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A UNIQUE EXTREMAL METRIC FOR THE LEAST

EIGENVALUE OF THE LAPLACIAN ON THE KLEIN

BOTTLE

AHMAD EL SOUFI, HECTOR GIACOMINI AND MUSTAPHA JAZAR

Abstract. We prove the following conjecture recently formulated by
Jakobson, Nadirashvili and Polterovich [15]: on the Klein bottle K, the
metric of revolution

g0 =
9 + (1 + 8 cos2 v)2

1 + 8 cos2 v

(

du
2 +

dv2

1 + 8 cos2 v

)

,

0 ≤ u < π

2
, 0 ≤ v < π, is the unique extremal metric of the first

eigenvalue of the Laplacian viewed as a functional on the space of all
Riemannian metrics of given area. The proof leads us to study a Hamil-
tonian dynamical system which turns out to be completely integrable
by quadratures.

1. Introduction and statement of main results

Among all the possible Riemannian metrics on a compact differentiable
manifold M , the most interesting ones are those which extremize a given
Riemannian invariant. In particular, many recent works have been devoted
to the metrics which maximize the fundamental eigenvalue λ1(M,g) of the
Laplace-Beltrami operator ∆g under various constraints (see, for instance,
[4, 14, 16, 18, 19]). Notice that, since λ1(M,g) is not invariant under scaling
(λ1(M,kg) = k−1λ1(M,g)), such constraints are necessary.

In [22], Yang and Yau proved that on any compact orientable surface
M , the first eigenvalue λ1(M,g) is uniformly bounded over the set of Rie-
mannian metrics of fixed area. More precisely, one has, for any Riemannian
metric g on M ,

λ1(M,g)A(M,g) ≤ 8π(genus(M) + 1),

where A(M,g) stands for the Riemannian area of (M,g) (see [7] for an
improvement of this upper bound). In the non-orientable case, the follow-
ing upper bound follows from Li and Yau’s work [16]: λ1(M,g)A(M,g) ≤
24π(genus(M) + 1). On the other hand, if the dimension of M is greater
than 2, then λ1(M,g) is never bounded above over the set of Riemannian
metrics of fixed volume, see [5].
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Hence, one obtains a relevant topological invariant of surfaces by setting,
for any compact 2-dimensional manifold M ,

Λ(M) = sup
g

λ1(M,g)A(M,g) = sup
g∈R(M)

λ1(M,g),

where R(M) denotes the set of Riemannian metrics of area 1 on M .
On the other hand, in spite of the non-differentiability of the functional

g 7→ λ1(M,g) with respect to metric deformations, a natural notion of ex-
tremal (or critical) metric can be introduced. Indeed, for any smooth defor-
mation gε of a metric g, the function ε 7→ λ1(M,gε) always admits left and
right derivatives at ε = 0 with

d

dε
λ1(M,gε)

∣

∣

∣

ε=0+
≤ d

dε
λ1(M,gε)

∣

∣

∣

ε=0−

(see [9, 11] for details). The metric g is then said to be extremal for the
functional λ1 under volume preserving deformations if, for any deformation
gε with g0 = g and vol(M,gε) = vol(M,g), one has

d

dε
λ1(M,gε)

∣

∣

∣

ε=0+
≤ 0 ≤ d

dε
λ1(M,gε)

∣

∣

∣

ε=0−
.

This last condition can also be formulated as follows:

λ1(M,gε) ≤ λ1(M,g) + o(ε) as ε → 0.

Given a compact surface M , the natural questions related to the func-
tional λ1 are :

(1) What are the extremal metrics on M?
(2) Is the supremum Λ(M) achieved and, if so, by what extremal met-

rics?
(3) How does Λ(M) depend on (the genus of) M?

Concerning the last question, it follows from [6] that Λ(M) is an increasing
function of the genus with a linear growth rate. Explicit answers to questions
(1) and (2) are only known for the sphere S2, the real projective plane RP 2

and the torus T2. Indeed, the standard metric gS2 (resp. gRP 2) is, up to a
dilatation, the only extremal metric on S2 (resp. RP 2) (see [8, 9, 17]) and
one has (see [14] and [16])

Λ(S2) = λ1(S
2, gS2)A(S2, gS2) = 8π

and
Λ(RP 2) = λ1(RP 2, gRP 2)A(RP 2, gRP 2) = 12π.

Concerning the torus, the flat metrics gsq and geq associated respectively

with the square lattice Z2 and the equilateral lattice Z(1, 0)⊕Z(1
2 ,

√
3

2 ) are,

up to dilatations, the only extremal metrics on T2(see [9]). Nadirashvili
[18] has proved the existence of a regular global maximizer of the functional
g 7→ λ1(T

2, g), which then implies that

Λ(T2) = λ1(T
2, geq)A(T2, geq) =

8π2

√
3

.

However, some steps in Nadirashvili’s proof need to be completed as dis-
cussed in the recent work of Girouard [13]. The metric gsq corresponds to a
saddle point of the functional λ1.
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What about the Klein bottle K?

Nadirashvili [18] observed that an extremal metric on K cannot be a flat
metric. Recently, Jakobson, Nadirashvili and Polterovich [15] proved that a
metric of revolution

g0 =
9 + (1 + 8 cos2 v)2

1 + 8 cos2 v

(

du2 +
dv2

1 + 8 cos2 v

)

,

0 ≤ u < π
2 , 0 ≤ v < π, is an extremal metric on K and conjectured that this

metric is, up to a dilatation, the unique extremal metric on K.

The main purpose of this paper is to prove this conjecture. Indeed, we
will prove the following

Theorem 1.1. The Riemannian metric g0 is, up to a dilatation, the unique
extremal metric of the functional λ1 under area preserving deformations of
metrics on the Klein bottle K.

Remark 1.1. Nadirashvili [18] has given a sketch of proof of the fact that
the supremum Λ(K) is necessarily achieved by a regular (real analytic) Rie-
mannian metric. An immediate consequence of such a result and Theorem
1.1 would be

Λ(K) = λ1(K, g0)A(K, g0) = 12πE(2
√

2/3) ≃ 13.365π,

where E(2
√

2/3) is the complete elliptic integral of the second kind evaluated

at 2
√

2
3 .

