

dn,k(0) = uk
0, d

n,k
t (0) = un

1 (2.6)

where,

f(dn,k, d
n,k
t , t) := (a(un, p)un

t + b(un, p, pt), ωk) a.e. t ≥ 0 . (2.7)

Since (2.5), (2.6) is a second order n×n Cauchy system of differential equations
with continuous nonlinearities, it follows from the Cauchy-Peano Theorem
[20], that for every n ≥ 1, the system has at least one solution dn,k defined on
[0, Tn], for some Tn > 0. Moreover, for 1 ≤ k ≤ n, dn,k ∈ C2[0, Tn].

Lemma 2.1 Functions (un) satisfy

‖un
t (t)‖ + ‖un(t)‖1 ≤ M(T )

where M(T ) only depends on T . In particular un(t) can be extended to [0, T ).
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Proof - Multiply equation (2.3) by dn,k
t , and sum over k=1,. . ., n, by assump-

tion A1 and A2 we obtain

(un
tt, u

n
t ) + (∇un,∇un

t ) = (a(un, p)un
t + b(un, p, pt), u

n
t )

≤C(|un
t | + C1|u

n| + C2, |u
n
t |)

Using Cauchy-Schwartz inequality we have

d

dt
(‖un

t (t)‖
2 + ‖∇un(t)‖2)≤C(‖un

t (t)‖
2 + ‖un(t)‖‖un

t (t)‖ + ‖un
t (t)‖)

≤C(‖un
t (t)‖

2 + ‖un(t)‖2 + ‖un
t (t)‖

2 + ‖un
t (t)‖2 + 1)

≤C(‖un
t (t)‖

2 + ‖un(t)‖2 + 1)

≤C(‖un
t (t)‖

2 + ‖∇un(t)‖2 + 1)

by Poincaré inequality, where C denotes (here and in the sequel) a generic
constant. Applying Gronwall inequality yields:

‖un
t (t)‖ + ‖∇un(t)‖ ≤ M(T ) ; (2.8)

then by Poincaré inequality

‖un
t (t)‖ + ‖un(t)‖1 ≤ M(T ) (2.9)

and

|f(dn,k, d
n,k
t , t)|= |(a(un, p)un

t + b(un, p, pt), ωk)| a.e. t ≥ 0

≤C(‖un
t (t)‖

2 + ‖un(t)‖2) ≤ C

So f(dn,k, d
n,k
t , ·) is a bounded function, and the solution can be extended to

[0, T ) [20] . 2

Lemma 2.2 The sequence of approximated solutions un satisfies the follow-
ing:

(1) un is bounded in L∞([0, T ), H1
0(Ω)).

(2) un
t is bounded in L∞([0, T ), H1

0(Ω)).
(3) un

tt is bounded in L∞([0, T ), L2(Ω)).

Proof - The first item is an immediate consequence of Lemma 2.1. Differen-
tiating (2.3) with respect to t gives for k = 1, . . . n
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(un
ttt, ωk) + (∇un

t ,∇ωk) = (au(u
n, p)(un

t )
2 + ap(u

n, p)ptu
n
t

+ a(un, p)un
tt + bu(u

n, p, pt)u
n
t + bp(u

n, p, pt)pt

+ bq(u
n, p, pt)ptt, ωk) k = 1, . . . n

≤C((un
t )

2 + |un
t | + |un

tt| + |un
t | +M, |ωk|),

with assumptions A1, A2 and A3. Here au and ap denote the partial derivatives
of a : (u, p) 7→ a(u, p). Similarly, bu, bp and bq are the partial derivatives of
b : (u, p, q) 7→ b(u, p, q).

