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In this paper, we investigate critical points of the Laplacian's eigenvalues considered as functionals on the space of Riemmannian metrics or a conformal class of metrics on a compact manifold. We obtain necessary and sufficient conditions for a metric to be a critical point of such a functional. We derive specific consequences concerning possible locally maximizing metrics. We also characterize critical metrics of the ratio of two consecutive eigenvalues.

Introduction

The eigenvalues of the Laplace-Beltrami operator associated with a Riemannian metric on a closed manifold are among the most natural global Riemannian invariants defined independently from curvature. One of the main topics in Spectral Geometry is the study of uniform boundedness of eigenvalues under some constraints and the finding out of eventual extremal metrics. Let us start by recalling some important results in this direction, where the eigenvalues are considered as functionals on the set of Riemannian metrics of fixed volume.

In all the sequel, we will denote by M a compact smooth manifold of dimension n ≥ 2 and, for any Riemannian metric g on M, by

0 < λ 1 (g) ≤ • • • ≤ λ k (g) ≤ • • • → ∞
the sequence of eigenvalues of the Laplacian ∆ g associated with g, repeated according to their multiplicities. Notice that λ k is not invariant under scaling (i.e., ∀c > 0, λ k (cg) = 1 c λ k (g)). Hence, a normalization is needed and it is common to restrict the functional λ k to the set R(M) of Riemannian metrics of fixed volume. We will denote by C(g) the set of Riemannian metrics conformal to g and having the same volume as g.

The result that, in dimension 2, ∀k ≥ 1, the functional λ k is uniformly bounded on the set of metrics of fixed area is due to Korevaar [START_REF] Korevaar | Upper bounds for eigenvalues of conformal metrics[END_REF], after been proved for k = 1, by Hersch [START_REF] Hersch | Quatre propriétés isopérimétriques de membranes sphériques homogènes[END_REF] in the case of the 2-sphere S 2 , and by Yang and Yau [START_REF] Yang | Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds[END_REF] and Li and Yau [START_REF] Li | A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces[END_REF] for all compact surfaces (see also [START_REF] Soufi | Le volume conforme et ses applications d'après Li et Yau[END_REF] for an improvement of the Yang-Yau upper bound of λ 1 in terms of the genus).

The situation differs in dimension n ≥ 3. Indeed, based on earlier results on spheres obtained by many authors [START_REF] Tanno | The first eigenvalue of the Laplacian on spheres[END_REF][START_REF] Mutô | The first eigenvalue of the Laplacian on even-dimensional spheres[END_REF][START_REF] Bérard | Laplacians and Riemannian submersions with totally geodesic fibres[END_REF][START_REF] Urakawa | On the least positive eigenvalue of the Laplacian for compact group manifolds[END_REF][START_REF] Mutō | Homogeneous minimal hypersurfaces in the unit spheres and the first eigenvalues of their Laplacian[END_REF], Colbois and Dodziuk [START_REF] Colbois | Riemannian metrics with large λ 1[END_REF] proved that, for any compact manifold M of dimension n ≥ 3, the functional λ 1 is unbounded on R(M).

However, ∀k ≥ 1, the functional λ k becomes uniformly bounded when restricted to a conformal class of metrics of fixed volume C(g). This result was first proved for k = 1 by the authors [START_REF] Soufi | Immersions minimales, première valeur propre du laplacien et volume conforme[END_REF] (see also [START_REF] Friedlander | A differential invariant related to the first eigenvalue of the Laplacian[END_REF]) and, for any k ≥ 1, by Korevaar [START_REF] Korevaar | Upper bounds for eigenvalues of conformal metrics[END_REF] (see also [START_REF] Grigoryan | Decomposition of a metric space by capacitors[END_REF]).

Existence results for maximizing metrics are available in only few situations and concern exclusively the first eigenvalue functional. Hersch [START_REF] Hersch | Quatre propriétés isopérimétriques de membranes sphériques homogènes[END_REF] proved that the standard metric is the only maximizing metric for λ 1 on the 2-sphere S 2 . The same result holds for the standard metric of the real projective plane RP 2 (Li and Yau [START_REF] Li | A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces[END_REF]). Nadirashvili [START_REF] Nadirashvili | Berger's isoperimetric problem and minimal immersions of surfaces[END_REF] outlined a proof for the existence of maximizing metrics for λ 1 on the 2-Torus and the Klein bottle (see [START_REF] Girouard | Valeur propre fondamentale et divergence conforme sur le tore[END_REF][START_REF] Girouard | Fundamental tone, concentration of density to points and conformal degeneration on surfaces[END_REF] for additional details on Nadirashvili's paper).

In higher dimensions, the authors [START_REF] Soufi | Immersions minimales, première valeur propre du laplacien et volume conforme[END_REF] gave a sufficient condition for a metric g on M to maximize λ 1 in its the conformal class C(g). This condition is fulfilled in particular by the standard metric of the sphere S n (which enabled us to answer Berger's problem concerning the maximization of λ 1 restricted to the standard conformal class of S n ), and more generally, by the standard metric of any compact rankone symmetric space. The flat metrics g sq and g eq on the 2-Torus T 2 associated with the square lattice Z 2 and the equilateral lattice Z(1, 0) ⊕ Z(1/2, √ 3/2) respectively are also maximizing metrics of λ 1 in their conformal classes (see [START_REF] Soufi | Immersions minimales, première valeur propre du laplacien et volume conforme[END_REF][START_REF] Li | A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces[END_REF]).

In this paper we address the following natural questions:

(1) What about critical points of the functional g → λ k (g) ? (2) How to deform a Riemannian metric g in order to increase, or decrease, the k-th eigenvalue λ k ?

Despite the non-differentiability of the functional λ k with respect to metric deformations, perturbation theory enables us to prove that, for any analytic deformation g t of a metric g, the function t → λ k (g t ) always admits left and right derivatives at t = 0 (see Theorem 2.1 (i) below). Moreover, these derivatives can be expressed in terms of the eigenvalues of the following quadratic form

Q h (u) = - M du ⊗ du + 1 4 ∆ g u 2 g, h v g , with h = d dt g t t=0
, restricted to the eigenspace E k (g) (Theorem 2.1 and Lemma 2.1). This enables us to give partial answers to Question [START_REF] Bérard | Laplacians and Riemannian submersions with totally geodesic fibres[END_REF] above (Corollary 2.1). In particular, if Q h is positive definite on E k (g), then λ k (g -t ) < λ k (g) < λ k (g t ) for all t ∈ (0, ε), for some positive ε.

Concerning Question (1), the existence of left and right derivatives for t → λ k (g t ), suggests the following natural notion of criticality. Indeed, a metric g will be termed critical for the functional λ k if, for any volume-preserving deformation g t of g, one has

d dt λ k (g t ) t=0 -× d dt λ k (g t ) t=0 + ≤ 0 ;
this means that either

λ k (g t ) ≤ λ k (g) + o(t) or λ k (g t ) ≥ λ k (g) + o(t).
It is clear that if g is a locally maximizing or a locally minimizing metric of λ k , then g is a critical metric for λ k in the previous sense.