It is worth noticing that the metric g0 does not maximize the systole
functional g 7→ sys(g) (where sys(g) denotes the length of the shortest non-
contractible loop) over the set of metrics of fixed area on the Klein bottle
(see [3]), while on RP 2 and T2, the functionals λ1 and sys are maximized
by the same Riemannian metrics.

The proof of Theorem 1.1 relies on the characterization of extremal met-
rics in terms of minimal immersions into spheres by the first eigenfunctions.
Indeed, a metric g is extremal for λ1 with respect to area preserving defor-
mations if and only if there exists a family h1, · · · , hd of first eigenfunctions
of ∆g satisfying

∑

i≤d dhi⊗dhi = g (see [9, 10]). This last condition actually

means that the map (h1, · · · , hd) : (M,g) → Rd is an isometric immersion
whose image is a minimal immersed submanifold of a sphere.

As noticed in [15], the surface (K, g0) is isometrically and minimally im-
mersed in S4 as the bipolar surface of Lawson’s minimal torus τ3,1 defined
as the image in S3 of the map

(u, v) 7→ (cos v exp(3iu), sin v exp(iu)).

In fact, we will prove the following

Theorem 1.2. The minimal surface (K, g0) →֒ S4 is, up to isometries, the
only isometrically and minimally immersed Klein bottle into a sphere by its
first eigenfunctions.

In [8], Ilias and the first author gave a necessary condition of symmetry
for a Riemannian metric to admit isometric immersions into spheres by the
first eigenfunctions. On the Klein bottle, this condition amounts to the
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invariance of the metric under the natural S1-action on K. Taking into ac-
count this symmetry property and the fact that any metric g is conformally
equivalent to a flat one, for which the eigenvalues and the eigenfunctions
of the Laplacian are explicitly known, it is of course expected that the ex-
istence problem of minimal isometric immersions into spheres by the first
eigenfunctions reduces to a second order system of ODEs (see Proposition
2.1). Actually, the substantial part of this paper is devoted to the study of
the following second order nonlinear system:

(1)







ϕ′′
1 = (1 − 2ϕ2

1 − 8ϕ2
2)ϕ1,

ϕ′′
2 = (4 − 2ϕ2

1 − 8ϕ2
2)ϕ2,

for which we look for periodic solutions satisfying

(2)

{

ϕ1 is odd and has exactly two zeros in a period,
ϕ2 is even and positive everywhere;

and the initial conditions

(3)

{

ϕ1(0) = ϕ′
2(0) = 0 (from parity conditions (2)),

ϕ2(0) =
1

2
ϕ′

1(0) =: p ∈ (0, 1].

Notice that a similar approach is used in [12] where the construction of
S1-equivariant minimal tori in S4 and S1-equivariant Willmore tori in S3 is
related to a completely integrable Hamiltonian system.

In [15], Jakobson, Nadirashvili and Polterovich proved that the initial

value p = ϕ2(0) =
√

3/8 corresponds to a periodic solution of (1)-(3) satis-
fying (2). Based on numerical evidence, they conjectured that this value of
p is the only one which corresponds to a periodic solution satisfying (2). As
mentioned by them, a computer-assisted proof of this conjecture is extremely
difficult, due to the lack of stability of the system.

In Section 3, we provide a complete analytic study of System (1). First,
we show that this system admits two independent first integrals (one of
them has been already found in [15]). Using a suitable linear change of vari-
ables, we show that the system becomes Hamiltonian and, hence, integrable.
The general theory of integrable Hamiltonian systems tells us that bounded
orbits correspond to periodic or quasi-periodic solutions (see [2]). How-
ever, to distinguish periodic solutions from non-periodic ones is not easy in
general. Fortunately, our first integrals turn out to be quadratic in the mo-
menta which enables us to apply the classical Bertrand-Darboux-Whittaker
Theorem and, therefore, to completely decouple the system by means of a
parabolic type change of coordinates (ϕ1, ϕ2) 7→ (u, v). We show that, for
any p 6=

√
3/2, the solutions u and v of the decoupled system are periodic.

The couple (u, v) is then periodic if and only if the periods of u and v are
commensurable. We express the periods of u and v in terms of hyper-elliptic
integrals and study their ratio as a function of p. The following fact (Propo-
sition 3.1) gives an idea about the complexity of the situation: there exists
a countable dense subset P ⊂ (0,

√
3/2) such that the solution of (1)-(3)

corresponding to p ∈ (0,
√

3/2) is periodic if and only if p ∈ P.

In conclusion, we show that the solution associated with p =
√

3/8 is the
only periodic one to satisfy Condition (2).
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2. Preliminaries: reduction of the problem

According to [9, 10], a necessary and sufficient condition for a Riemannian
metric g on a compact manifold M to be extremal for the functional λ1 under
area-preserving metric deformations is that there exists a family h1, · · · , hd

of first eigenfunctions of ∆g satisfying

(4)
∑

i≤d

dhi ⊗ dhi = g,

which means that the map h = (h1, · · · , hd) is an isometric immersion from
(M,g) to Rd. Since h1, · · · , hd are eigenfunctions of ∆g, the image of h is

a minimal immersed submanifold of the Euclidean sphere Sd−1
(
√

2
λ1(M,g)

)

of radius
√

2/λ1(M,g) (Takahashi’s theorem [20]). In particular, we have

(5)
∑

i≤d

h2
i =

2

λ1(M,g)
.

In [8], Ilias and the first author have studied conformal properties of
Riemannian manifolds (M,g) admitting such minimal isometric immersions
into spheres. It follows from their results that, if g is an extremal metric of
λ1 under area preserving deformations, then

(i) g is, up to a dilatation, the unique extremal metric in its conformal
class,

(ii) g maximizes the restriction of λ1 to the set of metrics conformal to
g and having the same volume,

(iii) the isometry group of (M,g) contains the isometry groups of all the
metrics g′ conformal to g.