The method is similar to the one used in the previous Lemma. Replace now
ωk by un

tt(t)

d

dt
(‖un

tt(t)‖
2 + ‖∇un

t (t)‖
2)≤C

(
‖(un

t (t))
2‖ + ‖un

t (t)‖ + ‖un
tt(t)‖ +M

)
‖un

tt(t)‖

≤C(‖(un
t (t))

2‖‖un
tt(t)‖ + ‖un

t (t)‖‖u
n
tt(t)‖ +

‖un
tt(t)‖

2 + ‖un
tt(t)‖)

≤C(‖(un
t (t))

2‖2 + ‖un
tt(t)‖

2 + ‖un
t (t)‖

2 +

‖un
tt(t)‖

2 + ‖un
tt(t)‖

2 + ‖un
tt(t)‖

2 + 1)

≤C(‖(un
t (t))

2‖2 + ‖un
tt(t)‖

2 + ‖un
t (t)‖

2 + 1)

Using Sobolev-Poincaré inequality [14],

‖un
t (t)‖L4 ≤ C‖un

t (t)‖1

and Poincaré inequality, we get

d

dt
(‖un

tt(t)‖
2 + ‖∇un

t (t)‖
2)≤C(‖un

tt(t)‖
2 + ‖un

t (t)‖
2
1 + 1)

≤C(‖un
tt(t)‖

2 + ‖∇un
t (t)‖

2 + 1) .

Then by Gronwall inequality we obtain

‖un
t (t)‖1 + ‖un

tt(t)‖ ≤M(T ) a.e. t ∈ [0,T[ , (2.10)

and the lemma is proved. 2

Thanks to estimations (2.9) and (2.10), we may extract subsequences of {un}
(denoted similarly in the sequel) such that

un ⇀ u weakly star in L∞([0, T ), H1
0(Ω)) and weakly in L2([0, T ), H1

0(Ω))
(2.11)

un
t ⇀ ut weakly star in L∞([0, T ), H1

0(Ω)) and weakly in L2([0, T ), H1
0(Ω))
(2.12)
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un
tt ⇀ utt weakly star in L∞([0, T ), L2(Ω)) and weakly in L2([0, T ), L2(Ω))

(2.13)
With classical compactness results [12]

un → u strongly in L2([0, T ), L2(Ω)) (2.14)

And then by (2.14), (2.12) we can extract subsequences {un} such that

un(t, x) → u(t, x) a.e. (t, x) ∈ [0, T ) × Ω (2.15)

un(t, x) ≤ g(t, x) a.e. (t, x) ∈ [0, T ) × Ω (2.16)

un
t (t) → ut(t) weakly in H1

0 (Ω) (2.17)

Now, by continuity of a and b, (A1), and (2.15) we obtain

a4(un(t, x), p(t, x))→ a4(u(t, x), p(t, x)) (2.18)

b(un(t, x), p(t, x), pt(t, x))→ b(u(t, x), p(t, x), pt(t, x)) (2.19)

for almost every (t, x) ∈ [0, T ) × Ω. Using Lebesgue theorem by (2.18) and
(A1) we obtain

a(un(t), p(t)) −→ a(u(t), p(t)) in L4(Ω) a.et ∈ [0,T) (2.20)

and by (2.19), (2.16) and (A2) we obtain

b(un(t), p(t), pt(t)) → b(u(t), p(t), pt(t)) in L2(Ω) a.et ∈ [0,T) (2.21)

On the other hand, for all v ∈ L2, we have

|(a(un, p)un
t −a(u, p)ut, v)| = |(a(un, p)un

t −a(u, p)u
n
t +a(u, p)un

t −a(u, p)ut, v)|

≤ |(a(un, p) − a(u, p))un
t , v)| + |(a(u, p)(un

t − ut), v)|

≤ ‖a(un, p) − a(u, p)‖L4‖un
t ‖L4‖v‖ + |(un

t − ut, a(u, p)v)|

≤ C‖a(un, p) − a(u, p)‖L4‖un
t ‖1‖v‖ + |(un

t − ut, a(u, p)v)|

Using (2.20), (2.10) and (2.17) we obtain for almost every t ∈ [0, T )

a(un(t), p(t))un
t (t) → a(u(t), p(t))ut(t) weakly in L2(Ω) (2.22)