In an earlier work ( [START_REF] Ilias | Riemannian manifolds admitting isometric immersions by their first eigenfunctions[END_REF] and [START_REF] Ilias | Extremal metrics for the first eigenvalue of the Laplacian in a conformal class[END_REF]), we treated the particular case k = 1 and gave a necessary condition ( [12, Theorem 1.1] and [14, Theorem 2.1]) as well as a sufficient condition ( [12, Proposition 1.1] and [14, Theorem 2.2]) for a metric g to be critical for the functional λ 1 or for the restriction of the λ 1 to a conformal class.

In section 3 and 4 below, we extend the results of [START_REF] Ilias | Riemannian manifolds admitting isometric immersions by their first eigenfunctions[END_REF] and [START_REF] Ilias | Extremal metrics for the first eigenvalue of the Laplacian in a conformal class[END_REF] to higher order eigenvalues, and weaken the sufficient conditions given there. Actually, as we will see, in many cases, the necessary condition of criticality is also sufficient (Theorem 3.1 and Theorem 4.1). Given a metric g on M, we will prove that

• Necessary conditions (Theorem 3.1(i) and Theorem 4.1(i)): i) If g is critical for the functional λ k , then there exists a finite family

{u 1 , • • • , u d } of eigenfunctions associated with λ k such that i≤d du i ⊗ du i = g.
ii) If g is a critical metric of the functional λ k restricted to the conformal class of g, then there exists a finite family

{u 1 , • • • , u d } of eigenfunctions associated with λ k such that i≤d u 2 i = 1.
• Sufficient conditions (Theorem 3.1(ii) and Theorem 4.

1(ii)): If λ k (g) > λ k-1 (g) or λ k (g) < λ k+1 (g) (which means that λ k (g)
corresponds to the first one or the last one of a cluster of equal eigenvalues), then the necessary conditions above are also sufficient. The condition (i) above means that the map u :

= (u 1 , • • • , u d ) : (M, g) -→ R d ,
is an isometric immersion, whose image is a minimally immersed submanifold of the Euclidean sphere S d-1 ( n λ k (g) ) of radius n λ k (g) (see [START_REF] Takahashi | Minimal immersions of Riemannian manifolds[END_REF]). In other words, a metric g is critical for the functional λ k , for some k ≥ 1, if and only if g is induced on M by a minimal immersion of M into a sphere. Therefore, the classification of critical metrics of eigenvalue functionals on M reduces to the classification of minimal immersions of M into spheres. The many existence and classification results (see for instance [START_REF] Ferus | S 1 -equivariant minimal tori in S 4 and S 1equivariant Willmore tori in S 3[END_REF][START_REF] Hsiang | Minimal cones and the spherical Bernstein problem[END_REF][START_REF] Eells | Harmonic maps and minimal immersions with symmetries[END_REF][START_REF] Toth | Finite Möbius groups, minimal immersions of spheres, and moduli[END_REF] and the references therein) of minimal immersions into spheres give examples of critical metrics for the eigenvalue functionals.

Notice that, for the first eigenvalue functional, the critical metrics are classified on surfaces of genus 0 and 1. Indeed, on S 2 and RP 2 , the standard metrics are the only critical ones ( [START_REF] Soufi | Immersions minimales, première valeur propre du laplacien et volume conforme[END_REF]). On the torus T 2 , the flat metrics g eq and g sq mentioned above are, up to dilatations, the only critical metrics for λ 1 ([12]). The metric g eq corresponds to a maximizer for λ 1 ([27]), while g sq is a saddle point. For the Klein bottle K, Jacobson, Nadirashvili and Polterovitch [START_REF] Jakobson | Extremal metric for the first eigenvalue on a Klein bottle[END_REF] showed the existence of a critical metric and El Soufi, Giacomini and Jazar [START_REF] Soufi | Greatest least eigenvalue of the laplacian on the klein bottle[END_REF] proved that this metric is, up to dilatations, the unique critical metric for λ 1 on K. Now, the condition (ii), concerning the criticality for λ k restricted to a conformal class, is equivalent to the fact that the map u :

= (u 1 , • • • , u d ) : (M, g) -→ S d-1
is a harmonic map with energy density e(u) = λ k (g) 2 (see for instance [START_REF] Eells | A report on harmonic maps[END_REF]). Thus, a metric g is critical for some λ k restricted to the conformal class of g if and only if (M, g) admits a harmonic map of constant energy density in a sphere. In particular, the metric of any homogeneous compact Riemannian space is critical for λ k restricted to its conformal class (for other examples see [START_REF] Park | Classification of harmonic mappings of constant energy density into spheres[END_REF][START_REF] Eells | Harmonic maps and minimal immersions with symmetries[END_REF][START_REF] Toth | Finite Möbius groups, minimal immersions of spheres, and moduli[END_REF] and the references therein).

A consequence of the necessary condition (ii) is that, if g is a critical metric of λ k restricted to C(g), then the multiplicity of λ k (g) is at least 2 (Corollary 4.2). This means that λ k (g) = λ k-1 (g) or λ k (g) = λ k+1 (g). In the case where the metric g is a local maximizer of λ k restricted to C(g), we prove that one necessarily has: λ k (g) = λ k+1 (g) (Corollary 4.2). For a local minimizer, one has λ k (g) = λ k-1 (g). Together with a recent result of Colbois and the first author [START_REF] Colbois | Extremal eigenvalues of the Laplacian in a conformal class of metrics: the 'conformal spectrum[END_REF], this result tells us that a Riemannian metric can never maximize two consecutive eigenvalues simultaneously on its conformal class (Corollary 4.3). In fact, if g maximizes λ k on C(g), then

λ k+1 (g) n 2 ≤ sup g ′ ∈C(g) λ k+1 (g ′ ) n 2 -n n 2 ω n ,
where ω n is the volume of the unit Euclidean n-sphere.

As an application of the results above, one can derive characterizations of the metrics which are critical for various functions of eigenvalues. To illustrate this, we treat in the last section of this paper, the case of the ratio functional λ k+1 λ k of two consecutive eigenvalues and give characterizations of critical metrics for these functionals.