For any positive real number a, we denote by Γa the rectangular lattice of
R2 generated by the vectors (2π, 0) and (0, a) and by g̃a the flat Riemannian
metric of the torus T2

a ≃ R2/Γa associated with the rectangular lattice
Γa. The Klein bottle K is then diffeomorphic to the quotient of T2

a by the
involution s : (x, y) 7→ (x+π,−y). We denote by ga the flat metric induced
on K by such a diffeomorphism. It is well known that any Riemannian
metric on K is conformally equivalent to one of the flat metrics ga.

Let g = fga be a Riemannian metric on K. From the property (iii) above,
if g is an extremal metric of λ1 under area preserving deformations, then
Isom(K, ga) ⊂ Isom(K, g), which implies that the function f is invariant
under the S1-action (x, y) 7→ (x + t, y), t ∈ [0, π], on K, and then, f (or its
lift to R2) does not depend on the variable x.

Proposition 2.1. Let a be a positive real number and f a positive periodic
function of period a. The following assertions are equivalent

(I) The Riemannian metric g = f(y)ga on K is an extremal metric of
the functional λ1 under area preserving deformations.

(II) There exists a homothetic minimal immersion h = (h1, · · · , hd) :
(K, g) → Sd−1 such that, ∀i ≤ d, hi is first eigenfunction of ∆g.

(III) The function f is proportional to ϕ2
1 +4ϕ2

2, where ϕ1 and ϕ2 are two
periodic functions of period a satisfying the following conditions:
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(a) (ϕ1, ϕ2) is a solution of the equations






ϕ′′
1 = (1 − 2ϕ2

1 − 8ϕ2
2)ϕ1,

ϕ′′
2 = (4 − 2ϕ2

1 − 8ϕ2
2)ϕ2;

(b) ϕ1 is odd, ϕ2 is even and ϕ′
1(0) = 2ϕ2(0);

(c) ϕ1 admits two zeros in a period and ϕ2 is positive everywhere;
(d) ϕ2

1 + ϕ2
2 ≤ 1 and the equality holds at exactly two points in a

period.

From the results [9, 10] mentioned above, it is clear that (I) and (II) are
equivalent. Most of the arguments of the proof of “(II) implies (III)” can be
found in [18] and [15]. For the sake of completeness, we will recall the main
steps. The proof of “(III) implies (II)” relies on the fact that the system (1)
admits two independent first integrals.

Proof of Proposition 2.1. The Laplacian ∆g associated with the Riemannian

metric g = f(y)ga on K can be identified with the operator − 1
f(y)

(

∂2
x + ∂2

y

)

acting on Γa-periodic and s-invariant functions on R2. Using separation of
variables and Fourier expansions, one can easily show that any eigenfunc-
tion of ∆g is a linear combination of functions of the form ϕk(y) cos kx and
ϕk(y) sin kx, where, ∀k, ϕk is a periodic function with period a satisfying
ϕk(−y) = (−1)kϕk(y) and ϕ′′

k = (k2 − λf)ϕk. Since a first eigenfunction al-
ways admits exactly two nodal domains, the first eigenspace of ∆g is spanned
by

{ϕ0(y), ϕ1(y) cos x, ϕ1(y) sin x, ϕ2(y) cos 2x, ϕ2(y) sin 2x} ,

where, unless they are identically zero, ϕ2 does not vanish while ϕ0 and ϕ1

admit exactly two zeros in [0, a). In particular, the multiplicity of λ1(K, g)
is at most 5.

Let us suppose that g is an extremal metric of λ1 under area preserving
deformations and let h1, · · · , hd be a family of first eigenfunctions satisfying
the equations (4) and (5) above. Without loss of generality, we may assume
that λ1(K, g) = 2 and that h1, · · · , hd are linearly independent, which implies
that d ≤ 5. Since h = (h1, · · · , hd) : K → Sd−1 is an immersion, one has
d ≥ 4. If d = 4, then using elementary algebraic arguments like in the proof
of Proposition 5 of [17], one can see that there exists an isometry ρ ∈ O(4)
such that ρ ◦ h = (ϕ1(y)eix, ϕ2(y)e2ix) with ϕ2

1 + ϕ2
2 = 1 (eq. (5)) and

ϕ′2
1 + ϕ′2

2 = ϕ2
1 + 4ϕ2

2 = f (eq. (4)) which is impossible since ϕ2
1 + ϕ2

2 = 1
implies that ϕ1 and ϕ2 admit a common critical point. Therefore, d =
multiplicity of λ1(K, g) = 5 and there exists ρ ∈ O(5) such that ρ ◦ h =

(ϕ0(y), ϕ1(y)eix, ϕ2(y)e2ix), with ϕ2
0 + ϕ2

1 + ϕ2
2 = 1 and ϕ′2

0 + ϕ′2
1 + ϕ′2

2 =
ϕ2

1 +4ϕ2
2 = f . Since the linear components of ρ◦h are first eigenfunctions of

(K, g), one should has, ∀k = 0, 1, 2, ϕ′′
k = (k2 − λ1(K, g)f)ϕk = (k2 − 2ϕ2

1 −
8ϕ2

2)ϕk. Now, it is immediate to check that one of the couples of functions
(±ϕ1,±ϕ2) satisfies the Conditions (a), . . . , (d) of the statement. Indeed,
the parity condition ϕk(−y) = (−1)kϕk(y) implies that ϕ1(0) = ϕ′

0(0) =

ϕ′
2(0) = 0 and, then, ϕ′2

1(0) = 4ϕ2
2(0). Conditions (c) and (d) follow from

the fact that a first eigenfunction has exactly two nodal domains in K.
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Conversely, let ϕ1 and ϕ2 be two periodic functions of period a satisfying
Conditions (a), . . . , (d) of (III) and consider the Riemannian metric g =

f(y)ga on K, with f = ϕ2
1 + 4ϕ2

2. We set ϕ0 =
√

1 − ϕ2
1 − ϕ2

2 and define the
map h : K → S4 by h = (ϕ0(y), ϕ1(y)eix, ϕ2(y)e2ix). It suffices to check that
the components of h are first eigenfunctions of ∆g satisfying (4).

