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4Université de Genève, 24 Quai Ernest Ansermet, CH-1211 Genève, Switzerland
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We report on the GHz complex admittance of a chiral one dimensional ballistic conductor formed
by edge states in the quantum Hall regime. The circuit consists of a wide Hall bar (the inductor
L) in series with a tunable resistor (R) formed by a quantum point contact. Electron interactions
between edges are screened by a pair of side gates. Conductance steps are observed on both real
and imaginary parts of the admittance. Remarkably, the phase of the admittance is transmission-
independent. This shows that the relaxation time of a chiral R-L circuit is resistance independent.
A current and charge conserving scattering theory is presented that accounts for this observation
with a relaxation time given by the electronic transit time in the circuit.

PACS numbers: 73.23.Ad,73.43.Cd,73.43.Fj,73.63.-b

Violation of classical electro kinetic laws is a hallmark
of quantum transport. In the dc regime, it is well known
that transport is non-local over the electronic coherence
length. This leads to the non-additivity of parallel con-
ductances [1] and to quantum composition laws to re-
late impurity scattering to resistance. Recently a similar
manifestation of quantum coherence has been reported
by Gabelli et al.[2, 3] in the ac regime where the resis-
tance which determines the RC-charge relaxation time of
a mesoscopic capacitor is found to be quantized at half
of a resistance quantum. This observation, in agreement
with predictions of Büttiker, Thomas, and Prêtre [4, 5],
establishes the concept of a charge relaxation resistance
[6] different from the standard dc Landauer resistance.
A second fundamental dynamical time scale is the L/R-
time of a mesoscopic circuit which in macroscopic con-
ductors is determined by the ratio of the inductance and
the resistance of the sample.

Here we investigate a series combination of an induc-
tive and resistive element and demonstrate that macro-
scopic kinetics does not account for the correct ac re-
sponse. In this case, chirality is responsible for the ob-
served non-classical behavior. The inductive conductor
is a 2D electron gas (2DEG) Hall bar [7] in the Quan-
tum Hall regime. It is followed by a quantum point con-
tact [8] (QPC) which controls the number of transmitted
channels and their transmission and thus represents the
resistance contribution. In a quantizing magnetic field,
this geometry allows to investigate the relaxation time
of the quantum R-L circuit made of the kinetic induc-
tance of the electrons in edge states [9, 10, 11] of the
Hall bar in series with the resistance of the QPC. Theory
[12] predicts that edge channels that connect two reser-
voirs contribute to the impedance inductively due to ki-
netic effects, whereas edge channels which are reflected
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FIG. 1: Quantized steps in the dc conductance and RF trans-
mission of the circuit as function of the QPC gate voltage.
The curves have been slightly shifted along the voltage axis
for clarity. Temperature and magnetic field are respectively
50 mK and 0.224 T.

to the same reservoir from which they are incident, con-
tribute capacitively. Importantly, in the present set-up,
the inter-edge coupling is reduced due to the large bar
width and further minimized by using side gates strongly
coupled to the edge states. Our main result is that this
relaxation time is not the classical L/R time but the elec-
tronic transit time of the circuit.

In the work presented here the sample is still short
compared to the wave length of an edge-magneto-
plasmon. Previous experimental investigations of the
electromagnetic response of Hall bars [13, 14, 15, 16]
have addressed the regime where the response is well ac-
counted for by collective excitations called edge-magneto-
plasmons [17] with wave-length short compared to the
dimensions of the sample. Refs.[13, 15] have extensively
studied the time domain and Ref.[16] the frequency do-
main.

In this letter we report on phase-resolved impedance
measurements of a quantum R-L circuit in the edge state
regime at GHz frequency and milli-Kelvin temperatures.
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With increasing QPC transmission, dc-like conductance
steps are observed on both quadratures of the admit-
tance. Remarkably, the admittance phase is independent
of the number of transmitted modes and of their trans-
mission. This shows that the relaxation time of the chi-
ral R-L circuit is resistance independent. A current and
charge conserving scattering theory extending Ref.[12] is
presented that accounts for this observation with a re-
laxation time given by the electronic dwell time in the
circuit.