Derivatives of eigenvalues with respect to metric deformations

Let M be a compact smooth manifold of dimension n ≥ 2. For any Riemannian metric g on M, we denote by 0 < λ 1 (g) ≤ λ 2 (g) ≤ • • • the eigenvalues of the Laplace-Beltrami operator ∆ g associated with g. For any k ∈ N, we denote by E k (g) = Ker(∆ g -λ k (g)I) the eigenspace corresponding to λ k (g) and by Π k : L 2 (M, g) -→ E k (g) the orthogonal projection on E k (g). Let us fix a positive integer k and consider the functional g -→ λ k (g). This functional is continuous but not differentiable in general. However, perturbation theory tells us that λ k is left and right differentiable along any analytic curve of metrics. The main purpose of this section is to express the derivatives of λ k with respect to analytic metric deformations, in terms of the eigenvalues of an explicit quadratic form on E k (g). Indeed, we have the following Theorem 2.1. Let g be a Riemannian metric on M and let (g t ) t be a family of Riemannian metrics analytically indexed by t ∈ (-ǫ, ǫ), such that g 0 = g. The following hold i) The function t ∈ (-ǫ, ǫ) -→ λ k (g t ) admits a left and a right derivatives at t = 0. ii) The derivatives d dt λ k (g t ) t=0 -and d dt λ k (g t ) t=0 + are eigenvalues of the operator

Π k •∆ ′ : E k (g) -→ E k (g), where ∆ ′ = d dt ∆ gt t=0 . iii) If λ k (g) > λ k-1 (g), then d dt λ k (g t ) t=0 -and d dt λ k (g t ) t=0 + are the greatest and the least eigenvalues of Π k • ∆ ′ on E k (g), respec- tively. iv) If λ k (g) < λ k+1 (g), then d dt λ k (g t ) t=0 -and d dt λ k (g t ) t=0 + are the least and the greatest eigenvalues of Π k • ∆ ′ on E k (g), respec- tively.
Proof. The family of operators ∆ t := ∆ gt depends analytically on t and, ∀t, ∆ t is self-adjoint with respect to the L 2 inner product induced by g t (but not necessarily to that induced by g). However, as done in [START_REF] Bando | Generic properties of the eigenvalue of the Laplacian for compact Riemannian manifolds[END_REF], after a conjugation by the unitary isomorphism

U t : L 2 (M, g) → L 2 (M, g t ) u → |g| |g t | 1/4 u,
where |g t | is the Riemannian volume density of g t , we obtain an analytic family

P t = U -1 t • ∆ t • U t of operators such that, ∀t ∈ (-ǫ, ǫ
), P t is self-adjoint with respect to the L 2 inner product induced by g. Moreover, P t and ∆ t have the same spectrum. In particular, λ k (g t ) is an eigenvalue of P t . The Rellich-Kato perturbation theory of unbounded self-adjoint operators applies to the analytic family of operators t → P t . Therefore, if we denote by m the dimension of E k (g), then there exist,

∀t ∈ (-ǫ, ǫ), m eigenvalues Λ 1 (t), • • • , Λ 1 (t) of P t associated with an L 2 (M, g)-orthonormal family of eigenfunctions v 1 (t), • • • , v m (t) of P t , that is P t v i (t) = Λ i (t)v i (t), so that Λ(0) = • • • = Λ m (0) = λ k (g), and ∀i ≤ m, both Λ i (t) and v i (t) depend analytically on t. Setting, ∀i ≤ m and ∀t ∈ (-ǫ, ǫ), u i (t) = U t v i (t), we get, ∀i ≤ m, (1) ∆ t u i (t) = Λ i (t)u i (t)
and the family {u

1 (t), • • • , u m (t)} is orthonormal in L 2 (M, g t ). Since t → λ k (t) is continuous and, ∀i ≤ m, t → Λ i (t) is analytic with Λ i (0) = λ k (g)
, there exist δ > 0 and two integers p, q ≤ m such that

λ k (g t ) = Λ p (t) for t ∈ (-δ, 0) Λ q (t) for t ∈ (0, δ).
Assertion (i) follows immediately. Moreover, one has

d dt λ k (t) t=0 -= Λ ′ p (0) and d dt λ k (t) t=0 + = Λ ′ q (0)
. Differentiating both sides of (1) at t = 0, we get

∆ ′ u i + ∆u ′ i = Λ ′ i (0)u i + λ k (g)u ′ i with u ′ i = d dt u i (t) t=0
and u i := u i (0). Multiplying this last equation by u j and integrating by parts with respect to the Riemannian volume element v g of g, we obtain

(2)

M u j ∆ ′ u i v g = Λ ′ i (0) if j = i 0 otherwise. Since {u 1 , • • • , u m } is an orthonormal basis of E k (g) with respect to the L 2 -inner product induced by g, we deduce that (Π k • ∆ ′ )u i = Λ ′ i (0)u i . In particular, Λ ′ p (0) and Λ ′ q (0) are eigenvalues of Π k • ∆ ′ , which proves Assertion (ii). Assume now λ k (g) > λ k-1 (g). Hence, ∀i ≤ m, Λ i (0) = λ k (g) > λ k-1 (g).
By continuity, we have Λ i (t) > λ k-1 (g t ) for sufficiently small t. Hence, there exists η > 0 such that, ∀t ∈ (-η, η) and ∀i ≤ m,

Λ i (t) ≥ λ k (g t ), which means that λ k (g t ) = min {Λ 1 (t), • • • , Λ m (t)} . This implies that d dt λ k (g t ) t=0 -= max {Λ ′ 1 (0), • • • , Λ ′ m (0)} and d dt λ k (g t ) t=0 + = min {Λ ′ 1 (0), • • • , Λ ′ m (0)} . Assertion (iii) is proved.
The proof of Assertion (iv) is similar. Indeed, if λ k (g) < λ k+1 (g), one has, for sufficiently small t, λ k (g

t ) = max {Λ 1 (t), • • • , Λ m (t)} and, then, d dt λ k (g t ) t=0 + = max {Λ ′ 1 (0), • • • , Λ ′ m (0)} and d dt λ k (g t ) t=0 -= min {Λ ′ 1 (0), • • • , Λ ′ m (0)} .
The quadratic form associated with the symmetric operator Π k • ∆ ′ acting on E k (g) can be expressed explicitely as follows:

Lemma 2.1. Let (g t ) t be an analytic deformation of the metric g and let h := d dt g t t=0 . The operator

P k,h := Π k • ∆ ′ : E k (g) → E k (g)
is a symmetric with respect to the L 2 -norm induced by g ; the corresponding quadratic form is given by, ∀u ∈ E k (g),

Q h (u) := M u P k,h u v g = - M du ⊗ du + 1 4 ∆ g u 2 g, h v g ,
where ( , ) is the pointwise inner product induced by g on covariant 2tensors. Moreover, if , ∀t ∈ (-ǫ, ǫ), g t = α t g is conformal to g, then h = ϕg with ϕ = d dt α t t=0 , and, ∀u ∈ E k (g),

Q h (u) = - M ϕ(|du| 2 + n 4 ∆ g u 2 )v g = - n 2 M ϕ(λ k (g)u 2 - n -2 n |du| 2 )v g .
Proof. The derivative at t = 0 of t → ∆ gt is given by the formula (see [START_REF] Berger | Sur les premières valeurs propres des variétés riemanniennes[END_REF]):

(3)

∆ ′ u := d dt ∆ gt u t=0 = (Ddu, h) -(du, δh + 1 2 d(trace g h)),
where D is the canonical covariant derivative induced by g. Thus,

M u ∆ ′ u v g = M u(Ddu, h)v g - 1 2 M (du 2 , δh + 1 2 d(trace g h))v g . (4) 
One has, ∀u,

uDdu = 1 2 Ddu 2 -du ⊗ du. Hence, M u (Ddu, h) v g = 1 2 M (Ddu 2 , h)v g - M (du ⊗ du, h)v g .
Since δ is the adjoint of D w.r.t. the L 2 (g)-inner product, we obtain

M u (Ddu, h) v g = 1 2 M (du 2 , δh)v g - M (du ⊗ du, h)v g .
On the other hand

M (du 2 , d(trace g h))v g = M ∆ g u 2 trace g hv g = M (∆ g u 2 g, h)v g .
Replacing in (4) one immediately gets the desired identity.