Indeed, in the next section we will see that the second order differential
system satisfied by ϕ1 and ϕ2 (Condition (a)) admits the two following first
integrals:

(6)







(ϕ2
1 + 4ϕ2

2)
2 − ϕ2

1 − 16ϕ2
2 + ϕ′

1
2 + 4ϕ′

2
2 = C,

12ϕ2
2(ϕ

2
2 − 1) + 3ϕ2

1ϕ
2
2 + ϕ2

2ϕ
′
1
2 − 2ϕ1ϕ

′
1ϕ2ϕ

′
2 + (3 + ϕ2

1)ϕ
′
2
2 = C,

with C = 4ϕ2(0)
2(4ϕ2(0)

2−3) (note that Condition (b) implies that ϕ1(0) =
ϕ′

2(0) = 0). Differentiating ϕ2
0 + ϕ2

1 + ϕ2
2 = 1 and using the second equation

in (6), we get

ϕ2
0ϕ

′
0
2

= ϕ2
1ϕ

′
1
2
+ ϕ2

2ϕ
′
2
2
+ 2ϕ1ϕ

′
1ϕ2ϕ

′
2

= ϕ2
1ϕ

′
1
2
+ ϕ2

2ϕ
′
2
2
+ 12ϕ2

2(ϕ
2
2 − 1) + 3ϕ2

1ϕ
2
2 + ϕ2

2ϕ
′
1
2
+ (3 + ϕ2

1)ϕ
′
2
2 − C

= (ϕ2
1 + ϕ2

2)ϕ
′
1
2
+ (3 + ϕ2

1 + ϕ2
2)ϕ

′
2
2
+ 12ϕ2

2(ϕ
2
2 − 1) + 3ϕ2

1ϕ
2
2 − C

= (1 − ϕ2
0)ϕ

′
1
2
+ (4 − ϕ2

0)ϕ
′
2
2
+ 12ϕ2

2(ϕ
2
2 − 1) + 3ϕ2

1ϕ
2
2 − C.

Therefore

ϕ2
0

(

ϕ′
0
2
+ ϕ′

1
2
+ ϕ′

2
2
)

= ϕ′
1
2
+ 4ϕ′

2
2
+ 12ϕ2

2(ϕ
2
2 − 1) + 3ϕ2

1ϕ
2
2 − C

=
(

1 − ϕ2
1 − ϕ2

2

) (

ϕ2
1 + 4ϕ2

2

)

,

where the last equality follows from the first equation of (6). Hence,

|∂yh|2 = ϕ′
0
2
+ ϕ′

1
2
+ ϕ′

2
2

= ϕ2
1 + 4ϕ2

2 = |∂xh|2

and, since ∂xh and ∂yh are orthogonal, the map h is isometric, which means
that Equation (4) is satisfied.

From Condition (a) one has ϕ′′
1 = (1 − 2f)ϕ1 and ϕ′′

2 = (4 − 2f)ϕ2,
which implies that the functions h1 = ϕ1(y) cos x, h2 = ϕ1(y) sin x, h3 =
ϕ2(y) cos 2x and h4 = ϕ2(y) sin 2x are eigenfunctions of ∆g associated with
the eigenvalue λ = 2. Moreover, differentiating twice the identity ϕ2

0 +

ϕ2
1 + ϕ2

2 = 1 and using Condition (a) and the identity ϕ′
0
2 + ϕ′

1
2 + ϕ′

2
2 =

ϕ2
1 + 4ϕ2

2 = f , one obtains after an elementary computation, ϕ′′
0 = −2fϕ0.

Hence, all the components of h are eigenfunctions of ∆g associated with the
eigenvalue λ = 2. It remains to prove that 2 is the first positive eigenvalue of
∆g or, equivalently, for each k = 0, 1, 2, the function ϕk corresponds to the
lowest positive eigenvalue of the Sturm-Liouville problem ϕ′′ = (k2 − λf)ϕ
subject to the parity condition ϕ(−y) = (−1)kϕ(y). As explained in the
proof of Proposition 3.4.1 of [15], this follows from conditions (c) and (d)
giving the number of zeros of ϕk, and the special properties of the zero sets
of solutions of Sturm-Liouville equations (oscillation theorems of Haupt and
Sturm). �

Remark 2.1. Once the initial conditions ϕ′
1(0) = 2ϕ2(0) = p and ϕ1(0) =

ϕ′
2(0) = 0 (since ϕ1 is odd and ϕ2 is even) are fixed, the solution of the

system given in assertion (III) of Proposition 2.1 is clearly unique. Hence, as
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we have seen in the proof of this proposition, if a Klein bottle (K, g = f(y)ga)
admits an isometric full minimal immersion h : (K, g) → Sd−1 by the first
eigenfunctions, then d =the multiplicity of λ1(K, g) = 5 and there exists
ρ ∈ O(5) such that

ρ ◦ h =

(

√

1 − ϕ2
1(y) − ϕ2

2(y), ϕ1(y)eix, ϕ2(y)e2ix

)

,

where (ϕ1, ϕ2) is a unique solution of (III) (with ϕ′
1(0) = 2ϕ2(0) =

√

f(0)

and ϕ1(0) = ϕ′
2(0) = 0). Recall that an immersion h into Sd−1 is said to

be full if its image does not lie in any hyperplane of Rd (i.e. its components
h1, . . . , hd are linearly independent).

3. Study of the dynamical system: proof of results

According to Proposition 2.1, one needs to deal with the following system
of second order differential equations (Condition (a) of Prop. 2.1)

(7)

{

ϕ′′
1 = (1 − 2ϕ2

1 − 8ϕ2
2)ϕ1,

ϕ′′
2 = (4 − 2ϕ2

1 − 8ϕ2
2)ϕ2,

subject to the initial conditions (Condition (b) of Prop. 2.1)

(8)

{

ϕ1(0) = 0, ϕ2(0) = p,
ϕ′

1(0) = 2p, ϕ′
2(0) = 0,

where p ∈ (0, 1] (Condition (d) of Prop. 2.1).
Notice that the system (7)-(8) is invariant under the transform

(ϕ1(y), ϕ2(y)) 7→ (−ϕ1(−y), ϕ2(−y)).

