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A NOTE ON RELATIVE DUALITY FOR VOEVODSKY
MOTIVES

LUCA BARBIERI-VIALE AND BRUNO KAHN

INTRODUCTION

Relative duality is a useful tool in algebraic geometry and has been
used several times. Here we prove a version of it in Voevodsky’s trian-
gulated category of geometric motives DM, (k) [[], where k is a field
which admits resolution of singularities.

Namely, let X be a smooth proper k-variety of pure dimension n
and Y, Z two disjoint closed subsets of X. We prove in Theorem B.]|
an isomorphism

M(X = Z,Y)~M(X —Y, Z)"(n)[20]

where M (X —Z,Y) and M(X —Y, Z) are relative Voevodsky motives,
see Definition [[1].

This isomorphism remains true after application of any ®-functor
from DM,,,(k), for example one of the realisation functors appearing
in [§, I.VL.2.5.5 and 1.V.2], [] or []. In particular, taking the Hodge
realisation, this makes the recourse to M. Saito’s theory of mixed Hodge
modules unnecessary in [[ll, Proof of 2.4.2].

The main tools in the proof of Theorem B.I] are a good theory of
extended Gysin morphisms, readily deduced from Déglise’s work (Sec-
tion f]) and Voevodsky’s localisation theorem for motives with compact
supports [, 4.1.5]. This may be used for an alternative presentation of
some of the duality results of [, §4.3] (see Remark 7). The arguments
seem axiomatic enough to be transposable to other contexts.

We assume familiarity with Voevodsky’s paper [[], and use its nota-
tion throughout.

1. RELATIVE MOTIVES AND MOTIVES WITH SUPPORTS
Definition 1.1. Let X € Sch/k and Y C X, closed. We set
M(X,Y) = C.(L(X)/L(Y))
MY (X) = C.(L(X)/L(X - Y)).
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Remark 1.2. This convention is different from the one of Déglise in
B, B, @l where what we denote by MY (X) is written M(X,Y) (and
occasionally My (X)) as well).

Note that L(Y) — L(X) and L(X —Y) — L(X) are monomor-
phisms, so that we have functorial exact triangles

MY) = M(X)— M(X,Y) 25
(1) M(X -Y)— M(X)— MY(X) 5.
We can mix the two ideas: for Y, Z C X closed, define
MZ(X,Y) = CL(L(X)/LY) + L(X — Z)).

Lemma 1.3. If Y N Z =), the obvious map M?(X) — M?(X,Y) is
an isomorphism, and we have an exact triangle

MX-2Y)— MXY)-> M4x)25 . O

2. EXTENDED GYSIN
In the situation of Lemma [[.3, assume that Z is smooth of pure
codimension c. F. Déglise has then constructed a purity isomorphism

(2) pzex : MA(X) = M(Z)(c)[2d]

with the following properties:

(1) pzcx coincides with Voevodsky’s purity isomorphism of [f}, 3.5.4]
(see [H, 1.11]).

(2) If f : X’ — X is transverse to Z in the sense that 7' = Z x x X’
is smooth of pure codimension ¢ in X', then the diagram

M7 (X') 22X M2 (e)[2d]

(fvg)*J( Q*J,

M*(X) =55 M(Z)(0)[2d]

commutes, where g = fiz ([, Rem. 4] or [B, 2.4.5)).
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(3) If i : T C Z is a closed subset, smooth of codimension d in X,
the diagram

pPzcx
—_—

M#(X) M(Z)(c)[2¢]

T

i* MT(Z)(c)[2c]

y

MT(X) =M (T)(d)[2d]

commutes, where « is the twist/shift of the boundary map in
the triangle corresponding to ([l) [, proof of 2.3].

Definition 2.1. We set:

ggcx = pzcx 00
where pzcx is as in (B) and § is the morphism appearing in Lemma
03
In view of the properties of pzcx, these extended Gysin morphisms
have the following properties:

Proposition 2.2. a) Let f : X' — X be a morphism of smooth
schemes. Let Z' = f~YZ) and Y' = f~YY). If f is transverse to
Z, the diagram

!