A straightforward computation gives the expression of Q h for conformal deformations.

In relation to the question (2) of the introduction, we give the following result which is a direct consequence of Theorem 2.1 and Lemma 2.1.

Corollary 2.1. Let (g t ) t be an analytic deformation of a Riemannian metric g on M and let Q h be the associated quadratic form defined as in Lemma 2.1, with h

= d dt g t t=0 . i) If Q h is positive definite on E k (g), then there exists ε > 0 such that λ k (g -t ) < λ k (g) < λ k (g t ) for all t ∈ (0, ε). ii) Assume that λ k (g) > λ k-1 (g). If there exists u ∈ E k (g) such that Q h (u) < 0, then λ k (g t ) < λ k (g) for all t ∈ (0, ε), for some ε > 0. iii) Assume that λ k (g) < λ k+1 (g). If there exists u ∈ E k (g) such that Q h (u) > 0, then λ k (g t ) > λ k (g) for all t ∈ (0, ε), for some ε > 0.
In particular, if Q h (u) > 0 for a first eigenfunction u, then λ 1 (g t ) < λ 1 (g) for sufficiently small positive t.

Critical metrics of the eigenvalue functionals

Let M be a closed manifold of dimension n ≥ 2 and let k be a positive integer. Before introducing the notion of critical metric of the functional λ k , notice that this functional is not scaling invariant. Therefore, we will restrict λ k to the set of metrics of given volume. In view of Theorem 2.1, a natural way to introduce the notion of critical metric is the following: Definition 3.1. A metric g on M is said to be "critical" for the functional λ k if, for any volume-preserving analytic deformation (g t ) t of g with g 0 = g, the left and the right derivatives of λ k (g t ) at t = 0 satisfy

d dt λ k (g t ) t=0 -× d dt λ k (g t ) t=0 + ≤ 0.
It is easy to see that

d dt λ k (g t ) t=0 + ≤ 0 ≤ d dt λ k (g t ) t=0 -⇐⇒ λ k (t) ≤ λ k (0) + o(t) and d dt λ k (g t ) t=0 -≤ 0 ≤ d dt λ k (g t ) t=0 + ⇐⇒ λ k (t) ≥ λ k (0) + o(t).
Therefore, g is critical for λ k if, for any volume-preserving analytic deformation (g t ) t of g, one of the following inequalities holds:

λ k (g t ) ≤ λ k (g) + o(t) or λ k (g t ) ≥ λ k (g) + o(t).
Of course, if g is a local maximizer or a local minimizer of λ k , then g is critical in the sense of the previous definition. In all the sequel, we will denote by S 2 0 (M, g) the space of covariant 2-tensors h satisfying M trace g hv g = M (g, h)v g = 0, endowed with its natural L 2 norm induced by g. Proposition 3.1. If g is a critical metric for the functional λ k on M, then, ∀h ∈ S 2 0 (M, g), the quadratic form

Q h (u) = - M du ⊗ du + 1 4 ∆ g u 2 g, h v g is indefinite on E k (g).
Proof. Let h ∈ S 2 0 (M, g). The deformation of g defined for small t by g t = vol(g) vol(g + th)

2/n (g + th), where vol(g) is the Riemannian volume of (M, g), is volume-preserving and depends analytically on t with d dt g t t=0 = h. Using Theorem 2.1, we see that, if g is critical, then the operator P h,k admits a nonnegative and a nonpositive eigenvalues on E k (g) which means that the quadratic form Q h is indefinite (Lemma 2.1).

In the case where λ k (g) > λ k-1 (g) or λ k (g) < λ k+1 (g), one can show that the converse of Proposition 3.1 is also true. Indeed, we have the following Proposition 3.2. Let g be a Riemannian metric on M such that

λ k (g) > λ k-1 (g) or λ k (g) < λ k+1 (g). Then g is critical for the func- tional λ k if and only if, ∀h ∈ S 2 0 (M, g), the quadratic form Q h is in- definite on E k (g).
Proof. Let (g t ) t be an analytic volume-preserving deformation of g and let h = d dt g t t=0 . Since vol(g t ) is constant with respect to t, the tensor h belongs to S 2 0 (M, g) (indeed, M (g, h)v g = d dt vol(g t ) t=0 = 0). The indefiniteness of Q h implies that the operator P k,h = Π k • ∆ ′ admits both non-negative and non-positive eigenvalues on E k (g) (see Lemma 2.1). The result follows immediately from Theorem 2.1 (iii) and (iv).

The indefiniteness of Q h on E k (g) for all h ∈ S 2 0 (M, g), can be interpreted intrinsically in terms of the eigenfunctions of λ k (g) as follows.

Lemma 3.1. Let g be a Riemannian metric on M. The two following conditions are equivalent: i) ∀h ∈ S 2 0 (M, g), the quadratic form Q h is indefinite on E k (g). ii) There exists a finite family

{u 1 , • • • , u d } ⊂ E k (g) of eigenfunc- tions associated with λ k (g) such that i≤d du i ⊗ du i = g.
Proof. The proof of "(i) implies (ii)" uses the same arguments as in the proof of Theorem 1.1 of [START_REF] Ilias | Riemannian manifolds admitting isometric immersions by their first eigenfunctions[END_REF]. For the sake of completeness, we will recall the main steps. First, we introduce the convex set K ⊂ S 2 (M, g) given by

K = j∈J du j ⊗ du j + 1 4 ∆ g u 2 j g ; u j ∈ E k (g), J ⊂ N, J finite .
Let us first show that g ∈ K. Indeed, if g / ∈ K, then, applying classical separation theorem in the finite dimensional subspace of S 2 (M, g) generated by K and g, endowed with the L 2 inner product induced by g, we deduce the existence of a 2-tensor h ∈ S 2 (M, g) such that

M (g, h)v g > 0 and, ∀ T ∈ K, M (T, h)v g ≤ 0. The tensor h 0 = h - 1 n vol(g) M (g, h)v g g
belongs to S 2 0 (M, g) and we have, ∀u ∈ E k (g), u = 0,

Q h 0 (u) = - M (du ⊗ du + 1 4 ∆ g u 2 g, h)v g + M (g, h)v g n vol(g) M |du| 2 v g ≥ λ k (g) n vol(g) M (g, h)v g M u 2 v g .
Since M (g, h)v g > 0, the quadratic form Q h 0 is positive definite, which contradicts the assumption (i). Now, g ∈ K means that there exists

u 1 , • • • , u m ∈ E k (g) such that (5) i≤d (du i ⊗ du i + 1 4 ∆ g u 2 i )g = g.
Hence, since ∆u