Consequently, the solution (ϕ1, ϕ2) of (7)-(8) is such that ϕ1 is odd and ϕ2

is even.
We are looking for periodic solutions satisfying the following condition

(Condition (c) of Prop. 2.1):

(9)

{

ϕ1 has exactly two zeros in a period,
ϕ2 is positive everywhere.

Our aim is to prove the following

Theorem 3.1. There exists only one periodic solution of (7)-(8) satisfying

Condition (9). It corresponds to the initial value ϕ2(0) = p =
√

3/8.

In fact, this theorem follows from the qualitative behavior of solutions, in
terms of p, given in the following

Proposition 3.1. Let (ϕ1, ϕ2) be the solution of (7)-(8).

(1) For all p ∈ (0, 1], p 6=
√

3/2, (ϕ1, ϕ2) is periodic or quasi-periodic.

(2) For p =
√

3
2 , (ϕ1, ϕ2) tends to the origin as y → ∞ (hence, it is

neither periodic nor quasi-periodic).
(3) For all p ∈ (

√
3/2, 1], ϕ2 vanishes at least once in each period (of

ϕ2). Hence, Condition (9) is not satisfied.

(4) There exists a countable dense subset P ⊂ (0,
√

3/2), with
√

3/8 ∈
P, such that the solution (ϕ1, ϕ2) corresponding to p ∈ (0,

√
3/2) is

periodic if and only if p ∈ P.
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(5) For p =
√

3/8, (ϕ1, ϕ2) satisfies (9) and, for any p ∈ P, p 6=
√

3/8,
ϕ1 admits at least 6 zeros in a period.

Notice that the assertions (2) and (3) of this proposition were also proved
in [15] by other methods.

The first fundamental step in the study of the system above is the exis-
tence of the following two independent first integrals.

3.1. First integrals. The functions

(10)























H1(ϕ1, ϕ2, ϕ
′
1, ϕ

′
2) := (ϕ2

1 + 4ϕ2
2)

2 − ϕ2
1 − 16ϕ2

2 + (ϕ′
1)

2 + 4(ϕ′
2)

2,

H2(ϕ1, ϕ2, ϕ
′
1, ϕ

′
2) := 12ϕ2

2(ϕ
2
2 − 1) + 3ϕ2

1ϕ
2
2 + ϕ2

2(ϕ
′
1)

2

−2ϕ1ϕ
′
1ϕ2ϕ

′
2 + (3 + ϕ2

1)(ϕ
′
2)

2,

are two independent first integrals of (7), i.e. they satisfy the equation

ϕ′
1

∂Hi

∂ϕ1
+ ϕ′

2

∂Hi

∂ϕ2
+ ϕ′′

1

∂Hi

∂ϕ′
1

+ ϕ′′
2

∂Hi

∂ϕ′
2

≡ 0.

The first one, H1, has been obtained by Jakobson et al. [15]. The orbit of
a solution of (7) is then contained in an algebraic variety defined by

(11)







H1(ϕ1, ϕ2, ϕ
′
1, ϕ

′
2) = K1,

H2(ϕ1, ϕ2, ϕ
′
1, ϕ

′
2) = K2,

where K1 and K2 are two constants. Taking into account the initial condi-
tions (8), one has K1 = K2 = −4p2(3 − 4p2). In other words, the solution
of (7)-(8) is also solution of

(12)























(ϕ2
1 + 4ϕ2

2)
2 − ϕ2

1 − 16ϕ2
2 + (ϕ′

1)
2 + 4(ϕ′

2)
2 + 4p2(3 − 4p2) = 0,

12ϕ2
2(ϕ

2
2 − 1) + 3ϕ2

1ϕ
2
2 + ϕ2

2(ϕ
′
1)

2 − 2ϕ1ϕ
′
1ϕ2ϕ

′
2

+(3 + ϕ2
1)(ϕ

′
2)

2 + 4p2(3 − 4p2) = 0,

with the initial conditions

(13)







ϕ1(0) = 0,

ϕ2(0) = p.

Notice that the parameter p appears in both the equations (12) and the
initial conditions (13). The system (12) gives rise to a “multi-valued” 2-
dimensional dynamical system in the following way.

3.2. 2-dimensional dynamical systems. From (12) one can extract ex-
plicit expressions of ϕ′

1 and ϕ′
2 in terms of ϕ1 and ϕ2. For instance, elimi-

nating ϕ′
1, one obtains the following fourth degree equation in ϕ′

2

(14) d4(ϕ1, ϕ2)(ϕ
′
2)

4 − 2d2(ϕ1, ϕ2)(ϕ
′
2)

2 + d0(ϕ1, ϕ2) = 0,

where d0, d2 and d4 are polynomials in ϕ1, ϕ2 and p. The discriminant of
(14) is given by

∆ := −64ϕ2
1ϕ

2
2w1w2w3,
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with
w1(ϕ1, ϕ2) = ϕ2

1 + ϕ2
2 − 1,

w2(ϕ1, ϕ2) = p2ϕ2
1 − (3 − 4p2)ϕ2

2 + p2(3 − 4p2),

w3(ϕ1, ϕ2) = −(3 − 4p2)ϕ2
1 + 16p2ϕ2

2 − 4p2(3 − 4p2).

It is quite easy to show that, for any p, each one of the curves (wi = 0)
contains the orbit of a particular solution of (12). Moreover, the unit circle
(w1 = 0) represents the orbit of the solution of (12) satisfying the initial

conditions (13) with p = 1. For p =
√

3/8, we have w3 ≡ −4w2 and the
curve (w2 = 0) contains the orbit of the solution of (12)-(13).

These particular algebraic orbits suggest us searching solutions (ϕ1, ϕ2)
defined by algebraic relations of the form w4(ϕ1, ϕ2) = F (ϕ2

1, ϕ
2
2) = 0, where

F is a polynomial of degree ≤ 4. Apart the three quadrics above, the only
additional solution of this type we found is

w4 = (ϕ2
1 + 4ϕ2

2)
2 − 12ϕ2

2 = 0.