The sample is a 50µm long and 6µm wide Hall bar
made in a GaAs/AlGaAs electron gas of nominal den-
sity ns = 1.3 × 1011 cm−2 and mobility µ = 3 × 106

cm2V−1s−1. A magnetic field of B = 0.224T and
B = 0.385T is applied in the spin degenerate quantum
Hall regime (filling factors N = 24 and N = 14 respec-
tively) so that edge states are well developed. The bar
is interrupted in its middle by a pair of quantum point
contacts (inset of Fig.1) but only the first QPC is active
with a negative voltage bias (Vg ∼ −1V); the electron
gas density beneath it is fully depleted and the gate to
2DEG capacitance is small. The gate of the second QPC
is grounded and widely overlaps the electron gas. This
results in a large gate-2DEG capacitance cg ∼ 30 fF (for a
gate length lg ∼ 10µm) which efficiently screens the inter-
edge interactions. In particular we estimate cg ≫ cH ,
with cH ∼ 1 fF the edge-to-edge capacitance for the full
Hall bar length. Long and wide leads (not shown in Fig.1)
connect the sample to the contact pads. Due to their
large inductance and stray capacitance the leads acts as
Π-filters above their cut-off frequency which introduces
two additional π phase shifts in series.
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FIG. 2: Real and imaginary parts of the RF admittance of
the quantum Hall conductor as function of the QPC voltage
at T = 50mK. Both signals show steps at the opening of
the first conducting channel. The negative imaginary part
corresponds to a negative emittance which is characteristic of
an inductive behavior.

The sample is mounted in between and connected to
two impedance-matched 50 Ω coplanar lines. The sam-
ple impedance being large (& 10kΩ), the RF conduc-
tance is simply proportional to the RF transmission of
the set-up. The reference phase is calibrated by assigning

a purely capacitive admittance (≃ 40fF) to the sample
at the pinch-off. This is corroborated by the vanishing of
the dc conductance.

Figure 1 shows the real part Re(G) at the opening of
the QPC. The large filling factor in the Hall bar (N = 24)
allows the QPC to control the transmission of a large
number of edge states (more than seven doubly degener-
ate channels). As can be seen in the figure, the transmis-
sion measured at RF frequency is proportional to the dc
one. In the following we shall assign the value 2e2/h to
the Re(G) steps as a calibration of our set-up.
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FIG. 3: Main frame: Nyquist representation of the data of
Fig.2 showing that the admittance phase is constant as func-
tion of the number of transmitted channels and of their trans-
mission. Point accumulation corresponds to the admittance
plateaus in Fig.2. Insert : similar measurements obtained at
two different magnetic fields showing the linear increase of the
admittance phase with magnetic field.

Figure 2 shows Re(G) and Im(G) at N = 14 for the
opening of the first three channels. Note that Im(G) is
negative which shows an inductive behavior of the sam-
ple. In addition Re(G) and Im(G) show similar regular
steps as function of QPC transmission. The inductance
step amplitude is ≃ 1µH. In fact both quadratures are
mutually proportional as can be seen in the Nyquist plot
of Fig.3. This corresponds to a transmission-independent
phase factor, tan(ωτ) = −Im(G)/Re(G), and relaxation
time τ . This phase is too large to be an experimen-
tal artefact. It is well explained by a constant relaxation
time, in strong contrast with a classical R-L circuit where
the time constant (∼ L/R) is proportional to the dc con-
ductance. As an additional information, the inset depicts
the linear magnetic field dependence of τ . These are
the main results of our experiment. We propose below
an interpretation relying on the theory developed by T.
Christen and one of us for the low frequency admittance
of chiral conductors [12].