2 i = 2(λ k (g)u 2 i -|du i | 2 )
, we obtain after taking the trace in [START_REF] Colbois | Extremal eigenvalues of the Laplacian in a conformal class of metrics: the 'conformal spectrum[END_REF],

λ k (g) 2 i≤d u 2 i = 1 + n -2 2n i≤d |du i | 2 .
For n = 2, we immediately get i≤d u 2 i = 2 λ k (g) and, for n ≥ 3, we consider the function f := i≤d u 2 i -n λ k (g) and observe that it satisfies (n -2)

∆ g f = 2(n -2)(λ k (g) i≤d u 2 i - i≤d |du i | 2 ) = -4λ k (g)f.
Thus, f = 0 (the Laplacian being a non-negative operator) and, then, ∀n ≥ 2, i≤d u 2 i = n λ k (g) . Replacing in (5), we obtain

i≤d du i ⊗ du i = g.
Conversely, let u 1 , • • • , u d be as in (ii). This means that the map

x ∈ M -→ u(x) = (u 1 (x), • • • , u d (x)) ∈ R d is an isometric immersion. The vector ∆u(x) = (∆u 1 (x), • • • , ∆u d (x)) = λ k (g)u(x)
represents the mean curvature vectorfield of the immersed submanifold u(M). Hence, ∀x ∈ M, the position vector u(x) is normal to u(M) which implies that u(M) is contained in a sphere of R d centered at the origin. Thus, ii) Assume that λ k (g) > λ k-1 (g) or λ k (g) < λ k+1 (g). Then g is a critical metric of the functional λ k if and only if there exists a finite family

i≤d u 2 i is constant on M. Consequently, ∀h ∈ S 2 (M, g), i≤d Q h (u i ) = • • • = 0. It follows that Q h is indefinite on E k (g).
{u 1 , • • • , u d } ⊂ E k (g) of eigenfunctions associated with λ k (g) such that i≤d du i ⊗ du i = g.
According to Theorem 3.1 (ii), the standard metrics g of compact rank one symmetric spaces are critical metrics of the functionals λ k , for any k such that λ k (g) > λ k-1 (g) or λ k (g) < λ k+1 (g). More generally, this is the case of all compact Riemannian homogeneous spaces with irreducible isotropy representation. Indeed, if {u 1 , • • • , u d } is an L 2 (g)orthonormal basis of E k (g), then the tensor i≤d du i ⊗ du i is invariant under the isometry group action which implies that it is proportional to g (Schur's Lemma).

In [START_REF] Ilias | Critical metrics of the trace of the heat kernel on a compact manifold[END_REF], we studied the notion of critical metrics of the trace of the heat kernel Z g (t) = e -λ k (g)t , considered as a functional on the set of metrics of given volume. We obtain various characterizations of these critical metrics. An immediate consequence of Theorem 3.1 and [13, Theorem 2.2], is the following Corollary 3.1. Let g be a Riemannian metric on M. If g is a critical metric of the trace of the heat kernel at any time t > 0, then g is a critical metric of the functional λ k for all k such that λ k (g) > λ k-1 (g) or λ k (g) < λ k+1 (g).

In particular, the flat metrics g sq and g eq on the 2-Torus T 2 associated with the square lattice Z 2 and the equilateral lattice Z(1, 0) ⊕ Z(1/2, √ 3/2), respectively, are critical metrics of the functionals λ k for all k such that λ k (g sq ) > λ k-1 (g sq ) or λ k (g sq ) < λ k+1 (g sq ) and such that λ k (g eq ) > λ k-1 (g eq ) or λ k (g eq ) < λ k+1 (g eq ) respectively (see [START_REF] Ilias | Critical metrics of the trace of the heat kernel on a compact manifold[END_REF]). Other examples of critical metrics can be obtained as Riemannian products of previous examples (see [START_REF] Ilias | Critical metrics of the trace of the heat kernel on a compact manifold[END_REF]).

As we noticed in the proof of Lemma 3.1, the condition i≤d du i ⊗ du i = g, with u i ∈ E k (g), implies that the map u = (u 1 , • • • , u d ) is an isometric immersion of (M, g) into a (d -1)-dimensional sphere. In particular, the rank of u is at least n. Therefore we have the following

Corollary 3.2. If g is a critical metric of the functional λ k , then dim E k (g) ≥ dim M + 1.
Moreover, the equality implies that (M, g) is isometric to an Euclidean sphere.

In the particular case where a metric g is a local maximizer of λ k (that is λ k (g t ) ≤ λ k (g) for any volume-preserving deformation (g t ) t of g), we have the additional necessary condition that λ k (g) = λ k+1 (g) (see Proposition 4.2 below). For a local minimizer, we have λ k (g) = λ k-1 (g). In particular, the functional λ 1 admits no local minimizing metric. This result have been obtained by us in [START_REF] Ilias | Riemannian manifolds admitting isometric immersions by their first eigenfunctions[END_REF] using different arguments.

We end this section with the following result in the spirit of Berger's work [START_REF] Berger | Sur les premières valeurs propres des variétés riemanniennes[END_REF]: Corollary 3.3. Let g be a Riemannian metric on M. Let p ≥ 1 and q ≥ p be two natural integers such that

λ p-1 (g) < λ p (g) = λ p+1 (g) = • • • = λ q (g) < λ q+1 (g).
The metric g is critical for the functional q i=p λ i if and only if there exists an L 2 (M, g)-orthonormal basis u 1 , u 2 , . . . , u m of E p (g) such that m i=1 du i ⊗ du i is proportional to g. Proof. The multiplicity of λ p (g) is m = q -p+1. Let (g t ) t be a volumepreserving analytic deformation of g and h = d dt g t t=0 ∈ S 2 0 (M, g). Let Λ 1 (t), • • • , Λ m (t) and v 1 (t), • • • , v m (t) be the families of eigenvalues and orthonormal eigenfunctions of ∆ gt depending analytically on t and such that Λ 1 (0) = • • • = Λ m (0) = λ p (g), as in the proof of Theorem 2.1. For sufficiently small t, one has

q i=p λ i (g t ) = m i=1 Λ i (t).
Hence, q i=p λ i (g t ) is differentiable at t = 0 and one has (see the proof of Theorem 2.1 and Lemma 2.1),

d dt q i=p λ i (g t ) t=0 = m i=1 Λ ′ i (0) = m i=1 Q h (v i ), with v i := v i (0). Therefore, g is critical for q i=p λ i if and only if, ∀h ∈ S 2 0 (M, g), m i=1 Q h (v i ) = 0.
As in the proof of Lemma 3.1, this last condition means that i≤m dv i ⊗ dv i is proportional to g.