Like (w1 = 0), the curve (w4 = 0) is independent of p and represents the
orbit of a particular solution of (12) for arbitrary values of p. Since

w4(ϕ1, ϕ2) = (ϕ2
1 + 4ϕ2

2 − 2
√

3 ϕ2)(ϕ
2
1 + 4ϕ2

2 + 2
√

3 ϕ2),

the set (w4 = 0) is the union of two ellipses passing through the origin, each
one being symmetric to the other with respect to the ϕ1-axis. The upper
ellipse

(15) ϕ2
1 + 4ϕ2

2 − 2
√

3ϕ2 = 0

corresponds to the orbit of the solution of (12)-(13) associated with p =
√

3
2 .

3.3. Proof of Proposition 3.1(2): case p =
√

3

2
. In this case, the orbit

of the solution of (12)-(13) is given by (15). The only critical point of (12)
lying on this ellipse is the origin, which is also a critical point of the system
(7). Therefore, (ϕ1(y), ϕ2(y)) tends to the origin as y goes to infinity (see
also [15]).

From now on, we will assume that p 6=
√

3
2 .

3.4. A bounded region for the orbit. The orbit of the solution of (12)-
(13) must lie in the region of the (ϕ1, ϕ2)-plane where the discriminant ∆ of
(14) is nonnegative. This region, (∆ ≥ 0), is a bounded domain delimited
by the unit circle (w1 = 0) and the quadrics (w2 = 0) and (w3 = 0). Its
shape depends on the values of p.

• For p ∈ (0,
√

3/2), (w2 = 0) and (w3 = 0) are hyperbolas.

• The case p =
√

3/8 is a special one since then, w3 ≡ −4w2, and the
region (∆ ≥ 0) shrinks to the arc of the hyperbola (w2 = 0) lying
inside the unit disk.

• For p ∈ (
√

3/2, 1], w3 is positive and (w2 = 0) is an ellipse.

From (14) and (12) one can express ϕ′
1 and ϕ′

2 in terms of ϕ1, ϕ2 and
p. Thus, we obtain a multi-valued 2-dimensional dynamical system param-
eterized by p with the initial conditions ϕ1(0) = 0 and ϕ2(0) = p. How-
ever, the dynamics of such a multi-valued system is very complex to study.
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Fortunately, as we will see in the next subsections, the system (7) can be
transformed, by means of a suitable change of variables, into a Hamiltonian
system, completely integrable by quadratures.

3.5. Hamiltonian dynamical system. Let us introduce the new variables
q1 and q2 defined by

(16) q1 :=
1√
2

ϕ1 , q2 :=
√

2 ϕ2.

The system (7) becomes

(17)







q′′1 = [1 − 4(q2
1 + q2

2)]q1 = − ∂V
∂q1

,

q′′2 = 4[1 − q2
1 − q2

2]q2 = − ∂V
∂q2

,

with

V (q1, q2) := (q2
1 + q2

2)
2 − 1

2
q2
1 − 2q2

2 .

Therefore, one has a Hamiltonian system with two degrees of freedom. The
Hamiltonian H is given by

H(q1, q2, q
′
1, q

′
2) :=

1

2
[(q′1)

2 + (q′2)
2] + V (q1, q2).

This Hamiltonian is a first integral of (17) (notice that H = 1
4H1). A second

independent first integral of (17) can be obtained from H2. Consequently,
the Hamiltonian system (17) is integrable and all its bounded orbits in phase
space (q1, q2, q

′
1, q

′
2) are contained in a 2-dimensional topological torus (see

[2]), which means that the corresponding solutions are periodic or quasi-
periodic, provided that there is no critical point in the closure of the orbit.
However, it is in general difficult to decide whether such a solution is periodic
or not. The corresponding topological torus obtained from (12) is given by:

(18)























1
2 [(q′1)

2 + (q′2)
2] + (q2

1 + q2
2)

2 − 1
2q2

1 − 2q2
2 + p2(3 − 4p2) = 0,

3q2
2(q

2
2 − 2) + 3q2

1q
2
2 + (q′1)

2q2
2 − 2q1q

′
1q2q

′
2

+1
2(3 + 2q2

1)(q
′
2)

2 + 4p2(3 − 4p2) = 0.

It is important to notice that the second first integral is also quadratic
in the q′1 and q′2 variables. Indeed, this enables us to apply the Bertrand-
Darboux-Whittaker theorem: Given a Hamiltonian system defined by

H =
1

2
[(q1)

′2 + (q′2)
2] + V (q1, q2),

the system admits an additional independent first integral, quadratic in q′1
and q′2, if and only if the system is separable in cartesian, polar, parabolic,
or elliptic-hyperbolic coordinates. (see [1, 21] for details).

In our case, an adequate change of variables is a parabolic one, given by

(19)







q2
1 = −2

3uv,

q2
2 = 1

6 (3 + 2u)(3 + 2v).
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Indeed, from (18), one obtains after an elementary computation

(20)











(u′)2 = P (u)
(u−v)2

,

(v′)2 = P (v)
(u−v)2

,

where P (s) := s(1 − 2s)(3 + 2s)(2p2 + s)(3 − 4p2 + 2s). Observe that (20)
is not completely decoupled yet; this can be done by means of a suitable
change of the independent variable (see Subsection 3.6). Each one of the
quadrics (w1 = 0), (w2 = 0) and (w3 = 0) is transformed into two parallel
lines. Indeed, we have w1(u, v) = −1

4(1 − 2u)(1 − 2v), w2(u, v) = −(3
2 −

2p2 + u)(3
2 − 2p2 + v) and w3(u, v) = 4(2p2 + u)(2p2 + v). Also, we have

∆ = 16
9 P (u)P (v). Thus, the region (∆ ≥ 0) is transformed into the region

(P (u)P (v) ≥ 0).
Observe that the system (20) is symmetric in u and v. As the change
of variables (19) is also symmetric in u and v, and since uv must be non
positive, one can assume, without loss of generality, that u ≥ 0 and, hence,
−3

2 ≤ v ≤ 0. Now, the condition (∆ ≥ 0) implies that (u, v) ∈ I1×I2, where

(21) I1 := [α0, 1/2] :=







[

0, 1
2

]

if p2 < 3
4 ,

[

2p2 − 3
2 , 1

2

]

if 3
4 < p2 ≤ 1,

and

(22) I2 := [a0, a1] :=























[

2p2 − 3
2 ,−2p2

]

if p2 ≤ 3
8 ,

[

−2p2, 2p2 − 3
2

]

if 3
8 ≤ p2 < 3

4 ,

[

−3
2 , 0

]

for 3
4 < p2 ≤ 1.

