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The relaxation time of a chiral quantum R-L circuit
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We report on the GHz complex admittance of a chiral one dimensional ballistic conductor formed
by edge states in the quantum Hall regime. The circuit consists of a wide Hall bar (the inductor
L) in series with a tunable resistor (R) formed by a quantum point contact. Electron interactions
between edges are screened by a pair of side gates. Conductance steps are observed on both real
and imaginary parts of the admittance. Remarkably, the phase of the admittance is transmission-
independent. This shows that the relaxation time of a chiral R-L circuit is resistance independent.
A current and charge conserving scattering theory is presented that accounts for this observation
with a relaxation time given by the electronic transit time in the circuit.

PACS numbers: 73.23.Ad,73.43.Cd,73.43.Fj,73.63.-b

Violation of classical electro kinetic laws is a hallmark
of quantum transport. In the dc regime, it is well known
that transport is non-local over the electronic coherence
length. This leads to the non-additivity of parallel con-
ductances [1] and to quantum composition laws to re-
late impurity scattering to resistance. Recently a similar
manifestation of quantum coherence has been reported
by Gabelli et al.[2, 3] in the ac regime where the resis-
tance which determines the RC-charge relaxation time of
a mesoscopic capacitor is found to be quantized at half
of a resistance quantum. This observation, in agreement
with predictions of Büttiker, Thomas, and Prêtre [4, 5],
establishes the concept of a charge relaxation resistance
[6] different from the standard dc Landauer resistance.
A second fundamental dynamical time scale is the L/R-
time of a mesoscopic circuit which in macroscopic con-
ductors is determined by the ratio of the inductance and
the resistance of the sample.

Here we investigate a series combination of an induc-
tive and resistive element and demonstrate that macro-
scopic kinetics does not account for the correct ac re-
sponse. In this case, chirality is responsible for the ob-
served non-classical behavior. The inductive conductor is
made of the kinetic inductance of electrons in edge states
[7, 8, 9] of a 2D electron gas (2DEG) quantum Hall bar
[10]. The resistive element is a quantum point contact
[11] (QPC). Theory [12] predicts that edge channels that
connect two reservoirs contribute to the impedance in-
ductively due to kinetic effects, whereas reflected edge
channels contribute capacitively. Importantly, in the
present set-up, the inter-edge coupling is reduced due to
the large bar width and further minimized by using side
gates strongly coupled to the edge states. Our main re-
sult is that the relaxation time of the quantum r-L circuit
is not the classical L/R time but the electronic transit
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time of the circuit.

In our work the sample is still short compared to the
wave length of an edge-magneto-plasmon. Previous ex-
perimental investigations of the electromagnetic response
of Hall bars [13, 14, 15, 16] have addressed the regime
where the response is well accounted for by collective ex-
citations called edge-magneto-plasmons [17] with wave-
length short compared to the dimensions of the sample.
Refs.[13, 15] have extensively studied the time domain
and Ref.[16] the frequency domain.

In this letter we report on phase-resolved impedance
measurements of a quantum R-L circuit in the edge state
regime at GHz frequency and milli-Kelvin temperatures.
With increasing QPC transmission, dc-like conductance
steps are observed on both quadratures of the admit-
tance. Remarkably, the admittance phase is independent
of the number of transmitted modes and of their trans-
mission. This shows that the relaxation time of the chi-
ral R-L circuit is resistance independent. A current and
charge conserving scattering theory extending Ref.[12] is
presented that accounts for this observation with a re-
laxation time given by the electronic dwell time in the
circuit.

The sample is a 50µm long and 6µm wide Hall bar
made in a GaAs/AlGaAs electron gas of nominal den-
sity ns = 1.3 × 1011 cm−2 and mobility µ = 3 × 106

cm2V−1s−1. A magnetic field of B = 0.224T and
B = 0.385T is applied in the spin degenerate quantum
Hall regime (filling factors N = 24 and N = 14 respec-
tively) so that edge states are well developed. The bar
is interrupted in its middle by a pair of quantum point
contacts (inset of Fig.1). Only the first QPC is active
with a negative voltage bias (Vg ∼ −1V). Electron gas
being fully depleted beneath it, the gate to 2DEG capac-
itance is small. The grounded gate of the second QPC
widely overlaps the electron gas. This results in a large
gate-2DEG capacitance cg ∼ 30 fF (for a gate length
lg ∼ 10µm) which efficiently screens the inter-edge inter-
actions. We estimate cg ≫ cH , with cH ∼ 1 fF the edge-
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FIG. 1: Quantized steps in the dc conductance and RF trans-
mission of the circuit as function of the QPC gate voltage.
The solid line has been shifted by +10mV along the voltage
axis to avoid curve overlapping which otherwise obscures fig-
ure clarity. Temperature and magnetic field are respectively
50mK and 0.224T .

to-edge capacitance for the full Hall bar length. Long and
wide non dissipative leads (not shown in Fig.1) connect
the sample to the contact pads.