Then, using (2.21) and (2.22), and letting n → ∞ in (2.3) we obtain that
the limiting function u ∈ H2([0, T ), L2(Ω))∩H1([0, T ), H1

0(Ω)) and for almost
every t ∈ [0, T ),
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(utt, ω) + (∇u,∇ω)= (a(u, p)ut + b(u, p, pt), ω) ∀ω in H1
0(Ω) (2.23)

u(0)=u0 in H1
0(Ω), ut(0) = u1 in L2(Ω) (2.24)

2

Corollary 2.1 If we suppose that conditions of theorem 2.1 are fulfilled, for
every T > 0, then u is a globally weak solution of problem (1.1), (1.2), (1.3).

3 Stability and uniqueness of 1D-solution

In this part we suppose n=1.

Theorem 3.1 Assume n = 1 and Theorem 2.1 hypothesis for some T > 0.
Let u, v be two solutions of problem (1.1)-(1.3) corresponding to initial data
(u0, u1) and (v0, v1) ∈ H1

0 (Ω) × L2(Ω). Then for almost every t ∈ [0, T )

‖ut(t) − vt(t)‖
2 + ‖u(t) − v(t)‖2

1 ≤M(T )(‖u1 − v1‖
2 + ‖u0 − v0‖

2
1),

where, M(T) is a positive constant depending on T .

Proof - Let u and v be two solutions of problem (1.1), (1.2) (1.3) corresponding
to initial data (u0, u1) and (v0, v1). We set ω = u−v and ωi = ui−vi, i = 0, 1;
then ω satisfies for all ϕ ∈ H1

0 (Ω) :

(ωtt, ϕ) + (∇ω,∇ϕ)= (a(u, p)ut − a(v, p)vt + b(u, p, pt) − b(v, p, pt), ϕ)

ω= 0, on [0,T) × ∂Ω

ω(0, x)=ω0, ωt(0, x) = ω1, in Ω

Replacing ϕ by 2ωt (ut and vt ∈ H1
0 (Ω)) gives

2(ωtt, ωt) + 2(∇ω,∇ωt) = (a(u, p)ut − a(v, p)vt + b(u, p, pt) − b(v, p, pt), 2ωt)

and
d

dt
(‖ωt(t)‖

2 + ‖∇ω(t)‖2) =

(
∂(a(u, p)ut)

∂u
(β)ω +

∂(a(u, p)ut)

∂ut

(β)ωt, 2ωt) + (
∂b

∂u
(γ)ω, 2ωt) ,

where β(t, x) 7→ (β1(t, x), β2(t, x), p(t, x)) and γ are vector functions between
(u, ut, p), (v, vt, p) and (u, p, pt), (v, p, pt) respectively. By (A1), (A2) and Cauchy-
Schwartz inequality

d

dt
(‖ωt(t)‖

2 + ‖ω(t)‖2
1) ≤ C(‖ωt(t)‖

2 + ‖ωt(t)‖‖ω(t)‖) + |(β2ω, 2ωt))|
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≤ C(‖ωt(t)‖
2 + ‖ωt(t)‖‖ω(t)‖ + ‖β2(t)‖‖ωt(t)‖‖ω(t)‖∞)

On the other hand, as in the proof of (2.10) we have

‖ut(t)‖1 and ‖vt(t)‖1 ≤M a.e. on [0,T) . (3.1)

Therefore, as β2(t, x) is between ut(t, x) and vt(t, x) then ‖β2(t)‖ ≤M and we
obtain by Sobolev embedding theorem (‖ω(t)‖∞ ≤ C‖ω(t)‖1, since n = 1).

d

dt
(‖ωt(t)‖

2 + ‖ω(t)‖2
1)≤M(‖ωt(t)‖

2 + ‖ω(t)‖2
1), a.e. t ∈ [0,T) . (3.2)