M(X',Y") Iyex, M(Z")(e)[2d]
f*l y*l
M(X,Y) 25 M(Z)(0)]2d]

commutes, with g = f|z.

b) Let X D Z D Z' be a chain of smooth k-schemes of pure codimen-
sions, and let d = codimzZ'. Let Y C X be closed, with Y N Z = (.
Then

9yex = gzez(d)2d] o gy x.

3. RELATIVE DUALITY

In this section, X is a smooth proper variety purely of dimension n
and Y, Z are two disjoint closed subsets of X. Consider the diagonal
embedding of X into X x X: its intersection with (X —Y) x (X — Z)
is closed and isomorphic to X —Y — Z. The closed subset (X —Y) x
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Y UZ x (X — Z) is disjoint from X —Y — Z; from Definition R.1] we
get a extended Gysin map
M(X-Y)x(X=-2),(X-Y)xYUZXx(X—-2))
— M(X =Y — Z)(n)[2n].
Note that the left hand side is isomorphic to M(X —Y, Z) @ M (X —
Z,Y) by an explicit computation from the definition of relative motives.
Composing with the projection M (X —Y — Z)(n)[2n] — Z(n)[2n], we
get a map

M(X-Y,Z2)@ M(X —Z,Y) — Z(n)[2n]

hence a map

Y,Z

(3) M(X = Z,Y) 25 M(X - Y, Z)*(n)2n).
Theorem 3.1. The map () is an isomorphism.

The proof is given in the next section.

4. PROOF OF THEOREM [3.]]
Lemma 4.1. If Y = Z = () and X is projective, then (B) is an iso-

]
morphism.

Proof. As pointed out in [P, p. 221], O&(Z) corresponds to the class of the
diagonal; then Lemma (]| follows from the functor of [g, 2.1.4] from
Chow motives to DMy, (k). (This avoids a recourse to [f, 4.3.2 and
4.3.6].) O

The next step is when Z is empty. For any U € Sch/k, write
Me(U) = C,(L°(U)) B, p- 224]. Since X is proper, by [[, 4.1.5]

there is a canonical isomorphism
M(X,Y) = M°(X -Y)
induced by the map of Nisenvich sheaves
L(X)/L(Y) — LY(X =Y.

Therefore, from og(’@

, we get a map
By i MS(X —Y) — M(X —Y)*(n)[2n].

Lemma 4.2. The map 8% only depends on X — Y.
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Proof. Let U = X — Y. If X’ is another smooth compactification of
U, with Y’ = X’ — U, we need to show that g% = 8¥,. By resolution
of singularities, X and X’ may be dominated by a third smooth com-
pactification; therefore, without loss of generality, we may assume that
the rational map ¢ : X’ — X is a morphism. The point is that, in the
diagram

M(X',Y") ,

Y',0
\X\

both triangles commute. For the left one it is obvious, and for the
upper one this follows from the naturality of the pairing (B]). Indeed,
the square

X -y A (X —Y)x X'

q’l q’qu

X-Y —25 (X-Y)xX
is clearly transverse, where ¢’ = ¢x/_ys (an isomorphism) and A, A/
are the diagonal embeddings; therefore we may apply Proposition .3
a). O

From now on, we write 8x_y for the map 3%.

Lemma 4.3. a) Let U € Sm/k of pure dimensionn, T U closed,

smooth of pure dimensionm andV = U —T = U. Then the diagram

«(T) 2~ M(T)*(m)[2m]

l lg;cum) 2n]

=

Me(U) 2 MUY (n)[20]
Me(V) 2 MV (n)[2n]

commutes.
b) Suppose that Br is an isomorphism. Then [y is an isomorphism if
and only if By is.
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Proof. a) The bottom square commutes by a trivial case of Proposi-
tion .3 a). For the top square, the statement is equivalent to the
commutation of the diagram

Me(T) ® M(T)(c)[2¢
Me(T)® M(U) Z(n)[2n]
/

Me(U) ® M(U

with c =n —m.