The sample is mounted between two impedance-
matched 50 Ω coplanar lines. Its impedance being large
(& 10kΩ), the RF conductance G(ω) is simply propor-
tional to the RF transmission of the set-up. Phase is
calibrated by assigning a purely capacitive admittance
(≃ 40fF) to the sample at the pinch-off. This is corrob-
orated by the vanishing of the dc conductance.

Figure 1 shows the real part Re(G) at the opening of
the QPC. The large filling factor in the Hall bar (N = 24)
allows the QPC to control the transmission of a large
number of edge states. As can be seen in the figure, the
RF data are proportional to the dc one. In the following
we shall assign the value 2e2/h to the Re(G) steps as a
calibration of our set-up.

Figure 2 shows Re(G) and Im(G) at N = 14 for the
opening of the first three channels. Note that Im(G) < 0
denotes an inductive contribution. Re(G) and Im(G)
show similar regular steps as function of QPC transmis-
sion. The inductance step amplitude is ≃ 1µH. In fact
both quadratures are mutually proportional as can be
seen in the Nyquist plot of Fig.3. This corresponds to a
transmission-independent phase factor, tan(ϕ) = −ωτ =
Im(G)/Re(G). It is well explained by a constant relax-
ation time τ , in strong contrast with the time constant
(L/R ∝ Re(G)) of a classical circuit. As an additional
information, the inset depicts the linear magnetic field
dependence of τ . These are the main results of our ex-
periment. We propose below an interpretation relying on
the theory developed by T. Christen and one of us for the
low frequency admittance of chiral conductors [12].

In Ref.[12] the emittance, E = Im(G/ω), has been
calculated for the case of a Hall bar with fully transmit-
ted and/or fully reflected edge states. The calculation
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FIG. 2: Real and imaginary parts of the RF admittance of
the quantum Hall conductor as function of the QPC voltage
at T = 50mK. Both signals show steps at the opening of
the first conducting channel. The negative imaginary part
corresponds to a negative emittance which is characteristic of
an inductive behavior.
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FIG. 3: Main frame: Nyquist representation of the data of
Fig.2 showing that the admittance phase is constant as func-
tion of the number of transmitted channels and of their trans-
mission. Point accumulation corresponds to the admittance
plateaus in Fig.2. Insert : similar measurements obtained at
two different magnetic fields showing the linear increase of the
admittance phase with magnetic field.

takes into account both inter-edge coupling and coupling
to side gates. Here we consider the case of a quantum
Hall bar coupled to side gates in series with a quantum
point contact which controls the number of transmitted
channels and their transmission (see fig.4A). Let N the
number of filled Landau levels (for simplicity we do not
take into account spin degeneracy in the calculations),
n be the number of fully transmitted modes and T the
transmission of the partially transmitted one so that (N-
n-1) modes are totally reflected. The length gate lg is
small enough that propagation effects can be neglected.
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FIG. 4: A: Schematics of a quantum Hall bar with N edge
states in series with a quantum point contact (QPC) with
n fully transmitted channels and one partially transmitted
channel. Electrochemical equivalent circuit of a Hall bar in
the limit of weak edge to gate coupling (panel B) and weak
interedge coupling (panel C). Notations are specified in the
text.

Thus charging of edge states is uniform but might differ
on the upper and lower branch of the edge state. Thus we
can assume that the edge states on the left upper side (la-
beled +) of the sample experience the same electrostatic
potential U+ and all the edge states on the left lower side
(labeled -) experience the potential U−. The upper and
lower edge states on the left side are equally coupled to
side gates with capacitance cg and the long range electro-
static interactions between the upper and lower edges are
described by a capacitance cH (see fig.1.B). For simplic-
ity, we take all left edge states to have the same density
of states, ν = lg/hvD, where vD is the drift velocity. vD

is the ratio of the confining electric field to the applied
magnetic field and is therefore ∝ N . The quantum ca-
pacitance per channel is given by cq = e2ν = lge

2/hvD.
The low frequency response of the conductor is of the

form dIα(ω)/dVβ(ω) = Gαβ − iωEαβ + .. where α, β label
current contact indices 1 and 2 and gate indices 3 and 4
[18]. Gαβ 6= 0 only for current contacts. Eαβ is a four
terminal emittance matrix for the quantum conductor
with its gates. According to Ref.[12], the emittance is

