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A NOTE ON RELATIVE DUALITY FOR VOEVODSKY

MOTIVES

LUCA BARBIERI-VIALE AND BRUNO KAHN

Introduction

Relative duality is a useful tool in algebraic geometry and has been
used several times. Here we prove a version of it in Voevodsky’s trian-
gulated category of geometric motives DMgm(k) [9], where k is a field
which admits resolution of singularities.

Namely, let X be a smooth proper k-variety of pure dimension n
and Y, Z two disjoint closed subsets of X. We prove in Theorem 3.1
an isomorphism

M(X − Z, Y ) ≃ M(X − Y, Z)∗(n)[2n]

where M(X −Z, Y ) and M(X −Y, Z) are relative Voevodsky motives,
see Definition 1.1.

This isomorphism remains true after application of any ⊗-functor
from DMgm(k), for example one of the realisation functors appearing
in [8, I.VI.2.5.5 and I.V.2], [5] or [7]. In particular, taking the Hodge
realisation, this makes the recourse to M. Saito’s theory of mixed Hodge
modules unnecessary in [1, Proof of 2.4.2].

The main tools in the proof of Theorem 3.1 are a good theory of
extended Gysin morphisms, readily deduced from Déglise’s work (Sec-
tion 2) and Voevodsky’s localisation theorem for motives with compact
supports [9, 4.1.5]. This may be used for an alternative presentation of
some of the duality results of [9, §4.3] (see Remark 4.7). The arguments
seem axiomatic enough to be transposable to other contexts.

We assume familiarity with Voevodsky’s paper [9], and use its nota-
tion throughout.

1. Relative motives and motives with supports

Definition 1.1. Let X ∈ Sch/k and Y ⊆ X, closed. We set

M(X, Y ) = C∗(L(X)/L(Y ))

MY (X) = C∗(L(X)/L(X − Y )).
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Remark 1.2. This convention is different from the one of Déglise in
[2, 3, 4] where what we denote by MY (X) is written M(X, Y ) (and
occasionally MY (X) as well).

Note that L(Y ) → L(X) and L(X − Y ) → L(X) are monomor-
phisms, so that we have functorial exact triangles

M(Y ) → M(X) → M(X, Y )
+1
−→

M(X − Y ) → M(X) → MY (X)
+1
−→ .(1)

We can mix the two ideas: for Y, Z ⊆ X closed, define

MZ(X, Y ) = C∗(L(X)/L(Y ) + L(X − Z)).

Lemma 1.3. If Y ∩ Z = ∅, the obvious map MZ(X) → MZ(X, Y ) is
an isomorphism, and we have an exact triangle

M(X − Z, Y ) → M(X, Y )
δ

−→ MZ(X)
+1
−→ . �

2. Extended Gysin

In the situation of Lemma 1.3, assume that Z is smooth of pure
codimension c. F. Déglise has then constructed a purity isomorphism

(2) pZ⊂X : MZ(X)
∼

−→ M(Z)(c)[2c]

with the following properties:

(1) pZ⊂X coincides with Voevodsky’s purity isomorphism of [9, 3.5.4]
(see [4, 1.11]).

(2) If f : X ′ → X is transverse to Z in the sense that Z ′ = Z×X X ′

is smooth of pure codimension c in X ′, then the diagram

MZ′

(X ′)
pZ′⊂X′

−−−−→ M(Z ′)(c)[2c]

(f,g)∗





y

g∗





y

MZ(X)
pZ⊂X
−−−→ M(Z)(c)[2c]

commutes, where g = f|Z′ ([2, Rem. 4] or [3, 2.4.5]).
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(3) If i : T ⊂ Z is a closed subset, smooth of codimension d in X,
the diagram

MZ(X)
pZ⊂X

//

i∗

��

M(Z)(c)[2c]

α

((QQQQQQQQQQQQ

MT (Z)(c)[2c]
pT⊂Z

vvmmmmmmmmmmmm

MT (X)
pT⊂X

// M(T )(d)[2d]

commutes, where α is the twist/shift of the boundary map in
the triangle corresponding to (1) [4, proof of 2.3].

Definition 2.1. We set:

gY
Z⊂X = pZ⊂X ◦ δ

where pZ⊂X is as in (2) and δ is the morphism appearing in Lemma
1.3.

In view of the properties of pZ⊂X , these extended Gysin morphisms
have the following properties:

Proposition 2.2. a) Let f : X ′ → X be a morphism of smooth
schemes. Let Z ′ = f−1(Z) and Y ′ = f−1(Y ). If f is transverse to
Z, the diagram

M(X ′, Y ′)
gY ′

Z′⊂X′

−−−−→ M(Z ′)(c)[2c]

f∗





y

g∗





y

M(X, Y )
gY

Z⊂X
−−−→ M(Z)(c)[2c]

commutes, with g = f|Z.
b) Let X ⊃ Z ⊃ Z ′ be a chain of smooth k-schemes of pure codimen-
sions, and let d = codimZZ ′. Let Y ⊂ X be closed, with Y ∩ Z = ∅.
Then

gY
Z′⊂X = gZ′⊂Z(d)[2d] ◦ gY

Z⊂X.