Critical metrics of the eigenvalue functionals in a conformal class

Let M be a closed manifold of dimension n ≥ 2. For any Riemannian metric g on M, we will denote by C(g) the set of metrics which are conformal to g and have the same volume as g, i.e

C(g) = {e α g ; α ∈ C ∞ (M) and vol(e α g) = vol(g)} .
Let k be a positive integer. The purpose of this section is to study critical metrics of the functional λ k restricted to a conformal class C(g). Definition 4.1. A metric g is said to be critical for the functional λ k restricted to C(g) if, for any analytic deformation {g t = e αt g} ⊂ C(g) with g 0 = g, we have

d dt λ k (g t ) t=0 -× d dt λ k (g t ) t=0 + ≤ 0.
In the sequel, we denote by A 0 (M, g) the set of regular functions ϕ with zero mean on M, that is, M ϕ v g = 0. In the spirit of Propositions 3.1 and 3.2, we obtain in the conformal setting, the following Proposition 4.1. Let g be a Riemannian metric on M.

i) If g is a critical metric of the functional λ k restricted to C(g), then, ∀ϕ ∈ A 0 (M, g), the quadratic form

q ϕ (u) = M (λ k (g)u 2 - n -2 n |du| 2 )ϕ v g is indefinite on E k (g). ii) Assume that λ k (g) > λ k-1 (g) or λ k (g) < λ k+1 (g). The metric g
is critical for the functional λ k restricted to C(g) if and only if, ∀ϕ ∈ A 0 (M, g), the quadratic form q ϕ is indefinite on E k (g).

Proof. i) Let ϕ ∈ A 0 (M, g). The conformal deformation of g given by g t := vol(g) vol(e tϕ g)

2 n
e tϕ g, belongs to C(g) and depends analytically on t with d dt g t t=0 = ϕg. Following the arguments of the proof of Proposition 3.1, we show that the criticality of g for λ k restricted to C(g) implies the indefiniteness of the quadratic form Q ϕg on E k (g). Applying Lemma 2.1, we observe that Q ϕg = -n 2 q ϕ . ii) Let g t = e αtg ∈ C(g) be an analytic deformation of g. Since vol(g t ) is constant with respect to t, the function ϕ = d dt α t t=0 belongs A 0 (M, g). Applying Theorem 2.1 (iii) and (iv) and Lemma 2.1 with h = ϕg, we get the result. Lemma 4.1. Let g be a Riemannian metric on M. The two following conditions are equivalent: i) ∀ ϕ ∈ A 0 (M, g), the quadratic form q ϕ is indefinite on E k (g).

ii) There exists a finite family

{u 1 , • • • , u d } ⊂ E k (g) of eigenfunc- tions associated with λ k (g) such that i≤d u 2 i = 1.
Proof. "(i) implies (ii)": We introduce the convex set

H = i∈I λ k (g)u 2 i - n -2 n |du i | 2 ; u i ∈ E k (g), I ⊂ N, I finite .
Using the same arguments as in the proof of Lemma 3.1, we show that the constant function 1 belongs to H. Hence, there exist

u 1 , • • • , u d ∈ E k (g) such that i≤d (λ k (g)u 2 i - n -2 n |du i | 2 ) = 2 n λ k (g).
For n = 2, we immediately get i≤d u 2 i = 1. For n ≥ 3, we set f = i≤d u 2 i -1 and get, after a straightforward calculation,

n -2 4 ∆ g f = -λ k (g)f.
Thus, f = 0 and i≤d u

2 i = 1. "(ii) implies (i)": let u 1 , • • • , u d ∈ E k (g) be such that i≤d u 2 i = 1. One has i≤d |du i | 2 = - 1 2 ∆ g i≤d u 2 i + λ k (g) i≤d u 2 i = λ k (g).
Therefore, ∀ϕ ∈ A 0 (M, g),

i≤d q ϕ (u i ) = 2 n M λ k (g)ϕv g = 0
which implies the indefiniteness of q ϕ . Proposition 4.1 and Lemma 4.1 lead to the following Theorem 4.1. Let g be a Riemannian metric on M. i) If g is a critical metric of the functional λ k restricted to C(g), then there exists a finite family

{u 1 , • • • , u d } ⊂ E k (g) of eigen- functions associated with λ k such that i≤d u 2 i = 1. ii) Assume that λ k (g) > λ k-1 (g) or λ k (g) < λ k+1 (g).
Then, g is critical for the functional λ k restricted to C(g) if and only if, there exists a finite family

{u 1 , • • • , u d } ⊂ E k (g) of eigenfunc- tions associated with λ k (g) such that i≤d u 2 i = 1.
The Riemannian metric g of any homogeneous Riemannian space (M, g) is a critical metric of the functional λ k restricted to C(g) for all k such that λ k (g) > λ k-1 (g) or λ k (g) < λ k+1 (g). Indeed, any L 2 (g)orthonormal basis {u i } i≤d of E k (g) is such that i≤d u 2 i is constant on M. In [13, Theorem 4.1], we proved that a metric g is critical for the trace of the heat kernel restricted to C(g) if and only if its heat kernel K is constant on the diagonal of M × M. This last condition implies that, ∀k ∈ N * , any L 2 (g)-orthonormal basis

{u i } i≤d of E k (g) is such that i≤d u 2
i is constant on M. Hence, we have the following Corollary 4.1. Let g be a Riemannian metric on M and let K be the heat kernel of (M, g). Assume that, ∀t > 0, the function x ∈ M -→ K(t, x, x) is constant, then the metric g is critical for the functional λ k restricted to C(g) for all k such that λ k (g) > λ k-1 (g) or λ k (g) < λ k+1 (g).

An immediate consequence of Theorem 4.1 is the following

Corollary 4.2. If g is a critical metric of the functional λ k restricted to C(g), then λ k (g) is a degenerate eigenvalue, that is dim E k (g) ≥ 2.
This last condition means that at least one of the following holds: λ k (g) = λ k-1 (g) or λ k (g) = λ k+1 (g). In the case when g is a local maximizer or a local minimizer, we have the following more precise result

Proposition 4.2. i) If g is a local maximizer of the functional λ k restricted to C(g), then λ k (g) = λ k+1 (g). ii) If g is a local minimizer of the functional λ k restricted to C(g), then λ k (g) = λ k-1 (g).
Proof. Assume that g is a local maximizer and that λ k (g) < λ k+1 (g). Let ϕ ∈ A 0 (M, g) and let g t = e αt g ∈ C(g) be a volume-preserving analytic deformation of g such that d dt g t t=0 = ϕg. Denote by Λ 1 (t), • • • , Λ m (t), with m = dim E k (g), the associated family of eigenvalues of ∆ gt , depending analytically on t and such that Λ

1 (0) = • • • = Λ m (0) = λ k (g)
(see the proof of Theorem 2.1). For continuity reasons, we have, for sufficiently small t and all i ≤ m,

Λ i (t) < λ k+1 (g t ).
Hence, ∀i ≤ m and ∀t sufficiently small,

Λ i (t) ≤ λ k (t) ≤ λ k (g) = Λ i (0). Consequently, Λ ′ i (0) = 0 for all i ≤ m. Since Λ ′ 1 (0), • • • , Λ ′ m ( 
0) are eigenvalues of the operator Π k • ∆ ′ (by Theorem 2.1), this operator is identically zero on E k (g). Applying Lemma 2.1, we deduce that, ∀ϕ ∈ A 0 (M, g), Q ϕg ≡ 0 on E k (g). Thus, ∀u ∈ E k (g), there exists a constant c so that

|du| 2 + n 4 ∆ g u 2 = c. Integrating, we get c = λ k (g) vol(g) M u 2 v g . Since ∆ g u 2 = 2(λ k u 2 -|du| 2 ), we obtain n 2 u 2 - n -2 2λ k (g) |du| 2 = 1 vol(g) M u 2 v g .
Let x 0 ∈ M be a point where u 2 achieves its maximum. At x 0 , we have du(x 0 ) = 0 and, then,

n 2 max u 2 = n 2 u 2 (x 0 ) = 1 vol(g) M u 2 v g
which leads to a contradiction (since u is not constant and n 2 ≥ 1). A similar proof works for (ii).