Take a smooth compactification X of U, and let T be a desingular-
isation of the closure of 7 in X. Let ¢ : T — X be the corresponding
morphism, ¥ = X — U and W = T — T: we have to show that the
diagram

M(T,W)® M(T)(c)[2¢]

y
M(U

\/

M(T,W) @ Z(n)[2n]
M
M(X,Y)® M(U)
or equivalently
M(T x T,W x T)(c)[2c]
M(T x U, W x U) Z(n)[2n]

\/

m

M(X xUY xU)
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commutes, where f is the map M(T x T)(c)[2c] — M(T x T,W x
T)(c)[2¢]. For this, it is enough to show that the diagram

M(T x T,W x T)(c)[2¢] — M(T)(n)[2n]

y et (R
M(T x UW x U) .
(@x1). Y xU
UCX XU

M(X xU,Y xU)" M(U)(n)[2n]
commutes. Since extended Gysin extends Gysin, Proposition B3 a)
shows that this amounts to the commutatvity of

WxU

M(T x UW x U) <50 AT (n)[2n]

(qxn*l l

Y xU

M(X xU,Y x U) <Y M(U)(n)[2n]

which follows from the functoriality of the extended Gysin maps (Propo-

sition .2 b)).

b) This follows immediately from a). O
Proposition 4.4. Gy is an isomorphism for all smooth U.

Proof. We argue by induction on n = dim U, the case n = 0 being
known by Lemma [£.1. In general, let V' be an open affine subset of U
and pick a smooth projective compactification X of V', with 7 = X -V
Let Z D Zy D -+ D Z, = (), where Z;; is the singular locus of Z;.
Let also T = U — V and define similarly 7 > 77 C --- D T, = 0 (all
Z; and T; are taken with their reduced structure). Let V; = X — Z;
and U; = U —T;. Then V; —V,_; and U; — U;_; are smooth for all 7, 5.
Thus (y is an isomorphism by Lemma [£.1 (case of x) and a repeated
application of Lemma [£.3 b). O

Remark 4.5. We haven’t tried to check whether [y is the inverse of
the isomorphism appearing in the proof of [[, 4.3.7]: we leave this
interesting question to the interested reader.

End of proof of Theorem [7.]. By Lemma [[.3, the triangle M(Z) —
MX-Y)—-MX-Y,2) %, and the duality pairings induce a map
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of triangles
M(X =Y, Z)*(n)[2n] —— M(X = Y)*(n)[2n] —— M (Z)*(n)[2n]

v v o]
Xy ax
M(X —-2Z)Y) _— M(X)Y) — MZ(X).
(The left square commutes by a trivial application of Proposition 2.3
a), and ® is some chosen completion of the commutative diagram by
the appropriate axiom of triangulated categories.)
Consider the following diagram (which is the previous diagram with
Y =0):
M(X, Z)*(n)[2n] —— M(X)*(n)[2n] —— M(Z)"(n)[2n]

] ] ]
MX-2) ——  MX) ——  M4X)

Note that O&Z is dual to oz)Z(’@; therefore it is an isomorphism by
Lemma [[.7 and Proposition f.4. It follows that ® is an isomorphism.
Coming back to the first diagram and using Lemma .2 and Proposition
.4 a second time, we get the theorem. U

Remark 4.6. It would be interesting to produce a canonical pairing
Nix.z) s M?(X) @ M(Z) — Z(n)[2n]
playing the role of ® in the above proof, i.e., compatible with og(’z.

Remark 4.7. As explained in [f], App. B], resolution of singularities and
the existence of the @-functor of [, 2.1.4] are sufficient to prove that the
category DM, (k) is rigid. Therefore, to apply the above arguments,
one need only know that the motives of the form M(X — Y, Z) belong
to DM,,,(k), which is a consequence of [§, 4.1.4].
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