In Ref.[12] the emittance, E = Im(G/ω), has been
calculated for the case of a Hall bar with fully transmit-
ted and/or fully reflected edge states. The calculation
takes into account both inter-edge coupling and coupling
to side gates. Here we consider the case of a quantum
Hall bar coupled to side gates in series with a quantum
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FIG. 4: A: Schematics of a quantum Hall bar with N edge
states in series with a quantum point contact (QPC) with
n fully transmitted channels and one partially transmitted
channel. Electrochemical equivalent circuit of a Hall bar in
the limit of weak edge to gate coupling (panel B) and weak
interedge coupling (panel C). Notations are specified in the
text.

point contact which controls the number of transmitted
channels and their transmission (see fig.4A). Let lg be
the length of the bar and N the number of filled Landau
levels. For simplicity we do not take into account spin
degeneracy in the calculations. Let n be the number of
fully transmitted modes and T the transmission of the
partially transmitted one so that (N-n-1) modes are to-
tally reflected. The bar is sandwiched between two ohmic
contacts across which the admittance is measured. The
length lg is small enough that propagation effects can be
neglected. Thus charging of edge states is uniform but
might differ on the upper and lower branch of the edge
state. Thus we can assume that the edge states on the
left upper side (labeled +) of the sample experience the
same electrostatic potential U+ and all the edge states
on the left lower side (labeled -) experience the potential
U−. The upper and lower edge states on the left side
are equally coupled to side gates with capacitance cg and
the long range electrostatic interactions between the up-
per and lower edges are described by a capacitance cH

(see fig.1.B). For simplicity, we take all left edge states
to have the same density of states, ν = lg/hvD, where
vD is the drift velocity. vD is the ratio of the confining
electric field to the applied magnetic field and is therefore
∝ N . The quantum capacitance per channel is given by
cq = e2ν = lge

2/hvD.
The low frequency response of the conductor is of the

form dIα(ω)/dVβ(ω) = Gαβ − iωEαβ + .. where α, β label
current contacts indices 1 and 2 and gate indices 3 and 4.
Gαβ is non-zero only for current contacts. Eαβ is a four
terminal emittance matrix for the quantum conductor
with its gates. According to Ref.[12], the emittance is

Eαβ = e2
∑

k=+,−

[
dNαkβ

dE
−

dNαk

dE
uk,β

]
, (1)

where
dNαkβ

dE
is the partial density of states of carriers

injected in contact β that reach the upper edge k = +,

(or the lower edge k = −), and exit the sample through

contact α. dNαk

dE
= Σβ

dNαkβ

dE
is the emissivity of region

k = ± irrespective of the contact from which the carriers
are incident. The characteristic potential ukβ relates the
change of the electrostatic potential of conductor k to
that of the electrochemical potential of contact β. In our
geometry the only non-zero partial density of states are:

dN1,±,1

dE
= (R + N − (n + 1))ν

dN2,+,1

dE
=

dN1,−,2

dE
= (T + n)ν

from which we find the emissivities dNαk

dE
. We next need

to find the characteristic potentials uk,β on the upper
and lower edges of the conductor k = ± for each of the
four contacts β = 1, 2, 3, 4. To this end we follow closely
Ref.[12] and find the emittance matrix. The two-terminal
admittance measurement considered in this work is de-
termined by the matrix element [18] E2,1 ≡ E. We find

E = −cµg

(T + n)

N
− ηcµH

(T + n)2

N2
(2)

where

cµg =
Ncq cg

cg + Ncq

, cµH =
Ncq cH

2cH + Ncq

(3)

η =
1

1 + cg/Ncq

×
1

1 + cg/(2cH + Ncq)
(4)

are respectively the electrochemical capacitance between
one edge and its side-gate and the mutual capacitance of
the edge states across the Hall bar. The dimensionless
coefficient η is smaller than unity and vanishes for strong
gate coupling (cg ≫ cq). Note that vD ∝ N , so that Nν,
cµH and cµg do not depend on N .