The initial conditions (13) become

(u(0), v(0)) =







(0, 2p2 − 3
2) if p2 < 3

4 ,

(2p2 − 3
2 , 0) if 3

4 < p2 ≤ 1.

In all cases, u(0) and v(0) are zeros of P . Hence

(u′(0), v′(0)) = (0, 0).

The behavior of (u, v) near y = 0 is then determined by the acceleration
vector

(u′′(0), v′′(0)) =











( 12p2

3−4p2 , 16p2(1−p2)(3−8p2)
(3−4p2) ) if p2 < 3

4 ,

(16p2(1−p2)(3−8p2)
(3−4p2)

, 12p2

3−4p2 ) if 3
4 < p2 ≤ 1.

Notice that for p =
√

3
8 , v is constant, namely v(y) = −3

4 for all y, while

for p = 1, u is constant with u(y) = 1
2 for all y.
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3.6. Proof of Proposition 3.1(1): Decoupling the system. In order
to completely decouple the previous system we introduce a change of the
independent variable y 7→ τ defined by:

dτ

dy
=

1

u − v
.

Notice that this change of variable is one-to-one since u − v 6= 0 (indeed,
I1 ∩ I2 = ∅). In this new variable, the system splits into two independent
equations:

(23) (u̇)2 = P (u),

(24) (v̇)2 = P (v),

where u̇ := du/dτ and v̇ := dv/dτ . The solution τ 7→ u(τ) of (23) is also a
solution of the second order ODE

(25) ü =
1

2
P ′(u),

with the initial conditions u(0) = α0 (see (21) for the definition of α0) and
u̇(0) = 0, where P ′ := dP/du. This solution lies on the curve

(26) (u̇)2 − P (u) = 0

in the (u, u̇)-phase plane of (25). Since α0 and 1
2 are two consecutive zeros of

P , the equation (26) in the region α0 ≤ u ≤ 1
2 represents a closed curve. On

the other hand, it is easy to check that P and P ′ admit no common zero in
the interval [α0,

1
2 ]. Hence, there exists no critical point for (25) on the orbit

defined by (26) inside the region α0 ≤ u ≤ 1
2 . Consequently, this closed

orbit corresponds to a periodic solution of (25) and, therefore, τ 7→ u(τ)
oscillates between α0 and 1

2 .
A similar analysis for τ 7→ v(τ) implies that it is a periodic solution of

(27) v̈ =
1

2
P ′(v),

with the initial conditions v(0) = a0 (see (22) for the definition of a0) and
v̇(0) = 0. Consequently, τ 7→ v(τ) oscillates between a0 and a1. This proves
Assertion (1) of Proposition 3.1(1).

3.7. Proof of Proposition 3.1(3): case p >
√

3

2
. We have just seen that

v(R) = [a0, a1], with a0 = −3
2 for p ∈ (

√
3

2 , 1] (see (22)). This implies that
q2, and then ϕ2, vanishes at least once in a period (see (19)).

3.8. About the periods of u and v: case p <
√

3

2
. Let us denote Tu(p)

the period of u. The function τ 7→ u(τ) oscillates between α0 = 0 and 1
2

with velocity (u̇)2 = P (u) 6= 0 if u ∈ (0, 1
2). Hence, u(τ) increases from 0 to

1
2 when τ goes from 0 to Tu(p)

2 . It follows that

(28) Tu(p) = 2

∫ 1

2

0

ds
√

P (s)
.
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Similarly, for p 6=
√

3/8, the period Tv(p) of τ 7→ v(τ) is given by

Tv(p) = 2

∫ a1

a0

ds
√

P (s)
.

Setting, for p 6=
√

3/8, s = (3 − 8p2)r − 3
2 + 2p2, one can write

(29) Tv(p) = 2

∫ 1

2

0

dr
√

Q(r)
,

where

Q(r) := 2r(1−2r)[2p2 +(3−8p2)r][2−2p2−(3−8p2)r][3−4p2−2(3−8p2)r].

Hence, the functions Tu(p) and Tv(p) are explicitly given by complete hyper-

elliptic integrals. Although the function Tv is not defined at p =
√

3/8, its

limit exists. Indeed, setting t = 3
4 + r and α := 3

4 − 2p2, we get

Tv(p) = 2

∫ α

−α

dt
√

(3
2 − 2t)(5

2 − 2t)(3
2 + 2t)

√
α2 − t2

.

As α → 0, we have

Tv(p) ∼ 2

∫ α

−α

4dt

3
√

10
√

α2 − t2
.

Thus

lim
p→

√

3

8

Tv(p) =
8π

3
√

10
.

On the other hand, we have

Tu(
√

3/8) =
4

5
Π(2/5, 1/4),

where Π is the complete elliptic integral of the third kind given by

Π(n,m) :=

∫ π

2

0

dθ

(1 − n sin2 θ)
√

1 − m sin2 θ
.

Since for p =
√

3/8, v is constant, the couple (u, v) is periodic of period

Tu(
√

3/8).

Behavior of Tv − Tu and Tv/Tu near p = 0: One has

Tv(p) − Tu(p) = 2

∫ 1

2

0

[

1
√

Q(s)
− 1

√

P (s)

]

ds.

The integral of 1√
P (s)

is singular only at p = 0. A direct computation gives

∫ 1

2

0

ds
√

P (s)
∼

∫ 1

2

0

ds

3
√

s2 + 2p2s
∼ −2

3
ln(p).

Similarly, we get
∫ 1

2

0

ds
√

Q(s)
∼ − ln p.
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In other words Tv(p) − Tu(p) → +∞ as p → 0 while the ratio Tv(p)/Tu(p)
goes to 3

2 (see the figure below).

Behavior of Tv − Tu and Tv/Tu near p =
√

3/2: One has, as p →
√

3/2, Tu(p) ∼
−2

3 ln(
√

3/2 − p) and Tv(p) ∼ − ln(
√

3/2 − p). Hence, Tv − Tu → +∞ as

p →
√

3/2 and Tv(p)/Tu(p) goes again to 3
2 .