3. Relative duality

In this section, X is a smooth proper variety purely of dimension n
and Y, Z are two disjoint closed subsets of X. Consider the diagonal
embedding of X into X ×X: its intersection with (X − Y )× (X −Z)
is closed and isomorphic to X − Y − Z. The closed subset (X − Y ) ×
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Y ∪ Z × (X − Z) is disjoint from X − Y − Z; from Definition 2.1 we
get a extended Gysin map

M((X − Y ) × (X − Z), (X − Y ) × Y ∪ Z × (X − Z))

→ M(X − Y − Z)(n)[2n].

Note that the left hand side is isomorphic to M(X −Y, Z)⊗M(X −
Z, Y ) by an explicit computation from the definition of relative motives.
Composing with the projection M(X − Y −Z)(n)[2n] → Z(n)[2n], we
get a map

M(X − Y, Z) ⊗ M(X − Z, Y ) → Z(n)[2n]

hence a map

(3) M(X − Z, Y )
α

Y,Z

X−→ M(X − Y, Z)∗(n)[2n].

Theorem 3.1. The map (3) is an isomorphism.

The proof is given in the next section.

4. Proof of Theorem 3.1

Lemma 4.1. If Y = Z = ∅ and X is projective, then (3) is an iso-
morphism.

Proof. As pointed out in [9, p. 221], α∅,∅
X corresponds to the class of the

diagonal; then Lemma 4.1 follows from the functor of [9, 2.1.4] from
Chow motives to DMgm(k). (This avoids a recourse to [9, 4.3.2 and
4.3.6].) �

The next step is when Z is empty. For any U ∈ Sch/k, write
M c(U) := C∗(L

c(U)) [9, p. 224]. Since X is proper, by [9, 4.1.5]
there is a canonical isomorphism

M(X, Y )
∼

−→ M c(X − Y )

induced by the map of Nisenvich sheaves

L(X)/L(Y ) → Lc(X − Y ).

Therefore, from αY,∅
X , we get a map

βY
X : M c(X − Y ) → M(X − Y )∗(n)[2n].

Lemma 4.2. The map βY
X only depends on X − Y .
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Proof. Let U = X − Y . If X ′ is another smooth compactification of
U , with Y ′ = X ′ − U , we need to show that βY

X = βY ′

X′ . By resolution
of singularities, X and X ′ may be dominated by a third smooth com-
pactification; therefore, without loss of generality, we may assume that
the rational map q : X ′ → X is a morphism. The point is that, in the
diagram

M(X ′, Y ′)

&&NNNNNNNNNNN

≃

��=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
=

=
α

Y ′,∅

X′

++WWWWWWWWWWWWWWWWWWWWWW

M(X, Y )
α

Y,∅

X

//

≃
��

M(U)∗(n)[2n]

M c(U)

both triangles commute. For the left one it is obvious, and for the
upper one this follows from the naturality of the pairing (3). Indeed,
the square

X ′ − Y ′ ∆′

−−−→ (X ′ − Y ′) × X ′

q′





y

q′×q





y

X − Y
∆

−−−→ (X − Y ) × X

is clearly transverse, where q′ = q|X′−Y ′ (an isomorphism) and ∆, ∆′

are the diagonal embeddings; therefore we may apply Proposition 2.2
a). �

From now on, we write βX−Y for the map βY
X .

Lemma 4.3. a) Let U ∈ Sm/k of pure dimension n, T
i

−→ U closed,

smooth of pure dimension m and V = U −T
j

−→ U . Then the diagram

M c(T )
βT

−−−→ M(T )∗(m)[2m]

i∗





y





y

g∗
T⊂U

(n)[2n]

M c(U)
βU

−−−→ M(U)∗(n)[2n]

j∗





y





y

j∗

M c(V )
βV

−−−→ M(V )∗(n)[2n]

commutes.
b) Suppose that βT is an isomorphism. Then βU is an isomorphism if
and only if βV is.
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Proof. a) The bottom square commutes by a trivial case of Proposi-
tion 2.2 a). For the top square, the statement is equivalent to the
commutation of the diagram

M c(T ) ⊗ M(T )(c)[2c]

))RRRRRRRRRRRRRR

M c(T ) ⊗ M(U)

1⊗gT⊂U

44jjjjjjjjjjjjjjj

i∗⊗1
**TTTTTTTTTTTTTTT

Z(n)[2n]

M c(U) ⊗ M(U)

55llllllllllllll

with c = n − m.
Take a smooth compactification X of U , and let T̄ be a desingular-

isation of the closure of T in X. Let q : T̄ → X be the corresponding
morphism, Y = X − U and W = T̄ − T : we have to show that the
diagram