Applying Gronwall inequality to (3.2) we get

‖ωt(t)‖
2 + ‖ω(t)‖2

1 ≤M(T )(‖ωt(0, x)‖
2 + ‖ω(0, x)‖2

1), a.e. t ∈ [0,T) (3.3)

This achieves the proof. 2

Corollary 3.1 Assume theorem 2.1 assumptions are fulfilled and n = 1,
problem (1.1)- (1.3) admits a unique weak solution u ∈ H2([0, T ), L2(Ω)) ∩
H1([0, T ), H1

0(Ω))

4 Application to cerebral activity model

Let us present now a cerebral activity model stated by V. Jirsa [8]. This model
equation is a particular case of equation (1.1). We mathematically justify this
model.

The elementary unit of the nervous system is the neuron (Fig 1), which is
divided into three basic components [6]: dendrites, cell body and axons. A
neuron communicates with others at synapses and there are mainly two kinds
of synapses [6]: excitatory or inhibitory types. The information transfer be-
tween two neurones A and B can be described as follows

• a pulse (electrical signal) arrives to dendrite of neuron A (under potential
action) and acquits neurotransmitters (chemical substances) so that it is
transformed to a wave. According to [6] this conversion is a linear operation
between neural sheets.

• then the waves reaches the so-called “trigger zone” (Figure 1. ) and is con-
verted to pulse again. Now the conversion law is sigmoidal .

Let us describe and justify the conversion operations at the synapses and the
trigger zone of neural ensembles, and derive a nonlinear partial differential
field equation describing the spatio-temporal behavior of brain activity.
The pulse and wave variables are classified in two sub-variables according

9



Fig. 1. Dendritic trees form thousands of synapses, excitatory current flows inwardly
at excitatory synapses and outwardly at the trigger zone. Inhibitory loop current
flows in the opposite direction (Figure from Freeman[6].

to their excitatory or inhibitory characters: excitatory pulse E(x, t) and in-
hibitory pulse I(x, t), excitatory wave ψe(x, t) and inhibitory wave
displaystylepsii(x, t).We can view the wave as:

ψe(x, t) =
∫

Γ
fe(x,X)He(x,X, t) dX (4.1)

ψi(x, t) =
∫

Γ
fi(x,X)Hi(x,X, t) dX . (4.2)

FunctionsHk(x,X, t) are conversion operations outputs and functions fk(x,X)
are the corresponding depending on the spatial connectivity distributions. Γ
denotes the neural sheet set ( at the brain surface which supposed continuous).
We assume that, the connectivity functions have the following form:

fe(x,X) =
1

2σe

e−
|x−X|

σe (4.3)

fi(x,X) =
1

2σi

e
−

|x−X|
σi (4.4)

where σe and σi are excitatory and inhibitory connectivity parameters (re-
spectively). Moreover
displaystylesigmai << 1, since the corticocortical connections (connections
between two distant neurons via corticocortical fibers) are only excitatory.
On the other hand, the information propagation along corticocortical fibers,

implies a delay t =
|x−X|

vj

, where ve and vi are the propagation speed exci-
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tatory and inhibitory respectively. Thus we obtain

He(x,X, t) = aeE

(
X, t−

|x−X|

ve

)
(4.5)

Hi(x,X, t) = aiI

(
X, t−

|x−X|

vi

)
(4.6)

where ae and ai are constants.
Replacing (4.5) and (4.6) in (4.1) and (4.2) respectively, we obtain:

ψe(x, t) = ae

∫

Γ
fe(x,X)E

(
X, t−

|x−X|

v

)
dX (4.7)

ψi(x, t) =
∫

Γ
fi(x,X)Hi(x,X, t)dX

≈ fi(x, x)Hi(x, x, t) = aiI(x, t) (because σi << 1) (4.8)