In the case of our experiment where inter-edge coupling
is weak (cH << cq . cg), E ≃ −cµg(T + n)/N , and we
obtain

G(ω) = G0

(
1 − iω

h

e2

cµg

N

)
(5)

where G0 = (n + T )e2/h is the Landauer dc conduc-
tance. Remarkably G(ω) exhibits a transmission inde-
pendent phase in agreement with the experiment. Here
the negative bar emittance can be interpreted with the
equivalent circuit in Fig.1C in terms of leakage currents
to the gate. It can be shown that the addition of the
Hall bar impedance (obtained by setting T = 1, N = n
in Eq.(5)) and the QPC impedance (obtained by set-
ting lg = 0 in Eq.(5)) gives a different result with a
transmission-dependent phase factor. This corresponds
to the situation where a fictitious reservoir is inserted be-
tween the two components which amounts essentially to
break the chirality of the experiment. We thus observe
a violation of classical laws which is here a pure effect
of chirality. The phase factor (independent of transmis-
sion) is given by the transit time of electrons through the
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Hall bar τ = lg/ṽD, where ṽD = vD +
e2Nlg
hcg

is the drift

velocity which takes into account the screening by the
side gate. Note that ṽD is proportional to total number
of edge states N and thus inversely proportional to the
magnetic field. This magnetic field dependence is clearly
observed in the experiment as shown in the inset of Fig.3.
From the slope (≃ −0, 89) of the Nyquist diagram ob-
tained at B = 0.385T (main frame), and the length of
the gate lg ∼ 10µm, we obtain an estimate ṽD ∼ 105 m/s
of the drift velocity. This value is in order of magnitude
agreement with the numbers in the literature. [15].

To put these results into perspective it is worth consid-
ering the opposite situation of strong inter-edge coupling
(cg << cq . cH). This corresponds to the case of a non-
chiral quantum wire exemplified by single walled carbon
nanotubes. In this limit we obtain

G(ω) = G0

(
1 − iωG0

h2

e4
cµH

)
. (6)

It corresponds to the lowest order development for
the admittance of the Landauer resistance 1/G0 in se-
ries with the Hall-bar electrochemical inductance Lµ =
h2

e4 cµH/N2. In this non-chiral situation classical laws are
recovered. The negative Hall bar emittance can be inter-
preted with the equivalent circuit in Fig.4B, in terms of
displacement counter-currents proportional to frequency.
For very strong inter-edge coupling (cH → ∞), Lµ re-
duces to the usual kinetic inductance of a quantum wire,

Lkin = h2

e2

ν
2N

[19, 20]. The experimental signature of this
regime would be the linear variation of the admittance

phase, or the time response of the circuit with transmis-
sion, which corresponds to a circle arch in the Nyquist
diagram.

In conclusion, we have provided phase resolved mea-
surements of the admittance of a quantum Hall bar cou-
pled to gates in series with a quantum point contact.
This realizes the simplest chiral quantum R-L circuit. We
observe quantized steps in both the active and reactive
parts of the admittance with a remarkable transmission-
independent phase. The phase is directly related to the
transit time of the electrons in the Hall bar. This inter-
pretation is further supported by the expected magnetic
field dependence of the transit time. Our measurements
are well described by a scattering theory in the limit of
strong side-gate coupling, allowing for a direct determi-
nation of the electronic transit-time. Our work demon-
strates that interesting novel transport quantities such as
the mesoscopic analogs of the RC and L/R-times become
accessible in the GHz range provided the measurement is
carried out on a sample with properties that can be tuned
over a wide range for instance as here with a QPC.
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[10] M. Büttiker, Phys. Rev. B 38, 9375 (1988).
[11] D. B. Chklovskii, B. I. Shklovskii, and L. I. Glazman

Phys. Rev. B 46, 4026 (1992).
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