Thus, Tv(p) > Tu(p) near p = 0 and p =
√

3/2. Actually, one has Tv(p) >
Tu(p) for all p ∈ (0,

√
3/2) as shown by the graphic representation of Tv and

Tu given below.

0 0.2 0.4 0.6 0.8

0

1

2

3

4

5

6

The functions p 7→ Tv(p) (the upper one) and p 7→ Tu(p).

3.9. Proof of Proposition 3.1(4). The couple (u, v) is periodic if and

only if the ratio R(p) := Tv(p)
Tu(p) is a rational number. From the previ-

ous subsection, R is a nonconstant continuous function on (0,
√

3/2) with
limp→0 R(p) = limp→

√
3/2 R(p) = 3/2. The range of R is a closed interval

[r1, r2] ⊂ [1.480473, 1.507784] (see the figure below).

0 0.2 0.4 0.6 0.8
1.48

1.485

1.49

1.495

1.5

1.505

The ratio Tv

Tu

To end the proof of Assertion (4), we only need to define P to be the set

of p ∈ (0,
√

3/2) such that R(p) is a rational number.

3.10. Proof of Proposition 3.1(5). In the case p =
√

3/8 we have, ∀y ∈
R, v(y) = −3

4 and, then, ϕ2
1 = u and ϕ2

2 = 1
8 (3+2u). The couple of periodic

functions (ϕ1, ϕ2) = (
√

u,
√

1
8 (3 + 2u)) on [0,Tu(

√

3/8)], such that ϕ1 is odd

and ϕ2 is even, solves the original system and satisfies Condition (9).
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Let p ∈ P, p 6=
√

3/8, and let q
m ∈ Q be an irreducible fraction, with q,

m ∈ N, such that R(p) = Tv(p)
Tu(p) = q

m . The period of the couple (u, v) is given

by

T (p) = qTu(p) = mTv(p).

The number of zeros of u in a period, for instance [0,T (p)), of (u, v) is
equal to q times the number of zeros of u in [0,Tu(p)). As we saw above,

∀p ∈ (0,
√

3/2), one has 1 < R(p) < 2. Hence, m ≥ 2 and q > m, which
implies q ≥ 3. Since u(0) = 0, the number of zeros of u in a period of (u, v) is
at least 3. Since ϕ1 is odd, the period of (ϕ1, ϕ2) is twice the period of (u, v)

(see (19). From ϕ1 = 2
√

−1
3uv on [0,T (p)), one deduces that ϕ1 admits at

least 6 zeros in a period of (ϕ1, ϕ2). Notice that the case p =
√

3/8 is special
since, for this value of p, v is constant and the couple (u, v) is periodic whose
period is equal to that of u.

3.11. On the shape of solutions. Although it is not necessary for the
proof of our results, one can obtain as a by product of our study, some prop-

erties concerning the shape of solutions. First, notice that, for p ∈ (0,
√

3
2 ),

the 2-dimensional dynamical system admits four critical points in the region
(∆ ≥ 0) ∩ (ϕ2 ≥ 0): A = (2p/

√
3,

√

1 − 4p2/3), B = (
√

1 − 4p2/3, 2p/
√

3)
and their symmetric with respect to the ϕ2-axis that we denote A′ and B′.
Notice that these critical points are on the boundary of the region (∆ ≥ 0).
Non-periodic solutions. They correspond to the case where Tv(p)/Tu(p) is
irrational. In this case, the orbit (u, v) fill the rectangle I1 × I2, and, then,
in the (ϕ1, ϕ2)-plane, the orbit fill the region (∆ ≥ 0).

Periodic solutions. For p =
√

3/8, the solution (ϕ1, ϕ2) lies on the hyperbola

of equation ϕ2
1−4ϕ2

2+3/2 = 0, oscillating between the points A = (− 1√
2
, 1√

2
)

and A′ = ( 1√
2
, 1√

2
). For p 6=

√

3/8, let q/m = Tv(p)/Tu(p) be an irreducible

fraction, with q,m ∈ N, and set T := qTu(p) = mTv(p). Geometrically, this
means that u makes q round trips in a period while v makes m round trips.
We distinguish three cases:

• If q and m are both odd, then u(T /2) = 1
2 and v(T /2) = a1. This

corresponds to the point A for p2 < 3
8 and to the point B for 3

8 <

p2 < 3
4 . The orbit is not closed and (ϕ1, ϕ2) oscillates between A

and A′ or B and B′.
• If q is odd and m is even, then u(T /2) = 1

2 and v(T /2) = a0.

This corresponds to the point B for p2 < 3
8 and to the point A for

3
8 < p2 < 3

4 . Again, (ϕ1, ϕ2) oscillates between A and A′ or B and
B′.

• If q is even and m is odd, then u(T /2) = 0 and v(T /2) = a1. This
corresponds in the (ϕ1, ϕ2)-plane to the point (0, 3

4 −p2). This point
is the intersection between the quadric (w3 = 0) with the ϕ2-axis.
In this case the orbit is closed.

End of the proof of Theorems 1.1, 1.2 and 3.1. Theorem 3.1 follows directly
from Proposition 3.1. Let (ϕ1, ϕ2) be the periodic solution of (7)-(8) satis-

fying (9) with ϕ2(0) = p =
√

3/8, and let a be the period of this solution.
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From Proposition 2.1, the Riemannian metric
(

ϕ2
1(y) + ϕ2

2(y)
)

ga is, up to a
dilatation, the only extremal metric of the functional λ1 under area preserv-
ing deformations. This proves Theorem 1.1. Proposition 2.1 also tells us
that this metric is the only one to admit a homothetic minimal immersion
into a sphere by the first eigenfunctions. Moreover, such an immersion is
unique up to isometries and is given by

ρ ◦ h =

(

√

1 − ϕ2
1(y) − ϕ2

2(y), ϕ1(y)eix, ϕ2(y)e2ix

)

for some ρ ∈ O(5) (see Remark 2.1). This proves Theorem 1.2. �
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