The pulse value is calculated from the wave value and the external input in
the neural tissue (Fig 1); it has a sigmoidal form :

E(x, t) =Se[ψe(x, t) − ψi(x, t) + pe(x, t)] (4.9)

I(x, t) =Si[ψe(x, t) − ψi(x, t) + pi(x, t)] (4.10)

where pj(x, t) is the external input. The sigmoid function Sj is the following

Sj(nj) =
1

1 + exp(−vjnj)
−

1

2

When nj is small enough, we have a third order approximation of Sj :

Sj(nj) ≈ nj −
v3

jn
3
j

48
(4.11)

Inserting (4.9) in (4.7) and (4.10) in (4.8) we obtain

ψe(x, t) = ae

∫

Γ
fe(x,X).Se

[
ψe

(
X, t−

|x−X|

υ

)
− ψi

(
X, t−

|x−X|

υ

)

+ pe

(
X, t−

|x−X|

υ

)]
dX (4.12)

ψi(x, t) = aiSi[ψe(x, t) − ψi(x, t) + pi(x, t)] (4.13)

Because
ve

vi

≈ 100, we take only the linear part of (4.11) in consideration,

replacing it in (4.13) we obtain:

ψi(x, t) ≈
aivi

4 + aivi

(ψe(x, t) + pi(x, t)) (4.14)

11



Inserting (4.14) in (4.12), we obtain the following equation for the dynamics
of the excitatory synaptic activity:

ψe(x, t) = ae

∫

Γ
fe(x,X).Se

[
ρ̃ψe

(
X, t−

|x−X|

v

)
+ p

(
X, t−

|x−X|

v

)]
dX

where p(x, t) = pe(x, t) −
aivi

4 + aivi

.pi(x, t), and ρ̃ = 1 −
aivi

4 + aivi

.

We suppose hereafter that Γ is one-dimensional, that is we connect all the
neuron sheets by a line (see [7]). On the other hand, we may assume ψe(0, t) =
ψe(L, t) = 0 as in [7], and fe(x,X) is an exponential function depending only
on the distance between two neural sheets. Therefore

ψe(x, t) = ae

∫

R

fe(x,X).Se

[
ρ̃ψe

(
X, t−

|x−X|

v

)
+ p

(
X, t−

|x−X|

v

)]
dX .

Let us set: ρ(X, T ) = aeSe

(
ρ̃ψ(X, T ) + p(X, T )

)
and

µ : L1(R × R) → R

ϕ 7→ < µ, ϕ >=
∫

R

h(x)ϕ(x,
|x|

v
)dx

with h(x) = e−
|x|
σ

µ ∗ ρ(x, t) =
∫

R

h(X)g(X,
|X|

v
)dX with g(X, T ) = f(x−X, t− T )

=
∫

R

h(X)ρ(x−X, t−
|x|

v
)dX

=
∫

R

fe(x,X)ρ(X, t−
|x−X|

v
)dX

and

µ ∗ ρ(x, t) = ψe(x, t).

The extended Fourier transform gives: ψ̂e = µ̂ρ̂.

Now, we prove that µ̂ = Tf , f ∈ L1
loc(R × R). Let ϕ ∈ D(R × R).

< µ̂, ϕ >=< µ, ϕ̂ >=
∫

R

h(X)ϕ̂(X,
|X|

v
)dX

=
∫

R

h(X)
( ∫

R

∫

R

ϕ(x, t)e−2iπ(xX+t
|X|
v

)dxdt

)
dX

=
∫

R

∫

R

( ∫

R

h(X)e−2iπ(xX+t
|X|
v

)dX

)
ϕ(x, t)dxdt

=
∫

R

∫

R

f(x, t)ϕ(x, t)dxdt

12



with f(x, t) =
1

2σe

∫

R

e−
|X|
σ e−2iπ(xX+t

|X|
v

)dX.