In [START_REF] Colbois | Extremal eigenvalues of the Laplacian in a conformal class of metrics: the 'conformal spectrum[END_REF], Colbois and the first author proved that [START_REF] Verdière | Construction de laplaciens dont une partie finie du spectre est donnée[END_REF] sup

g ′ ∈C(g) λ k+1 (g ′ ) n 2 -sup g ′ ∈C(g) λ k (g ′ ) n 2 ≥ n n 2 ω n ,
where ω n is the volume of the unit euclidean sphere of dimension n.

An immediate consequence of this result and Proposition 4.2 is the following Corollary 4.3. Let g be a Riemannian metric on M. Assume that g maximizes the functional λ k restricted to C(g), that is

λ k (g) = sup g ′ ∈C(g) λ k (g ′ ).
Then g cannot maximize neither λ k+1 nor λ k-1 (for k ≥ 2) on C(g).

More precisely, if g maximizes λ k on C(g), then, using Proposition 4.2 and (6), λ k+1 (g)

n 2 ≤ sup g ′ ∈C(g) λ k+1 (g ′ ) n 2 -n n 2 ω n .
Finally we have the following conformal version of Corollary 3.3

Corollary 4.4. Let g be a Riemannian metric on M. Let p ≥ 1 and q ≥ p be two natural integers such that

λ p-1 (g) < λ p (g) = λ p+1 (g) = • • • = λ q (g) < λ q+1 (g).
The metric g is critical for the functional q i=p λ i restricted to C(g) if and only if there exists an L 2 (M, g)-orthonormal basis u 1 , u 2 , . . . , u m of E p (g) such that m i=1 u 2 i is constant on M.

Critical metrics of the eigenvalue ratios functionals

Let M be a closed manifold of dimension n ≥ 2 and let k be a positive integer. This section deals with the functional g -→ λ k+1 (g) λ k (g) .

This functional is invariant under scaling, so it is not necessary to fix the volume of metrics under consideration. If (g t ) t is any analytic deformation of a metric g, then t -→ λ k+1 (g t ) λ k (g t ) admits left and right derivatives at t = 0 (Theorem 2.1).

Definition 5.1. i) A metric g is said to be critical for the ratio λ k+1 λ k if, for any analytic deformation (g t ) of g, the left and right derivatives of λ k+1 (g t ) λ k (g t ) at t = 0 have opposite signs.

ii) The metric g is said to be critical for the ratio functional λ k+1 λ k restricted to the conformal class C(g) if the condition above holds for any conformal analytic deformation g t = e αt g of g.

Let g be a Riemannian metric on M. For any covariant 2-tensor h ∈ S 2 (M), we introduce the following operator Pk,h :

E k (g) ⊗ E k+1 (g) -→ E k (g) ⊗ E k+1 (g) defined by Pk,h = λ k+1 (g)P h,k ⊗ Id E k+1 (g) -λ k (g)Id E k (g) ⊗ P k+1,h ,
where P k,h is defined in Lemma 2.1. The quadratic form naturally associated with Pk,h is denoted by Qk,h and is given by, ∀u ∈ E k (g) and ∀v ∈

E k+1 (g), Qk,h (u ⊗ v) = λ k+1 (g) v 2 L 2 (g) Q h (u) -λ k (g) u 2 L 2 (g) Q h (v), where Q h (u) = -M (du ⊗ du + 1 4 ∆ g u 2 g, h)v g . Of course, if λ k+1 (g) = λ k (g),
then g is a global minimizer of the ratio λ k+1 λ k . Notice that, thanks to Colin de Verdière's result [START_REF] Verdière | Construction de laplaciens dont une partie finie du spectre est donnée[END_REF], ∀k ≥ 1, any closed manifold M carries a metric g such that λ k+1 (g) = λ k (g). A general characterization of critical metrics of λ k+1 λ k is given in what follows Proposition 5.1. A Riemannian metric g on M is critical for the functional λ k+1 λ k if and only if, ∀h ∈ S 2 (M), the quadratic form Qk,h is indefinite on E k (g) ⊗ E k+1 (g).

Proof. The case where λ k+1 (g) = λ k (g) is obvious ( Qk,h (u ⊗ u) = 0). Assume that λ k+1 (g) > λ k (g) and let (g t ) t be an analytic deformation of g. From Theorem 2.1, d dt λ k (g t ) t=0 -and d dt λ k (g t ) t=0 + are the least and the greatest eigenvalues of P k,h on E k (g) respectively. Similarly, d dt λ k (g t ) t=0 -and d dt λ k (g t ) t=0 + are the greatest and the least eigenvalues of P k+1 on E k (g). Therefore,

λ k (g) 2 d dt λ k+1 (g t ) λ k (g t ) t=0 -= λ k (g) d dt λ k+1 (g t ) t=0 --λ k+1 (g) d dt λ k (g t ) t=0 -
is the greatest eigenvalue of Pk,h on E k (g) ⊗ E k+1 (g), and

λ k (g) 2 d dt λ k+1 (g t ) λ k (g t ) t=0 + = λ k (g) d dt λ k+1 (g t ) t=0 + -λ k+1 (g) d dt λ k (g t ) t=0 +
is the least eigenvalue of Pk,h on E k (g) ⊗ E k+1 (g). Hence, the criticality of g for λ k+1 /λ k is equivalent to the fact that Pk,h admits eigenvalues of both signs, which is equivalent to the indefiniteness of Qk,h .