Eαβ = e2
∑

k=+,−

[
dNαkβ

dE
−

dNαk

dE
uk,β

]
, (1)

where
dNαkβ

dE
is the partial density of states of carriers

injected in contact β that reach the upper edge k = +,
(or the lower edge k = −), and exit the sample through

contact α. dNαk

dE
= Σβ

dNαkβ

dE
is the emissivity of region

k = ± irrespective of the contact from which the carriers
are incident. The characteristic potential ukβ relates the
change of the electrostatic potential of conductor k to
that of the electrochemical potential of contact β. In our
geometry the only non-zero partial density of states are:

dN1,±,1

dE
= ((1 − T ) + N − (n + 1))ν

dN2,+,1

dE
=

dN1,−,2

dE
= (T + n)ν

from which we find the emissivities dNαk

dE
. We next need

to find the characteristic potentials uk,β on the upper
and lower edges of the conductor k = ± for each of the
four contacts β = 1, 2, 3, 4. To this end we follow closely
Ref.[12] and find the emittance matrix. The two-terminal
admittance measurement considered in this work is de-
termined by the matrix element [19] E2,1 ≡ E. We find

E = −cµg

(T + n)

N
− ηcµH

(T + n)2

N2
(2)

where

cµg =
Ncq cg

cg + Ncq

, cµH =
Ncq cH

2cH + Ncq

(3)

η =
1

1 + cg/Ncq

×
1

1 + cg/(2cH + Ncq)
(4)

are respectively the electrochemical capacitance between
one edge and its side-gate and the mutual capacitance of
the edge states across the Hall bar. The coefficient η < 1
vanishes for strong gate coupling (cg ≫ cq). Note that
vD ∝ N , so that Nν, cµH and cµg do not depend on N .

For our experiment where inter-edge coupling is weak
(cH << cq . cg), E ≃ −cµg(T + n)/N , we obtain

G(ω) = G0

(
1 − iω

h

e2

cµg

N

)
(5)

where G0 = (n + T )e2/h is the Landauer dc conduc-
tance. Remarkably G(ω) exhibits a transmission inde-
pendent phase in agreement with the experiment. Here
the negative bar emittance can be interpreted with the
equivalent circuit in Fig.4C in terms of leakage currents
to the gate. It can be shown that the classical addition
of the Hall bar and the QPC impedances gives a different
result with a transmission-dependent phase factor. This
corresponds to the situation where a fictitious reservoir
is inserted between the two components which amounts
essentially to break the chirality of the experiment. We
thus observe a violation of classical laws which is here a
pure effect of chirality. The phase factor is given by the
transit time of electrons through the Hall bar τ = lg/ṽD,

where ṽD = vD +
e2Nlg
hcg

is the drift velocity which takes

into account the screening by the side gate. Note that
ṽD ∝ N is inversely proportional to the magnetic field.
This magnetic field dependence is clearly observed in the
experiment (inset of Fig.3). From the slope (≃ −0, 89)
of the Nyquist diagram obtained at B = 0.385T (main
frame), and lg ∼ 10µm , we estimate a drift velocity of
ṽD ∼ 105 m/s in order of magnitude agreement with the
numbers in the literature [15].

We consider now the opposite case of a non-chiral
quantum wire (i.e. a carbon nanotube) with strong inter-
edge coupling (cg << cq . cH). We obtain

G(ω) = G0

(
1 − iωG0

h2

e4
cµH

)
. (6)
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It corresponds to the lowest order development for
the admittance of the Landauer resistance 1/G0 in se-
ries with the Hall-bar electrochemical inductance Lµ =
h2

e4 cµH/N2. In this non-chiral situation classical laws are
recovered. The negative Hall bar emittance can be inter-
preted with the equivalent circuit in Fig.4B, in terms of
displacement counter-currents proportional to frequency.
For very strong inter-edge coupling (cH → ∞), Lµ re-
duces to the usual kinetic inductance of a quantum wire,

Lkin = h2

e2

ν
2N

[20, 21]. The signature of this regime would
be a linear variation of the admittance phase (i.e. τ)
with transmission, which corresponds to a circle arch in
the Nyquist diagram.

In conclusion, we have provided phase resolved mea-
surements of the admittance of a quantum Hall bar cou-
pled to gates in series with a quantum point contact.
This realizes the simplest chiral quantum R-L circuit. We
observe quantized steps in both the active and reactive
parts of the admittance with a remarkable transmission-
independent phase. The phase is directly related to the

transit time of the electrons in the Hall bar. This inter-
pretation is further supported by the expected magnetic
field dependence of the transit time. Our measurements
are well described by a scattering theory in the limit of
strong side-gate coupling, allowing for a direct determi-
nation of the electronic transit-time. Our work demon-
strates that interesting novel transport quantities such as
the mesoscopic analogs of the RC and L/R-times become
accessible in the GHz range provided the measurement is
carried out on a sample with properties that can be tuned
over a wide range for instance as here with a QPC.
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