Then:

ψ̂e(x, t) = f(x, t)ρ̂(x, t) ∀(x, t) ∈ R × R. (4.15)

As: ∫ +∞

0
e−(a+iα)ζdζ =

1

a+ iα
(4.16)

supposing ω0 = v
σ
; we obtain

f(x, t) =
1

2

[
1

1
σe

+ i

(
t
v
− x

) +
1

1
σe

+ i

(
t
v

+ x

)
]

=
1

2

[
ω0

ω0 + i(t− xv)
+

ω0

ω0 + i(t+ xv)

]

=
[

ω2
0 + iω0t

(ω0 + it)2 + x2v2

]
∈ L1

loc(R × R)

Equation (4.15) becomes

ψ̂e(x, t) =
[

ω2
0 + iω0t

(ω0 + it)2 + x2v2

]
ρ̂(x, t) (4.17)

Developing equation (4.17), we obtain

ω2
0ψ̂e(x, t) + 2ω0

∂̂ψe

∂t
(x, t) +

∂̂2ψe

∂t2
(x, t) − v2 ∂̂

2ψe

∂x2
(x, t) =

̂
ω2

0 + ω0
∂

∂t
.ρ(x, t)

Applying the inverse Fourier Transform, we formally obtain the following par-
tial derivative equation :

∂2ψe

∂t2
+ (ω2

0 − v2 ∂
2

∂x2
)ψe + 2ω0

∂ψe

∂t
= (ω2

0 + ω0
∂

∂t
).ρ (4.18)

with

ρ(x, t) = aeSe

(
ρ̃ψe(x, t) + p(x, t)

)
.

Developing (4.18) and summing the similar terms gives

∂2ψe

∂t2
− v2∂

2ψe

∂x2
=

(
aeω

2
0 ρ̃S

′

e(ρ̃ψe + p) − 2ω0

)
∂ψe

∂t

−ω2
0ψe + aeω

2
0Se(ρ̃ψe + p) + aeω

2
0S

′

e(ρ̃ψe + p)pt . (4.19)

We complete this equation with ψe(t, 0) = ψe(t, L) = 0, and Cauchy initial
condition.
Thanks to the previous sections results we have the following :
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Theorem 4.1 Assume p ∈ H2([0, T ), L∞(Ω)). Then equation (4.19) with
ψe(t, 0) = ψe(t, L) = 0, and Cauchy initial condition with (ψe,0, ψe,1) ∈ H1

0 (Ω)×
L2(Ω) has a unique weak solution in H2([0, T ), L2(Ω)) ∩H1([0, T ), H1

0(Ω)).

Proof - Equation (4.19) is a particular case from equation (1.1), with

a(u, p) = aeω
2
0 ρ̃S

′

e(ρ̃u+ p) − 2ω0,

and
b(u, p, pt) = ω2

0u+ aeω
2
0Se(ρ̃u+ p) + aeω

2
0S

′

e(ρ̃u+ p)pt.

If we suppose p ∈ H2([0, T ), L∞(Ω)), it is easy to view that a and b functions
verify Theorem 2.1 conditions and consequently by (2.23), (3.3) the above
equation has a unique weak solution. 2

5 Conclusion

In this paper, we prove the existence and uniqueness of solution to a new
form of wave equation motivated by brain activity modeling. We have proven
the stability of solution with respect to the initial data : this means that the
responses to small perturbations are small as well, which is coherent from a
physical point of view. We have simplified the model assuming that:

• the geometry of brain area is 1D. The 2D geometry is more consistent but
introduces additional difficulties,

• the connectivity function (4.3), (4.4) between the neural sheet is homoge-
neous. In fact more than 50 % of neural sheet have heterogeneous connec-
tions, so we should add another term representing the heterogeneity,

• the input p belongs to H2([0, T ), L∞(Ω)). In reality p maybe less smooth or
non local.

In our future work, we will try to generalize our model in order to satisfy the
general constraints which are introduced above.
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