Lemma 5.1. Let g be a Riemannian metric on M. The two following conditions are equivalent: i) ∀h ∈ S 2 (M), the quadratic form Qk,h is indefinite on E k (g) ⊗ E k+1 (g). ii) There exist two finite families {u

1 , • • • , u p } ⊂ E k (g) and {v 1 , • • • , v q } ⊂ E k+1 ( 
g) of eigenfunctions associated with λ k (g) and λ k+1 (g) respectively, such that i≤p

(du i ⊗ du i + 1 4 ∆ g u 2 i g) = j≤q (dv j ⊗ dv j + 1 4 ∆ g v 2 j g).
Proof. "(i) implies (ii)": Let us introduce the two following convex cones

K 1 = i∈I (du i ⊗ du i + 1 4 ∆ g u 2 i g); u i ∈ E k (g), I ⊂ N, I finite ⊂ S 2 (M)
and

K 2 = j∈J (dv j ⊗ dv j + 1 4 ∆ g v 2 j g); v j ∈ E k+1 (g), J ⊂ N, J finite ⊂ S 2 (M).
It suffices to prove that K 1 and K 2 have a nontrivial intersection. Indeed, otherwise, applying classical separation theorems, we show the existence of a 2-tensor h ∈ S 2 (M) such that, ∀ T

1 ∈ K 1 , T 1 = 0, M (T 1 , h)v g > 0 and, ∀ T 2 ∈ K 2 , M (T 2 , h)v g ≤ 0.
Therefore, ∀u ∈ E k (g) and ∀v ∈ E k+1 (g), with u = 0 and v = 0, one has

Q h (u) < 0, Q h (v) ≥ 0 and Qk,h (u ⊗ v) = λ k+1 (g) v 2 L 2 (g) Q h (u) -λ k (g) u 2 L 2 (g) Q h (v) ≤ λ k+1 (g) v 2 L 2 (g) Q h (u) < 0, which implies that Qk,h is negative definite on E k (g) ⊗ E k+1 (g).
"(ii) implies (i)": Let {u i } i≤p and {v j } j≤q be as in (ii). From the identity in (ii), we get, after taking the trace and integrating,

i≤p M |du i | 2 v g = j≤q M |dv j | 2 v g , which gives, λ k (g) i≤p u i 2 L 2 (g) = λ k+1 (g) j≤q v j 2 L 2 (g) . Now, i,j Qk,h (u i ⊗v j ) = i,j λ k+1 (g) v j 2 L 2 (g) Q h (u i )-λ k (g) u i 2 L 2 (g) Q h (v j ).
Assumption (ii) implies that i≤p Q h (u i ) = j≤q Q h (v j ). Therefore, Indeed, a straightforward calculation shows that the two equations ( 7) and ( 8) are equivalent to the condition (ii) of Lemma 5.1.

Corollary 5.1. If g is a critical metric of the functional λ k+1 λ k , with λ k+1 (g) = λ k (g), then

inf {dim E k (g), dim E k+1 (g)} ≥ 2.

Proof. Let {u i } i≤p ⊂ E k (g) and {v j } j≤q ⊂ E k+1 (g) be two families of eigenfunctions satisfying [START_REF] Eells | A report on harmonic maps[END_REF] and ( 8) above. Taking the trace in [START_REF] Eells | A report on harmonic maps[END_REF] and using [START_REF] Eells | Harmonic maps and minimal immersions with symmetries[END_REF] we get [START_REF] Soufi | Greatest least eigenvalue of the laplacian on the klein bottle[END_REF] α = 1 n (

i≤p |du i | 2 - j≤q |dv j | 2 ) = 1 4 ∆ g ( j≤q v 2 j - i≤p u 2 i ).
Assume that α = 0. Using ( 8) and ( 9), we deduce that both i≤p u 2 i and j≤q v 2 j are constant on M. Since the u i 's and the v j 's are not constant, we get the result. Assume now α = 0. Since M α v g = 0 (see [START_REF] Soufi | Greatest least eigenvalue of the laplacian on the klein bottle[END_REF]), the function α takes both positive and negative values. Let x ∈ M such that α(x) > 0. From [START_REF] Eells | A report on harmonic maps[END_REF], the quadratic form i≤p du i ⊗ du i is clearly positive definite on T x M. Hence, the family {du i } has maximal rank at x. This shows that dim E k (g) ≥ n. At a point x ∈ M where α(x) < 0, the quadratic form j≤q dv j ⊗ dv j is positive definite on T x M and, then, dim E k+1 (g) ≥ n.

When we deal with critical metrics of the functional λ k+1 λ k restricted to C(g), only tensors of the form h = ϕ g, with ϕ ∈ C ∞ (M), are involved. The corresponding quadratic forms on E k (g) ⊗ E k+1 (g) are given by qk,ϕ (u ⊗ v) = λ k+1 (g) v 2

L 2 (g) q ϕ (u) -λ k (g) u 2 L 2 (g) q ϕ (v). Following the steps of the proof of Proposition 5.1, we can show that: Proposition 5.2. A Riemannian metric g on M is critical for the functional λ k+1 λ k restricted to C(g) if and only if, ∀ϕ ∈ C ∞ (M), the quadratic form qk,ϕ is indefinite on E k (g) ⊗ E k+1 (g).

Replacing the convex cones K 1 and K 2 in the proof of Lemma 5.1 by

H 1 = i∈I (λ k (g)u 2 i - n -2 n |du i | 2 ); u i ∈ E k (g), I ⊂ N, I finite ⊂ L 2 (M, g)
and

H 2 = j∈J (λ k+1 (g)v 2 j - n -2 n |dv j | 2 ); v j ∈ E k+1 (g), J ⊂ N, J finite ⊂ L 2 (M, g),
we can show, by the same arguments, that the indefiniteness of qk,ϕ for all ϕ ∈ C ∞ (M), is equivalent to the fact that H 1 and H 2 have a non-trivial intersection. Therefore, one has: Theorem 5.2. A Riemannian metric g on M is critical for the functional λ k+1 λ k restricted to C(g) if and only if, there exist two families {u 1 , • • • , u p } ⊂ E k (g) and {v 1 , • • • , v q } ⊂ E k+1 (g) of eigenfunctions associated with λ k (g) and λ k+1 (g), respectively, such that λ k (g) It is clear that in this case, if λ k+1 (g) = λ k (g), then at least one of the eigenvalues λ k (g) and λ k+1 (g) is degenerate.

Propositions 3 . 1 , 3 . 2 andTheorem 3 . 1 .

 313231 Lemma 3.1 lead to the following characterization of critical metrics of λ k : Let g be a Riemannian metric on M. i) If g is a critical metric of the functional λ k , then there exists a finite family {u 1 , • • • , u d } ⊂ E k (g) of eigenfunctions associated with λ k (g) such that i≤d du i ⊗ du i = g.
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 22 Qk,h (ui ⊗v j ) = j≤q λ k+1 (g) v j (g) -i≤p λ k (g) u i 2 L 2 (g) i≤p Q h (u i ) = 0. Hence, Qk,h is indefinite on E k (g) ⊗ E k+1 (g).Consequently, we have proved the following Theorem 5.1. A metric g on M is critical for the functional λ k+1 λ k if and only if there exist two families{u 1 , • • • , u p } ⊂ E k (g) and {v 1 , • • • , v q } ⊂ E k+1(g) of eigenfunctions associated with λ k (g) and λ k+1 (g), respectively, such that (7) i≤p du i ⊗ du i -j≤q dv j ⊗ dv j = αg for some α ∈ C ∞ (M), and (8) λ k (g)
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 51 In dimension 2, the condition of Theorem 5