M(T̄ , W ) ⊗ M(T )(c)[2c]

))SSSSSSSSSSSSSS

M(T̄ , W ) ⊗ M(U)

1⊗gT⊂U

44iiiiiiiiiiiiiiiii

q∗⊗1
**UUUUUUUUUUUUUUUUU

Z(n)[2n]

M(X, Y ) ⊗ M(U)

55kkkkkkkkkkkkkk

or equivalently

M(T̄ × T, W × T )(c)[2c]

))SSSSSSSSSSSSSS

M(T̄ × U, W × U)

f◦gW×U

T̄×T⊂T̄×U

44iiiiiiiiiiiiiiiii

(q×1)∗ **UUUUUUUUUUUUUUUUU

Z(n)[2n]

M(X × U, Y × U)

55kkkkkkkkkkkkkk
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commutes, where f is the map M(T̄ × T )(c)[2c] → M(T̄ × T, W ×
T )(c)[2c]. For this, it is enough to show that the diagram

M(T̄ × T, W × T )(c)[2c]
gW×T

T⊂T̄×T
(c)[2c]

// M(T )(n)[2n]

i∗

��

M(T̄ × U, W × U)

f◦gW×U

T̄×T⊂T̄×U

44iiiiiiiiiiiiiiiii

(q×1)∗ **UUUUUUUUUUUUUUUUU

M(X × U, Y × U)
gY ×U

U⊂X×U
// M(U)(n)[2n]

commutes. Since extended Gysin extends Gysin, Proposition 2.2 a)
shows that this amounts to the commutatvity of

M(T̄ × U, W × U)
gW×U

T⊂T̄×U

−−−−−→ M(T )(n)[2n]

(q×1)∗





y

i∗





y

M(X × U, Y × U)
gY ×U

U⊂X×U

−−−−−→ M(U)(n)[2n]

which follows from the functoriality of the extended Gysin maps (Propo-
sition 2.2 b)).

b) This follows immediately from a). �

Proposition 4.4. βU is an isomorphism for all smooth U .

Proof. We argue by induction on n = dim U , the case n = 0 being
known by Lemma 4.1. In general, let V be an open affine subset of U
and pick a smooth projective compactification X of V , with Z = X−V .
Let Z ⊃ Z1 ⊃ · · · ⊃ Zr = ∅, where Zi+1 is the singular locus of Zi.
Let also T = U − V and define similarly T ⊃ T1 ⊂ · · · ⊃ Ts = ∅ (all
Zi and Tj are taken with their reduced structure). Let Vi = X − Zi

and Uj = U − Tj . Then Vi − Vi−1 and Uj −Uj−1 are smooth for all i, j.
Thus βU is an isomorphism by Lemma 4.1 (case of βX) and a repeated
application of Lemma 4.3 b). �

Remark 4.5. We haven’t tried to check whether βU is the inverse of
the isomorphism appearing in the proof of [9, 4.3.7]: we leave this
interesting question to the interested reader.

End of proof of Theorem 3.1. By Lemma 1.3, the triangle M(Z) →

M(X −Y ) → M(X −Y, Z)
+1
−→ and the duality pairings induce a map



8 LUCA BARBIERI-VIALE AND BRUNO KAHN

of triangles

M(X − Y, Z)∗(n)[2n] −−−→ M(X − Y )∗(n)[2n] −−−→ M(Z)∗(n)[2n]

α
Y,Z

X

x





α
Y,∅

X

x





Φ

x





M(X − Z, Y ) −−−→ M(X, Y ) −−−→ MZ(X).

(The left square commutes by a trivial application of Proposition 2.2
a), and Φ is some chosen completion of the commutative diagram by
the appropriate axiom of triangulated categories.)

Consider the following diagram (which is the previous diagram with
Y = ∅):

M(X, Z)∗(n)[2n] −−−→ M(X)∗(n)[2n] −−−→ M(Z)∗(n)[2n]

α
∅,Z

X

x





α
∅,∅

X

x





Φ

x





M(X − Z) −−−→ M(X) −−−→ MZ(X)

Note that α∅,Z
X is dual to αZ,∅

X ; therefore it is an isomorphism by
Lemma 4.2 and Proposition 4.4. It follows that Φ is an isomorphism.
Coming back to the first diagram and using Lemma 4.2 and Proposition
4.4 a second time, we get the theorem. �

Remark 4.6. It would be interesting to produce a canonical pairing

∩(X,Z) : MZ(X) ⊗ M(Z) → Z(n)[2n]

playing the rôle of Φ in the above proof, i.e., compatible with αY,Z
X .

Remark 4.7. As explained in [6, App. B], resolution of singularities and
the existence of the ⊗-functor of [9, 2.1.4] are sufficient to prove that the
category DMgm(k) is rigid. Therefore, to apply the above arguments,
one need only know that the motives of the form M(X − Y, Z) belong
to DMgm(k), which is a consequence of [9, 4.1.4].
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